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CHAPTER 9

Symplectic Diffeology

The generalization of classical symplectic geometry to diffeology needs first an
appropriate extension of the classical notion of moment map.1 We know already
that diffeology is suitable for describing, in a unique and satisfactory way, manifolds
or infinite dimensional spaces, as well as singular quotients. But, if diffeology excels
with covariant objects, like differential forms, it is more subtle when it is a question
of contravariant objects like vector fields, Lie algebra,2 kernels, etc. Thus, in order to
build a good diffeological theory of the moment map and to avoid any unnecessary
debate, we must absolutely avoid depending on contravariant geometrical objects.

Actually, the notion of moment map is not really an object of the symplectic world,
but relates more generally to the category of spaces equipped with closed 2-forms.
The nondegeneracy condition is secondary and can be first skipped from the data.
This has been underlined explicitly by Souriau in his symplectic formulation of
Noether’s theorem, which involves presymplectic manifolds. On symplectic mani-
folds Noether’s theorem is void.3 The moment map is just an object of the world of
differential closed forms,4 and there is no reason a priori that it could not be ex-
tended to diffeology which offers a pretty well developed framework for Cartan-De
Rham calculus.

In order to generalize the moment map in diffeology, we need to understand its
meaning, and this meaning lies in the following simplest possible case. Let M be a
manifold equipped with a closed 2-form ω. Let G be a Lie group acting smoothly on
M and preserving ω, that is, g⇤M(ω) = ω for all elements g of G, where gM denotes
the action of g on M. Let us assume that ω is exact, ω = dλ, and moreover that
λ also is invariant by the action of G. Then, for every point m of M, the pullback

1The notion of moment map in the framework of classical symplectic geometry was originally
introduced in the early 1970s by Souriau; see [Sou70].

2Several authors, beginning with Souriau, proposed some generalizations of Lie algebra in diffeo-
logy. But it does not seem to exist a unique good choice. Such generalizations rely actually on the kind
of problem treated. I have preferred, until now, not to choose one definition over another.

3Noether’s theorem states that the moment map is constant on the characteristics of the 2-form; if
the form is nondegenerate, then the characteristics are justs the points.

4I recently introduced the name parasymplectic to denote a closed 2-form; see [PIZ21a].
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360 9. SYMPLECTIC DIFFEOLOGY

of λ by the orbit map m̂ : g 7! gM(m) is a left-invariant 1-form of G, that is, an
element of the dual of the Lie algebra G⇤. The map µ : m 7! m̂⇤(λ) is exactly the
moment map of the action of G on the pair (M,ω)— at least one of the moment
maps, since they are defined up to constants. As we can see, this construction does
not involve really the Lie algebra of G but the space G⇤ of left-invariant 1-forms on
G. Since this space is well defined in diffeology, we just have to replace “manifold”
by “diffeological space”, and “Lie group” by “diffeological group”, and everything
works the same way. Thus, let us change the manifold M for a diffeological space5

X, and let G be some diffeological group. Let us continue to denote the space of
left-invariant 1-forms on G by G⇤, even if the star does not refer a priori to some
duality, and let us simply call it the space of momenta of the group G. Note that the
group G continues to act on G⇤ by pullback of its adjoint action Ad : (g, k) 7! gkg�1,
so we do not lose the notions of coadjoint action and coadjoint orbits.

Next, if we got the good space of momenta, which is the space where the moment
maps are assumed to take their values, the problem remains that not every G-
invariant closed 2-form is exact. And moreover, even if such form is exact, there
is no reason for some of its primitives to be G-invariant. We shall pass over this
difficulty by introducing an intermediary, on which we can realize the simple case
described above. This intermediary is the space Paths(X), of all the smooth paths
in X, where the group G acts naturally by composition. And since Paths(X) carries
a natural functional diffeology, it is legitimate to consider its differential forms,
and this is what we do. By integrating ω along the paths, we get a differential
1-form defined on Paths(X), invariant by the action of G. The exact tool used here
is the Chain-Homotopy operator K . The 1-form Λ=Kω, defined on Paths(X), is
a G-invariant primitive of the 2-form Ω= (1̂⇤ � 0̂⇤)(ω), where 1̂ and 0̂ map every
path in X to its ends. Thus, thanks to the construction described above, we get a
moment map Ψ for the 2-form Ω= dΛ and the action of G on Paths(X). But this
paths moment map Ψ is not the one we are waiting for. We need to push it down on
X, or rather on X⇥X. Now, if we get this way a 2-points moment map ψ well defined
on X ⇥ X, it no longer takes its value in G⇤, as Ψ does, but in the quotient G⇤/Γ,
where Γ is the image by Ψ of all the loops in X. Fortunately, Γ =Ψ(Loops(X)) is a
subgroup of (G⇤,+) and depends on the loops only through their free homotopy
classes. In other words, Γ is a homomorphic image of the Abelianized fundamental
group πAb

1 (X) of X. Well, it is not a big deal to have the moment map taking its
values in some quotient of the space of momenta, we can live with that, especially
if the group Γ is invariant under the coadjoint action of G, which is actually the
case.6 But we are not completely done: the usual moment map is not a 2-points

5The space X will be assumed to be connected, as many results need this hypothesis.
6More precisely, the elements of Γ are not just elements of G⇤ but are moreover closed, and

therefore invariant, each of them, by the coadjoint action of G.
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9. SYMPLECTIC DIFFEOLOGY 361

function, but a 1-point function. Hence, we have to extract our usual moment
maps from this 2-points function ψ. This is fairly easy, thanks to its very definition,
the moment map Ψ satisfies an additive property for the concatenation of paths,
and the moment map ψ inherits this property as a cocycle condition: for any three
points x , x 0 and x 00 of X we have ψ(x , x 0) +ψ(x 0, x 00) = ψ(x , x 00). Therefore, for X
connected, there exists always a map µ such that ψ(x , x 0) = µ(x 0)� µ(x), and any
two such maps differ just by a constant. We get finally our wanted moment maps
µ, defined in the diffeological framework. The only difference, with the simplest
case described above, is that a moment map takes its values in some quotient of the
space of momenta, instead the space of momenta itself. But this is in fact already
the case in the classical theory. It does not appear explicitly because people focus
more on Hamiltonian actions than just on symplectic actions. Actually, the group Γ
represents the very obstruction, for the action of G on (X,ω), to be Hamiltonian.
We shall call Γ the holonomy of the action of G.

Now, let us come back to some properties of the various moment maps introduced
above. The paths moment map Ψ and its projection ψ are equivariant with respect
to the action of G on X and the coadjoint action of G on G⇤, or the projection of the
coadjoint action on G⇤/Γ. But this is no longer the case for the moment maps µ. The
variance of the maps µ reveals a family of cocycles θ from G to G⇤/Γ differing just by
coboundaries, and generalizing the Souriau cocycles [Sou70]. Their common class
σ belongs to the cohomology group H1(G,G⇤/Γ), and will be called the Souriau
class of the action of G of (X,ω). The Souriau class σ is precisely the obstruction
for the 2-points moment map ψ to be exact, that is, for some moment map µ to be
equivariant. Actually, σ is just the pullback, at the group level, of the class of ψ
regarded as a cocycle. In parallel with the classical situation, every Souriau cocycle
θ defines a new action of G on G⇤/Γ, which we still call the affine coadjoint action
(associated with θ). And the image of a moment map µ is a collection of coadjoint
orbits for this action. We call these orbits the (Γ,θ)-coadjoint orbits of G. Two
different cocycles give two families of orbits translated by the same constant.

Let us remark that the holonomy group Γ and the Souriau class σ appear clearly on
a different level of meaning: the first one is responsible for the non-Hamiltonian
character of the action of G and the second characterizes the lack of equivariance
of the moment maps.

Well, until now we did not use all the facilities offered by the diffeological framework.
Since we do not restrict ourselves to the category of Lie groups, nothing prevents
us from considering the group of all the automorphisms of the pair (X,ω), that is,
the group Diff(X,ω) of all the diffeomorphisms of X preserving ω. This group is a
natural diffeological group, acting smoothly on X. Thus, everything built above
applies to Diff(X,ω), and every other action preserving ω, of any diffeological
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group, passes through Diff(X,ω), and through the associated object of the theory
developed here. Therefore, considering the whole group of automorphisms of
the closed 2-form ω of X, we get a natural notion of universal moment maps Ψω,
ψω and µω, universal holonomy Γω, universal Souriau cocycles θω, and universal
Souriau class σω. By the way, this universal construction suggests a simple and new
characterization, for any diffeological space X equipped with a closed 2-form ω,
of the group of Hamiltonian diffeomorphisms Ham(X,ω), as the largest connected
subgroup of Diff(X,ω) whose holonomy vanishes.

It is interesting to note that, unlike the original constructions [Sou70] and most of
their generalizations, the theory described above is essentially global, more or less
algebraic, does not refer to any differential or partial differential, equation, and
does not involve any notion of vector field or functional analysis techniques.

Considering the classical case of a closed 2-form ω defined on a manifold M, we
show in particular that ω is nondegenerate if and only if the group Diff(M,ω) is
transitive on M, and if the universal moment map µω is injective. In other words,
symplectic manifolds are identified, by the universal moment maps, with some
coadjoint orbits — in our general sense— of their group of symplectomorphisms.
This idea that every symplectic manifold is a coadjoint orbit is not new, it is actually
very natural and suggested by a well known classification theorem for symplectic
homogeneous Lie group actions [Kir76], [Kos70], [Sou70]. This has been stated
already in a different context, for example in [MW82] and [Omo86]. But the real
question is: How can we make this statement rigorous at a good price, without
involving the heavy functional analysis apparatus? This is what brings diffeology.

The examples and exercises at the end of this chapter show several situations
involving diffeological groups which are not Lie groups, or involving diffeological
spaces which are not manifolds. We can see, for example, the general theory
applying meaningfully to the singular symplectic irrational tori for which topology
is irrelevant. These general constructions of moment maps are also applied to a
few examples in infinite dimension, and also when finite and infinite dimensions
are mixed. Finally, two exercises on orbifolds exhibit a strong difference between
classical symplectic geometry and what we expect from its diffeological counterpart.
These examples show without any doubt the ability of this theory to treat correctly,
in a unique framework, avoiding heuristic arguments, the large variety of situations
we can find in the mathematical literature today. Infinite dimensional heuristic
examples can be found for instance in [Dnl99]. The solutions of some of the
exercises need tedious computations, which just shows diffeology at work in this
particular field.

In conclusion, besides the point that the construction developed in this chapter is a
first step in the elaboration of the symplectic diffeology program, I would emphasize
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the fact that, since {Manifolds} is a full subcategory of {Diffeology}, all the con-
structions developed here apply to manifolds and give a faithful description of the
classical theory of moment maps. As we have seen, there is no mention, and no
use, of Lie algebra or vector fields in this presentation. This reveals the fact that
these objects also are useless in the traditional approach, and can be avoided. And,
I would add, they should be avoided. Not just because they can then be extended
to larger categories, but because the use of contravariant objects hides the deep fact
that the theory of moment maps is a pure covariant theory. Let us take an example.
We know that since coadjoint orbits of Lie groups are symplectic they are even
dimensional. This is often regarded as a miracle, since it is not necessarily the case
for adjoint orbits. But if we think that the Lie algebra has little to do with the space
of momenta of a Lie group, there is no more miracle, just different behaviors for
different objects, which is unsurprising. Moreover I would add, but this can appear
as more or less subjective, that avoiding all this va-et-vient between Lie algebra and
dual of Lie algebra, the diffeological approach of the moment maps is much simpler,
and even deeper, than the classical approach. Compare for example the Souriau
cocycle constructions in the original “Structure des systèmes dynamiques” [Sou70],
and in diffeology. The only crucial property used here is connectedness, that is,
the existence of enough smooth paths connecting points in spaces. Finally, it goes
without saying that the diffeological approach respects scrupulously the principle
of minimality required by mathematics.

The Paths Moment Map

We shall introduce the various flavors of moment map in diffeology step by step. The
first step consists, in this section, in defining the paths moment map.

9.1. Definition of the paths moment map. Let X be a diffeological space, and
let ω be a closed 2-form defined on X. Let G be a diffeological group, and let
ρ : G! Diff(X) be a smooth action. Let us denote by the same letter the natural
action of G on Paths(X), induced by the action ρ of G on X, that is, for all g 2 G, for
all p 2 Paths(X),

ρ(g)(p) = ρ(g) � p = [t 7! ρ(g)(p(t))].
Let us assume now that the action ρ of G on X preserves ω, that is, for all g 2 G,

ρ(g)⇤(ω) = ω, or ρ 2 Hom1(G,Diff(X,ω)).

LetK be the Chain-Homotopy operator (art. 6.83), soKω is a 1-form on Paths(X),
and the action of G on Paths(X) preservesKω. This is a consequence of the variance
of the Chain-Homotopy operator (art. 6.84). Thus, for all g 2 G,

ρ(g)⇤(Kω) =Kω.



i
i

i
i

i
i

i
i

364 9. SYMPLECTIC DIFFEOLOGY

Now, let p be a path in X, and let p̂ : G! Paths(X) be the orbit map, p̂(g) = ρ(g)�p.
Then, the pullback p̂⇤(Kω) is a left-invariant 1-form of G, that is, an element of
G⇤. The map

Ψ : Paths(X)!G⇤, defined by Ψ(p) = p̂⇤(Kω),

is smooth with respect to the functional diffeology, Ψ 2 C1(Paths(X),G⇤). The
map Ψ will be called the paths moment map.

9.2. Evaluation of the paths moment map. Let X be a diffeological space and
ω be a closed 2-form defined on X. Let G be a diffeological group, and let ρ be a
smooth action of G on X, preserving ω. Let p be a path in X. Thanks to the explicit
expression of the Chain-Homotopy operator (art. 6.83), we get the evaluation of
the momentum Ψ(p) on any n-plot P of G,

Ψ(p)(P)r(δr) =
Z 1

0
ω
✓

s
u

◆
7! (ρ � P)(u)(p(s+ t))

�

(s=0
u=r)

✓
1
0

◆✓
0
δr

◆
d t, (~)

for all r in def(P) and all δr in Rn. Now, as a differential 1-form, Ψ(p) is character-
ized by its values on the 1-plots (art. 6.37). Then, let f : t 7! ft be a 1-plot of G
centered at the identity 1G, that is, f 2 Paths(G) and f (0) = 1G. For every t 2 R,
let Ft be the path in Diff(X,ω)— centered at the identity 1X — defined by

Ft : s 7! ρ( f �1
t � ft+s).

We have then

Ψ(p)( f )t(1) = �
Z

p
iFt
(ω) = �

Z 1

0
iFt
(ω)(p)s(1)ds, (|)

where iFt
(ω) is the contraction of ω by Ft (art. 6.56). But, as an invariant 1-form

on G, the moment Ψ(p) is characterized by its value at the identity, for t = 0,

Ψ(p)( f )0(1) = �
Z

p
iF(ω) = �

Z 1

0
iF(ω)(p)t(1) d t with F= ρ � f . (})

NOTE. Let f 2 Hom1(R,G), then Ψ(p)( f ) is an invariant 1-form on R whose
coefficient is just

R
p iF(ω), that is,

Ψ(p)( f ) = hf (p)⇥ d t, where hf (p) = �
Z

p
iF(ω).

The smooth map hf : Paths(X) ! R is the Hamiltonian of f , or the Hamilton-
ian of the 1-parameter group f (R). Also note that the map h : Hom1(R,G) !
C1(Paths(X),R), defined above, is smooth.
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PROOF. Let us prove (~). Let us recall that for every p 2 Paths(X) and every g 2 G,
p̂(g) = ρ(g) � p = [t 7! ρ(g)(p(t))]. Thus, by definition,

Ψ(p)(P)r(δr) = p̂⇤(Kω)(P)r(δr)

= Kω(p̂ � P)r(δr)

=
Z 1

0
ω
ï✓

s
r

◆
7! p̂ � P(r)(s+ t)

ò

(0r)

✓
1
0

◆✓
0
δr

◆
d t

=
Z 1

0
ω
ï✓

s
r

◆
7! (ρ � P)(r)(p(s+ t))

ò

(0r)

✓
1
0

◆✓
0
δr

◆
d t .

Let us prove (|). Let us apply the general formula (~) for P = f . Introducing
u0 = u� t and s00 = s+ s0, using the compatibility property of ω(P �Q) = Q⇤(ω(P))
and the ρ( ft) invariance of ω, we get

Ψ(p)( f )t(1) =
Z 1

0
ω
✓

s
u

◆
7! ρ( fu)(p(s+ s0))

�

(s=0
u=t)

✓
1
0

◆✓
0
1

◆
ds0

=
Z 1

0
ω
✓

s00

u0

◆
7! ρ( ft+u0)(p(s00))

�

(s00=s0
u0=0)

✓
1
0

◆✓
0
1

◆
ds0

=
Z 1

0
ω
✓

s00

u0

◆
7! ρ( ft � f �1

t � ft+u0)(p(s00))
�

(s00=s0
u0=0)

✓
1
0

◆✓
0
1

◆
ds0

=
Z 1

0
ω
✓

s00

u0

◆
7! ρ( ft)

Å
Ft(u0)(p(s00))

ã�

(s00=s0
u0=0)

✓
1
0

◆✓
0
1

◆
ds0

=
Z 1

0
ω
✓

s00

u0

◆
7! Ft(u0)(p(s00))

�

(s00=s0
u0=0)

✓
1
0

◆✓
0
1

◆
ds0

=
Z 1

0
ω
✓

u0

s00

◆
7! Ft(u0)(p(s00))

�

( u0=0
s00=s0)

✓
0
1

◆✓
1
0

◆
ds0

= �
Z 1

0
ω
✓

u0

s00

◆
7! Ft(u0)(p(s00))

�

( u0=0
s00=s0)

✓
1
0

◆✓
0
1

◆
ds0

= �
Z 1

0
iFt
(ω)(p)s0(1)ds0

= �
Z

p
iFt
(ω).

Let us prove the Note. Let f 2 Hom1(R, G). By definition of differential forms
and pullbacks, Ψ(p)( f ) = f ⇤(Ψ(p)), but since f is a homomorphism from R
to Diff(X,ω) and Ψ(p) is a left-invariant 1-form on Diff(X,ω), f ⇤(Ψ(p)) is an
invariant 1-form of R, then Ψ(p)( f ) = f ⇤(Ψ(p)) = a⇥ d t, for some real a. Thus,
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Ψ(p)( f )r =Ψ(p)( f )0(1)⇥d t = hf (p)⇥d t, with hf (p) =Ψ(p)( f )0(1) = �
R

p iF(ω),
where d t is the canonical 1-form on R. É

9.3. Variance of the paths moment map. Let X be a diffeological space, and let
ω be a closed 2-form defined on X. Let G be a diffeological group and ρ be a smooth
action of G on X, preserving ω. The paths moment map Ψ, defined in (art. 9.1), is
equivariant under the action of G, that is, for all g 2 G,

Ψ � ρ(g) = Ad(g)⇤ �Ψ.

PROOF. Let us denote here the orbit map p̂, of p 2 Paths(X), by R(p), that is,
R(p)(g) = ρ(g) � p and Ψ(p) = R(p)⇤(Kω). Then, Ψ(ρ(g)(p)) = Ψ(ρ(g) � p) =
R(ρ(g) � p)⇤(Kω). But R(ρ(g) � p)(g 0) = ρ(g 0)(ρ(g) � p) = ρ(g 0) � ρ(g) � p =
ρ(g 0g) � p = R(p)(g 0g) = R(p) � R(g)(g 0), thus R(ρ(g) � p) = R(p) � R(g), and
Ψ(ρ(g)(p)) = (R(p) �R(g))⇤(Kω) = R(g)⇤(R(p)⇤(Kω)) = R(g)⇤(Ψ(p)). But since
Ψ(p) is left-invariant, R(g)⇤(Ψ(p)) = Ad(g)⇤(Ψ(p)). É

9.4. Additivity of the paths moment map. Let X be a diffeological space and ω
be a closed 2-form defined on X. Let G be a diffeological group and ρ be a smooth
action of G on X, preserving ω. The paths moment map Ψ, defined in (art. 9.1),
satisfies the following additive property,

Ψ(p _ p0) =Ψ(p) +Ψ(p0) and Ψ(p̄) = �Ψ(p), with p̄(t) = p(1� t),

for any two juxtaposable paths p and p0 in X.

PROOF. This is a direct application of the expression given in (art. 9.2, (})), and of
the additivity of the integral of differential forms on paths. É

9.5. Differential of the paths moment map. Let X be a diffeological space, and
let ω be a closed 2-form defined on X. Let G be a diffeological group, and let ρ be
a smooth action of G on X, preserving ω. Let p be a path in X. Then, the exterior
derivative of the paths momentum Ψ(p) is given by

d(Ψ(p)) = x̂⇤1(ω)� x̂⇤0(ω),
where x0 = p(0) and x1 = p(1), and the x̂ i denote the orbit maps.

PROOF. This is a direct application of the main property of the Chain-Homotopy
operator, d � K + K � d = 1̂⇤ � 0̂⇤. Since dω = 0, d(Kω) = 1̂⇤(ω) � 0̂⇤(ω),
composed with p̂⇤ we get p̂⇤ �d(Kω) = p̂⇤ � 1̂⇤(ω)� p̂⇤ � 0̂⇤(ω), that is, d(p̂⇤(Kω)) =
(1̂ � p̂)⇤(ω)� (0̂ � p̂)⇤(ω). Thus, d(Ψ(p)) = x̂⇤1(ω)� x̂⇤0(ω). É

9.6. Homotopic invariance of the paths moment map. Let X be a diffeological
space and ω be a closed 2-form defined on X. Let G be a diffeological group, and
let ρ be a smooth action of G on X, preserving ω. Let p0 and p1 be any two paths in
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X. If p0 and p1 are fixed-ends homotopic, then Ψ(p0) =Ψ(p1). In other words, Ψ
passes on the Poincaré groupoid of X (art. 5.15).

