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The Context

Symplectic reduction is a standard procedure in Symplectic

geometry with application in Classical Mechanics:

• Reduction of Cartan-Souriau presymplectic manifold

• Reduction of an invariant level of moment map

These constructions are defined on symplectic or presymplectic

manifolds (or submanifolds). They are well documented and

applied when the reduction is regular, that is, does not involved

singularities such that the reduced space is itself a manifold.
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The Chalenge

Among unusual situations for symplectic reduction, two cases

appears frequently in mathematics or in physics:

• The symplectic space is infinite dimensional, for example a

sphere S∞ in an infinite dimensional Hilbert space.

• The reduction has singularities, for example some orbits

are non closed lines and other are circles.

We shall show how these questions are solved, in the framework

of diffeology, in the particular example of the construction of an

infinite dimensional quasiprojective space, that mixes the two

situations.
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What is a Diffeology

A diffeology is a smooth structure defined by means of

parametrizations:

• A parametrization in a set X is any map P : U→ X, defined

on some open subset of some Euclidean space Rn.

A diffeology on a set X is defined as a set D of

parametrizations, called plots, that satisfies three axioms:

• Covering The set D contains the constant parametrizations.

• Locality A parametrization which belongs locally to D

belongs globally to D.

• Smooth Compatibility The composite of any element of D

by a smooth parametrization of its domain belongs to D.

A diffeological space is a set X equiped with a diffeology D.
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Category {Diffeology}

Diffeological spaces are the objects of the category {Diffeology},
whose morphisms are the smooth maps:

• A smooth map from a diffeological space X to another X ′,

is any map f : X→ X ′ such that f ◦ P ∈ D ′ for all P ∈ D.

Smooth maps are denoted by C∞(X,X ′).

The isomorphisms are called diffeomorphisms, they are bijective

smooth maps as well as their inverse.

Category {Diffeology} is stable by any set theoretic operation:

• Sum X =
∐
i Xi. • Product X =

∏
i Xi.

• Subset X ⊂ X ′. • Quotient X = X ′/∼ .
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Quotient Spaces

A striking and important construction is the quotient

diffeology, for any kind of partition:

Let ∼ be any equivalence relation on a diffeological space X,

that is, a partition of X. We can push forward the diffeology of

X onto the quotient set Q = X/∼, by the natural projection

class : X→ Q.

A plot of this quotient diffeology is any parametrization

P : U→ Q such that everywhere,

P =
loc

class ◦R,

where R is some plot of X and the suffix loc means that R is

required only locally.
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Differential Forms

A differential k-form α on a diffeological space X is defined by

its pullback on the plots. Precisely, For every plot P : U→ X,

α(P) ∈ Ωk(U)

and for all smooth parametrization F : V→ U,

α(P ◦ F) = F∗(α(P)).

The form α is just the mapping

α : P 7→ α(P).
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Exterior Derivative

The exterior derivative of a k-form is given by:

dα(P) = d[α(P)],

With

d : Ωk(X)→ Ωk+1(X) and d ◦ d = 0.

That defines a De Rham Complex for every diffeological space.

HkDR(X) = ker[d : Ωk(X)→ Ωk+1(X)]/d[Ωk−1(X)].
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Pullbacks

Let X and X ′ be two diffeological spaces. Let

f : X→ X ′

be a smooth map and α ′ ∈ Ωk(X ′).

The pullback α = f∗(α ′) is defined by

α(P) = α ′(f ◦ P), α ∈ Ωk(X)
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Quotients

Let X be a diffeological space and

π : X→ Q

be a projection onto a quotient, and let α ∈ Ωk(X).

Criterion There exists β ∈ Ωk(Q) such that α = π∗(β) if and

only if, for all plots P and P ′ in X,

π ◦ P = π ◦ P ′ ⇒ α(P) = α(P ′).
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Functional Diffeology on Complex Periodic Functions

Let X and X ′ be two diffeological spaces, C∞(X,X ′) carries a

natural diffeology called the functionnal diffeology. The plots

are the parametrizations r 7→ fr, defined on some Euclidean

domain U such that

[(r, x) 7→ fr(x)] ∈ C∞(U×X,X ′).

That diffeology makes the category Cartesian closed.

