
Every Symplectic Manifold
is a

(Linear) Coadjoint Orbit

Patrick Iglesias-Zemmour
The Hebrew University of Jerusalem, Israel

At the
Institute of Mathematics of the Czech Academy of Sciences

Wednesday, 4. May 2022

1 / 32



At the source
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surveys and monographs, 185 (2013).
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vol.972, 2010.

——— La trilogie du moment. Ann. Inst. Fourier,
45(3):825–857, 1995.

——— Every symplectic manifold is a coadjoint orbit. Frontiers
of Fundamental Physics 14 (FFP14) – Mathematical Physics,
224 (DOI: https://doi.org/10.22323/1.224.0141):1–17,
September 2016.

——— Every symplectic manifold is a (linear) coadjoint orbit.
Canadian Mathematical Bulletin, 1-16. 2021 (with Paul
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The Program

The case of Lie-group homogeneous symplectic manifolds.

The homogeneous action of Hamiltonian diffeomorphisms.

Diffeology the right framework.

Irrational tori.

The moment map in diffeology.

Symplectic Manifolds Revisited

Every symplectic manifold is a (affine) coadjoint orbit

The integration bundle of a (para)sympletic manifold.

Every symplectic manifold is a (linear) coadjoint orbit.
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The case of Lie-group homogeneous symplectic
manifolds

Theorem [JM Souriau]1

Let (M,ω) be a symplectic manifold and G be a Lie group
acting transitively on M, preserving ω. Assume the action to
be Hamiltonian and let µ : M→ G∗ be the moment map. Then,
its image O = µ(M) is a coadjoint orbit (maybe affine) and µ is
a covering from M over O.

1Jean-Marie Souriau. Structure des systèmes dynamiques. Dunod, Paris,
1970.
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Example of Lie-group Homogeneous Symplectic
Manifolds

Consider the action of SL(2,R) on the cylinder R2 − {0}. This
action is transitive and Hamiltonian for the standard symplectic
form Surf = dx∧ dy. The moment map is given by:

µ(z) : σ 7→ 1
2 Surf(z, σz),

for all σ in the Lie algebra of SL(2,R) (traceless 2× 2 matrices).
Clearly µ(z) = µ(−z). The moment map µ is a two-folds
covering.
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The Action of Hamiltonian Diffeomorphisms.

Theorem (W. Boothby2)

Let (M,ω) be a symplectic manifold. The group of Hamiltonian
diffeomorphisms Ham(M,ω) is transitive on M.

• Actually if dim(M) = 2n, then Hω is n-transitive.

Question

In what sense (M,ω) could be regarded as a coadjoint orbit of
Ham(M,ω) ?

2William M. Boothby. Transitivity of the automorphisms of certain
geometric structures. Trans. Amer. Math. Soc. vol. 137, pp. 93–100, 1969.
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Diffeology, a Good Framework

A diffeology on a set X declares which parametrizations are
smooth, as long as they satisfy three natural conditions satisfied
by ordinary smooth maps.

D = {P : U→ X | Conditions}, U ∈ Top(Rn), n ∈ N.

Together with smooth maps, the diffeological spaces form a
category {Diffeology} that is stable by all set-theoretic
operations: sum, product, subset, quotient. The category is
complete and cocomplete.

Moreover, the set of smooth maps C∞(X,X ′) has a natural
functional diffeology that makes the category Cartesian closed.
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The Irrational Torus Tα.

The development of diffeology, whose axiomatics was posed by
J.-M. Souriau in 19803 began integrating singular objects with
the example of the irrational torus in 19834:

Tα = T2/∆α ' R/(Z+ αZ), with ∆α = (e2iπt, e2iπαt),

and α ∈ R−Q.
The main fact was that, as a quotient space, the irrationl torus
is not trivial. In particular, two tori Tα and Tβ are
diffeomorphic iff α ∼ β mod GL(2,Z).

3Jean-Marie Souriau. Groupes différentiels. Lecture notes in
mathematics, 836:91–128, 1980.

4Paul Donato and Patrick Iglesias. Exemple de groupes difféologiques :
flots irrationnels sur le tore. Preprint CPT-83/P.1524. Centre de Physique
Théorique, Marseille, 1983. Published in C. R. Acad. Sci.
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Differential Forms in Diffeology.

Definition

A differential k-form α on a Diffeological space X is a map that
associates, with every plot P : U→ X, a k-smooth form α(P) on
U such that

α(P ◦ F) = F∗(α(P)),

for all smooth parametrization F in U

The set of differential k-forms on X is denoted by:

Ωk(X).