PROOF. Let s 7! ps be a fixed-ends homotopy connecting p0 to p1, for example let
ps(0) = x0 and ps(1) = x1, for all s. Let f be a 1-plot of G centered at the identity
1G, that is, f (0) = 1G, and let F = ρ� f . We use the fact that the moment of paths is
characterized by its value at the identity, Ψ(ps)( f )0(1) = �

R
ps

iF(ω); see (art. 9.2,
(})). Let us differentiate this equality with respect to s,

@

@ s

Å
Ψ(ps)( f )0(1)

ã
= �δ

Z

ps

iF(ω), with δ= @
@ s

.

The variation of the integral of differential forms on cubes (art. 6.70) gives

δ
Z

ps

iF(ω) =
Z 1

0
d [iF(ω)](δps) +

Z 1

0
d[iF(ω)(δps)]

=
Z 1

0
d [iF(ω)](δps) +

ï
iF(ω)(δps)

ò
1

0
.

The second summand of the right term vanishes because δps vanishes at the ends:
ps(0) = cst and ps(1) = cst. Now, thanks to the Cartan formula (art. 6.72),
d[iF(ω)] = £F(ω)� iF(dω). But ω is invariant under the action of G, thus £F(ω) = 0,
and dω= 0, so d[iF(ω)] = 0. Thus, δ

R
ps

iF(ω) = 0 and therefore Ψ(p0) =Ψ(ps) =
Ψ(p1), for all s. É

9.7. The holonomy group. Let X be a connected diffeological space, and let ω be
a closed 2-form defined on X. Let G be a diffeological group, and let ρ be a smooth
action of G on X, preserving ω. Let Ψ be the paths moment map (art. 9.1). We
define the holonomy Γ of the action ρ by

Γ = {Ψ(`) | ` 2 Loops(X)}.

1. The holonomy Γ is an additive subgroup of the subspace of closed mo-
menta, Γ ⇢ Z (art. 7.17), that is,

dγ = 0 and γ � γ 0 2 Γ,

for any two elements γ and γ 0 in Γ.
2. The paths moment map Ψ, restricted to Loops(X), factorizes through a

homomorphism from π1(X) to G⇤. Thus, Γ is a homomorphic image of
the Abelianized fundamental group πAb

1 (X).
3. In particular, every element γ of Γ is invariant by the coadjoint action of

G on G⇤. For all g in G,

Ad⇤(g)(γ) = γ.



i
i

i
i

i
i

i
i

368 9. SYMPLECTIC DIFFEOLOGY

The holonomy Γ is the obstruction for the action ρ to be Hamiltonian. Precisely,

DEFINITION. The action of G on X is said to be Hamiltonian if Γ = {0}.
Note that if πAb

1 (X) = {0}, or if the group G has no Ad⇤-invariant 1-form except 0,
the action ρ is necessarily Hamiltonian.

PROOF. We get immediately that γ 2 Γ is closed, by application of (art. 9.5). Indeed,
for all paths p 2 Paths(X), d(Ψ(p)) = x̂⇤1(ω)� x̂⇤0(ω), where x0 = p(0) and x1 = p(1).
Thus, for a loop `, since `(0) = `(1), d(Ψ(`)) = 0. Now, let us choose a basepoint
x0 2 X. For every loop ` 2 Loops(X, x0), the momentum Ψ(`) depends on ` only
through its homotopy class (art. 9.6), so Γ is the image of π1(X, x0). And, thanks to
the additive property of Ψ (art. 9.4), the map class(`) 7!Ψ(`) is a homomorphism.
Now, since X is connected, for every other point x1 of X, there exists a path c
connecting x0 to x1, c̄ = t 7! c(1� t) connects x1 to x0. Thanks again to the additive
property of Ψ, Ψ(c̄ _ `_ c) =Ψ(c̄)+Ψ(`)+Ψ(c) = �Ψ(c)+Ψ(`)+Ψ(c) =Ψ(`).
Then, since the map class(`) 7! class(c̄ _ `_ c) is a conjugation from π1(X, x0) to
π1(X, x1), Γ is the same homomorphic image of π1(X, x), for every point x 2 X.
Hence, we proved points 1 and 2. Point 3 is a direct consequence of (art. 7.17). É

Exercise

. EXERCISE 142 (Compact supported real functions I). Let us denote by X the space
of compact supported real functions defined on R, equipped with the diffeology
defined in Exercise 25, p. 29. Precisely, P : U ! X is a plot if and only if (a)
(r, t) 7! P(r)(t) is a real smooth map defined on U ⇥R, and (b) for every r0 2 U
there exist an open neighborhood V ⇢ U of r0 and a compact K ⇢ R such that for
every r 2 V, P(r) and P(r0) coincide out of K. We want to consider the following
bilinear form ω̄ as a differential 2-form on X,

ω̄( f , g) =
Z +1

�1
ḟ (t)g(t) d t,

where the dot denotes the derivative with respect to the parameter t of f . For all
n 2 N, for every n-plot P : U! X, for all r 2 U and δr,δ0r 2 Rn, we define

ω(P)r(δr,δ0r) =
Z +1

�1

@

@ r

Å
@ P(r)(t)
@ t

ã
(δr)

@ P(r)(t)
@ r

(δ0r) d t .

1) Show that ω is a 2-form on X.

2) Check that ω realizes ω̄, that is, for any f , g 2 X,

ω̄( f , g) = ω
Å✓

s
s0

◆
7! s f + s0g

ã

( s
s0)

✓
1
0

◆✓
0
1

◆
.
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Let us consider now the group G = (X,+) acting on itself by translation, that is, for
all u 2 X,

Tu( f ) = f + u for all f 2 X.

3) Show that ω is invariant by G.

4) Say why the holonomy group Γ, associated with the action of G on (X,ω), must
vanish.

5) Show that, for any path p connecting f = p(0) to g = p(1), the paths moment
map is given, for any plot F of G, that is, a plot of X, by

Ψ(p)(F)r(δr) =
Z +1

�1

Å
ġ(t)� ḟ (t)

ã
@ F(r)(t)
@ r

δr d t .

The 2-points Moment Map

The definition of the paths moment map leads immediately to the 2-points moment
map. The 2-points moment map satisfies a cocycle condition inherited from the additive
property of the paths moment map. This is the second step in the general construction.

9.8. Definition of the 2-points moment map. Let X be a connected diffeological
space, and let ω be a closed 2-form defined on X. Let G be a diffeological group
and ρ be a smooth action of G on X, preserving ω. Let Ψ be the paths moment map
(art. 9.1), and let Γ be the holonomy of the action ρ (art. 9.7). Then, there exists a
smooth map ψ : X⇥ X!G⇤/Γ such that the following diagram commutes,

Paths(X) G⇤

X⇥ X G⇤/Γ

Ψ

ends pr

ψ

where pr is the canonical projection from G⇤ onto its quotient, and ends maps p
to (p(0), p(1)). The map ψ 2 C1(X⇥ X,G⇤/Γ) will be called the 2-points moment
map.

1. The 2-points moment map ψ satisfies the Chasles cocycle relation, for
any three points x , x 0, x 00 of X,

ψ(x , x 0) +ψ(x 0, x 00) = ψ(x , x 00). (~)

2. The 2-points moment map ψ is equivariant under the action of G. Precisely,
for any g 2 G, and any pair of points x and x 0 of X,

ψ(ρ(g)(x),ρ(g)(x 0)) = AdΓ
⇤ (g)(ψ(x , x 0)).
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PROOF. By construction ψ is defined by ψ(x , x 0) = classΓ(Ψ(p)), where p 2
Paths(X), x = p(0), x 0 = p(1), and classΓ(α) denotes the class of α 2 G⇤ in G⇤/Γ.
The map ψ is smooth simply by the general properties of subductions in diffeology.
Next, the first point is a consequence of the additivity of the paths moment map
(art. 9.4). The second point is a consequence of the equivariance of the paths
moment map of the Ad⇤ invariance of Γ (art. 9.3), and of the definition of the AdΓ

⇤
action (art. 7.16). É

The Moment Maps

From the construction of the paths moment map given in (art. 9.1), and the 2-points
moment map given in (art. 9.8), we get the notion of 1-point moment maps, or simply
moment maps. This is the third step of the general construction, and the generalization
of the classical notion of moment maps.

9.9. Definition of the moment maps. Let X be a connected diffeological space,
and let ω be a closed 2-form defined on X. Let G be a diffeological group and ρ be a
smooth action of G on X, preserving ω. Let ψ be the 2-points moment map defined
in (art. 9.8). There exists always a smooth map µ : X!G⇤/Γ, called a primitive of
ψ, such that, for any two points x and x 0 of X,

ψ(x , x 0) = µ(x 0)� µ(x).
For every point x0 2 X, for every constant c 2 G⇤/Γ, the map µ defined by

µ(x) = ψ(x0, x) + c

is a primitive of ψ. Every primitive µ of ψ is of this kind, and any two primitives µ
and µ0 of ψ differ only by a constant. The 2-points moment map ψ will be said to
be exact if there exists a primitive µ, equivariant by the action of G, that is, if there
exists a primitive µ such that, for all g 2 G,

µ � ρ(g) = AdΓ
⇤ (g) � µ.

The primitives µ of ψ, equivariant or not, will be called the moment maps.7 Once
one µ will be chosen, we shall call it “the moment map” since it is essentially unique,
means unique up to a constant.

NOTE. By the identity (~) of (art. 9.8), ψ is a 1-cocycle of the G-equivariant co-
homology of X with coefficients in G⇤/Γ, twisted by the coadjoint action. Two
cocycles ψ and ψ0 are cohomologous if and only if there exists a smooth equi-
variant map µ : X ! G⇤/Γ such that ψ0(x , x 0) = ψ(x , x 0) + ∆µ(x , x 0), where
∆µ(x , x 0) = µ(x 0)� µ(x), and ∆µ is a coboundary. So, the 2-points moment map ψ

7These maps should have been called “1-point moment maps”, but to conform to the usual
denomination, we chose to call them simply “moment maps”.
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defines a class belonging to H1
G(X,G⇤/Γ) which depends only on the form ω and

on the action ρ of G on X. If the moment map ψ is exact, that is, if class(ψ) = 0,
we shall say that the action ρ of G on X is exact, with respect to ω. In this case,
there exists a point x0 of X and a constant c such that µ : x 7! ψ(x0, x) + c is an
equivariant primitive for ψ.

PROOF. Let us choose a basepoint x0 2 X. Since X is connected, for any x 2 X
there exists always a path p 2 X such that p(0) = x0 and p(1) = x . Thus, defining
µ(x) = ψ(x0, x) = class(Ψ(p)), and thanks to the cocycle properties of ψ, we have
ψ(x , x 0) = ψ(x , x0) +ψ(x0, x 0) = ψ(x0, x 0)�ψ(x0, x) = µ(x 0)� µ(x). Now, since
ψ is smooth, µ is smooth. Therefore, the equation ψ(x 0, x) = µ(x 0)� µ(x) always
has a solution in µ.

Now, let µ and µ0 be two primitives of ψ. For each pair x , x 0 of points of X we have
µ0(x 0)�µ0(x) = µ(x 0)�µ(x), that is, µ0(x 0)�µ(x 0) = µ0(x)�µ(x). Then, the map
x 7! µ0(x)� µ(x) is constant. There exists c 2 G⇤/Γ such that µ0(x)� µ(x) = c,
that is, µ0(x) = µ(x) + c. Since the map x 7! ψ(x0, x) is a special solution of the
equation in µ : ψ(x 0, x) = µ(x 0)� µ(x), any solution writes µ(x) = ψ(x0, x) + c for
some point x0 2 X and some constant c 2 G⇤/Γ. É

9.10. The Souriau cocycle. Let X be a connected diffeological space, and let ω
be a closed 2-form defined on X. Let G be a diffeological group and ρ be a smooth
action of G on X, preserving ω. Let ψ be the 2-points moment map defined in
(art. 9.8), and let µ be a primitive of ψ as defined in (art. 9.9). Then, there exists a
map θ 2 C1(G,G⇤/Γ) such that

µ(ρ(g)(x)) = AdΓ
⇤ (g)(µ(x)) + θ(g).

This map θ is a (G⇤/Γ)-cocycle, as defined in (art. 7.16). For all g, g 0 2 G,

θ(g g 0) = AdΓ
⇤ (g)(θ(g 0)) + θ(g).

We shall call the cocycle θ the Souriau cocycle of the moment µ.

1. Two Souriau cocycles θ and θ0, associated with two moment maps µ and
µ0 are cohomologous, they differ by a coboundary

∆c : g 7! AdΓ
⇤ (g)(c)� c, where c 2 G⇤/Γ.

2. For the affine coadjoint action of G on G⇤/Γ defined by θ (art. 7.16), the
moment map µ is equivariant. For all g 2 G,

µ � ρ(g) = AdΓ,θ
⇤ (g) � µ.

3. For every cocycle θ, associated with some moment map µ, there always
exist a point x0 2 X and a constant c 2 G⇤/Γ such that,

θ(g) = ψ(x0,ρ(g)(x0)) +∆c(g), for all g 2 G.
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4. The cohomology class σ of θ belongs to a cohomology group denoted by
H1(G,G⇤/Γ). It depends only on the cohomology class of the 2-points
moment map ψ. This class σ will be called the Souriau cohomology class.

NOTE 1. Let x0 be some point of X. The 2-points moment map ψ (which can also
be regarded as a 1-cocycle) defines a 1-cocycle f from G to G⇤/Γ by f (g, g 0) =
ψ(ρ(g)(x0),ρ(g 0)(x0)). The cocycle f 0 associated with another point x 00 will differ
only by a coboundary. So, the Souriau cocycle σ represents just the class of the
pullback f = x̂⇤0(ψ) by the orbit map x̂0, where x̂⇤0 : H1

ρ(X,G⇤/Γ)! H1(G,G⇤/Γ).
And, by the way, it depends only on the restriction of ω to any one orbit of G on X.
Hence, a good choice of the point x0 can simplify the computation of σ.

NOTE 2. The nature of the action ρ has strong consequences on the Souriau class.
For example, thanks to the third item, if the group G has a fixed point x0, that is,
ρ(g)(x0) = x0 for all g in G, then the Souriau class is zero and the cocycle ψ is
exact, i.e., there exists an equivariant primitive µ of ψ.

PROOF. Thanks to (art. 9.9), every moment map µ writes µ(x) = ψ(x0, x) + c,
where x0 is some fixed point of X and c 2 G⇤/Γ. Thus, µ(ρ(g)(x))�AdΓ

⇤ (g)(µ(x)) =
ψ(x0,ρ(g)(x))+c�AdΓ

⇤ (g)(ψ(x0, x)+c) = ψ(x0,ρ(g)(x))+c�AdΓ
⇤ (g)(ψ(x0, x))�

AdΓ
⇤ (g)(c) = ψ(x0,ρ(g)(x)) � ψ(ρ(g)(x0),ρ(g)(x)) � ∆c(g) = ψ(x0,ρ(g)(x)) +

ψ(ρ(g)(x),ρ(g)(x0))�∆c(g) = ψ(x0,ρ(g)(x0))�∆c(g). Therefore, µ(ρ(g)(x))�
AdΓ
⇤ (g)(µ(x)) is constant with respect to x . That proves points 1 and 4.

Now, the variance of θ, with respect to the multiplication of G, is a classical result of
cohomology (see for example [Kir76]). It is then obvious that, since two moment
maps µ and µ0 differ only by a constant, the associated cocycles θ and θ0 differ
by a coboundary. The remaining items of the proposition are just the results of
elementary algebraic computations. É

Exercise

. EXERCISE 143 (Compact supported real functions, II). Let us consider the data
and notations of Exercise 142, p. 368.

1) Show that the moment map of the action of G on (X,ω) is given, for any plot F
of G, that is, (X,+), by:

µ( f )(F)r(δr) =
Z +1

�1
ḟ (t)

@ F(r)(t)
@ r

δr d t+ cst.

2) Compute the associated Souriau cocycle θ. Is this cocycle trivial?
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The Moment Maps for Exact 2-Forms

The special case where a closed 2-form is the exterior derivative of an invariant 1-form
deserves special care, since it justifies a posteriori the constructions above, by analogy
with the classical moment maps [Sou70].

9.11. The exact case. Let X be a connected diffeological space, and let ω be a
closed 2-form defined on X. Let G be a diffeological group, and let ρ be a smooth
action of G on X, preserving ω. Let us assume that ω = dα and that α also is
invariant under the action of G, that is, ρ(g)⇤(α) = α for all g in G. Let Ψ be
the paths moment map defined in (art. 9.1), and ψ be the 2-points moment map
defined in (art. 9.8). Then, for every p 2 Paths(X)

Ψ(p) = ψ(x , x 0) = x̂⇤1(α)� x̂⇤0(α),

where x1 = p(1) and x0 = p(0). Moreover, the 2-points moment map ψ is exact,
and every equivariant moment map is cohomologous to

µ : x 7! x̂⇤(α).

The action of G is Hamiltonian, Γ = {0} and exact σ = 0; see (art. 9.7) and
(art. 9.10). This shows, in particular, the coherence of the general constructions
developed until now.

PROOF. By definition of the paths moment map Ψ(p) = p̂⇤(Kω), that is,
Ψ(p) = p̂⇤(K (dα)). But K (dα) + d(Kα) = 1̂⇤(α)� 0̂⇤(α), hence p̂⇤(K (dα)) =
p̂⇤[1̂⇤(α)� 0̂⇤(α)� d(Kα)], and Ψ(p) = (1̂ � p̂)⇤(α)� (0̂ � p̂)⇤(α)� d[p̂⇤(K (α))].
But 1̂ � p̂ = x̂1 and 0̂ � p̂ = x̂0, then Ψ(p) = x̂⇤1(α)� x̂⇤0(α)� d[p̂⇤(Kα)]. Now, Kα
is the real function

Kα : p 7!
Z

p
α,

since p̂⇤(Kα) =Kα � p̂, for all g 2 G,

Kα(p̂(g)) =
Z

ρ(g)�p
α=

Z

p
ρ(g)⇤(α) =

Z

p
α.

Thus, the function p̂⇤(Kα) :G!R is constant and equal to
R

p α. Then, d[p̂⇤(Kα)]=
0, and Ψ(p) = x̂⇤1(α)� x̂⇤0(α). Hence, Ψ(p) = ψ(x0, x1) and Γ = {0}.
Next, the function µ : x 7! x̂⇤(α) is clearly a primitive of ψ, that is, ψ(x0, x1) =
µ(x1)� µ(x0). But R(ρ(g)(x)) = x̂ � R(g), where R(ρ(g)(x)) is the orbit map of
ρ(g)(x), g 2 G. Thus, µ(ρ(g)(x)) = ( x̂�R(g))⇤(α) = R(g)⇤( x̂⇤(α)) = R(g)⇤(µ(x)) =
Ad⇤(g)(µ(x)). Hence, µ is an equivariant primitive of ψ and σ = 0. É
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Functoriality of the Moment Maps

In this section we focus on the behavior of the moment maps, and the various associated
objects, under natural transformations.

9.12. Images of the moment maps by morphisms. Let X be a connected
diffeological space, and let ω be a closed 2-form defined on X. Let G be a diffeological
group, and let ρ be a smooth action of G on X, preserving ω. Let G0 be another
diffeological group, and let h : G0 ! G be a smooth homomorphism. Let ρ0 = ρ � h
be the induced action of G0 on X. Let us recall that the pullback h⇤ : G⇤ ! G0⇤ is a
linear smooth map.

1. Let Ψ : Paths(X) ! G , and Ψ0 : Paths(X) ! G0 be the paths moment
maps with respect to the actions of G and G0 on X. Then, Ψ0 = h⇤ �Ψ.

2. Let Γ and Γ0 be the holonomy groups with respect to the actions of G
and G0 on X. Then, Γ0 = h⇤(Γ).

3. The linear map h⇤ projects on a smooth homomorphism h⇤Γ : G⇤/Γ !
G0⇤/Γ0, such that the following diagram commutes.

G⇤ G 0⇤

G ⇤/Γ G0⇤/Γ0

h⇤

pr pr0

h⇤Γ

4. Let ψ and ψ0 be the 2-points moment maps with respect to the actions of
G and G0. Then, ψ0 = h⇤Γ �ψ.

5. Let µ be a moment map relative to the action ρ of G. Then, µ0 = h⇤Γ � µ is
a moment map relative to the action ρ0 of G0.

6. Let µ be a moment map relative to the action ρ of G, and let µ0 = µ � h⇤Γ
be the associated moment map relative to the action ρ0 of G0. Then, the
associated Souriau cocycles satisfy θ0 = h⇤Γ � θ � h, which is summarized
by the following commutative diagram.

G G0

G ⇤/Γ G0⇤/Γ0
θ

h

θ0

h⇤Γ

Said differently, if θ is the Souriau cocycle associated with a moment µ of
the action ρ of G, and µ0 is a moment of the action ρ0 of G0, then θ0 and
h⇤Γ � θ � h are cohomologous.
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NOTE. Thanks to the identification between the space of momenta of a diffeological
group and any of its extensions by a discrete group (art. 7.13), the moment maps
of the action of a group or the moment map of the restriction of this action to
its identity component coincide. Said differently, the moment maps do not say
anything about actions of discrete groups.

PROOF. To avoid confusion, let us denote by R(p) and R0(p) the orbit maps of G and
G0 of p 2 Paths(X), that is, R(p)(g) = ρ(g) � p and R0(p)(g) = ρ0(g) � p. We have
then, R0(p)(g) = ρ0(g) � p = ρ(h(g)) � p = (R(p) � h)(g). Thus, R0(p) = R(p) � h.

1. By definition of the paths moment map, Ψ0(p)=R0(p)⇤(Kω)=(R(p)�h)⇤(Kω) =
h⇤(R(p)⇤(Kω)) = h⇤(Ψ(p)), that is, Ψ0 = h⇤ �Ψ.

2. Since Γ0 =Ψ0(Loops(X)), and thanks to item 1, Γ0 = h⇤(Γ).
3. The map h⇤Γ is defined by classΓ(α) 7! classΓ0(h⇤(α)), for all α 2 G⇤. If β =
α+ γ, with γ 2 Γ, then h⇤(β) = h⇤(α) + γ 0, with γ 0 = h⇤(γ) 2 Γ0 (item 2). Thus,
classΓ0(h⇤(β)) = classΓ0(h⇤(α)) and h⇤Γ is well defined. Thanks to the linearity of h⇤,
h⇤Γ is clearly a homomorphism. For G⇤/Γ and G0⇤/Γ0 equipped with the quotient
diffeologies, h⇤Γ is naturally smooth.