The space we will consider in the following is the space od

complex periodic functions

C∞
per(R,C) = {f ∈ C∞(R,C) | f(x+ 1) = f(x)},

equipped with the functional diffeology.
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First, Fourier Transform

For all f in C∞
per(R,C), we associate the sequence of its Fourier

coefficients (fn)n∈Z

fn =

∫ 1
0

f(x)e−2iπnx dx, ∀n ∈ Z.

The image of f 7→ (fn)n∈Z is the vector space E of rapidly

decreasing infinite complex series

E =
{
(fn)n∈Z

∣∣ fn ∈ C & ∀p ∈ N, npfn −−−−→
|n|→∞ 0

}
.

We push the functional diffeology on C∞
per(R,C) to E. A plot

r 7→ fr will give a plot of E

r 7→ (fn(r))n∈Z with fn(r) =

∫ 1
0

fr(x)e
−2iπnx dx, ∀n ∈ Z.
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Functional Diffeology on Fourier Coefficients – I

How to recognize a family (fn(r))n∈Z of smooth

parametrizations in C coming from C∞
per(R,C) ?

Theorem. A parametrizations P : r 7→ (fn(r))n∈Z in E is a

plot, for the pushforward of the functional diffeology on

C∞
per(R,C), if and only if:

1. The functions fn : dom(P)→ C are smooth.

2. For all closed ball B ⊂ dom(P), for every k ∈ N, for all

p ∈ N, there exists a positive number Mk,p such that, for

all integer n 6= 0,∣∣∣∣∂kfn(r)∂rk

∣∣∣∣ ≤ Mk,p

|n|p
for all r ∈ B. (♦)
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Functional Diffeology on Fourier Coefficients – II

Remark 1. In other words, the parametrization r 7→ (fn(r))n∈Z

is a plot of this diffeology if the functions fn are smooth and

their derivatives are uniformly rapidly decreasing:

np
∂kfn(r)

∂rk
−−−−→
|n|→∞ 0, for all p ∈ N.

Remark 2. By compactness, it is enough that, for every point

r0 ∈ dom(P), there exists a ball B ′ centered at r0 such that (♦)

holds to ensure that (♦) holds on every closed ball B ⊂ dom(P).

Remark 3. This is a nice example of a non conventional

diffeology when we forget where it comes from.
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The Infinite Torus – I

Let T∞ be the group of infinite sequences of unit number:

T∞ =
∏
n∈Z

U(1),

acting C-linearly on E by

(zn)n∈Z · (Zn)n∈Z = (znZn)n∈Z.

A rapidly decreasing complex sequence is obviously transformed

into another.

Every element z = (zn)n∈Z ∈ T∞ is invertible,

(zn)
−1
n∈Z = (z̄n)n∈Z, z̄ = z∗.
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Action of The Infinite Torus

For every plot r 7→ (Zn(r))n∈Z in E, for all p ∈ N,∣∣∣∣∂kznZn(r)

∂rk

∣∣∣∣ = ∣∣∣∣zn∂kZn(r)∂rk

∣∣∣∣ = ∣∣∣∣∂kZn(r)∂rk

∣∣∣∣ .
Then:

Proposition. The action of (zn)n∈Z on E is smooth as well as

its inverse, (zn)n∈Z acts on E by diffeomorphism. We got a

monomorphism

η : T∞ → GL∞(E) = GL(E) ∩Diff(E).
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Diffeology of The Infinite Torus

Definition. A tempered parametrization in T∞ is a

parametrization

ζ : r 7→ (zn(r))n∈Z

that satisfies:

• The zn are smooth and if for every k ∈ N.

• For every r0 in dom(ζ), there exist a closed ball

B ⊂ dom(ζ) centered at r0, a polynomial Pk and an integer

N such that:

∀r ∈ B, ∀n > N,

∣∣∣∣∂kzn(r)∂rk

∣∣∣∣ ≤ Pk(n).

Proposition. The tempered parametrizations form a group

diffeology on T∞.
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Smooth Action of The Infinite Torus

Proposition. Equipped with the tempered diffeology, the

action of the group T∞ on E is smooth. That is, the

monomorphism η : T∞ → GL∞(E) is smooth.

Next, for all N ∈ N, let ιN : TN → T∞ be defined as follows:

ιN(zn)
N
n=1 = Z with

{
Zn = zn if n ∈ {1, . . . ,N},

Zn = 1 otherwise.

Proposition. The smooth injection ιN is a diffeomorphism

from TN onto its image equipped with the subset diffeology.