Note. Let α ′ ∈ Ωk(X ′) and f ∈ C∞(X,X ′), then f∗(α ′) ∈ Ωk(X)
with f∗(α ′)(P) = α ′(f ◦ P).
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The Space of Momenta of a Diffeological Group.

Let G be a diffeological group G. Let G∗ be the space of
momenta of G, that is, the space of left-invariant 1-forms on G

G∗ = {ε ∈ Ω1(G) | L(g)∗(ε) = ε},

where
L(g) : g ′ 7→ gg ′

denotes the left multiplication. The adjoint action of G on itself
is defined by:

Ad(g) : g ′ 7→ gg ′g−1.

On G∗ the adjoint action gives the coadjoint action:

Ad∗(g)(ε) = Ad(g−1)∗(ε).

An orbit of the coadjoint action is a coadjoint orbit.
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Moment Maps: The Chain-Homotopy Operator.

There exists a Chain-Homotopy Operator5

K : Ωp(X)→ Ωp−1(Paths(X))

defined for any diffeological space X that satisfies

d ◦K + K ◦ d = 1̂∗ − 0̂∗,

where
t̂(γ) = γ(t)

for all γ ∈ Paths(X).

5P.I-Z. The Moment Maps in Diffeology, Memoir of the AMS, vol.972,
2010.
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The Paths Moment Map.

Let G be a diffeological group acting on a diffeological space X
preserving a closed 2-form ω.
• The 1-form Kω on Paths(X) is invariant by the action of G
on paths.
• For all γ ∈ Paths(X), the pullback of Kω by the orbit map is
a left-invariant 1-form on Paths(X).

γ̂∗(Kω) ∈ G∗ with γ̂ : g 7→ g(γ).

Definition

The path moment map is defined as

Ψ : Paths(X)→ G∗ with Ψ(γ) = γ̂∗(Kω).

12 / 32



The Two-Points Moment Map.

The path moment map Ψ passes onto the product X×X,
modulo some subgroup in G∗, as the two-points moment map ψ.

Paths(X) G∗

X×X G∗/Γ

Ψ

ends class

ψ

With
Γ = {Ψ(`) | ` ∈ Loops(X)}

The subgroup Γ ⊂ G∗ is the obstruction for the action of G to
be Hamiltonian.
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The The One-Points Moment Map.

We assume the space X to be connected. Then, the equation

ψ(x, x ′) = µ(x ′) − µ(x)

has always a solution. They are all of the type:

µ(x) = ψ(xo, x) + c

where xo is some base point in X and c ∈ G∗/Γ is some constant.
The map

µ : X→ G∗/Γ

is the one point moment map.
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Equivariance of Moment Map.

The moment maps satisfy a few important properties:

• Ψ(γ∨ γ ′) = Ψ(γ) + Ψ(γ ′).

• Ψ ◦ g = Ad∗(g) ◦ Ψ.

• ψ(x, x ′) +ψ(x ′, x ′′) = ψ(x, x ′′).
• ψ(g(x), g(x ′)) = Ad∗(g)

(
ψ(x, x ′)

)
.

• µ(g(x) = Ad∗(g)(µ(x)) + θ(g).

• θ(g) = ψ(x0, g(xo))) − ∆c(g).

The map θ : G→ G∗/Γ is a cocycle

θ(gg ′) = Ad∗(g)(θ(g
′)) + θ(g),

and
∆c(g) = Ad∗(g)(c) − c

is a coboundary.
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Affine Coadjoint Orbits.

Every cocycle θ ∈ Z1(G,G∗/Γ) defines an affine action of G on
G∗/Γ with:

Adθ∗(g)([ε]) = Ad∗(g)([ε]) + θ(g)

• The orbits of this action are affine coadjoint orbits.

• The one-point moment map is affine equivariant:

µ ◦ g = Adθ∗(g) ◦ µ.

• If G is transitive on X, then µ(X) is an affine coadjoint orbit.
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The Universal Moment Maps.

The group Gω = Diff(X,ω) is a diffeolgical group, and what
have been said previously apply to it. That gives the universal
moment maps:

Ψω, ψω, µω, Γω, θω.

Proposition

There exists a maximal subgroup Ham(X,ω) ⊂ Diff(X,ω)
whose holonomy ΓH vanishes6. This is the group of Hamiltonian
diffeomorphisms, denoted also by Hω. And we have for this
group:

ΨH, ψH, µH, ΓH = {0}, θH.