4. With the notations above, ψ and ψ0 are defined by pr � Ψ = ψ � ends and
pr0 �Ψ0 = ψ0 � ends, where ends(p) = (p(0), p(1)), with p 2 Paths(X). Thus, by
item 1 and 3, pr0 � h⇤ �Ψ = h⇤Γ � ψ � pr, that is, pr0 �Ψ0 = (h⇤Γ � ψ) � pr. Hence,
h⇤Γ �ψ= ψ0.
5. Let µ0 = h⇤Γ � µ and x , y 2 X. Then, µ0(y) � µ0(x) = h⇤Γ � µ(y) � h⇤Γ � µ(x) =
h⇤Γ(µ(y)�µ(x)) = h⇤Γ �ψ(y, x) = ψ0(y, x). Thus, µ0 is a moment map for the action
ρ0 of G.

6. According to (art. 9.10), there exists a point x0 2 X such that, for all
g 0 2 G0, θ0(g 0) = ψ0(x0,ρ0(g 0)(x0)). Thus, thanks to the previous items, θ0(g 0) =
(h⇤Γ � ψ)(x0,ρ(h(g 0))(x0)) = h⇤Γ(ψ(x0,ρ(h(g 0))(x0))) = h⇤Γ(θ(h(g 0))) = (h⇤Γ � θ �
h)(g 0). Hence, θ0 = h⇤Γ � θ � h. É

9.13. Pushing forward moment maps. Let X and X0 be two connected diffeolo-
gical spaces. Let ω and ω0 be two closed 2-forms, defined respectively on X and X0.
Let G be a diffeological group, let ρ be a smooth action of G on X preserving ω, and
let ρ0 be a smooth action, of G on X0, preserving ω0. Let f : X! X0 be a smooth
map such that ω= f ⇤(ω0) and f � ρ(g) = ρ0(g) � f for all g 2 G. Then,

1. The paths moment maps Ψ and Ψ0 relative to the actions ρ of G on (X,ω), and
ρ0 on (X0,ω0), are related by:

Ψ =Ψ0 � f⇤,

where f⇤ : Paths(X)! Paths(X0) is defined by f⇤(p) = f � p.
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The associated holonomy groups Γ and Γ0 satisfy

Γ = {Ψ0( f � `) | ` 2 Loops(X)} ⇢ Γ0.

2. Let ϕ : G⇤/Γ!G⇤/Γ0 be the projection induced by the inclusion Γ ⇢ Γ0. Let ψ
and ψ0 be the 2-points moment maps relative to the actions ρ and ρ0. Then, for any
two points of X, x1 and x2,

ψ0( f (x1), f (x2)) = ϕ(ψ(x1, x2)).

3. For every moment map µ relative to the action ρ, there exists a moment map µ0
relative to the action ρ0, such that

µ0 � f = ϕ � µ.

4. Let θ and θ0 be two Souriau cocycles relative to the actions ρ and ρ0. Then, the
map ϕ � θ is a Souriau cocycle, cohomologous to θ0 and the two Souriau classes
σ and σ0 satisfy σ0 = ϕ⇤(σ), where ϕ⇤ denotes the action of ϕ on cohomology,
ϕ⇤(class(θ)) = class(ϕ � θ).

PROOF. 1. By definition Ψ(p) = p̂⇤(Kω), that is, Ψ(p) = p̂⇤(K ( f ⇤(ω0))). Thanks
to the variance of the Chain-Homotopy operator K � f ⇤ = ( f⇤)⇤ �K 0 (art. 6.84),
Ψ(p) = p̂⇤�( f⇤)⇤(K 0ω0) = ( f⇤�p̂)⇤(K 0ω0). But for all g 2 G, f⇤�p̂(g) = f �ρ(g)�p =
ρ0(g) � f � p = p̂0(g), where p0 = f � p. Then, Ψ(p) = p̂0⇤(K 0ω0) = Ψ0(p0) =
Ψ0( f⇤(p)). Therefore, Ψ = Ψ0 � f⇤. Now, by definition of the holonomy groups,
Γ = Ψ(Loops(X)) = Ψ0( f⇤(Loops(X))), and since f⇤(Loops(X)) ⇢ Loops(X0), we
have Γ ⇢ Γ0.
2. Since Γ ⇢ Γ0, the map ϕ : classΓ(α) 7! classΓ0(α), from G⇤/Γ to G⇤/Γ0, is well
defined. Now, let x 01 = f (x1) and x 02 = f (x2). There exists then p 2 Paths(X)
connecting x1 to x2, and the path f⇤(p) connects x 01 to x 02. By definition of ψ0,
ψ0(x 01, x 02) = classΓ0(Ψ0(p0)) = classΓ0(Ψ0 � f⇤(p)), and thanks to the first item,
classΓ0(Ψ0(p0)) = classΓ0(Ψ(p)) = ϕ(classΓ(Ψ(p))). But classΓ(Ψ(p)) = ψ(x1, x2).
Hence, ψ0(x 01, x 02) = ϕ(ψ(x1, x2)), that is, ψ0( f (x1), f (x2)) = ψ(x1, x2).

3. According to (art. 9.9), for every moment map µ there exist a point x0 2 X
and a constant c 2 G⇤/Γ such that µ(x) = ψ(x0, x) + c. Let us define µ0 by
µ0(x 0) = ψ0(x 00, x 0) + c0, where x 00 = f (x0) and c0 = ϕ(c). Then, thanks to item 2,
ψ0( f (x0), f (x))=ϕ(ψ(x0, x)), and µ0( f (x))=ϕ(ψ(x0, x))+ϕ(c)=ϕ(ψ(x0, x)+c)=
ϕ(µ(x)). Hence, µ0 satisfies µ0 � f = ϕ � µ.

4. Let θ be a Souriau cocycle for the action ρ. According to (art. 9.10), θ is coho-
mologous to ϑ : g 7! ψ(x0,ρ(g)(x)), where x0 is some point of X. Then, let x 00 =
f (x0), and ϑ0 : g 7! ψ0(x 00,ρ0(g)(x 00)). Thus, ϑ0(g) = ψ0( f (x0),ρ0(g)( f (x0))) =
ψ0( f (x0), f (ρ(g)(x0))) = ϕ(ψ(x0,ρ(g)(x0))) = ϕ � ϑ(g). Now, since all Souriau
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cocycles, with respect to a given action of G, are cohomologous, the cocycle θ0 is
cohomologous to ϑ0, and then cohomologous to ϕ � ϑ, that is, cohomologous to
ϕ � θ. Hence, σ0 = class(θ0) = class(ϕ � θ) = ϕ⇤(class(θ)) = ϕ⇤(σ). É

The Universal Moment Maps

In this section we build the universal moment maps, and related objects, associated
with the whole group of automorphisms Diff(X,ω), where ω is a closed 2-form on
a diffeological space X. We show then how these objects, associated with a smooth
automorphic action of some arbitrary diffeological group G, relate to the universal
construction.

9.14. Universal moment maps. Let X be a connected diffeological space, and
let ω be a closed 2-form defined on X. We consider the group Diff(X,ω), of all
the automorphisms of (X,ω), equipped with the functional diffeology of group
of diffeomorphisms. We shall also denote this group by Gω. Every construction
introduced in the previous sections — the space of momenta, the paths moment
map, the holonomy group, the 2-points moment map, the moment maps, the
Souriau cocycles, and the Souriau class — apply for Gω. We shall distinguish these
objects by the index ω. So, we shall denote by G⇤ω the space of momenta of Gω, by
Ψω : Paths(X)!G⇤ω the paths moment map, by Γω =Ψω(Loops(X)) the holonomy
group, by ψω the 2-points moment map, by µω the moment maps, by θω the Souriau
cocycles, and by σω the Souriau class. Since Gω and its action on X are uniquely
defined by ω, these objects depend only on the 2-form ω.

Now, let G be a diffeological group, and let ρ be a smooth action of G on X, preserving
ω, that is, a smooth homomorphism ρ from G to Gω. The values of the various
objects Ψ, Γ, ψ, µ, θ, with respect to the action ρ of G on X, depend only on the
pullback ρ⇤ and on Ψω, Γω, ψω, µω, and θω, as it is described in (art. 9.12),

8
<
:

Ψ = ρ⇤ �Ψω
Γ = ρ⇤(Γω)
ψ = ρ⇤Γω

�ψω

and

⇢ µ ' ρ⇤Γω
� µω

θ ' ρ⇤Γω
� θω � ρ.

In this sense the objects Gω, Γω, Ψω, Γω, ψω, µω, θω, and σω are universal. That is
why we shall call Ψω the universal paths moment map, Γω the universal holonomy, ψω
the universal 2-points moment map, µω the universal moment maps, θω the universal
Souriau cocycles, and σω the universal Souriau class of ω.

NOTE. The universal holonomy leads naturally to the notion of Hamiltonian space,
the ones for which, for one reason or another, Γω = {0}.

9.15. The group of Hamiltonian diffeomorphisms. Let X be a connected diffeo-
logical space, equipped with a closed 2-form ω. There exists a largest connected
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subgroup Ham(X,ω) ⇢ Diff(X,ω) whose action is Hamiltonian, that is, whose holo-
nomy is trivial. The elements of Ham(X,ω) are called Hamiltonian diffeomorphisms.
An action ρ of a diffeological group G on X is Hamiltonian if and only if, restricted
to the identity component of G, ρ takes its values in Ham(X,ω).
The group Ham(X,ω) is precisely built as follows. Let us denote by Gω the group
Diff(X,ω) and by G�ω its identity component. Let π : G̃�ω ! G�ω be the universal
covering. Since the universal holonomy Γω is made of closed momenta, every γ 2 Γω
defines a unique homomorphism k(γ) from G̃�ω to R such that π⇤(γ) = d[k(γ)]
(art. 7.17). Let

bHω =
\

γ2Γω

ker(k(γ)),

and let bH�ω be its identity component. Then,

Ham(X,ω) = π(bH�ω).

NOTE 1. The map f : G̃�ω! Hom(π1(X),R), defined by f( g̃) = [τ 7! k(γ)( g̃)], with
τ = class(`) and γ = Ψ(`), is a homomorphism, and bHω = ker(f). In classical
symplectic geometry, the image F= val(f) is called, by some authors, the group of
flux of ω.

NOTE 2. Since the Hamiltonian nature of a group of automorphisms depends
only on its identity component (see (art. 7.13) and (art. 7.14)), every extension
H ⇢ Diff(X,ω) of Ham(X,ω) such that H/Ham(X,ω) is discrete,8 is Hamiltonian.
In particular π(bHω) is Hamiltonian, or if Γω = {0}, then Diff(X,ω) is Hamiltonian,
and Ham(X,ω) is the identity component of Diff(X,ω).

NOTE 3. Let us choose a point x0 in X, and let µ be the moment map with respect
to the group Ham(X,ω), defined by µ(x0) = 0. Let f be a 1-parameter subgroup of
Ham(X,ω). Applying (art. 9.2, Note), we get the expression of µ(x), for all x 2 X,
evaluated on f

µ(x)( f ) = hf (x)⇥ d t with hf (x) = �
Z x

x0

i f (ω).

The smooth function hf : X ! R is the Hamiltonian (vanishing at x0) of the 1-
parameter subgroup f .

PROOF. Let us remark first of all that for every γ 2 Γω, π⇤(γ) ñ bHω = 0. Indeed,
π⇤(γ) ñ bHω = d[k(γ)] ñ bHω = d[k(γ) ñ bHω]. But, by the very definition of bHω,
k(γ) ñ bHω = 0, thus π⇤(γ) ñ bHω = 0.

8Where H and Ham(X,ω) are equipped with the subset diffeology of the functional diffeology of
Diff(X,ω).
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(a) Let us prove that the holonomy of Ham(X,ω) is trivial. Let Hω = π(bHω), and
let us denote by jHω the inclusion Hω ⇢ Gω, by jbHω

the inclusion bHω ⇢ G̃�ω, and by
πHω : bHω! Hω the projection, so that jHω �πHω = π � jbHω

. Let ΓHω be theholonomy
of Hω, then, according to (art. 9.12), ΓHω = j⇤Hω

(Γω). Thus, for every γ̄ 2 ΓHω

there exists γ 2 Γω such that γ̄ = γ ñ Hω = j⇤Hω
(γ). Hence, for all γ̄ 2 ΓHω ,

π⇤Hω
(γ̄) = π⇤Hω

( j⇤Hω
(γ)) = ( jHω �πHω)

⇤(γ) = (π � jbHω
)⇤(γ) = j⇤bHω

(π⇤(γ)) = π⇤(γ) ñ bHω.

But π⇤(γ) ñ bHω = 0, thus π⇤Hω
(γ̄) = 0, and since πHω is a subduction, γ̄ = 0.

Therefore, the holonomy of Hω trivial, ΓHω = {0}.

(b) Let us prove now that every connected subgroup H ⇢ Gω whose action is
Hamiltonian is a subgroup of Ham(X,ω). Let bH = π�1(H) and bH� be its identity
component. Let jH be the inclusion H ⇢ Gω, and jbH� be the inclusion bH� ⇢ G̃�ω.
Let πH = π ñ bH�, so that jH � πH = π � jbH� . Let ΓH be the holonomy of H. Since
ΓH = j⇤H(Γω) and ΓH = {0}, for all γ 2 Γω, j⇤H(γ) = 0. Thus, for all γ 2 Γω,
π⇤H( j⇤H(γ)) = 0. But π⇤H( j⇤H(γ)) = ( jH � πH)⇤(γ) = (π � jbH�)

⇤(γ) = j⇤bH�(π
⇤(γ)) =

π⇤(γ) ñ bH�, thus, for all γ 2 Γω, π⇤(γ) ñ bH� = 0. Now, π⇤(γ) = d[k(γ)], hence
d[k(γ) ñ bH�] = 0. Then, since H� is connected, k(γ) is constant on bH�, and since
k(γ) is a homomorphism to R, this constant is necessarily 0. Thus, bH� ⇢ ker(k(γ)),
for all γ 2 Γω, that is, bH� ⇢ bHω. But since H� is connected, bH� ⇢ bH�ω ⇢ Hω, and thus
H= π(bH�) ⇢ Ham(X,ω) = π(bH�ω). É

9.16. Time-dependent Hamiltonian. Let X be a connected diffeological space,
and let ω be a closed 2-form defined on X. A diffeomorphism f of X belongs to
Ham(X,ω) if and only if the two following conditions are fulfilled.

1. There exists a smooth path t 7! ft in Diff(X,ω) connecting the identity
1M = f0 to f = f1.

2. There exists a smooth path t 7! Φt in C1(X,R) such that

iFt
(ω) = �dΦt with Ft : s 7! f �1

t � ft+s,

for all t. According to the tradition of classical symplectic geometry, the path
t 7! Φt may be called a time-dependent Hamiltonian of the 1-parameter family of
Hamiltonian diffeomorphisms t 7! ft .

PROOF. Let us assume first that f satisfies the condition above, that there exists
a smooth path t 7! ft in Diff(X,ω) such that f0 = 1M, f1 = f , and there exists
a smooth path t 7! Φt in C1(X,R) such that iFt

(ω) = �dΦt , for all t, where
Ft : s 7! f �1

t � ft+s. Let us recall that Ham(X,ω) = π(bH�ω), with bH�ω the identity
component of bHω =

T
γ2Γω

ker(k(γ)), and let f̃ 2 G�ω be the homotopy class of the
path t 7! ft , notations of (art. 9.15). Then, let γ 2 Γω, that is, γ =Ψω(`), where `
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is some loop in M. By definition,

k(γ)( f̃ ) =
Z

[t 7! ft ]
γ =

Z

[t 7! ft ]
Ψω(`) =

Z 1

0
Ψω(`)([t 7! ft])t(1) d t .

Now, thanks to (art. 9.2, (|)),

Ψω(`)([t 7! ft])t(1) = �
Z

`

iFt
(ω) =

Z

`

dΦt =
Z

@ `

Φt = 0.

Thus, k(γ)( f̃ ) = 0 for all γ 2 Γω, and f̃ belongs to bHω, more precisely to the identity
component of bHω. Therefore, f 2 Ham(X,ω).
Conversely, let f 2 Ham(M,ω). Since Ham(M,ω) is connected, there exists a path
t 7! ft in Ham(M,ω) connecting 1M to f . And, since the projection π ñ bH�ω : bH�ω!
Ham(M,ω) is a covering, there exists a (unique) lift t 7! f̃ t of t 7! f in bH�ω, along
π ñ bH�ω, such that f̃0 = 1bHω

. This lift is actually given by f̃ t = class(pt), with
pt : s 7! fst . Thus, for all t, f̃ t 2 bH�ω ⇢ bHω =

T
γ2Γω

ker(k(γ)), that is, for all γ 2 Γω,
k(γ)( f̃ t) = 0. In other words, for all ` 2 Loops(M), k(Ψω(`))( f̃ t) = 0. But

k(Ψω(`))( f̃ t) =
Z

pt

Ψω(`)

=
Z 1

0
Ψω(`)(s 7! fst)s(1)ds

=
Z 1

0
Ψω(`)(s 7! st 7! fst)s(1)ds

=
Z 1

0
[Ψω(`)(u 7! fu)]u=st

Å
d(st)

ds

ã
ds

=
Z t

0
Ψω(`)(u 7! fu)u(1) du .

Thus, in particular 1
t

R t
0 Ψω(`)(u 7! fu)u(1) du = 0, and Ψω(`)(t 7! ft)t(1) =

limt!0
1
t

R t
0 Ψω(`)(u 7! fu)u(1) du = 0, and since Ψω(`)([t 7! ft])t(1) = �

R
`
iFt
(ω)

(art. 9.2, (|)), for all t and all ` 2 Loops(X),
R
`
iFt
(ω) = 0. Then, since Ft is a path

in Diff(X,ω) centered at the identity, the Lie derivative of ω by Ft vanishes, and
by application of the Cartan formula (art. 6.72), we get £Ft

ω= 0, which implies
d[iFt

(ω)]+ iFt
(dω) = d[iFt

(ω)] = 0. Thus, the 1-form iFt
(ω) is closed and its integral

on any loop ` in X vanishes, hence iFt
(ω) is exact (art. 6.89). Therefore, for all real

number t, there exists a real function Φt 2 C1(X,R) such that iFt
(ω) = �dΦt . The

fact that t 7! Φt is a smooth map from R to C1(X,R), for the functional diffeology,
is a consequence of the construction of Φt by integration along the paths. É
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9.17. The characteristics of the moment maps. Let X be a connected diffeologi-
cal space equipped with a closed 2-form ω. Let G be a diffeological group, and let
ρ be a smooth action of G on X, preserving ω. Let ψ be the 2-points moment map
(art. 9.8). Thanks to the additive property of ψ, the relation R , defined on X by

xR x 0, if ψ(x , x 0) = 0G⇤/Γ ,

is an equivalence relation. The classes of this equivalence relation are the preimages
of the values of a moment map µ, solution of ψ(x , x 0) = µ(x 0)� µ(x) (art. 9.9).

DEFINITION. We shall define the characteristics of the moment map µ (or ψ) as
the connected components of the equivalence classes of R , that is, the connected
components of the preimages of µ.

NOTE 1. This definition applies obviously to the universal moment map µω. Since,
in this case, the characteristics depend only on ω, it is tempting to call them the
characteristics of the 2-form ω, especially when we have in mind the particular case
of homogeneous manifolds, treated in (art. 9.26).

DEFINITION. We shall define the characteristics of the 2-form ω as the characteristics
of the universal moment map µω.

We get then a general picture: by equivariance, the image of the universal moment
map µω is a union of coadjoint orbits of Diff(X,ω), images of its orbits in X. The
moment map factorizes then through the space of characteristics of ω, denoted here
by Chars(X,ω), by a map µ̄ω : Chars(X,ω)!G⇤ω/Γω. The preimages by µ̄ω are the
connected components of the preimages by µω, that is, µ̄�1

ω (m) = π0(µ�1
ω (m)). The

projection charω, associating with each x 2 X the characteristic passing through x ,
is a kind of symplectic reduction. But we do not know if, in general, the 2-form ω
passes to the quotient, especially when the group of automorphisms has more than
one orbit. This is still an open question, but the framework is here.

X G⇤ω/Γω

Chars(X,ω)
charω

µω

µ̄ω

This construction is reminiscent of the Marsden-Weinstein symplectic reduction
[MaWe74], when it is applied to some subspaces W ⇢ X for the restriction ω ñW.
There is, however, a small difference: we reduce first by the characteristics of ω
and then by the moment map, which can be interpreted as a regularization of the
reduction by the characteristics.9

9It is not impossible that in particular, for the two-bodies problem [Sou83], it be precisely the
universal moment map which regularizes the space of motions.
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NOTE 2. We also can think of characteristics as arrows of the groupoid Chars, with
objects X and an arrow (x , x 0) only if ψ(x , x 0) = 0. Therefore, the characteristics
are the connected components of the transitivity components of this groupoid.

The Homogeneous Case

Because of its elementary character, the case of a homogeneous action of a diffeological
group G on a space X, preserving a closed 2-form ω, deserves a special attention. We
shall see in (art. 9.23) how this applies to classical symplectic geometry.

9.18. The homogeneous case. Let X be a connected diffeological space equipped
with a closed 2-form ω. Let ρ be a smooth action of a diffeological group G on
X, preserving ω. Let us assume that X is homogeneous for this action (art. 7.8).
Let Γ be the holonomy of the action ρ, let µ be a moment map, and let θ be the
cocycle associated to µ. Let x0 be any point of X, and let µ0 = µ(x0). Let StAdΓ,θ

⇤
(µ0)

be the stabilizer of µ0 for the affine coadjoint action of G on G⇤/Γ. Thanks to the
equivariance of the moment map µ, with respect to the θ-affine coadjoint action
of G on G⇤/Γ, µ � ρ(g) = AdΓ,θ

⇤ (g) � µ, the image O = µ(X) is a (Γ,θ)-orbit of G,
and Stρ(x0) ⇢ StAdΓ,θ

⇤
(µ0). Let us equip O with the pushforward of the diffeology

of G by the orbit map µ̂0 : g 7! AdΓ,θ
⇤ (g)(µ0). Then, the orbit map x̂0 : G! X is

a principal fibration with structure group Stρ(x0), the orbit map µ̂0 : G! O is a
principal fibration with structure group StAdΓ,θ

⇤
(µ0), and the moment map µ : X!O

is a fibration, with fiber the homogeneous space StAdΓ,θ
⇤
(µ0)/Stρ(x0).