That is, an induction.
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Induced Solenoids

Consider a sequence α = (αn)n∈Z of positive numbers,

independent over Q. That is,∑
n∈Z

qnαn = 0 ⇒ qn = 0,

for all finitely supported sequence of rational numbers qn ∈ Q.

In the following we will consider such sequences with |αn| ≤ 1.
Then, the map

ι : R 7→ T∞, defined by ι(t) =

(
e2iπαnt

)
n∈Z

,

which is obviously injective, is an induction, that is, a

diffeomorphism onto its image equipped with the subset

diffeology. We call the image ι(R) ⊂ T∞, an irrational solenoid.
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Symplectic Structure on C∞
per(R,C)

Let Surf be the standard symplectic form on C:

Surfz(δz, δ
′z) =

1

2i

[
δz̄ δ ′z− δ ′z̄ δz

]
∀z, δz, δ ′z ∈ C.

The evaluation map: for all x ∈ R, let

x̂ : C∞
per(R,C)→ C with x̂(f) = f(x), ∀x ∈ R.

Because x̂ is smooth, the mean value of the pullback x̂∗(Surf) is

a 2-form on C∞
per(R,C), and closed.

ω =
1

π

∫ 1
0

x̂∗(Surf)dx with

 ω ∈ Ω2(C∞
per(R,C))

dω = 0.
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The Form ω by Plots

Let P : r 7→ fr be a plot in C∞
per(R,C),

ω(P)r(δr, δ
′r) =

1

2iπ

∫ 1
0

{
∂fr(x)

∂r
(δr)

∂fr(x)

∂r
(δ ′r)

−
∂fr(x)

∂r
(δ ′r)

∂fr(x)

∂r
(δr)

}
dx.
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The Form ω is Indeed Symplectic

The closed 2-form ω is invariant by translation Trg : f 7→ f+ g,

and C∞
per(R,C) is an homogeneous space of itself. The moment

map of this action is given, up to a constant, by:

µ(f) =
1

2iπ
d

[
g 7→ ∫ 1

0

f̄g− ḡf

]
.

Proposition. C∞
per(R,C) acts transitively on itself by

translation, preserving ω, and the moment map µ is injective.

Thus it is a diffeological symplectic space.

Note This is the definition given in the Introduction of

“Example of singular reduction in symplectic diffeology” (P.I-Z).

Proc. Amer. Math. Soc., 144(2):1309 –1324 (2016).
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A Word on Moment Map

When we have a closed 2-form ω on a diffeological space X,

invariant by a group G, there is a moment map

µ : X→ G∗/Γ,

where G∗ is the space of momenta, that is, the spaces of

left-invariant 1-forms on G, and Γ some representation of π1(X).

In the simplest case where ω = dα and α is itself invariant:

µ(x) = x̂∗(α) ∈ G∗.

The case non invariant-exact is treated involving some

diffeological constructions on the space Paths(X).

• “The Moment Map in Diffeology”, P.I-Z. Memoir of the

American Mathematical Society (2010) no.970, USA.
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The Moment Map of T∞

The Moment Map µ of the (Hamiltonian and exact) action of

T∞ on E:

µ(Z) =
1

2iπ

∑
n∈Z

|Zn|
2 π∗n(θ) + σ,

• πn : T∞ → U(1) is the n-th projection πn(Z) = Zn,

• θ is the canonical invariant 1-form on U(1),

• σ is some constant momentum of T∞ (a constant invariant

1-form).
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The Moment Map of the Solenoid

Let (αn)n∈Z be a sequence of positive numbers, independent

over Q. Let

t(Zn)n∈Z = (e2iπαntZn)n∈Z

be the induced action of R on E. We call α-solenoid the

subgroup

Sα =
{
(e2iπαnt)n∈Z

}
t∈R ⊂ T∞.

Its moment map is given by reduction of µ:

ν(Z) = h(Z)dt with h(Z) =
∑
n∈Z

αn|Zn|
2 + c,

where c is some constant. The function h is called Hamiltonian.

27



The Infinite Sphere and the Solenoid

Let S∞
α be the unit level of the Hamiltonian h, for c = 0.

S∞
α =

{
Z = (Zn)n∈Z ∈ E

∣∣∣∣ ∑
n∈Z

αn|Zn|
2 = 1

}
.

Let QP∞
α be the quotient of S∞

α by the action of the solenoid,

equipped with the quotient diffeology, and pr be the projection,

pr : S∞
α → QP∞

α and QP∞
α = S∞

α /R.