6op. cit. The Moment Maps in Diffeology, §9.2.
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Symplectic Manifolds.

A symplectic manifold is a manifold M equiped with a
symplectic form ω. That is,

ω ∈ Ω2(M), dω = 0 and ker(ω) = 0.

Theorem [P.I-Z]7

Let ω be a closed 2-form on a Hausdorff manifold M. Then, ω
is symplectic if and only if:

1 The group Gω is transitive on M.

2 The moment map µω : M→ G∗ω/Γω is injective.

7P.I-Z. Every symplectic manifold is a coadjoint orbit. Frontiers of
Fundamental Physics 14 (FFP14) – Mathematical Physics, 224 (DOI:
https://doi.org/10.22323/1.224.0141):1–17, September 2016.
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The Extreme Situations.

1 On presymplectic manifolds, the moment map µω is not
injective: it is constant on the characteristics of ω.

2 On R2 with ω = (x2 + y2)dx∧ dy, µω is injective but the
group Gω is not transitive.
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Sketch of Proof I.

For a path p and a plot F in G :

Ψω(p)(F)r(δr) =

∫ 1
0

ωp(t)(ṗ(t), δp(t))dt

where r ∈ U and δr ∈ Rn, δp denotes the lifting in the tangent
space TM of the path p, defined by

δp(t) = [D(F(r))(p(t))]−1
∂F(r)(p(t))

∂r
(δr) with t ∈ R.

When F is the exponential of the symplectic gradient of a
smooth function f

F : t 7→ etgradω(f)

we have, with mt = p(t):

Ψω(p)(F) = [f(m1) − f(m0)]× dt,
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Sketch of Proof II.

Let m0 6= m1 be two points of M such that

µω(m0) = µω(m1),

that is,

ψω(m0,m1) = µω(m1) − µω(m0) = 0 with m1 6= m0.

Since M is connected, there exists p ∈ Paths(M) such that
p(0) = m0 and p(1) = m1. Thus,

ψω(m0,m1) = class(Ψω(p)),

and
ψω(m0,m1) = 0 ⇔ class(Ψω(p)) = 0,

that is,
Ψω(p) ∈ Γω.
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Sketch of Proof III.

Then, by definition of Γω,

∃` ∈ M such that Ψω(p) = Ψω(`).

We can choose `(0) = `(1) = m0.

Since M is Hausdorff there exists a smooth real function

f ∈ C∞(M,R),

with compact support, such that

f(m0) = 0 and f(m1) = 1.

Let ξ be the symplectic gradient field associated to f and by F
the exponential of ξ.
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Sketch of Proof IV.

On the one hand:

Ψω(p)(F) = [f(m1) − f(m0)]dt = dt,

and on the other hand:

Ψω(p)(F) = Ψω(`)(F) = [f(m0) − f(m0)]dt = 0;

but dt 6= 0, therefore,

ψω(m0,m1) 6= 0.

Since,
ψω(m0,m1) = µω(m1) − µω(m0),

we get:
m0 6= m1 ⇒ µω(m1) 6= µω(m0).

The moment map µω is injective.
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Every Symplectic Manifolds is a Coadjoint Orbit.

Theorem (P.I-Z8)

Let (M,ω) be a Haussdorf second countable manifold. The
one-point moment map µH : M→ H∗ of the group of
Hamiltonian diffeomorphisms is injective. Then, µH identifies
M with its image µH(M) ⊂ H∗. Since the group of Hamiltonian
diffeomorphisms is transitive on M, its image µH(M) is an
affine coadjoint orbit of the group of Hamiltonian
diffeomorphisms. Therefore, Every Symplectic Manifolds is a
Coadjoint Orbit, maybe affine.

8P.I-Z. Every symplectic manifold is a coadjoint orbit. Frontiers of
Fundamental Physics 14 (FFP14) – Mathematical Physics, 224(DOI:
https://doi.org/10.22323/1.224.0141):1–17, September 2016.
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The Periods of a Closed 2-Form.

Let ω ∈ Ω2(M) with dω = 0. Let σ be a singular 2-cycle of M,
that is a singular 2-chain such that

∂σ = 0.

Then the integral ∫
σ

ω =

∫
∆

σ∗(ω),

where ∆ is the standard 2-simplex, depends only of
[σ] ∈ H2(M,Z), since ω is closed.
That induces a homomorphism from H2(M,Z) to R, whose
image is the group of periods of ω:

Pω =

{∫
σ

ω

∣∣∣∣ [σ] ∈ H2(M,Z)

}
⊂ R.
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The Torus of Periods of a Closed 2-Form.