NOTE 1. The moment maps µ are defined up to a constant. But that does not affect
the characteristics of µ, which are the connected components of the subspaces
defined by µ(x) = cst (art. 9.17).

NOTE 2. Let us consider the simple case dα, where α 2 G⇤. Its moment map
µ : G! G⇤ is the coadjoint orbit map µ : g 7! Ad⇤(g)(α). A natural question is
then, is there a closed 2-form ω, defined on the coadjoint orbit Oα = µ(G), such
that µ⇤(ω) = dα ? I don’t have a definitive answer to this question yet; the best
I can say is contained in the following proposition. Let us consider Oα, equipped
with the quotient diffeology of G.

PROPOSITION. There exists a closed 2-form ω on Oα such that µ⇤(ω) = dα, if and
only if α ñ StAd⇤(α) is closed. In that case, ω is the canonical symplectic structure of
coadjoint orbit of diffeological group.

There are particular cases, or special group diffeologies, for which the restriction
of α on its stabilizer StAd⇤(α) is closed. For example, if G is a Lie group, then we
can use the Cartan formula to check it. But even simpler, if the stabilizer StAd⇤(α)
is discrete or 1-dimensional, then every 1-form is closed. Paul Donato has given
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in [Don94] an interesting example of a discrete stabilizer. Let us give here the
diffeological version of his construction. We consider G = Diff(S1) and its universal
covering G̃, described in Exercise 28, p. 33, as the subgroup of diffeomorphisms
φ of R such that φ(x + 2π) = φ(x) + 2π. The kernel of the projection π : G̃! G
is the subgroup 2πZ of the translations T2πk : x 7! x + 2πk, commuting with all
φ 2 G̃. Let P : U! G̃ be an n-plot, and let r 2 U, δr 2 Rn, and α defined by

α(P)r(δr) =
1X

n=0

1
2n

@

@ s

ß
P(r)�1 � P(s)(n)

™

s=r
(δr).

One can check that α is a left invariant 1-form, and by the way an element of G⇤.
The moment map µ is then given by

µ(φ)(P)r(δr) =
1X

n=0

1
2n

@

@ s

ß
φ�1 � P(r)�1 � P(s) �φ(n)

™

s=r
(δr).

Because a momentum is characterized by its values on arcs centered at the identity,
and because every arc γ centered at the identity in G̃ is tangential to some ray
h 2 Hom1(R, G̃), the computation of the stabilizer of α, for the coadjoint action, is
reduced to Donato’s computation in his paper, and it coincides with the orbits of
2πZ. Thus, dα passes to the coadjoint orbit Oα, which is actually diffeomorphic to
Diff(S1) itself, and symplectic according to the meaning we define below (art. 9.19).

PROOF. The triple fibration is an application of (art. 8.15).

G

X O

x̂0 µ̂0

µ

G

X O

Stρ(x0) StAdΓ,θ
⇤
(µ0)

StAdΓ,θ
⇤
(µ0)/Stρ(x0)

Let us focus on Note 2. There exists a (closed) 2-form ω on Oα such that µ⇤(ω) = dα
if and only if, for two plots P and P0 of G such that µ�P = µ�P0, then dα(P) = dα(P0)
(art. 6.38). But µ � P = µ � P0 means that there exists a plot κ of StG⇤(α) such that
P0(r) = P(r) · κ(r). Then, thanks to Exercise 127, p. 274, α[r 7! P(r) · κ(r)]r =
[L(P(r))⇤(α)](κ)r + [R(κ(r))⇤(α)](P)r = α(κ)r+ [Ad⇤(κ(r))(α)](P)r , but since κ
is a plot of the stabilizer of α for the coadjoint action, Ad⇤(κ(r))(α) = α and
α(P0) = α(P) +α(κ). Thus, dα passes to the quotient Oα ' G/StG⇤(α) if and only if
dα(κ) = 0 for all plots κ of StG⇤(α), i.e., if and only if d[α ñ StG⇤(α)] = 0. É

9.19. Symplectic homogeneous diffeological spaces. Let X be a connected
diffeological space and ω be a closed 2-form defined on X.10

10To shorten the vocabulary, I chose now to call parasymplectic any closed 2-form.
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DEFINITION. We say that (X,ω) is a homogeneous symplectic space if it is homoge-
neous under the action of Diff(X,ω), and if the characteristics of the universal moment
map µω are reduced to points (art. 9.17).

For example, the 2-form dα on Diff(S1) described in the previous article (art. 9.18)
is symplectic in this sense. Let us recall that being homogeneous under the action
of Diff(X,ω) means that the orbit map R(x) : Diff(X,ω)! X, defined by R(x)(φ) =
φ(x), is a subduction, where x 2 X and Diff(X,ω) is equipped with the functional
diffeology (art. 1.61).

NOTE 1. The characteristics of the universal moment map µω are reduced to points
if and only if it is a covering onto its image, equipped with the quotient diffeology.
If it is the case for one universal moment map, then it is the case for every one.

NOTE 2. The homogeneous situation where the moment map µω is not a covering
onto its image can be regarded as the presymplectic homogeneous case, as suggested
by (art. 9.26).

NOTE 3. Let G be a diffeological group, and let ρ be a smooth action of G on X,
preserving ω. If the action ρ of G on X is homogeneous, then X is a homogeneous
space of Diff(X,ω). And, if a moment map µ : X ! G⇤/Γ is a covering onto its
image, then any universal moment map µω : X!G⇤ω/Γω is. Thus, to check that a
homogeneous pair (X,ω) is symplectic it is sufficient to find a homogeneous smooth
action, of some diffeological group G, for which a moment map is a covering onto
its image.

NOTE 4. It would be possible to relax the homogeneity hypothesis to have an
acceptable definition of a symplectic diffeological space :

DEFINITION. A closed 2-form ω on a diffeological space X would be said symplectic if
Diffloc(X,ω) is transitive on X, and if the characteristics of the universal moment map
µω are reduced to points.

The transitivity of local automorphisms is the diffeological version of Darboux’s
theorem, and the injectivity of the universal moment map µω, the non-degeneracy of
ω. This definition should perhaps be refined as to the role of the universal moment
map, a desired universal “local moment map” would be more appropriate.

PROOF. Note 1 is obvious, by definition of the characteristics (art. 9.17) and by
homogeneity (art. 9.18). Let us prove Note 3. To be homogeneous under the action
of G means that, for some point (and thus for every point) x 2 X, the orbit map
x̂ : G ! X, defined by x̂(g) = ρ(g)(x), is a subduction. So, x̂ is surjective and,
for any plot P : U! X, for any r0 2 U, there exist an open neighborhood V of r0

and a plot Q : V ! G such that P ñ V = x̂ �Q, that is, P(r) = ρ(Q(r))(x) for all
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r 2 V. Since ρ is smooth, Q̄ = ρ �Q is a plot of Diff(X,ω), and P ñ V = x̂ � Q̄. Since,
x̂ : Diff(X,ω)! X is surjective, it is a subduction and X is a homogeneous space
of Diff(X,ω). Now, let us remark that, since the moment map is unique up to a
constant, if a moment map µ is a covering onto its image O equipped with the
quotient diffeology of G, then every other moment map µ0 = µ+ cst is a covering
onto its image O 0 = O + cst. Then, let x0 be a point of X, and let µ(x) = ψ(x0, x),
where ψ is the 2-points moment map. Let µω = ψω(x0, x). According to (art. 9.14),
µ = ρ⇤Γω

�µω. Let O = µ(X) = ρ⇤Γω
(µω(X)) = ρ⇤Γω

(Oω), with Oω = µω(X). Let mω 2 Oω
and m = ρ⇤Γω

(mω). If µω(x) = mω, then ρ⇤Γω
(µω(x)) = ρ⇤Γω

(mω), that is, µ(x) = m.
Thus, µ�1

ω (mω) ⇢ µ�1(m). Therefore, if µ�1(m) is discrete, then µ�1
ω (mω) is discrete,

a fortiori, and if µ is injective, then µω is injective. É

Exercise

. EXERCISE 144 (Compact supported real functions III). Let us consider the space
(X,ω) as defined in Exercise 142, p. 368. Show that (X,ω) is a homogeneous
symplectic space.

About Symplectic Manifolds

The case of classical symplectic manifolds (M,ω) deserves special care. We shall see in
this section that, in this case, any universal moment map µω is injective and therefore
identifies M with a coadjoint orbit of Diff(M,ω), in the meaning of (art. 7.16).

9.20. Value of the moment maps for manifolds. Let M be a connected manifold
equipped with a closed 2-form ω. In this context, the paths moment map Ψω takes
a special expression. Let p be a path in M and F : U! Diff(M,ω) be an n-plot, then

Ψω(p)(F)r(δr) =
Z 1

0
ωp(t)(ṗ(t),δp(t)) d t , (})

for all r 2 U and δr 2 Rn, where δp is the lift in the tangent space TM of the path
p, defined by

δp(t) = [D(F(r))(p(t))]�1 @ F(r)(p(t))
@ r

(δr). (~)

PROOF. By definition, Ψ(p)(F) = p̂⇤(Kω)(F) =Kω(p̂ � F). The expression of the
operator K (art. 6.83), applied to the plot p̂ � F : r 7! F(r) � p of Paths(X), gives

(Kω)(p̂ � F)r(δr) =
Z 1

0
ω
✓

s
u

◆
7! (p̂ � F)(u)(s+ t)

�

(s=0
u=r)

✓
1
0

◆✓
0
δr

◆
d t .

But (p̂ � F)(u)(s + t) = F(u)(p(s + t)), let us denote temporarily by Φt the plot
(s, u) 7! F(u)(p(s+ t)), so F(u)(p(s+ t)) writes Φt(s, u). Now, let us denote by I
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the integrand of the right term of this expression. We have

I = ω
✓

s
u

◆
7! Φt(s, u)

�

(s=0
u=r)

✓
1
0

◆✓
0
δr

◆

= Φ⇤t (ω)(0r)

✓
1
0

◆✓
0
δr

◆

= ωΦt(0r)

✓
D(Φt)(0r)

✓
1
0

◆
, D(Φt)(0r)

✓
0
δr

◆◆

= ωF(r)(p(t))

Å
@

@ s

ß
F(r)(p(s+ t))

™

s=0
,
@

@ r

ß
F(r)(p(t))

™
(δr)

ã
.

But,

@

@ s

ß
F(r)(p(s+ t))

™

s=0
= D(F(r))(p(t))

Å
@ p(s+ t)
@ s

����
s=0

ã

= D(F(r))(p(t))(ṗ(t)).

Then, using this last expression and the fact that F is a plot of Diff(M,ω), that is,
for all r in U, F(r)⇤ω= ω, we have

I = ωF(r)(p(t))

Å
D(F(r))(p(t))(ṗ(t)),

@ F(r)(p(t))
@ r

(δr)
ã

= ωp(t)

Å
ṗ(t), [D(F(r))(p(t))]�1 @ F(r)(p(t))

@ r
(δr)

ã

= ωp(t)(ṗ(t),δp(t)).

Therefore, Ψω(p)(F)r(δr) =Kω(p̂ � F)r(δr) =
Z 1

0
ωp(t)(ṗ(t),δp(t)) d t. É

9.21. The paths moment map for symplectic manifolds. Let M be a Hausdorff
manifold, and let ω be a nondegenerate closed 2-form defined on M. Let m0 and
m1 be two points of M connected by a path p. Let f 2 C1(M,R) with compact
support. Let F be the exponential of the symplectic gradient gradω( f ),11 F is a 1-plot
of Diff(M,ω), and precisely a 1-parameter subgroup. Then, the universal paths
moment map Ψω, computed at the path p, evaluated on the 1-plot F, is the constant
1-form of R

Ψω(p)(F) = [ f (m1)� f (m0)]⇥ d t with F : t 7! et gradω( f ),

where d t is the standard 1-form of R. Note that we are in the special case where F
is actually a 1-parameter subgroup of Ham(M,ω) ⇢ Diff(M,ω), and the function f
is a Hamiltonian of F.

11Let us recall that the symplectic gradient is defined by ω(gradω( f ), ·) = �d f .
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PROOF. Let us remark that, in our case, the lift δp defined by (art. 9.20, (~)) writes
simply

δp(t) = [D(erξ)(p(t))]�1 @ erξ(p(t))
@ r

(δr) = ξ(p(t))⇥ δr,

with ξ = gradω( f ), and where r and δr are real numbers. Thus, the expression
(art. 9.20, (})) becomes

Ψω(p)(F)r(δr) =
Z 1

0
ωp(t)(ṗ(t),ξ(p(t))) d t⇥δr

=
Z 1

0
ωp(t)(ṗ(t), gradω( f )(p(t))) d t⇥δr

=
Z 1

0
d f

Å
dp(t)

d t

ã
d t⇥δr

= [ f (p(1))� f (p(0))]⇥ δr,

that is, Ψω(p)(F) = [ f (m1)� f (m0)]⇥ d t. É

9.22. Hamiltonian diffeomorphisms of symplectic manifolds. Let (M,ω) be
a connected Hausdorff symplectic manifold. According to Banayaga [Ban78], a
diffeomorphism f is said to be Hamiltonian if it can be connected to the identity
1M by a smooth path t 7! ft in Diff(M,ω) such that

ω( ḟ t , ·) = dϕ t with ḟ t(x) =
d
ds

ß
fs � f �1

t (x)
™

s=t
,

where (t, x) 7! ϕ t(x) is a smooth real function. If f is Hamiltonian according to this
definition, then it belongs to Ham(M,ω), as defined in (art. 9.15). Conversely, any
element f of Ham(M,ω) satisfies the above Banyaga’s condition. Thus, the defini-
tion of Hamiltonian diffeomorphisms given in (art. 9.15) is a faithful generalization
of the usual definition for symplectic manifolds.

PROOF. This proposition is a direct consequence of the general statement given
in (art. 9.16) and the following comparison between the above 1-parameter fam-
ily of vector fields ḟ t and the family Ft of the (art. 9.16). Since ft 0 � f �1

t = ft�
( f �1

t � ft 0) � f �1
t , the vector fields ḟ t and Ft are conjugated by ft , precisely

ḟ t = ( ft)⇤(Ft), or ḟ t(x) = D( ft)( f �1
t (x))(Ft( f �1

t (x))).

This implies in particular that if the vector field ḟ t satisfies Banyaga’s condition
for the function ϕ t , then the vector field Ft satisfies Banyaga’s condition for the
function Φt = �ϕ t � ft , and conversely, that is,

ω( ḟ t , ·) = dϕ t , if and only if ω(Ft , ·) = �dΦt with Φt = �ϕ t � ft .
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Let us check it. Let x 2M, x 0 = ft(x), δx 2 TxM, and δx 0 = D( ft)(x)(δx), then

ωx 0( ḟ t(x 0),δx 0) = [dϕ t]x 0(δx 0)

ω ft (x)( ḟ t( ft(x)),D( ft)(x)(δx)) = [dϕ t] ft (x)(D( ft)(x)(δx))

ω ft (x)(D( ft)(x)(Ft(x)),D( ft)(x)(δx)) = [ f ⇤t (dϕ t)]x(δx)

[ f ⇤t (ω)]x(Ft(x),δx) = d[ f ⇤t (ϕ t)]x(δx)

ωx(Ft(x),δx) = d[ϕ t � ft]x(δx).

Thus, Φt = �ϕ t � ft . É

9.23. Symplectic manifolds are coadjoint orbits. Let M be a manifold, and let
ω be a closed 2-form defined on M. We assume M connected and Hausdorff. Then:

THEOREM . The form ω is nondegenerate, thus symplectic, if and only if:

A. The manifold M is homogeneous under Diff(M,ω).
B. The universal moment map µω : M!G⇤ω/Γω is injective.

In that case, the image Oω = µω(M) 2 G⇤ω/Γω of the universal moment map12

(art. 9.14) is a (Γω,θω)-coadjoint orbit of Diff(M,ω) (art. 7.16), and µω identifies M
with Oω, where Oω is equipped with the quotient diffeology of Diff(M,ω). In other
words, every symplectic manifold is a coadjoint orbit.

NOTE 1. Let Ham(M,ω) be the group of Hamiltonian diffeomorphisms, and letH ⇤ω
be the space of its momenta. Let µ?ω : M!H ⇤ω be the moment map associated with
the action of Ham(M,ω), and let θ?ω be the associated Souriau cocycle. Then, µ?ω is
also injective, and identifies M to a θ?ω-coadjoint orbit O ?ω ⇢H

⇤
ω of Ham(M,ω).

NOTE 2. Let us consider the example M = R2 and ω= (x2 + y2) d x ^ d y . Since R2

is contractible, the holonomy Γω is trivial (art. 9.7). Next, ω is nondegenerate on
R2 � {0}, but degenerates at the point (0,0). Thus, (0,0) is an orbit of the group
Diff(R2,ω), and actually R2 � {0} is the other orbit. Hence, the universal moment
map µω such that µω(0,0) = 0G⇤ω is equivariant (art. 9.10, Note 2). Moreover, µω
is injective. The closed 2-form ω not being symplectic, with an injective universal
moment map, shows that the hypothesis of transitivity of Diff(M,ω) on M is not
superfluous is this proposition.

NOTE 3. Every symplectic manifold is a coadjoint orbit of its group of automorphisms,
or Hamiltonian diffeomorphisms, maybe affine when Souriau’s cocycle θω is not
trivial; see also [PIZ16]. This theorem has been improved,

12The universal moment maps are defined up to a constant, but if one is injective, then they are all
injectives.



i
i

i
i

i
i

i
i

ABOUT SYMPLECTIC MANIFOLDS 389

THEOREM . Every symplectic manifold is a (linear) coadjoint orbit of the group of
automorphisms of its integration bundle.

Here, the term linear refers to the orbits of the linear coadjoint action of Aut(Y,λ),
where π : Y! M is the (Tω-principal) integration bundle over M, with Tω being
the torus of periods of ω, and λ is the connection form of curvature ω [Igl95].
The details can be found in [DIZ22]. The situation is sumarized by the following
commutative diagram:

Y A⇤

M H ⇤

π

µY

µM

µ̄M η⇤

whereA⇤ denotes the space of momenta of Aut(Y,λ) whose identity component
projects onto Ham(M,ω), andH ⇤ is the space of momenta of Ham(M,ω). Then, µY

is the moment map for Aut(Y,λ) relative to the closed 2-form dλ, µM is the moment
map for Ham(M,ω) and µ̄M is the projection of µY on M — because µY is invariant
by Tω — and η⇤ is the transpose of the projection η : Aut(Y,λ)� ! Ham(M,ω).

PROOF. Let us assume first that ω is nondegenerate, that is, symplectic. Then, the
group Diff(M,ω) is transitive on M [Boo69]. Moreover, for every m 2M, the orbit
map m̂ : φ 7! φ(m) is a subduction [Don84]. Thus, the image of the moment map
µω is one orbit Oω of the affine coadjoint action of Gω on G⇤ω/Γω, associated with
the cocycle θω. Hence, the orbit Oω being equipped with the quotient diffeology of
Gω, the moment map µω is a subduction.

Now, let m0 and m1 be two points of M such that µω(m0) = µω(m1), that is,
ψω(m0, m1) = µω(m1)� µω(m0) = 0. Let p 2 Paths(M) such that p(0) = m0 and
p(1) = m1. Thus, ψω(m0, m1) = 0 is equivalent to Ψω(p) =Ψω(`), where ` is some
loop in M, we can choose `(0) = `(1) = m0. Now, let us assume that m0 6= m1. Since
M is Hausdorff there exists a smooth real function f 2 C1(M,R), with compact
support, such that f (m0) = 0 and f (m1) = 1. Let us denote by ξ the symplectic
gradient field associated with f and by F the exponential of ξ. Thanks to (art. 9.21),
on the one hand we have Ψ(p)(F) = [ f (m1)� f (m0)] d t = d t, and on the other
hand Ψω(`)(F) = [ f (m0)� f (m0)] d t = 0. But d t 6= 0, thus ψω(m0, m1) 6= 0, and
the moment map µω is injective. Therefore, µω is an injective subduction on Oω,
that is, a diffeomorphism.

Conversely, let us assume that M is a homogeneous space of Diff(M,ω) and that
µω is injective. Let us notice first that since Diff(M,ω) is transitive, the rank of ω is
constant. In other words, dim(ker(ω)) = cst. Now, let us assume ω is degenerate,
that is, dim(ker(ω))� 1. Since m 7! ker(ωm) is a smooth foliation, for every point
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m of M there exists a smooth path p in M such that p(0) = m and for t belonging to
a small interval around 0 2 R, ṗ(t) 6= 0 and ṗ(t) 2 ker(ωp(t)) for all t in this interval.
Then, we can reparametrize the path p and assume now that p is defined on the
whole R and satisfies p(0) = m, p(1) = m0 with m 6= m0, and ṗ(t) 2 ker(ωp(t)) for
all t. Next, since ṗ(t) 2 ker(ωp(t)) for all t, using the expression (art. 9.20, (})),
we get Ψω(p) = 0G⇤ω , that is, µω(m) = µω(m0). But since m 6= m0 and we assumed
µω injective, this is a contradiction. Thus, the kernel of ω is reduced to {0}, and ω
is nondegenerate, that is, symplectic.

Let us prove Note 1. According to a Boothby’s theorem, the group Ham(M,ω) acts
transitively on M [Boo69]. With respect to this group, and by construction, the
holonomy is trivial: the associated paths moment map Ψ?