We call the quotient space an: Infinite Quasiprojective Space,

since it is a generalization of Prato’s quasisphere [EP01].
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The Orbits of the Solenoid

The orbit of Z = (Zn)n∈N ∈ S∞
α by the solenoid Sα:

1. If there exist Zn 6= 0 and Zm 6= 0, then the stabilizer of Z is

{0} and the orbit is equivalent to the line R. These are the

principal orbits.

2. The singular orbits, aka non principal orbits, are the

subspaces

S1n = {Z ∈ S∞
α | Zm = 0 if m 6= n}, with n ∈ Z.

Each singular orbit, equipped with the subset diffeology, is

equivalent to the circle S1.
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The Principal and Singular Loci

The singular locus of the action of the solenoid is

Sing =
⋃
n∈Z

S1n ⊂ S∞
α .

Equipped with the subset diffeology, it is the diffeological sum

Sing =
∐
n∈Z

S1n, and dim(S) = 1.

It is a closed subset for the D-topolgy.

The regular or principal locus, that is,

Reg = S∞
α −

⋃
n∈Z

S1n,

is an open dense subset for the D-topology.
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Symplectic Reduction

Theorem. There exists a closed 2-form $ on QP∞
α such that:

pr∗($) = ω � S∞
α .

Note 1. Because of the singular orbits, the quasi projective

space is not transitive under the pseudogroup of

automorphisms, and therefore $ is not symplectic. I didn’t

check if the universal moment map is injective, it would not be

surprising. But this is could be the subject of a separate work.

Note 2. Considering the mechanism of the proof, it is clear

that this situation is a special case of a more general theorem

on reduction by R or S1 actions.
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Symplectic Reduction Proof i

Proof We shall apply the general criterion for a differential

form to be a pullback by a subduction. Let P : U→ S∞
α and

P ′ : U→ S∞
α be two plots

U S∞
α

QP∞
α

P

P ′

pr such that pr ◦P = pr ◦P ′.

We want to check if, in these conditions, ω(P) = ω(P ′). That

would insure the existence of $, a (necessarily closed) 2-form
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Symplectic Reduction Proof ii

on QP∞
α such that ω = pr∗($). We consider first of all what

happens on the open subset

U0 = P−1(S∞
α − Sing).

Since pr ◦P = pr ◦P ′, P−1(S∞
α − Sing) = P ′−1(S∞

α − Sing) = U0.

Now, the restrictions of P and P ′ on U0 take their values in the

subset of S∞
α made of principal orbits of R, for which the

stabilizer of the action of R is {0}. Thus, for each r ∈ U0 there is

a unique τ(r) ∈ R such that, for all n, Z ′n(r) = e
2iπαnτ(r)Zn(r).

The function τ is smooth. Indeed, for all r0 ∈ U0, there exists

n ∈ Z such that Zn(r0) 6= 0. Then there exists a neighborhood

of r0 where Zn(r) 6= 0. On this neighborhood Z ′n(r) 6= 0, and
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Symplectic Reduction Proof iii

e2iπαnτ(r) = Z ′n(r)/Zn(r). But r 7→ Z ′n(r) and r 7→ Zn(r) are

smooth, thus r 7→ e2iπαnτ(r) is smooth, and therefore so is τ.

Now, ω = dε, and

ε(P ′)r(δr) =
1

2iπ

∑
n∈Z

Z ′n(r)
∂Z ′n(r)

∂r
(δr)

=
1

2iπ

∑
n∈Z

Zn(r)
∂Zn(r)

∂r
(δr)

+

(∑
n∈Z

αnZn(r)Zn(r)

)
∂τ(r)

∂r
(δr)

= ε(P)r(δr) + τ
∗(dt)r(δr).
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Symplectic Reduction Proof iv

Therefore, [ω(P ′) −ω(P)] � U0 = 0. Thus, by continuity,

[ω(P ′) −ω(P)] � U0 = 0, where U0 is the closure of U0. It

remains to check what happens on the complementary

V = U − U0. The subset V is open, thus P � V and P ′ � V are

two plots of S∞
α but with values in the subset of singular orbits

Sing. Since Sing has dimension 1 and ω is a 2-form,

ω(P � V) = ω(P ′ � V) = 0. This is a general result also in

diffeology. In conclusion ω(P ′) = ω(P) everywhere on U. That

proves that there exists a 2-form $ on QP∞
α = S∞

α /R such that

pr∗($) = ω. �
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