We consider our manifolds to be Haussdorf and second
countable.
• The group Pω of periods of ω is a (diffeologically) discrete
subgroup of R.
• We define the torus of periods to be the 1-dimensional
diffeological quotient group:

Tω = R/Pω.

When Pω = aZ the 2-form ω is said to be integral. Otherwise,
we shall say that the 2-form is irrational.

Note

When ω is integral the torus of period is a circle of perimeter
a. Otherwise Tω is an irrational torus.
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The Integration Bundle.

The general case of closed 2-forms has been solved in the
framework of diffeology.9:

Theorem

Let M be manifold and ω be any closed 2-form. Let Pω be its
group of periods and Tω be its torus of periods. Then, there
exists a principal principal Tω-bundle π : Y→ M with a
connexion form λ of curvature ω.

Note

The fact that the torus of periods is not trivial in the diffeology
framework is crucial for this theorem. There would be no such
theorem otherwise for ω irrational.

9Patrick Iglesias. La trilogie du moment. Ann. Inst. Fourier,
45(3):825–857, 1995.
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Classification of Integration Bundles.

We call π : Y→ M, an integration bundle, and the pair (π, λ) an
integration structure of (M,ω).

The integration structures are classified thanks to the following
exact sequence:

0→ Hom(H1(M,Z),Pω)→ Hom(H1(M,Z),R)→→ Hom(H1(M,Z),Tω)→ Ext(H1(M,Z),Pω)→ 0

• The group Hom(H1(M,Z),Pω) classifies the integration
bundles
• The dual group Hom(H1(M,Z),R), that is, H1(M,R),
classifies the connexion forms.
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Hamiltonian diffeomorphisms and Integration Bundle.

Let π : Y→ M be any integration bundle, with connexion form
λ. Let Aut(Y, λ) be the connected component of the
automorphisms of (Y, λ):

Aut(Y, λ) = {φ ∈ Diff(Y) | φ∗(λ) = λ, ∃f ∈ Diff(M) s.t. π◦φ = f◦π}o

The groups Aut(Y, λ) and Ham(M,ω) are related through the

exact sequence of homomorphisms10:

1 Tω Aut(Y, λ) Ham(M,ω) 1
η

,

which is a central extension.

10Paul Donato & Patrick Iglesias-Zemmour. Every symplectic manifold is
a (linear) coadjoint orbit. Canadian Mathematical Bulletin, 1-16.(2021)
doi:10.4153/S000843952100031X.
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Lifting the Moment Map to (Y, λ).

Let A∗ be the space of momenta of Aut(Y, λ). The one-point
moment map of Aut(Y, λ) relatively to dλ is

µY : Y→ A∗ with µY(y) = ŷ
∗(λ).

The moment µY descends to µM : X→ A∗, µY = µM ◦ π.

µY is equivariant under the coadjoint action of Aut(Y, λ).

µM is injective.

µM defines a diffeomorphism from M onto the coadjoint
orbit

A∗ ⊃ Oλ = µY(Y) = µM(M).

Theorem

Every Symplectic Manifold is a (Linear) Coadjoint Orbit.
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The Diagram that Explains All.

The following diagram summarize this construction:

Y A∗

M H∗

π

µY

µH

µM η∗

Note. The existence of the integration bundle π : Y→ M, even
when the group of periods is dense in R and the torus of periods
Tω is not a manifold, is the crucial element to this construciton.
This theorem does not exist otherwise. Maybe only the fact
that every symplectic manifold is an affine coadjoint orbit of its
group of Hamiltonian diffeomorphisms survives.
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The Symplectic Structure on the Coadjoint Orbit.

The group Aut(Y, λ) acts on M by:

φ(x) = π(φ(y)), with φ ∈ Aut(Y, λ) and π(y) = x.

Let O ∈ M and OY ∈ π−1(O) let{
ÔY : Aut(Y, λ)→ Y with ÔY(φ) = φ(O)
Ô : Aut(Y, λ)→ M with Ô(φ) = φ(O)

Let
ε = O

∗
Y(λ), then ε ∈ A∗ and dε = O

∗(ω).

In other word, the exterior derivative dε of the momenta
ε ∈ A∗, descends on M ' Aut(Y, λ)/Stab(O) as the symplectic
form ω.
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