ω and the moment maps
µ?ω take their values inH ⇤ω . Let j : Ham(M,ω)! Diff(M,ω) be the inclusion, thus
the universal holonomy Γω is in the kernel of j⇤, and we get a natural mapping
j⇤Γω

: G⇤ω/Γω ! H ⇤ω . Now, the paths moment maps satisfy Ψ?
ω = j⇤Γω

�Ψω, and
µ?ω = j⇤Γω

� µω (art. 9.14). Then, since (art. 9.21) involves only plots of Ham(X,ω),
the proof above applies mutatis mutandis to the Hamiltonian case, and we deduce
that the moment maps µ?ω are injective. By transitivity, they identify M with a
θ?ω-coadjoint orbit of Ham(M,ω).
Let us finish by proving the second note, that is, the universal moment map µω of
ω = (x2 + y2) d x ^ d y is injective. First of all µω(0,0) = 0G⇤ . Now, if z = (x , y)
and z0 = (x 0, y 0) are two different points of R2 and different from (0,0), then
there is a smooth function with compact support contained in a small ball, not
containing (0, 0) nor z, such that f (z0) = 1. Then, the 1-parameter group generated
by gradω( f ) belongs to Diff(R2,ω), and a similar argument as the one of the proof
above shows that µω(z) 6= µω(z0). We still need to prove that if z 6= (0,0), then
µω(z) 6= 0G⇤ . Let us consider p(t) = tz and F(r) be the positive rotation of angle
2πr, where r 2 R. The application of (art. 9.20, (})), computed at the point
r = 0 and applied to the vector δr = 1, gives (π/2)(x2 + y2)2 which is not zero.
Therefore, the moment map µω is injective. É

9.24. The classical homogeneous case. Let (M,ω) be a symplectic manifold.
Let G be a Lie group together with a homogeneous Hamiltonian action on (M,ω),
that is, the holonomy Γ of G is trivial. For the sake of simplicity we assume M
connected and G a Lie subgroup of Diff(M,ω). By functoriality of the moment maps
(art. 9.12), we know that if a moment map µ of G is injective, then every universal
moment map µω is injective (art. 9.23). But we are now in the opposite case, since
ω is symplectic every universal moment map µω is injective, but what about µ? This
is actually the original case treated by Souriau in [Sou70]. He showed that the
moment map µ is a covering onto its image, which is some coadjoint orbit O ⇢ G⇤
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(affine or not) of G. We give here the proof of this theorem, according to the present
framework. This case is illustrated by Exercise 146, p. 394.

PROOF. Let p be a path in M such that µ � p = cst, that is, Ψ(p) = 0G⇤ , where Ψ is
the paths moment map of G. Then, for any 1-parameter subgroup F 2 Hom1(R, G),
Ψ(p)(F)r(δr) = 0, for all r and all δr belonging to R. Adapting to our case the
expression of Ψ given in (art. 9.20), we get

Z 1

0
ωp(t)(ṗ(t), Z(p(t))) d t = 0, where Z(m) =

@ F(t)(m)
@ t

����
t=0

.

Now, considering the 1-parameter family of paths ps : t 7! p(st), the derivative of
the above expression gives ωp(0)(ṗ(0), Z(p(0))) = 0. But since G is transitive, by
running over all the 1-parameter subgroups F of G we describe the whole tangent
space TmM, where m= p(0). And since ω is nondegenerate, ṗ(0) = 0. The path p
is thus constant, p(t) = m for all t in R. Therefore the preimages of the values of
the moment map µ are discrete. But, µ is a fibration (see (art. 9.18)), thus µ is a
covering (art. 8.24) onto its image which is, by transitivity, a coadjoint orbit. É

9.25. The Souriau-Nœther theorem. Let M be a manifold, and let ω be a closed
2-form on M. We say that two points m and m0 are on the same characteristic13 of
ω if there exists a path p connecting m to m0 such that ṗ(t) 2 ker(ωp(t)) for all t.
Then, the universal moment map µω is constant on the characteristics of ω.

NOTE 1. In particular, for any smooth action of a diffeological group G, preserving
ω, the moment map µ is constant on the characteristics of ω.

NOTE 2. This is an analogue to the first Nœther theorem, relating symmetries to
conserved quantities for Lagrangian systems. For a comprehensive presentation on
the subject, see the book of Y. Kosmann-Schwarzbach [YKS10].

PROOF. We have µω(m0) � µω(m) = ψω(m, m0) = class(Ψω(p)) 2 G⇤ω/Γω, where
p is any (smooth) path connecting m to m0. Then, thanks to the hypothesis, we
can use a path p contained in the characteristic of ω containing m and m0, that is,
ṗ(t) 2 ker(ωp(t)) for all t. Now, thanks to the explicit formula of (art. 9.20), for
every n-plot F of Diff(M,ω), n 2 N, for every r 2 def(F), for every δr 2 Rn,

Ψω(p)(F)r(δr) =
Z 1

0
ωp(t)(ṗ(t),δp(t)) d t =

Z 1

0
0⇥ d t = 0.

Thus, Ψω(p) = 0 and therefore µω(m0) = µω(m). The note is a consequence of the
functoriality of the moment map (art. 9.14). Indeed, let ρ be the morphism from G

13This is the classical definition of the characteristics in the case of a closed 2-form ω defined on a
manifold M. They are the integral submanifolds of the distribution m 7! ker(ωm).
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to Diff(M,ω), then the paths moment map Ψ, relative to G, satisfies Ψ = ρ⇤ �Ψω.
Thus, Ψω(p) = 0 implies Ψ(p) = 0 which implies µ(m) = µ(m0), for any moment
map µ relative to G. É

9.26. Presymplectic homogeneous manifolds. Let M be a connected Hausdorff
manifold, and let ω be a closed 2-form on M. Let G ⇢ Diff(M,ω) be a connected
subgroup. If M is a homogeneous space of G, then the characteristics of ω are the
connected components of the preimages of the moment maps µ.

NOTE. In particular, if M is a homogeneous space of Diff(M,ω), and thus of its
identity component (art. 7.9), then:

THEOREM . The characteristics of ω are the connected components of the preimages of
the values of the universal moment map µω.

This justifies a posteriori the definition of the characteristics of moment maps, for
the general case of homogeneous diffeological spaces, in (art. 9.17).

PROOF. The Souriau-Nœther theorem states that if m and m0 are on the same
characteristic, then µ(m) = µ(m0) (art. 9.25). We shall prove the converse in a few
steps.

(a) Let us consider first the case when the holonomy Γ is trivial, Γ = {0}. Let us
assume m and m0 connected by a path p such that µ(p(t)) = µ(m) for all t. Then,
let s 7! ps be defined by ps(t) = p(st), for all s and t. We have µ(ps(1)) = µ(ps(0)),
that is, Ψ(ps) = 0G⇤ , for all s. Thus, for all n-plots F of G, for all r 2 def(F) and all
δr 2 Rn, Ψ(ps)(F)r(δr) = 0, and hence

0=
@Ψ(ps)(F)r(δr)

@ s
=
@

@ s

Z 1

0
ωps(t)(ṗs(t),δps(t)) d t = ωp(s)(ṗ(s),δp(s)),

where δp(t) is given by (art. 9.20, (~)). Next, let v 2 Tp(t)(M), then there exists
a path c of M such that c(0) = p(t) and dc(s)/ds|s=0 = v. Since M is assumed
homogeneous under the action of G, there exists a 1-plot s 7! F(s) centered at the
identity, that is, F(0) = 1M, such that F(s)(p(t)) = c(s). Then, for s = 0 and δs = 1,
we get from (art. 9.20, (~)),

δp(t) = 1Tp(t)M
dF(s)(p(t))

ds

����
s=0
=

dc(s)
ds

����
s=0
= v.

Hence, for every v 2 Tp(t)M, ω(ṗ(t), v) = 0, i.e., ṗ(t) 2 ker(ωp(t)) for all t. There-
fore, the connected components of the preimages of the values of the moment map
µ are the characteristics of ω.
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(b) Let us consider the general case. Let eM be the universal covering of M, π : eM!
M the projection, and let ω̃= π⇤(ω). Let bG be the group defined by

bG= { ĝ 2 Diff(eM, ω̃) | 9g 2 G and π � ĝ = g �π}.

Let ρ : bG! G be the morphism ĝ 7! g. The group bG is an extension of G by the
homotopy group π1(M)

1 ��! π1(M) ��! bG
ρ
��! G ��! 1.

1. The morphism ρ is surjective. Let g 2 G, let t 7! gt be a smooth path in G
connecting 1G to g. Let m̃ 2 eM and m = π(m̃), the path t 7! gt(m) has a unique
lift t 7! m̃t in eM starting at m̃ (art. 8.25). We can check that, g̃ : m̃ 7! m̃1 is a
diffeomorphism of eM, satisfying by construction π � g̃ = g � π. Next, g̃⇤(ω̃) =
g̃⇤(π⇤(ω)) = g̃⇤ � π⇤(ω) = (π � g̃)⇤(ω) = (g � π)⇤(ω) = π⇤(g⇤(ω)) = π⇤(ω) = ω̃.
Thus, g̃ 2 bG.

2. The group bG is transitive on eM. Let m̃ and m̃0 be two points of eM, let m= π(m̃)
and m0 = π(m̃0). Since G is transitive on M there exists g 2 G such that g(m) = m0.
The lift g̃ defined in part 1 maps m̃ to m̃1, and we have π(m̃1) = π(m̃0) = m0. So
there exists an element k 2 π1(M) such that kM̃(m̃1) = m̃0 (art. 8.26). Let ĝ = kM̃� g̃,
since π � ĝ = g �π and ĝ⇤(ω̃) = (kM̃ � g̃)⇤(ω̃) = g̃⇤(k⇤

M̃
(ω̃)) = g̃⇤(ω̃) = ω̃, ĝ belongs

to bG, and maps m̃ to m̃0.

3. The kernel of ρ is reduced to π1(M). Let g̃ 2 bG such that ρ( g̃) = 1M, that is,
π � g̃ = π. Thus, for every m̃ 2 M there exists κ(m̃) 2 π1(M) such that g̃(m̃) =
κ(m̃)M(m̃). But the map κ : eM ! π1(M) is smooth, and π1(M) discrete, so κ is
constant. Therefore, there exists k 2 π1(M) such that g̃(m̃) = kM(m̃), for all m̃ 2 eM.

4. Since eM is simply connected, bG has no holonomy. Let µ̂ be a moment map of
the action of bG on eM. Since bG is a discrete extension of G, their space of momenta
coincide (art. 7.13), thus µ̂ takes its values in G⇤, and since the action of G on
M is the image by the morphism ρ of the action of bG on eM, for every m̃ 2 eM,
µ(π(m̃)) = class(µ̂(m̃)) 2 G⇤/Γ (art. 9.13). Next, let c = µ(m) = class(µ̂(m̃)) 2
G⇤/Γ, m = π(m̃), and C = µ�1(c). The preimage π�1(C) = π�1(µ�1(c)) is equal to
(µ �π)�1(c) = (class�µ̂)�1(c) = µ̂�1(class�1(c)) = µ̂�1(µ̂(m̃) +Γ). Thus,

µ�1(c) = π
Å[

γ2Γ
µ̂�1(α+ γ)

ã
with α= µ̂(m̃) and c = class(α).

Since bG is transitive on eM and since there is no holonomy, we can apply the result
of part (a): for every γ 2 Γ, µ̂�1(α+ γ) is a union of characteristics of ω̃. Thus, the
union over all the γ 2 Γ is still a union of characteristics of ω. Hence, µ�1(c) is the
π-projection of a union of characteristics of ω̃. But, since π : eM!M is a covering
and since ω̃= π⇤(ω), the π-projection of a characteristic of ω̃ is a characteristic of
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ω. Thus µ�1(c) is a union of characteristics of ω, and the connected components of
the preimages of the values of µ are the characteristics of ω. É

Exercises

. EXERCISE 145 (The classical moment map). Let M be a connected Hausdorff
manifold equipped with a closed 2-form ω. Let G be a Lie group: a diffeological
group which is a manifold. Let ρ : g 7! gM be a Hamiltonian action of G on M. Let
us recall that a 1-parameter subgroup F 2 Hom1(R,G) is uniquely defined by its
derivative at the identity:

Z=
dF(t)

d t

����
t=0

and Z 2 G = T1G
(G).

For Lie groups, the spaces Hom1(R,G), T1G
(G) and the space of invariant vector

fields on G are identified and called the Lie algebra of G.

We denote F(t) = etZ. The fundamental vector field ZM is defined on M by

ZM(m) =
@ etZ

M (m)
@ t

����
t=0
2 Tm(M).

Let µ be a moment map of the action of G on M, we shall denote

µZ(m) = µ(m)(t 7! etZ)0(1).

1) Show that the moment map µ is defined, up to a constant, by the differential
equation

iZM
(ω) = �dµZ, that is, ωm(ZM(m),δm) = �d[µZ]m(δm),

for all m 2M and all δm 2 Tm(M).

2. Show then, using a basis of G , that Z 7! µZ is linear.

. EXERCISE 146 (The cylinder and SL(2,R)). We consider the space R2, equipped
with the standard symplectic form ω= d x ^ d y , with X = (x , y) 2 R2. Check that
the special linear group SL(2,R) preserves ω, and that its action on R2 has two
orbits, the origin 0 2 R2 and the cylinder M = R2 � {0}.

1) Justify, without computation, that the action of SL(2,R) on R2 is Hamiltonian
and exact.

2) For every X 2 R2, let γX = [t 7! tX] 2 Paths(R2) connecting 0 to X. Use the
general expression of the paths moment map given in (art. 9.20), for p = γX and
Fσ = [s 7! esσ], with σ 2 sl(2,R)— the Lie algebra of SL(2,R), that is, the space of
2⇥ 2 traceless matrices — to show that

µ(X)(Fσ) =
1
2
ω(X,σX)⇥ d t.



i
i

i
i

i
i

i
i

EXAMPLES OF MOMENT MAPS IN DIFFEOLOGY 395

3) Deduce that the moment map µM = µ ñM of SL(2,R) on M is a nontrivial double
sheet covering onto its image.

Examples of Moment Maps in Diffeology

The few following examples want to illustrate how the theory of moment maps in
diffeology can be applied to the field of infinite dimensional situations, but also to
the less familiar case of singular spaces. It is, at the same time, the opportunity to
familiarize ourselves with the computational techniques in diffeology.

9.27. On the intersection 2-form of a surface, I. Let Σ be a closed surface oriented
by a 2-form Surf, chosen once and for all. Let us consider Ω1(Σ), the infinite
dimensional vector space of 1-forms of Σ, equipped with functional diffeology. Let
us consider the antisymmetric bilinear map defined on Ω1(Σ) by

(α,β) 7!
Z

Σ
α^ β,

for all α, β in Ω1(Σ). Since the wedge-product α^ β is a 2-form of Σ, there exists a
real smooth function φ 2 C1(Σ,R) such that α^β = φ⇥Surf. Thus, by definition,R

Σ α^ β=
R

Σ φ⇥ Surf.

1. A well defined differential 2-form ω of Ω1(X) is naturally associated with the
above bilinear form. For every n-plot P : U! X, for all r 2 U, δr and δ0r in Rn,

ω(P)r(δr,δ0r) =
Z

Σ

@ P(r)
@ r

(δr)^
@ P(r)
@ r

(δ0r).

2. The 2-form ω is the differential of the 1-form λ defined on Ω1(Σ) by

λ(P)r(δr) = 1
2

Z

Σ
P(r)^

@ P(r)
@ r

(δr), and ω= dλ.

3. Consider now the additive group (C1(Σ,R),+) of smooth real functions on Σ,
and let us define the following action of C1(Σ,R) on Ω1(Σ),

for all f 2 C1(Σ,R), f 7! f̄ = [α 7! α+ d f ].

Then, the additive group C1(Σ,R) acts by automorphisms on the pair (Ω1(Σ),ω),
for all f in C1(Σ,R), f ⇤(ω) = ω.

Note that the kernel of the action f 7! f̄ is the subgroup of constant maps, and the
image of C1(Σ,R) is the group B1

dR(Σ) of exact 1-forms of Σ.

4. Let p 2 Paths(Ω1(Σ)) be a path connecting α0 to α1. The paths moment map
Ψ(p) is then given by

Ψ(p) =
Å
α̂⇤1(λ) + d

ï
f 7! 1

2

Z

Σ
f ⇥ dα1

òã
�
Å
α̂⇤0(λ) + d

ï
f 7! 1

2

Z

Σ
f ⇥ dα0

òã
.
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On this expression, we get immediately the 2-points moment map ψ(α0,α1) =Ψ(p),
for any path p connecting α0 to α1. Note that, since Ω1(Σ) is contractible, the
holonomy of the action of C1(Σ,R) is trivial, Γ = {0}, and the action of C1(Σ,R)
is Hamiltonian.

5. The moment maps of this action of C1(Σ,R) on Ω1(Σ) are, up to a constant,
equal to

µ : α 7! d
ï

f 7!
Z

Σ
f ⇥ dα

ò
.

Moreover, the moment map µ is equivariant, that is, invariant, since the group
C1(Σ,R) is Abelian,

for all f 2 C1(Σ,R), µ � f̄ = µ.

In summary, the action of C1(Σ,R) on Ω1(Σ) is exact and Hamiltonian.

NOTE. The moment map µ(α) is fully characterized by dα. This is why we find in
the mathematical literature on the subject that the moment map for this action is
the exterior derivative (or curvature, depending on the authors) α 7! dα. But as
we see again on this example, the diffeological framework gives to this statement a
precise meaning. Let us also remark that the moment map µ is linear, for all real
numbers t and s, and for all α and β in Ω1(Σ), µ(t α+ s β) = t µ(α) + s µ(β). The
kernel of µ is the subspace of closed 1-forms,

ker(µ) = Z1
dR(Σ) =

�
α 2 Ω1(Σ) | dα= 0

 
.

The orbit of the zero form 0 2 Ω1(Σ) by C1(Σ,R) is just the subspace B1
dR(Σ) ⇢

Z1
dR(Σ), see (art. 9.29, Note 3) for a discussion about that.

PROOF. 1. Let us check that ω defines a differential 1-form on Ω1(Σ). Note that,
for any r 2 U = def(P), P(r) is a section of the ordinary cotangent bundle T⇤Σ,
P(r) = [x 7! P(r)(x)] 2 C1(Σ, T⇤Σ), where P(r)(x) 2 T⇤x (Σ). Thus,

@ P(r)
@ r

(δr) = [x 7!
@ P(r)(x)
@ r

(δr)], and
@ P(r)(x)
@ r

(δr) 2 T⇤x (Σ),

where @ P(r)(x)/@ r denotes the tangent linear map D(r 7! P(r)(x))(r). The
formula giving ω is then well defined. Now, ω(P)r is clearly antisymmetric and
depends smoothly on r. Hence, ω(P) is a smooth 2-form of U. Let us check that
P 7! ω(P) defines a 2-form on Ω1(Σ), that is, satisfies the compatibility condition
ω(P � F) = F⇤(ω(P)), for all F 2 C1(V, U), where V is a real domain. Let s 2 V, δs
and δ0s two tangent vectors to V at s, let r = F(s), and compute

ω(P � F)s(δs,δ0s) =
Z

Σ

@ P � F(s)
@ s

(δs)^
@ P � F(s)
@ s

(δ0s)
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=
Z

Σ

@ P(r)
@ r

@ F(s)
@ s
(δs)^

@ P(r)
@ r

@ F(s)
@ s
(δ0s)

= ω(P)F(s)(DFs(δs),DFs(δ0s))
= F⇤(ω(P))s(δs,δ0s).

Thus, ω(P � F) = F⇤(ω(P)), and ω is a well defined 2-form on Ω1(Σ).
2. First of all, the proof that the map P 7! λ(P) is a well defined differential 1-form
of Ω1(Σ) is analogous to the proof of the first item. Now, let us recall that ω= dλ
means d(λ(P)) = ω(P), for all plots P of Ω1(Σ). Let us apply the usual formula of
differentiation of 1-forms on real domains,

dεr(δr,δ0r) = δ(εr(δ0r))� δ0(εr(δr)),

where δ and δ0 are two independent variations. For the sake of simplicity let us
denote

α= P(r), δα= @ P(r)
@ r

(δr), δ0α= @ P(r)
@ r

(δ0r).
Then,

d(λ(P))r(δr,δ0r) = 1
2

ï
δ
Z

Σ
α^ δ0α� δ0

Z

Σ
α^ δα

ò

= 1
2

ïZ

Σ
δα^ δ0α+α^ δδ0α�

Z

Σ
δ0α^ δα+α^ δ0δα

ò
,

but δδ0α= δ0δα, thus

d(λ(P))r(δr,δ0r) = 1
2

ïZ

Σ
δα^ δ0α�

Z

Σ
δ0α^ δα

ò

= 1
2

ïZ

Σ
δα^ δ0α+

Z

Σ
δα^ δ0α

ò

=
Z

Σ
δα^ δ0α

= ωr(δr,δ0r).

3. Let us compute the pullback of λ by the action of f 2 C1(Σ,R). Let P : U!
Ω1(Σ) be an n-plot, and let r 2 U and δr 2 Rn,

f̄ ⇤(λ)(P)r(δr) = λ( f̄ � P)r(δr)

= λ(r 7! P(r) + d f )r(δr)

= 1
2

Z

Σ
(P(r) + d f )^

@ P(r)
@ r

(δr)

= 1
2

Z

Σ
P(r)^

@ P(r)
@ r

(δr) + 1
2

Z

Σ
d f ^

@ P(r)
@ r

(δr)
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= λ(P)r(δr) +
@

@ r

ß
1
2

Z

Σ
d f ^ P(r)

™
(δr)

= λ(P)r(δr)�
@

@ r

ß
1
2

Z

Σ
f ⇥ d(P(r))

™
(δr).

Next, we define, for every f 2 C1(Σ,R), φ( f ) : Ω1(Σ)! R by

φ( f ) : α 7! 1
2

Z

Σ
f ⇥ dα.

Then,

d(φ( f ))(P)r(δr) =
@

@ r

ß
1
2

Z

Σ
f ⇥ d(P(r))

™
(δr).

Thus,

f̄ ⇤(λ)(P)r(δr) = λ(P)r(δr)� (dφ( f ))(P)r(δr),

that is,

f̄ ⇤(λ) = λ� d(φ( f )).
Hence, d[ f̄ ⇤(λ)] = dλ, and ω= dλ is invariant by the action of C1(Σ,R).

4. Let p be a path in Ω1(Σ) connecting α0 to α1. By definition Ψ(p) = p̂⇤(Kω).
Applying the property of the Chain-Homotopy operator d �K +K � d = 1̂⇤ � 0̂⇤ to
ω= dλ, we get

Ψ(p) = p̂⇤(K dλ)
= p̂⇤(1̂⇤(λ)� 0̂⇤(λ)� d(K λ))
= (1̂ � p̂)⇤(λ)� (0̂ � p̂)⇤(λ)� d[(K λ) � p̂]

= α̂⇤1(λ)� α̂⇤0(λ)� d[ f 7! K λ(p̂( f ))].

But K λ(p̂( f )) = K λ( f̄ � p) =
R

f̄ �p λ =
R

p f̄ ⇤(λ), and since f̄ ⇤(λ) = λ� d(φ( f )),
K λ(p̂( f )) =

R
p λ�

R
p d(φ( f )) =

R
p λ�φ( f )(α1) +φ( f )(α0). Therefore,

Ψ(p) = α̂⇤1(λ)� α̂⇤0(λ)� d[ f 7! �φ( f )(α1) +φ( f )(α0)]

= α̂⇤1(λ)� α̂⇤0(λ) + d
ï

f 7! 1
2

Z

Σ
f ⇥ dα1 � 1

2

Z

Σ
f ⇥ dα0

ò
.

We get then the paths moment map Ψ,

Ψ(p) =
Å
α̂⇤1(λ) + d

ï
f 7! 1

2

Z

Σ
f ⇥ dα1

òã
�
Å
α̂⇤0(λ) + d

ï
f 7! 1

2

Z

Σ
f ⇥ dα0

òã
.

Concerning the 2-points moment map ψ, we clearly have ψ(α0,α1) =Ψ(p), for any
path connecting α0 to α1.
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5. The 1-point moment maps are given by µ(α) = ψ(α0,α) for any origin α0. Let us
choose α0 = 0. So,

µ(α) = α̂⇤(λ) + d
ï

f 7! 1
2

Z

Σ
f ⇥ dα

ò
� 0̂⇤(λ).

But 0̂⇤(λ) is not necessarily zero. Let us compute generally α̂⇤(λ). Let P : U! Ω1(Σ)
be an n-plot, α̂⇤(λ)(P) = λ(α̂ � P) = λ(r 7! α̂(P(r)) = λ(r 7! α+ d(P(r))), and

λ(r 7! α+ d(P(r))) = 1
2

Z

Σ
(α+ P(r))^

@

@ r
(α+ d(P(r)))

= 1
2

Z

Σ
(α+ P(r))^

@ d(P(r))
@ r

= 1
2

Z

Σ
α^ @ d(P(r))

@ r
+ 1

2

Z

Σ
P(r)^

@ d(P(r))
@ r

.

Then,

(α̂⇤(λ)� 0̂⇤(λ))(P) = 1
2

Z

Σ
α^ @ d(P(r))

@ r
.

Therefore,

µ(α)(P)r = (α̂⇤(λ)� 0̂⇤(λ))(P)r + d
ï

f 7! 1
2

Z

Σ
f ⇥ dα

ò
(P)r

= 1
2

Z

Σ
α^ @ d(P(r))

@ r
+
@

@ r

ß
1
2

Z

Σ
P(r)⇥ dα

™

= 1
2
@

@ r

ßZ

Σ
α^ d(P(r)) + P(r)⇥ dα

™

=
@

@ r

ßZ

Σ
P(r)⇥ dα

™
,

which gives finally

µ(α) = d
ï

f 7!
Z

Σ
f ⇥ dα

ò
.

Now, let us express the variance of µ. Let f 2 C1(Σ,R) and F(α) be the real
function F(α) : f 7!

R
Σ f ⇥ dα, such that µ(α) = dF(α). We have µ( f̄ (α)) = µ(α+

d f ) = dF(α+ d f ) but, for every h 2 C1(Σ,R), F(α+ d f )(h) =
R

Σ h⇥ d(α+ d f ) =R
Σ h⇥ dα = F(α)(h). Then, for all f 2 C1(Σ,R), µ � f̂ = µ. The moment map

µ is invariant by the group C1(Σ,R). The Souriau class is zero, the action of
C1(Σ,R) is then exact and Hamiltonian.

Let us end with the computation of the kernel of the moment map µ. Clearly, µ(α) =
0 if and only if dF(α) = 0. But since C1(Σ,R) is connected (actually contractible
as a diffeological vector space), dF(α) = 0 if and only if F(α) = cst= F(α)(0) = 0.
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But F(α) = 0 if and only if, for all f 2 C1(Σ,R),
R

Σ f ⇥ dα = 0, that is, if and only
if dα= 0. É

9.28. On the intersection 2-form of a surface, II. We continue with the example
of (art. 9.27) using the same notations. Let us introduce the group G of positive
diffeomorphisms of (Σ, Surf), that is,

G=
ß

g 2 Diff(Σ)
����

g⇤(Surf)
Surf

> 0
™

.

The group G acts by pushforward on Ω1(Σ). For all g 2 G, for all α 2 Ω1(Σ),
g⇤(α) 2 Ω1(Σ), and for all pairs g, g 0 of elements of G, (g � g 0)⇤ = g⇤ � g 0⇤, and this
action is smooth.

1. The pushforward action of G on Ω1(Σ) preserves the 1-form λ, and thus the
2-form ω. For all g 2 G, (g⇤)⇤(λ) = λ, and (g⇤)⇤(ω) = ω. Thus, the action of G is
exact, σ = 0, and Hamiltonian, Γ = {0}.
2. The moment maps are, up to a constant, equal to the moment µ,

µ(α)(P)r(δr) = 1
2

Z

Σ
α^ P(r)⇤

Å
@ P(r)⇤(α)
@ r

(δr)
ã

,

for all α 2 Ω1(Σ), for all n-plots P, where r 2 def(P) and δr 2 Rn. In particular,
applied to any 1-plot F centered at the identity 1G, that is, F(0) = 1G, we get the
special expression

µ(α)(F)0(1) = �1
2

Z

Σ
α^ £F(α) = �

Z

Σ
iF(α)⇥ dα,

where £F(α) and iF(α) are the Lie derivative and the contraction of α by F. Note
that it is not surprising that the Lie derivative of α is closely associated with the
moment map of the action of the group of diffeomorphisms.

PROOF. 1. Let us compute the pullback of λ by the action of g 2 G, that is, (g⇤)⇤(λ).
Let P : U! Ω1(Σ) be an n-plot, let r 2 U, and δr 2 Rn, then

(g⇤)⇤(λ)(P)r(δr) = λ(g⇤ � P)r(δr)

= 1
2

Z

Σ
g⇤(P(r))^

@ g⇤(P(r))
@ r

(δr)

= 1
2

Z

Σ
g⇤(P(r))^ g⇤

Å
@ P(r)
@ r

(δr)
ã

= 1
2

Z

Σ
g⇤

Å
P(r)^

@ P(r)
@ r

(δr)
ã

= 1
2

Z

g⇤(Σ)
P(r)^

@ P(r)
@ r

(δr)
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= 1
2

Z

Σ
P(r)^

@ P(r)
@ r

(δr)

= λ(P)r(δr).

Thus, λ is invariant by G, and so is ω= dλ.

2. Since the 1-form λ is invariant by the action of G, we can use directly the results
of the exact case detailed in (art. 9.11). The moment map is, up to a constant,
µ : α 7! α̂⇤(λ). Then, let P : U! G be an n-plot, let r 2 U, δr 2 Rn. We have:

µ(α)(P)r(δr) = α⇤(λ)(P)r(δr)

= λ(α̂ � P)r(δr)

= λ(r 7! P(r)⇤(α))r(δr)

= 1
2

Z

Σ
P(r)⇤(α)^

@ P(r)⇤(α)
@ r

(δr)

= 1
2

Z

Σ
α^ P(r)⇤

Å
@ P(r)⇤(α)
@ r

(δr)
ã

.

Now, let P = F be a 1-plot centered at the identity, F(0) = 1G. Let us change the
variable r for the variable t. The previous expression, computed at t = 0 and
applied to the vector δt = 1 gives immediately

µ(α)(F)0(1) = 1
2

Z

Σ
α^ @ F(t)⇤(α)

@ t

����
t=0

.

But, by definition of the Lie derivative,
ß
@ F(t)⇤(α)
@ t

™

t=0
=
ß
@ (F(t)�1)⇤(α)

@ t

™

t=0
= �£F(α).

Thus, we get the first expression of the moment map µ applied to F, that is,

µ(α)(F)0(1) = �1
2

Z

Σ
α^ £F(α).

Now, on a surface α^ dα = 0, but iF(α^ dα) = iF(α)⇥ dα�α^ iF(dα), thus iF(α)⇥
dα= α^ iF(dα). Then, using the Cartan-Lie formula £F(α) = iF(dα) + d(iF(α)),Z

Σ
α^ £F(α) =

Z

Σ
α^ [iF(dα) + d(iF(α))]

=
Z

Σ
iF(α)dα+

Z

Σ
α^ d(iF(α))

=
Z

Σ
iF(α)dα+

Z

Σ
iF(α)dα�

Z

Σ
d[α^ iF(α)]

= 2

Z

Σ
iF(α)dα.
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And finally, we get the second expression for the moment map, that is,

µ(α)(F)0(1) = �
Z

Σ
iF(α)⇥ dα,

for any 1-plot of the group of positive diffeomorphisms of the surface Σ, centered
at the identity. É

9.29. On the intersection 2-form of a surface, III. We continue with the example
of (art. 9.27), using the same notations. Let us consider the space Ω1(Σ) as an
additive group acting onto itself by translations. Let us denote by tβ the translation
tβ : α 7! α+ β, where α and β belong to Ω1(Σ).
1. The 2-form ω is invariant by translation, that is, t⇤α(ω) = ω for all α 2 Ω1(Σ).
This action of Ω1(Σ) onto itself is Hamiltonian but not exact.

2. The moment maps of the additive action of Ω1(Σ) onto itself are, up to a constant,
equal to

µ : α 7! d

β 7!

Z

Σ
α^ β

�
.

In other words, µ(α) = d[ω(α)], where ω is regarded as the smooth linear function
ω(α) : β 7! ω(α,β), defined on Ω1(Σ). Moreover, the moment map µ is linear and
injective.

3. The moment map µ is its own Souriau cocycle, θ = µ. The moment map µ
identifies Ω1(Σ) with the θ-affine coadjoint orbit of 0 2 Ω1(Σ)⇤. Be aware that
Ω1(Σ)⇤ denotes the space of invariant 1-forms of the Abelian group Ω1(Σ), and not
its algebraic dual.

NOTE 1. This example is analogous to finite dimension symplectic vector spaces.
The 2-form ω can be regarded as a real 2-cocycle of the additive group Ω1(Σ). This
cocycle builds up a central extension by R,

(α, t) · (α0, t 0) =
Å
α+α0, t + t 0 +

Z

Σ
α^α0

ã

for all (α, t) and (α0, t 0) in Ω1(Σ)⇥R. This central extension acts on Ω1(Σ), pre-
serving ω. This action is Hamiltonian, and now exact. The lack of equivariance,
characterized by the Souriau class, has been absorbed in the extension. This group
could be named, by analogy, the Heisenberg group of the oriented surface (Σ, Surf).

NOTE 2. According to (art. 9.19), the space Ω1(Σ), equipped with the 2-form ω,
is a homogeneous symplectic space. This is the first simple example of an infinite
dimensional symplectic space, where diffeology avoids losing us in considerations
about the kernel of ω and on the relations between algebraic duals.
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NOTE 3. The preimage of zero by the moment map of the Abelian group C1(Σ,R)
on Ω1(Σ) in (art. 9.27) is the subgroup of closed forms Z1

dR(Σ) ⇢ Ω1(Σ). This
group acts homogeneously on itself and its moment map for the restriction of the
2-form ω is the projection of the moment map of the action of C1(Σ,R), that
is, µ0 : α 7! d

⇥
β 7!

R
Σ α^ β

⇤
, but now α and β are closed. The characteristics of

this moment map are the orbits of the subgroup µ0�1(0), that is, the subgroup of
α 2 Z1

dR(Σ) such that
R

Σ α^ β= 0 for all β 2 Z1
dR(Σ). This is the subgroup of exact

1-forms B1
dR(Σ). Then, the image of µ0 identifies naturally with the quotient space

H1
dR(Σ) = Z1

dR(Σ)/B1
dR(Σ). Moreover, the closed 2-form passes to this quotient, it

is the well known intersection form, denoted here by ωint, ω ñ Z1
dR(Σ) = µ0⇤(ωint).

This is an example of symplectic reduction in diffeology (see also (art. 9.17, Note)),
the full general case will be addressed in a future work.

PROOF. Let us compute the pullback of λ by a translation. Let P : U ! X be an
n-plot, let r 2 U, and let δr 2 Rn,

t⇤α(λ)(P)r(δr) = λ(tα � P)r(δr)

= λ[r 7! P(r) +α]r(δr)

= 1
2

Z

Σ
(P(r) +α)^ @ (P(r) +α)

@ r
(δr)

= 1
2

Z

Σ
P(r)^

@ P(r)
@ r

(δr) + 1
2

Z

Σ
α^ @ P(r)

@ r
(δr)

= λ(P)r(δr) + d
ï
β 7! 1

2

Z

Σ
α^ β

ò
(P)r(δr).

Let us define next, for all α 2 Ω1(Σ), the smooth real function F(α) by

F(α) : β 7! 1
2

Z

Σ
α^ β.

Then,

t⇤α(λ) = λ+ d(F(α)) and t⇤α(ω) = ω.

Next, Ω1(Σ), as an additive group, acts on itself by automorphisms. Let us compute
the moment maps. Let p be a path in Ω1(Σ), connecting α0 to α1, then

Ψ(p) = α̂⇤1(λ)� α̂⇤0(λ)� d
ï
β 7!

Z

p
d(F(β))

ò

= α̂⇤1(λ)� α̂⇤0(λ)� d[β 7! F(β)(α1)� F(β)(α0)]

= {α⇤1(λ)� d[β 7! F(β)(α1)]}� {α⇤0(λ)� d[β 7! F(β)(α0)]}

= {α̂⇤1(λ) + d(F(α1))}� {α̂⇤0(λ) + d(F(α0))}.
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Thus, the 2-points moment map is clearly given by ψ(α0,α1) = Ψ(p). Now, the
moment maps are, up to a constant, equal to

µ(α) = ψ(0,α) = α̂⇤1(λ) + d(F(α))� 0̂⇤(λ).

But for any plot P : U! Ω1(Σ),

α̂⇤(λ)(P)� 0̂⇤(λ)(P) = λ(α̂ � P)� λ(0̂ � P)

= λ(r 7! P(r) +α)� λ(r 7! P(r))

= d
ï
β 7! 1

2

Z

Σ
α^ β

ò
(P)

= d(F(α))(P).

Hence, α̂⇤(λ)(P)� 0̂⇤(λ) = d(F(α)) and µ is finally given by

µ(α) = 2d(F(α)) = d
ï
β 7!

Z

Σ
α^ β

ò
.

The moment map µ is not equivariant, the Souriau cocycle θ is given by

µ(t⇤α(β)) = µ(α+ β) = µ(β) + θ(α), with θ(α) = µ(α).

Considering the Note, the moment map µ is clearly smooth and linear. Let α 2 ker(µ),
µ(α) = 0 if and only if d(F(α)) = 0, that is, if and only if F(α) = cst= F(α)(0) = 0.
But F(α)(β) = 0, for all β 2 Ω1(Σ), implies α= 0. Therefore, µ is injective. É

9.30. On symplectic irrational tori. Consider the smooth space Rn, for some
integer n. For all u 2 Rn, let tu be the translation by u, that is, tu : x 7! x + u. Let ω
be a 2-form of Rn invariant by translation, that is, for all u 2 Rn, t⇤u(ω) = ω. Thus,
ω is a constant bilinear 2-form, thus closed, dω= 0. Let us consider the moment
maps associated with the translations (Rn,+). Since Rn is simply connected, the
holonomy is trivial, Γ = {0}. Let p be a path in Rn connecting x = p(0) to y = p(1),
the paths moment map Ψ(p), and the 2-points moment map ψ(p) are given by

Ψ(p) = ψ(x , y) = ω(y � x),

where ω(u) is regarded as the linear 1-form ω(u) : v 7! ω(u, v). The moment maps
are, up to constant, equal to the linear map

µ : x 7! ω(x),

and the Souriau cocycle θ associated with µ is equal to µ. For all u 2 Rn,

θ(u) = µ(u) = ω(u).

Consider now a discrete diffeological subgroup K ⇢ Rn. Let us denote by Q the
quotient Q = Rn/K and by π : Rn ! Q the projection. Let us continue to denote
by tu the translation on Q, by u 2 Rn, that is, tu(q) = π(x + u), for any x such that
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q = π(x). Now, since ω is invariant by translation, ω is invariant by K, and since K
is discrete, ω projects on Q as a Rn-invariant closed 2-form denoted by ωQ, that is,

ωQ = π⇤(ω), or ω= π⇤(ωQ).

Note that the translation by any vector u of Rn on Q is still an automorphism of ωQ,
that is, t⇤u(ωQ) = ωQ.

1. The holonomy ΓQ of the action of (Rn,+) on (Q,ωQ) is the image of the subgroup
K by µ,

ΓQ = µ(K), ΓQ ⇢ Rn⇤.

Thus, if ω 6= 0 and if K is not reduced to {0}, then the action of (Rn,+) on (Q,ωQ)
is not Hamiltonian and not exact.

2. The moment map µ : Rn! Rn⇤ projects on a moment µQ such that the following
diagram commutes.

Rn Rn⇤

Q = Rn/K Rn⇤/µ(K)

µ

π pr

µQ

For all q 2 Q, µQ(q) = pr(ω(x)) for any x such that q = π(x). The Souriau cocycle
θQ associated with µQ, for all u 2 Rn, is given by

θQ(u) = µQ(π(u)).
Hence, if we consider the space Q as an additive group acting on itself by translations,
then the moment map µQ coincides with its Souriau cocycle θQ.

3. The map µ is a fibration onto its image whose fiber is the kernel of µ, that is,
val(µ)' Rn/E, E = ker(µ). And, the map µQ is a fibration onto its image µ(Rn)/µ(K)
whose fiber is ker(µQ) = E/(K \ E). If ω : Rn! Rn⇤ is injective (which implies that
n is even), then the moment map µQ is a diffeomorphism which identifies Q with
its image Rn⇤/µ(K).

NOTE 1. Regarded as a group, Q = Rn/K acts onto itself by projection of the
translations of Rn. Since the pullback by π : Rn! Q is an isomorphism from Q⇤ to
Rn⇤ (Rn is the universal covering of Q), the moment maps computed above give
the moment maps associated with this action.

NOTE 2. This construction applies to the torus T2 = R2/Z2. The action of (R2,+),
is obviously not Hamiltonian, but the moment map µT2 is well defined. And, µT2

identifies T2 with the quotient of R2⇤ — the (ΓQ,θQ)-coadjoint orbit of the point
0 — by the holonomy ΓQ = ω(Z2) ⇢ R2⇤, according to the meaning of a coadjoint
orbit we gave in (art. 7.16). As strange as it may sound, the torus T2, equipped
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with the standard symplectic form ω, is a coadjoint orbit of R2, or even a coadjoint
orbit of itself. This is a special case of the (art. 9.23) discussion.

NOTE 3. All this construction above also applies to situations regarded as more
singular that the simple quotient of Rn by a lattice. It applies, for example, to the
product of any irrational tori. An (n-dimensional) irrational torus TK is the quotient
of Rn by any generating discrete strict subgroup K of Rn. See for example [IgLa90]
for an analysis of 1-dimensional irrational tori. For example, we can consider the
product of two 1-dimensional irrational tori Q = TH⇥TK, quotient of R2 = R⇥R by
the discrete subgroup αH(Zp)⇥αK(Zq), where αH : Rp ! R and αK : Rq ! R are
two linear 1-forms with coefficients independent over Q. In this case, the moment
map µQ will also identify TH ⇥ TK with the quotient of R2⇤ — (ΓQ,θQ)-coadjoint
orbit of 0 — by ΓQ = ω(αH(Zp)⇥αK(Zq)). This is the simplest example of totally
irrational symplectic space, and totally irrational coadjoint orbit. Note that these
cases escape completely the usual analysis, of course, but also the analysis in terms
of Sikorski or Frölicher spaces; see Exercise 80, p. 123.

PROOF. First of all, the fact that there exists a closed 2-form ωQ on R/K such that
π⇤(ωQ) = ω is an application of the criterion of pushing forward forms, in the
special case of a covering (art. 8.27). Now, the computation of the moment map
of a linear antisymmetric form ω on Rn is well known, and independently of the
method gives the same result µ(x) = ω(x). The additive constant is set here by the
condition µ(0) = 0. But the value of the paths moment map Ψ(p) can be computed
as well by the general method, applying the particular expression

K ωp(δp) =
Z 1

0
ωp(t)(ṗ(t),δp(t)) d t , with ṗ(t) =

dp(t)
d t

,

of the Chain-Homotopy operator for manifold, where p is a path and δp is a variation
of p. Then, since the result depends only on the ends of the path, choose, for any
two points x and y in Rn, the connecting path p : t 7! x + t(y � x). Let us recall
that Ψ(p) = p̂⇤(Kω), let u and δu in Rn, note that p̂⇤(tu) = tu � p = [t 7! p(t) + u].
Then,

Ψ(p)u(δu) = p̂⇤(Kω)u(δu)

= (K ω)tu�p(δ(tu � p)), with δp = 0

=
Z 1

0
ω(ṗ(t),δu) d t

= ω(y � x ,δu).

Thus, Ψ(p) = ψ(x , y) = ω(y � x) = ω(y) � ω(x), and µ : x 7! ω(x), x 2 Rn.
Consider now ωQ, since Rn is the universal covering of Q, every loop ` 2 Loops(Q, 0)
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can be lifted into a path p in Rn starting at 0 and ending in K. In other words,

Γ = {Ψ(`) | ` 2 Loops(Q)}= {Ψ(t 7! tk) | k 2 K}= ω(K).

The other propositions are then a direct application of the functoriality of the
moment map described in (art. 9.13), and standard analysis on quotients and
fibrations. É

9.31. The corner orbifold. Let us consider the quotient Q of R2 by the action of
the finite subgroup K ' {±1}2, embedded in GL(2,R) by

K =
ß✓

ε 0
0 ε0

◆���� ε,ε0 2 {±1}
™

.

The space Q = R2/K (Figure 9.1) is an orbifold, according to [IKZ10]. It is diffeo-
morphic to the quarter space [0,1[⇥ [0,1[⇢ R2, equipped with the pushforward
of the standard diffeology of R2 by the map π : R2! [0,1[ ⇥ [0,1[, defined by,

π(x , y) = (x2, y2) and Q ' π⇤(R2).

The letterQ will denote indifferently the quotient R2/K or the quarter space π⇤(R2),
and the meaning of the letter π follows. Be aware that the corner orbifold is not a
manifold with boundary, Q is not diffeomorphic to the corner equipped with the
induced diffeology of R2. That said, we remark that the decomposition of Q in
terms of point’s structure is given by

Str(0, 0) = {±1}2, Str(x , 0) = Str(0, y) = {±1}, and Str(x , y) = {1},

where x and y are positive real numbers. Then, since the structure group of a
point is preserved by diffeomorphisms [IKZ10], there are at least three orbits of
Diff(Q), the point 0Q = (0,0), the regular stratum Q̇ = ]0,1[2 and the union
of the two axes, ox and o y . In particular, any diffeomorphism of Q preserves the
origin 0Q . Actually, these are exactly the orbits of Diff(Q). Let us remark that, since
dim(Q) = 2 (art. 1.78), every 2-form is closed.

1. Every 2-form of Q is proportional to the 2-form ω defined on Q by

π⇤(ω) :

✓
x
y

◆
7! 4x y ⇥ d x ^ d y,

that is, for any other 2-form ω0 there exists a smooth function ϕ 2 C1(Q,R) such
that ω0 = ϕ⇥ω.

2. The space (Q,ω) is Hamiltonian, Γω = {0}, and the action of Gω is exact, that
is, σω = 0. In particular, the universal moment map µω defined by µω(0Q) = 0, is
equivariant.
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0 ox
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Corner OrbifoldPlane

x' x

x'' x'''

FIGURE 9.1. The corner orbifold Q.

3. The universal equivariant moment map µω vanishes on the singular strata {0},
ox and o y , and is injective on the regular stratum Q̇. Therefore, the image µω(Q)
is diffeomorphic to an open disc with a point somehow attached on the boundary.

PROOF. 1. Let ω0 be a 2-form on Q, and let ω̃0 be its pullback by π, ω̃0 = π⇤(ω0).
Thus, there exists a smooth real function F such that ω̃0 = F ⇥ d x ^ d y. But
since π � k = π, for all k 2 K, we get εε0F(εx ,ε0 y) = F(x , y), for all (x , y) 2
R2 and all ε, ε0 in {±1}. Thus, F(�x , y) = �F(x , y) and F(x ,�y) = �F(x , y).
In particular, F(0, y) = 0 and F(x , 0) = 0. Therefore, since F is smooth, there
exists f 2 C1(R2,R) such that F(x , y) = 4x y f (x , y), with f (εx ,ε0 y) = f (x , y).
Therefore, ω̃0 = f ⇥ ω̃, with ω̃ = 4x y ⇥ d x ^ d y, that is, ω̃ = d(x2)^ d(y2), but
x 7! x2 and y 7! y2 are invariant by K so, they are the pullback by π of some
smooth real functions on Q. Thus, d(x2) and d(y2) are the pullback of 1-forms on
Q, let us say d(x2) = π⇤(ds) and d(y2) = π⇤(d t), so ω̃= π⇤(ω), where ω= ds^d t
is a well defined 2-form on Q. Now, since f (εx ,ε0 y) = f (x , y) means just that f
is the pullback of a smooth real function ϕ on Q, it follows that any 2-form ω0 on
Q is proportional to ω, that is, ω0 = ϕ⇥ω, with ϕ 2 C1(Q,R).

2. The orbifold is contractible. The deformation retraction (s, x , y) 7! (sx , s y) of R2

to {(0, 0)} projects on a smooth deformation retraction of Q. Thus, the holonomy
is trivial, Γ = {0}. Now, since the origin 0Q is the only point with structure {±1},
every diffeomorphism of Q preserves the origin 0Q . Then, the 2-point moment
map is exact, see (art. 9.10, Note 2), the Souriau class is zero, σω = 0. Let q be
any point of Q and let µω(q) = ψ(0Q , q). This is an equivariant moment map and
µω(0Q) = ψ(0Q , 0Q) = 0.

3. Let q 2 Q, thus µω(q) =Ψ(p) for any path p connecting 0Q to q. Let q belong
to a semi-axis ox or o y, and let us choose p = t 7! λ(t)q, where λ is a smashing
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function equal to 0 on ]�1, 0] and equal to 1 on [1,+1[. Thus, for all t 2 R,
p(t) belongs to the same semi-axis as q. Thanks to (art. 9.2, (~)), for any 1-plot ϕ
of Diff(Q,ωω) centered at the identity,

Ψ(p)(ϕ)0(1) =
Z 1

0
ω
✓

s
r

◆
7! ϕ(r)(λ(s+ t)q)

�

(00)

✓
1
0

◆✓
0
1

◆
d t .

But (s, r) 7! ϕ(r)(λ(s+t)q) is a plot of the semi-axis, and thanks to item 1, the form ω
vanishes on the semi-axis. Thus, the integrand vanishes and Ψ(p)(ϕ)0(1) = 0. Then,
since 1-forms are characterized by 1-plots and since momenta are characterized by
centered plots, µω(q) = 0 for all q 2 Q belonging to any semi-axis.

On the other hand, let q and q0 be two points of the regular stratum Q̇. Since
π ñ {(x , y) | x > 0 and y > 0} is a diffeomorphism, and since ω̃ ñ {(x , y) | x > 0 and
y > 0} is a symplectic Hausdorff manifold, there exists always a symplectomorphism
ϕ with compact support S ⇢ {(x , y) | x > 0 and y > 0} which exchanges q and
q0. Then, the image of this diffeomorphism on Q̇ can be extended by the identity
on the whole Q. Therefore, the automorphisms of ω are transitive on the regular
stratum. The fact that the universal moment map is injective on the regular stratum
comes from what we know already on symplectic manifolds (art. 9.23). É

9.32. The cone orbifold. Let Qm be the quotient of the smooth complex plane
C by the multiplicative action of the cyclic subgroup Zm, mth-roots of unity. The
space Qm (Figure 9.2) is an orbifold, according to [IKZ10]. We identify Qm to the
complex plane C, equipped with the pushforward of the standard diffeology by the
map πm : z 7! zm.

Qm = C/Zm with Zm = {ζ 2 C | ζm = 1} with m> 1.

The plots of Qm are the parametrizations P of C which write locally P(r) = ϕ(r)m,
where ϕ is a smooth parametrization in C. Let us remark first that the decomposition
of Qm, in terms of structure group, is given by

Str(0) = Zm, and Str(z) = {1}, if z 6= 0.

And secondly that there are two orbits of Diff(Qm), the point 0 and the regular
stratum Q̇m = C � {0}. In particular any diffeomorphism of Qm preserves the
origin 0. It is not difficult to check that {πm} is a minimal generating family, thus
dim(Qm) = 2 (art. 1.78), and every 2-form on Qm is closed.

1. Every 2-form of Qm is proportional to the 2-form ω defined by

π⇤m(ω) : z 7! d x ^ d y with z = x + i y.

For every other 2-form ω0 there exists a smooth function f 2 C1(Qm,R) such that
ω0 = f ⇥ω.
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x
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FIGURE 9.2. The cone orbifold Q3.

2. The space (Q,ω) is Hamiltonian, Γω = {0}, and the action of Gω is exact, that
is, σω = 0. In particular, the universal moment map µω, defined by µω(0) = 0, is
equivariant.

3. The universal moment map µω is injective. Its image is the reunion of two
coadjoint orbits, the point 0 2 G⇤ω, value of the origin of Qm, and the image of the
regular stratum Q̇m.

PROOF. Let us first prove that the usual surface form Surf = d x ^ d y is the pullback
of a 2-form ω defined on Qm. We shall apply the standard criterion and prove
that for any two plots ϕ1 and ϕ2 of C such that πm � ϕ1 = πm � ϕ2, we have
Surf(ϕ1) = Surf(ϕ2), that is, ϕ1(r)m = ϕ2(r)m implies Surf(ϕ1) = Surf(ϕ2). First
of all let us recall that, since we are dealing with 2-forms, is is sufficient to consider
2-plots. So, let the ϕ i be defined on some real domain U ⇢ R2. Let r0 2 U, we split
the problem into two cases.

1. ϕ1(r0) 6= 0 — Thus, ϕ2(r0) 6= 0, there exists an open disc B centered at r0 on
which the ϕ i do not vanish. Thus, the map r 7! ζ(r) = ϕ2(r)/ϕ1(r) defined on
B is smooth with values in Zm. But, since Zm is discrete there exists ζ 2 Zm such
that ϕ2(r) = ζ ⇥ ϕ1(r) on B. Now, Surf is invariant by U(1) � Zm. Therefore
Surf(ϕ1) = Surf(ϕ2) on B.

2. ϕ1(r0) = 0 — Thus, ϕ2(r0) = 0. Now, we have Surf(ϕ i) = det(D(ϕ i)) ⇥ Surf,
where D(ϕ i) denotes the tangent map of ϕ i . We split this case in two subcases.

2.a. D(ϕ1)r0
is not degenerate — Thus, thanks to the implicit function theorem,

there exists a small open disc B around r0 where ϕ1 is a local diffeomorphism onto
its image. Since ϕ1(r)m = ϕ2(r)m, the common zero r0 of both ϕ1 and ϕ2 is isolated.
Thus, the map r 7! ζ(r) = ϕ2(r)/ϕ1(r) defined on B� {r0} is smooth, and for the
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same reason as in the first case, ζ is constant. Then, ϕ2(r) = ζ⇥ ϕ1(r) on B� {r0}.
But since ϕ i(r0) = 0, this extends on B. Therefore, Surf(ϕ1) = Surf(ϕ2) on B.

2.b. D(ϕ1)r0
is degenerate — Let u be in the kernel of D(ϕ1)r0

. Then, ϕ1(r0+su)m =
ϕ2(r0 + su)m for s small enough. Hence, differentiating this equality m times with
respect to s, we get at s = 0, D(ϕ1)r0

(u)m = D(ϕ2)r0
(u)m = 0. Therefore, D(ϕ2)r0

is
also degenerate at r0 and thus Surf(ϕ1)r0

= Surf(ϕ2)r0
= 0.

Thus, we proved that for all r 2 U, Surf(ϕ1)r = Surf(ϕ2)r . Therefore, there exists
a 2-form ω on Qm such that π⇤m(ω) = Surf, and this form ω is completely defined
by its pullback. Now, since the pullback by πm of any other 2-form ω0 on Qm is
proportional to Surf, the form ω0 is proportional to ω. Now, for the same reasons
as in (art. 9.31), the universal holonomy Γω is trivial, the Souriau class σω is
zero, and the universal moment map µω defined by µω(0) = 0G⇤ is equivariant.
Moreover, the regular stratum Q̇ is just a symplectic manifold for the restriction of
ω. Every symplectomorphism with compact support which does not contain 0 can
be extended to an automorphism of (Q,ω). Thus, since the compactly supported
symplectomorphisms of a connected symplectic manifold are transitive [Boo69],
the regular stratum Q̇ is an orbit of Diff(Q,ω) and, the universal moment map is
injective on this stratum (art. 9.23). Therefore, the moment map µω maps injectively
Q onto the two orbits, {0G⇤} and µω(Q̇). É

9.33. The infinite projective space. Let H be the Hilbert space of the square
summable complex series

H =
ß

Z= (Zi)1i=1

����
nX

i=1

Zi · Zi <1
™

,

where the dot denotes the Hermitian product. The spaceH is equipped with the
fine structure of complex diffeological vector space (art. 3.15). Let P : U ! H
be a plot, then for every r0 2 U there exist an integer n, an open neighborhood
V ⇢ U of r0 and a finite family F = {(λa, Za)}a2A, where the Za 2 H , and the
λa 2 C1(V,Cn), such that P ñ V : r 7!

P
a2A λa(r)⇥Za. Such a family {(λa, Za)}a2A

is called a local family of P at the point r0. We introduced the symbol dZ in Exercise
99, p. 194, which associates every local family F = {(λa, Za)}a2A, defined on the
domain V, with the complex valued 1-form of V

dZ(F ) : r 7!
X

a2A

dλa(r)Za.

For every λa = xa + i ya, where xa and ya are real smooth parametrizations, dλa =
d xa + id ya. There exists onH a 1-form α defined by

α= 1
2i [Z · dZ� dZ · Z].
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1. As an additive group (H ,+) acts on itself, preserving dα. Let Z 2H , and let tZ

be the translation by Z, then t⇤Z(dα) = dα. This action is Hamiltonian but not exact.
Let µ be the moment map of the translations (H ,+), defined by µ(0H ) = 0,

µ(Z) = 2d[w(Z)] with w(ζ) : Z 7! 1
2i [ζ · Z� Z · ζ] 2 C1(H ,R).

The moment map µ is injective and (H , dα) is a homogeneous symplectic space.

2. Let U(H ) be the group of unitary transformations of H , equipped with the
functional diffeology. The group U(H ) acts on H preserving α. The action of
U(H ) on (H , dα) is exact and Hamiltonian. Let P : U! U(H ) be an n-plot. The
value of the moment map µ, for the action of U(H ) on (H , dα), evaluated on P, is
given by

µ(Z)(P)r(δr) = 1
2i

ï
P(r)(Z) ·

@ P(r)(Z)
@ r

(δr)�
@ P(r)(Z)
@ r

(δr) · P(r)(Z)
ò
,

where, r 2 U , δr 2 Rn and if

P(r)(Z) =loc

X

α2A

λα(r)Zα, then
@ P(r)(Z)
@ r

(δr) =loc

X

α2A

@ λα(r)
@ r

(δr)Zα.

3. The unit sphere S ⇢ H is a homogeneous space of U(H ); see Exercise 126,
p. 267. The fibers of the equivariant moment map µ of the action of U(H ) on
(S , dα ñ S ) are the fibers of the infinite Hopf fibration π : S !P = S /S1, where
S1 2 C acts multiplicatively on S . There exists a symplectic form ω on P , called
the infinite projective space, such that π⇤(ω) = dα ñ S ; see Exercise 100, p. 194.
The equivariant moment map of the induced action of U(H ) on P is injective.
Therefore, equipped with the Fubini-Study form, P is a homogeneous symplectic
space and can be regarded as a coadjoint orbit of U(H ).

PROOF. Let us prove what is claimed here and has not been already proved in a
previous paragraph or exercise.

1. Since H is contractible, there is no holonomy. Now, let ζ 2 H , and let tζ
be the translation tζ(Z) = Z + ζ. A direct computation shows that t⇤ζ(α) = α +
d[w(ζ)]. Thus, dα is invariant by translation t⇤ζ(dα) = dα. Now, let p be a path
connecting 0H to Z, we have µ(Z) =Ψ(p) = p̂⇤K (dα) = Ẑ⇤(α)�0̂⇤H (α)�d[Kα� p̂].
But on the one hand we have Ẑ = tZ, thus Ẑ⇤(α) � 0̂⇤H (α) = t⇤Z(α) � 1⇤H (α) =
α + d[w(Z)] � α = d[w(Z)], and on the other hand, p̂(ζ) = tζ � p. Thus, Kα �
p̂ =

R
tζ�p

α =
R

p t⇤ζ(α) =
R

p α+
R

p d[w(ζ)] =
R

p α+ w(ζ)(Z), since w(ζ)(0H ) = 0.
Hence, µ(Z) = d[w(Z)]� d[ζ 7! w(ζ)(Z)]. But w(ζ)(Z) = �w(Z)(ζ), then µ(Z) =
d[w(Z)]� d[ζ 7! �w(Z)(ζ)] = 2d[w(Z)]. Next, let Z be in the kernel of µ, thus
w(Z) = cst = w(0H ) = 0. But w(Z)(Z0) = 0 for all Z0 2 H if and only if Z = 0H ,
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we have just to decompose Z into real and imaginary parts and use the fact that the
Hermitian norm onH is nondegenerate. Therefore, µ is injective.

2. Since the 1-form α is invariant by U(H ), this statement is a direct application of
(art. 9.11). É

9.34. The Virasoro coadjoint orbits. Let Imm(S1,R2) be the space of all the im-
mersions of the circle S1 = R/2πZ into R2, equipped with the functional diffeology.

1. For all integers n and all n-plots P : U ! Imm(S1,R2), let α(P) be the 1-form
defined on U by

α(P)r(δr) =
Z 2π

0

1
kP(r)0(t)k2

≠
P(r)00(t)

����
@ P(r)0(t)
@ r

(δr)
∑

d t ,

where r 2 U and δr 2 Rn. The prime denotes the derivative with respect to the
parameter t, and the brackets h· | ·i denote the ordinary scalar product. Then, α is
a 1-form on Imm(S1,R2).

2. We consider now the group Diff+(S1), of positive diffeomorphisms of the circle,
and its action on Imm(S1,R2) by reparametrization. For all φ in Diff+(S1), for all x
in Imm(S1,R1), we denote by φ̄(x) the pushforward of x by φ, that is,

φ̄(x) = φ⇤(x) = x �φ�1.

Let F : Diff+(S1)!C1(Imm(S1,R2),R) defined, for all φ 2 Diff+(S1), by

F(φ) : x 7!
Z 2π

0
logkx 0(t)k d log(φ0(t)).

Then, the map F is smooth and for every φ 2 Diff(S1),

φ̄⇤(α) = α� d[F(φ)].

It follows that the exact 2-form ω= dα, defined on Imm(S1,R2), is invariant by the
action of Diff(S1). Moreover, the action of Diff(S1) is Hamiltonian.

3. Let x0 : class(t) 7! (cos(t), sin(t)) be the standard immersion from S1 to R2. The
moment maps for ω restricted to the connected component of x0 2 Imm(S1,R2),
relative to Diff+(S1), are given by

µ(x)(r 7! φ)r(δr) =
Z 2π

0

⇢
kx 00(u)k2

kx 0(u)k2
�

d2

du2
logkx 0(u)k2

�
δu du + cst,

where r 7! φ is any plot of Diff+(S1) defined on some n-domain U, r is a point of
U, δr 2 Rn, u= φ�1(t), and δu= D(r 7! u)(r)(δr).
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4. With the same conventions as in item 3, the Souriau cocycles of the Diff+(S1)
action on Imm(S1,R2) are cohomologous to

θ(g)(r 7! φ)r(δr) =
Z 2π

0

3γ 00(u)2 � 2γ 000(u)γ 0(u)
γ 0(u)2 δu du ,

where g 2 Diff+(S1) and γ = g�1. We recognize in the integrand of the right hand
side the Schwartzian derivative of γ.

5. Let β be the function defined, for all g and h in Diff+(S1), by

β(g, h) =
Z 2π

0
log(g � h)0(t) d log h0(t).

Then, for all g and h in Diff+(S1),

F(g � g 0) = F(g) � ḡ 0 + F(g 0)� β(g, g 0).

This function β is known as the Bott cocycle [Bot78]. The central extension of
Diff+(S1) by β is the Virasoro group. Its action on Imm(S1,R2), through Diff+(S1),
is still Hamiltonian, and now exact. This is a well known construction which will
not be more developed here.

NOTE. This example, built on purpose [Igl95], gathers the main ingredients found
in the literature on the construction of Virasoro’s group. It illustrates the whole
theory, by linking objects that originally appeared in disorder.

PROOF. The proof is actually a long and tedious series of computations. To make it
as clear as possible, we shall split the computations into a few steps.

The 1-form α. We prove first that α is a well defined 1-form on Imm(S1,R2). Let
F : U! U be a smooth m-parametrization. Let s 2 V, δs 2 Rm. Denoting by r the
point F(s), we have

α(P � F)s(δs) =
Z 2π

0

1
k(P � F)(s)0(t)k2

≠
(P � F)(s)00(t)

����
@ (P � F)(s)0(t)

@ s
(δs)

∑
d t

=
Z 2π

0

1
kP(F(s))0(t)k2

≠
P(F(s))00(t)

����
@ P(F(s))0(t)

@ s
(δs)

∑
d t

=
Z 2π

0

1
kP(r)0(t)k2

≠
P(r)00(t)

����
@ P(r)0(t)
@ r

Å
@ F(s)
@ s
(δs)

ã∑
d t

= α(P)r=F(s)

Å
@ F(s)
@ s
(δs)

ã

= F⇤(α(P))s(δs).

Thus, α(P � F) = F⇤(α(P)), α satisfies the compatibility condition and is then a
differential 1-form on Imm(S1,R2).
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Let us consider now the action of Diff+(S1) on Imm(S1,R2). This action is obviously
smooth from the very definition of the functional diffeology of Diff+(S1). Let us
denote φ�1 by ϕ such that

φ̄⇤(α)(P) = α(φ̄ � P) = α[r 7! P(r) �φ�1] = α[r 7! P(r) � ϕ].

Note that Diff+(S1) acts on speed and acceleration of any immersion x , by

(x � ϕ) 0(t) = x 0(ϕ(t)) · ϕ0(t),
(x � ϕ)00(t) = x 00(ϕ(t)) · ϕ0(t)2 + x 0(ϕ(t)) · ϕ00(t).

(~)

Let us denote by Q the plot φ̄ � P, that is, Q = [r 7! P(r) � ϕ], such that

α(φ̄ � P)r(δr) =
Z 2π

0

1
kQ(r)0(t)k2

≠
Q(r)00(t)

����
@Q(r)0(t)
@ r

(δr)
∑

d t

for all r 2 U and all δr 2 Rn. Now, from (~) we have

Q(r)0(t) = (P(r) � ϕ) 0(t) = P(r)0(ϕ(t)) · ϕ0(t),
Q(r)00(t) = (P(r) � ϕ)00(t) = P(r)00(ϕ(t)) · ϕ0(t)2 + P(r)0(ϕ(t)) · ϕ00(t).

Let us write α(φ̄ � P)r(δr) according to this decomposition,

α(φ̄ � P)r(δr) =
Z 2π

0
A d t +

Z 2π

0
B d t.

One has first,

A=
1

kP(r)0(ϕ(t)) · ϕ0(t)k2
≠

P(r)00(ϕ(t)) · ϕ0(t)2
����
@ P(r)0(ϕ(t)) · ϕ0(t)

@ r
(δr)

∑
,

that is,

A=
1

kP(r)0(ϕ(t))k2
≠

P(r)00(ϕ(t))
����
@ P(r)0(ϕ(t))

@ r
(δr)

∑
ϕ0(t).

Since φ, and thus ϕ, is a positive diffeomorphism, after the change of variable
t 7! ϕ(t) under the integral, we get already

Z 2π

0
A d t = α(P)r(δr).

Next,

B=
1

kP(r)0(ϕ(t)) · ϕ0(t)k2
≠

P(r)0(ϕ(t)) · ϕ00(t)
����
@ P(r)0(ϕ(t)) · ϕ0(t)

@ r
(δr)

∑
,

then,
Z 2π

0
B d t =

Z 2π

0

1
kP(r)0(ϕ(t))k2

≠
P(r)0(ϕ(t))

����
@ P(r)0(ϕ(t))

@ r
(δr)

∑ ϕ00(t)
ϕ0(t) d t.
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Let us then denote for short,

x = P(r), x 0 = P(r)0, and δx 0 =
ï

t 7!
@ P0(r)(t)
@ r

(δr)
ò
.

Using that, for any variation δ, we have the identities

δkvk= 1
kvk
hv | δvi and δ logkvk=

1
kvk

δkvk= 1
kvk2
hv | δvi,

we get, with a change of variable s = φ�1(t) in the middle,
Z 2π

0
B d t =

Z 2π

0

1
kx 0(ϕ(t))k2 hx

0(ϕ(t)) | δx 0(ϕ(t))i ϕ00(t)
ϕ0(t) d t

=
Z 2π

0
δ logkx 0(ϕ(t))k d log(ϕ0(t))

= δ
Z 2π

0
logkx 0(ϕ(t))k d log(ϕ0(t))

= δ
Z 2π

0
logkx 0(φ�1(t))k d log((φ�1)0(t))

= δ
Z 2π

0
logkx 0(s)k d log[(φ�1)0(φ(s))]

= � δ
Z 2π

0
logkx 0(s)k d log(φ0(s))

= �
@

@ r

ßZ 2π

0
logkP(r)0(s)k d log(φ0(s))

™
(δr)

=
Z 2π

0
δ logkx 0(ϕ(t))k d log(ϕ0(t))

= �
@

@ r

ß
F(φ)(P(r))

™
(δr)

= � d[F(φ)](P)r(δr).

Coming back to α(φ̄ � P)r(δr), we get finally

α(φ̄ � P)r(δr) = α(P)r(δr)� d[F(φ)](P)r(δr),

that is,
φ̄⇤(α) = α� d[F(φ)].

Hence, the exterior derivative ω= dα is invariant by the action of Diff+(S1), and
since the difference φ̄⇤(α)�α is exact, this action is Hamiltonian.

The 2-points moment map. Now, let us compute the 2-points moment map ψ of the
action of Diff+(S1) on (Imm(S1,R2),ω). Let p be a path connecting two immersions
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x0 and x1. Thus, Ψ(p) = p̂⇤(Kω) = p̂⇤(K dα) = p̂⇤(1̂⇤(α) � 0̂⇤(α) � d(Kα)) =
x̂⇤1(α)� x̂⇤0(α)� d(Kα � p̂). But, for all φ 2 Diff+(S1),

Kα � p̂(φ) =
Z

φ̄(p)
α=

Z

p
φ̄⇤(α)

=
Z

p
α�

Z

p
dF(φ) =

Z

p
α� F(φ)(x1) + F(φ)(x0).

We get from there

Ψ(p) = ψ(x0, x1)

= { x̂⇤1(α) + d[φ 7! F(φ)(x1)]}� { x̂⇤0(α) + d[φ 7! F(φ)(x0)]}.

But note that x̂⇤(α) + d[φ 7! F(φ)(x)] is not a momentum of Diff+(S1).

The 1-point moment maps. Let us compute the moment map ψ(x0, x). Let

m= { x̂⇤(α) + d[φ 7! F(φ)(x)]}(r 7! φ)r(δr).

Let us denote for short

A = x̂⇤(α)(r 7! φ)r(δr),

B = d[φ 7! F(φ)(x)](r 7! φ)r(δr) =
@ F(φ)(x)
@ r

δr.

We shall use the notation m0, A0 and B0 for the immersion x0, thus

ψ(x0, x)(r 7! φ)r(δr) = m�m0 = A+ B�A0 � B0.

But x̂⇤(α)(r 7! φ) = α( x̂ � [r 7! φ]) = α(r 7! x �φ�1), then let ϕ = φ�1, we get

A=
Z 2π

0

1
k(x � ϕ)0(t)k2

≠
(x � ϕ)00(t)

����
@ (x � ϕ)0(t)

@ r
(δr)

∑
.

Let us now introduce

u= ϕ(t), u0 = ϕ0(t), and u00 = ϕ00(t).
Then, the decomposition given by (~) writes

(x � ϕ)0(t) = x 0(u) · u0 and (x � ϕ)00(t) = x 00(u) · u02 + x 0(u) · u00.

Next, let us use the prefix δ for the various variations associated with δr, that is,
δ?= D(r 7! ?)(r)(δr). Then,

@ (x � ϕ)0(t)
@ r

(δr) = δ[x 0(u) · u0] = x 00(u) · δu · u0 + x 0(u) · δu0.

Thus,

A=
Z 2π

0

1
kx 0(u)k2u02

hx 00(u)u02 + x 0(u)u00 | x 00(u)u0δu+ x 0(u)δu0i d t
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=
Z 2π

0

kx 00(u)k2

kx 0(u)k2
δu u0 d t+

Z 2π

0

hx 0(u), x 00(u)i
kx 0(u)k2

ï
δu0 +

u00

u0
δu

ò
d t

+
Z 2π

0

u00

u0
δu0 d t .

Now,

B=
@ F(φ)(x)
@ r

δr = �
@ F̄(ϕ)(x)
@ r

δr = �δ[F̄(ϕ)(x)],
with

F̄(ϕ)(x) =
Z 2π

0
logkx 0(ϕ(t))k d logϕ0(t) =

Z 2π

0
logkx 0(u)k d log(u0).

Then, after the variation with respect to δr and an integration by parts, we get

B= �
Z 2π

0

hx 0(u), x 00(u)i
kx 0(u)k2

δu
u00

u0
d t�

Z 2π

0
logkx 0(u)k δd log(u0)

= �
Z 2π

0

hx 0(u), x 00(u)i
kx 0(u)k2

δu
u00

u0
d t+

Z 2π

0

hx 0(u), x 00(u)i
kx 0(u)k2

u0 δ log(u0) d t

= �
Z 2π

0

hx 0(u), x 00(u)i
kx 0(u)k2

δu
u00

u0
d t+

Z 2π

0

hx 0(u), x 00(u)i
kx 0(u)k2

δu0 d t .

Therefore, grouping the terms and integrating again by parts, we get

A+ B=
Z 2π

0

kx 00(u)k2

kx 0(u)k2
δu du+2

Z 2π

0

hx 0(u), x 00(u)i
kx 0(u)k2

δu0 d t+
Z 2π

0

u00

u0
δu0 d t

=
Z 2π

0

kx 00(u)k2

kx 0(u)k2
δu du�2

Z 2π

0

d2

du2
logkx 0(u)kδu du+

Z 2π

0

u00

u0
δu0 d t

=
Z 2π

0

⇢
kx 00(u)k2

kx 0(u)k2
�

d2

du2
logkx 0(u)k2

�
δu du+

Z 2π

0

u00

u0
δu0 d t .

Now, since kx 00(t)k= 1 we get the value of the 2-points moment map,

ψ(x0, x)(r 7! φ)r(δr) =
Z 2π

0

⇢
kx 00(u)k2

kx 0(u)k2
�

d2

du2
logkx 0(u)k2

�
δu du

�
Z 2π

0
δu du .

The second term of the right hand side of this equality is a constant momentum of
Diff+(S1), so it can be forgottent. Thus, every moment map, up to a constant, is
equal to this moment µ.

Souriau cocycle. The Souriau cocycle associated with the immersion x0 is defined by
θ(g) = ψ(x0, ḡ(x0)); see (art. 9.10). We replace then, in the expression of ψ above,
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x by ḡ(x0) = x0 � g�1, that is, x = x0 � γ, and θ(g)(r 7! φ)r(δr) = ψ(x0, x0 � γ).
Let us note next that

(x0 � γ)0(u) = x 00(γ(u))γ 0(u) and (x0 � γ)00(u) = x 000 (γ(u))γ 0(u)2 + x 00(u)γ 00(u),
and let us recall that kx 00k= kx

00
0 k= 1, and that hx 00 | x

00
0 i= 0. We get,

kx 0(u)k2 = γ 0(u)2 and kx 00(u)k2 = γ 0(u)4 + γ 00(u)2,

which gives

kx 00(u)k2

kx 0(u)k2
= γ 0(u)2 + γ 00(u)2

γ 0(u)2 ,

d2

du2
logkx 0(u)k2 = 2

γ 000(u)γ 0(u)� γ 00(u)2
γ 00(u)2 .

Thus,

θ(g)(r 7! φ)r(δr) =
Z 2π

0

3γ 00(u)2 � 2γ 000(u)γ 0(u)
γ 0(u)2 δu du

+
Z 2π

0
γ 0(u)2 δu du�

Z 2π

0
δu du .

But, after a change of variable u 7! v = γ(u), we get
Z 2π

0
γ 0(u)2 δu du=

Z 2π

0
(δuγ 0(u)) γ 0(u) du=

Z 2π

0
δv dv.

Then, the two last terms cancel each other, and we get the value claimed in the
proposition for the Souriau cocycle θ.

Bott’s cocycle. The real function F(g � h) � F(g) � h̄ � F(h) is constant since X is
connected, and its differential is equal to ( ḡ � h̄)⇤(α)� h̄⇤( ḡ⇤(α)), that is, 0. Now,
to make β(g, g 0) = F(g) � ḡ 0 + F(g 0)� β(g, g 0)� F(g � g 0) explicit, it is sufficient
to compute the right hand member on the standard immersion x0, for which the
speed norm is equal to 1, and thus logkx 0(t)k= 0 for all t. We get then

β(g, h) = F(g)(x0 � h�1)� F(h)(x0)� F(g � h)(x0)

= +
Z 2π

0
logk(x0 � h�1)0(t)k d log g 0(t)

= +
Z 2π

0
log(h�1)0(t) d log g 0(t)

= �
Z 2π

0
log h0(h�1(t)) d log g 0(t)

= �
Z 2π

0
log h0(s) d log g 0(h(s))
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= +
Z 2π

0
log(g � h)0(t) d log h0(t).

And this is the standard expression of Bott’s cocycle. É

Exercise

. EXERCISE 147 (The moment of imprimitivity). Let X be a diffeological space. Let
Ω1(X) be the vector space of 1-forms of X, equipped with the functional diffeology
(art. 6.45). Let Taut be the tautological 1-form defined on X⇥Ω1(X) and let Liouv
be the Liouville 1-form defined on the cotangent bundle T⇤X; see (art. 6.48) and
(art. 6.49). Let us consider then the additive diffeological group of smooth functions
C1(X,R), acting smoothly on X⇥Ω1(X) by right action,

f̄ : (x ,α) 7! (x ,α� d f )

for all f 2 C1(X,R) and (x ,α) 2 X⇥Ω1(X). This action has a natural projection
on the cotangent T⇤X, and this action will be denoted the same way,

f̄ : (x , a) 7! (x , a� d f (x))

for all f 2 C1(X,R) and (x , a) 2 T⇤X.

1) Show that, for all f 2 C1(X, R), the variance of the tautological form and the
Liouville form are given by

f̄ ⇤(Taut) = Taut� pr⇤1(d f ) and f̄ ⇤(Liouv) = Liouv�π⇤(d f ).

Observe that the exterior derivatives dTaut and ω = dLiouv are invariant by the
action of C1(X,R).

2) Let p be a path in T⇤X, connecting (x0, a0) = p(0) to (x1, a1) = p(1). Show that
the paths moment map Ψ and the 2-points moment map ψ, with respect to the
2-form ω= dLiouv, are given by

Ψ(p) = ψ((x0, a0), (x1, a1)) = d[ f 7! f (x1)]� d[ f 7! f (x0)].

3) Check that, for all x 2 X, the real function [ f 7! f (x)] is smooth. We call it the
Dirac function of the point x , and we denote it by δx .

δx = [ f 7! f (x)] 2 C1(C1(X,R),R).

Show that the differential dδx = d[ f 7! f (x)] is an invariant 1-form14 of the
additive group C1(X,R). Show that every moment map of the action of C1(X,R)
on T⇤X is, up to a constant, equal to the invariant moment map

µ : (x , a) 7! dδx = d[ f 7! f (x)].

14This differential has nothing to do with the derivative of the Dirac distributions in the sense of
De Rham’s currents.
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Note that the moment µ is constant on the fibers T⇤x X = π�1(x), and if the real
smooth functions separate15 the points of X, then the image of the moment map µ
is the space X, identified with the space of Dirac’s functions.

4) Show that the action of C1(X,R) on (T⇤X,ω) is Hamiltonian and exact, that is,
Γ = {0} and σ = 0.

This example, in the case of differential manifolds, appears informally in Ziegler’s
construction of a symplectic analogue for systems of imprimitivity in representation
theory [Zie96]. It is why the moment map µ may be called the moment of imprimi-
tivity. The diffeological framework then gives to it a full formal status and even
extends it.

Discussion on Symplectic Diffeology

Symplectic diffeology is more a program than a complete theory. The last decades
of theoretical research in mechanics — in completely integrable systems, quantum
mechanics, or quantum field theory etc. — have shown a special interest in struc-
tures which seem to be symplectic even if they do not live on manifolds but on
spaces, generally infinite dimensional, where the formal constructions of symplectic
geometry do not apply as is. Building a formal framework for these symplectic-like
structures is not just a desire of formalism, but a need to embed these heuristic
constructions in a well delimited and workable mathematical construction. There
are different ways to approach these problems, such as functional analysis, infinite
dimensional manifolds à la Banach, or maybe others. A diffeological approach
is one of them, but has the virtue of involving a very light apparatus of mathe-
matical tools. Axiomatics, reduced to only three axioms, cannot be simpler and
the great stability of the category, under set theoretic operations, is a gift for this
kind of problem, where infinite dimensions and what is admitted to be considered
as singularities are a burden for classical geometry. On the other hand, the light
structure of diffeology does not seem to be a weakness. The construction of the
moment maps, associated with a closed 2-form on any diffeological space, shows
the whole — and deals correctly with the — complexity of the various situations
without exaggerating technicalities. This is clearly shown in the few examples given
in the previous sections of this chapter. So, even if it seems clear that diffeology
is adequate for such a generalization of symplectic (or presymplectic) geometry,
we still need a good definition, or at least a serious discussion, about what is a
symplectic diffeological space? Or what does it mean to be symplectic in diffeology?

A relatively good answer has been given at least in the case of homogeneous
spaces, that is, in the case of a closed 2-form ω defined on a space X homogeneous

15which means, f (x) = f (x 0) for all smooth real functions f if and only if x = x 0.
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for its group of automorphisms Diff(X,ω); see (art. 9.18) and (art. 9.19). In
this case the situation is clear: a universal moment map distinguishes between
being presymplectic or symplectic. The homogeneous space (X,ω) is symplectic if a
universal moment map µω is a covering onto its image, or, which is equivalent, if the
preimages of its values are diffeologically discrete. Otherwise it is presymplectic,
and the characteristics of µω can be regarded as the characteristics of the 2-form
ω, by analogy with what happens in the special case of homogeneous manifolds
(art. 9.26). The symplectic homogeneous case has been illustrated, in particular, by
the Hilbert spaceH or the infinite dimensional projective spaceP (art. 9.33), even
by the singular irrational tori (art. 9.30). The fact that these spaces are symplectic
is now a well defined property, according to the definition given in (art. 9.19).

Why is the homogeneous case so important? Because for a closed 2-form ω defined
on a manifold M, being symplectic implies to be homogeneous under Diff(M,ω),
with moreover the universal moment maps µω injective (art. 9.23). The homogeneity
of M under the action of Diff(M,ω) is a strong consequence of two things: firstly
ω is invertible, has no kernel; and secondly, every symplectic manifold is locally
flat, that is, looks locally like some (R2n,ωst). There exists only one local model of
symplectic manifold in each dimension, this is the famous Darboux theorem.

In diffeology, we have not a unique model to propose for all the covered cases:
from singular tori to infinite projective space. But we can replace advantageously
the local model of symplectic manifolds by the strong requirement of homogeneity.
We remark that we could replace the global homogeneity by a local homogeneity,
but this would lead to unwanted subtleties, for now. Our question is then: Do we
want to preserve the fundamental property of homogeneity for symplectic diffeological
spaces? The answer to this question is not that obvious.

If we want to preserve the property of homogeneity, the problem is just solved by
(art. 9.19). But the example of the cone orbifold Cm (art. 9.32) is a real cultural
or sociological obstacle. Many mathematicians want to consider the cone orbifold,
equipped with the 2-form described in (art. 9.32), as symplectic, because it is the
quotient of the symplectic space (R2,ωst) by a finite group preserving the standard
symplectic form ωst. Unfortunately the cone orbifold is not homogeneous, the
origin is fixed by every diffeomorphism. However, even according to diffeology,
regarding Cm as a symplectic diffeological space makes sense: the cone orbifold
is generated by symplectic plots — in this case the only plot πm : R2 ! Cm. Let
us remark that the corner orbifold (art. 9.31) does not satisfy this property, and
cannot be symplectic even according to this definition. Yael Karshon suggested,
in private discussions, to define symplectic diffeological spaces as diffeological
spaces generated by symplectic plots,16 that is, plots P such that ω(P) is symplectic.

16I would be tempted to call these spaces, quasi symplectic.
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FIGURE 9.3. Distribution of examples.

Although this makes sense, it is a way we have not explored yet. In particular, the
relationship between such a space and the moment maps needs to be clarified, as
well as the relationship with the action of the group of automorphisms and the
nature of its orbits. The idea behind this is to consider symplectic reductions as
symplectic spaces independently of the regularity of the distribution of the moment
map strata.

Another approach should consist of only requiring the universal moment maps to be
injective or at least to have discrete preimages, since the preimages of a universal
moment map seem to realize the characteristics of ω. Let us note that the cone
orbifold satisfies this property, but not the corner orbifold, which is satisfactory.
Unfortunately, the space R2 equipped with the 2-form ω= (x2 + y2)d x ^ d y also
satisfies this property, and it is clearly not symplectic. It seems that we have to
either abandon this approach, or to go deeper into it.

So, what remains? If we want to include the cone orbifold in the category of
symplectic diffeological spaces we have to give up homogeneity by the group of
automorphisms. Or, if we do not want to give up homogeneity, we abandon the cone
orbifold and certainly many other examples of diffeological spaces, generated by
symplectic plots. For now, the set of examples and theorems in symplectic diffeology
is not large enough to make a reasonable choice. It is why there is no general
definition of symplectic diffeological spaces here. But, we can just deal with these
spaces, equipped with closed 2-forms, by trying to get the maximum of information
as we did in the examples above, sumarized in the Figure 9.3: the nature of the
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characteristics of the universal moment map, the injectivity or not of the universal
moment map, the transitivity of the group of automorphisms or the nature of its
orbits, the computation of the universal holonomy, and the Souriau class, etc. We
have all the tools needed to treat the examples given by the literature or by the
physicists, and maybe to define what the word symplectic means in diffeology is
not that important after all. . .

A few more words. Why do we need the 2-form to be nondegenerate? From a
physicist’s point of view, we do not need that, actually it is the opposite. A pair
(X,ω), with ω a closed 2-form, represents what we could call a dynamical structure.
The characteristics of ω, that is, the connected components of the preimages of
the universal moment map, describe the dynamics of the system, together with
the partition into orbits by the group of automorphisms. This is what physicists
are interested in: they want equations describing the evolution of their systems.
The fact that, in classical mechanics, the space of characteristics is symplectic is
fortuitous, a consequence of the presymplectic nature of the dynamical structures
involved.17 Then, the group of automorphisms of the space of characteristics is
transitive and, by equivariance, the image of the moment map is one coadjoint
orbit. In the general case of infinite dimension spaces, orbifolds, singular reductions
etc., there is no reason for the automorphisms to be transitive, and the image of
the universal moment map is just some union of coadjoint orbits, and then, maybe,
not symplectic. The picture is clear, and that is what we have to deal with. Another
critical question is of the symplectic reduction of a subspace W ⇢ X: the reduced
space may be simply defined as the space of characteristics of the dynamical 2-form
ω restricted to W, or its regularization, that is, the image of the universal moment
map of the restriction. It is actually not different from the general case where
the subspace coincides with the whole space. The task is then to describe this
image and what, from the 2-form, passes to the quotient or to the image? For the
structure of the space of characteristics we get two diffeologies: the first one is
the natural quotient diffeology on the space of characteristics, the second one is
the diffeology induced on the image of the universal moment map by the ambient
space of momenta. They may coincide or not, but they both have their role to play.

17However, as Lagrange showed, the fact that the motion space is symplectic is important for the
perturbations calculus in mechanics, see [Igl98].


