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Abstract

The notion of dimension for diffeologies, introduced here, generalizes the
dimension of manifolds. More appropriate to diffeology is the dimension
map. We give some elementary properties of this dimension under
several diffeological constructions. We illustrate these definitions with
the example of the quotient spaces Δn = Rn/O(n) for which dim(Δn) =
n, due to the singularity at the origin. Then, we deduce that the
dimension of the half-line Δ∞ = [0,∞[ ⊂ R, equipped with the subset
diffeology, is infinite at the origin. And we show how this diffeological
invariant can be used, in particular, to completely avoid topological
considerations in some diffeological questions.

Introduction

The introduction and the use of dimension in diffeology (art. 5.3) gives us a
quick and easy answer to the question: “Are the diffeological spaces Δn =
Rn/O(n) and Δm = Rm/O(m) diffeomorphic?”. The answer is “No” (n �=
m) since dim(Δn) = n (art. 7.7), and since the dimension is a diffeological
invariant. This method simplifies the partial result, obtained in a much more
complicated way in [Igl85], that Δ1 and Δ2 are not diffeomorphic. Another
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example: computing the dimension of the half-line Δ∞ = [0,∞[ ⊂ R we
obtain: dim(Δ∞) = ∞, due to the “singularity” at the origin (art. 8.7). Hence,
Δm is not diffeomorphic to the half-line Δ∞ for any integer m. Dimension
appears to be the simplest diffeological invariant introduced until now, and a
useful one.

Moreover dimension can in some situations avoids topological considerations
for solving diffeological questions. For example, if we want to show that
any diffeomorphism of the hlaf line Δ∞ preserves the origin we can first
note that diffeomorphisms are homeomorphisms and then use the fact that
any homeomorphism preserves the origin. But, we can just mention, using
the dimension map (art. 6.4), that the dimension of Δ∞ is ∞ at the origin
and to 1 elsewhere, and since the dimension map is a diffeological invariant
(art. 6.7) conclude that the origin is preserved by any diffeomorphism. This
use of dimension avoid using topology where it is not needed and make still
more independent diffeology technics from topology, if it was possible. This
consideration is used to characterize the diffeomorphisms of Δ∞ (art. 8.8). For
these reasons it seems that the notion of dimension in diffeology deserved to
be emphasized, it is what this paper is intended to do.

For the reader who still doesn’t know: diffeology is a theory which generalizes
ordinary differential geometry by including, in its scope, a huge catalog of
objects going from quotient spaces, regarded by many people as “bad spaces”,
to infinite dimensional spaces, like spaces of smooth maps. Between these two
extremes, we find manifolds, orbifolds and all the usual differential objects.

The category {Diffeology} is very stable by quotients, subsets, products, sums.
Many examples and constructions can be found now to illustrate this theory
in the web-based document [PIZ05].

The notion of dimension of a diffeological space is rather simpe and natural,
it involves the notion of generating family. A generating family of a diffeology
D is a set of parametrizations F such that D is the finest diffeology containing
F. More precisely, D is the intersection of all the diffeologies containing F.
Then, we define the dimension of a generating family as the supremum of the
dimensions of the domains of its elements. And the dimension of a diffeological
space is defined as the infimum of the dimensions of its generating families.
This dimension is an integer or is infinite.
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Because diffeological spaces are not always homogeneous nor locally transitive,
they may have “singularities”, this global dimension needs to be refined into
a dimension map. That is, a map from the diffeological space to the integers
extended by the infinite, which associates to each point the dimension of the
space at this point. We show that the dimension of a diffeological space is
the supremum of this dimension map. Naturally, the dimension map is an
invariant of the category {Diffeology}.
This diffeological dimension coincides with the usual definition when the
diffeology space is a manifold. That is, when the diffeology is generated by
local diffeomorphisms with Rn, for some integer n.

Thanks I am pleased to thank Yael Karshon for a pertinent remark about the
use of the germs of a diffeology :) And also Henrique Macias for having incited
me to publish this paper.

1 Vocabulary and notations

Let us introduce first some vocabulary and let us fix some basics definitions
and notations, related to ordinary differential geometry.

1.1 Domains and parametrizations We call n-numerical domain any
subset of the vector space Rn, open for the standard topology, that is any
union of open balls. We denote by Domains(Rn) the set of all n-numerical
domains,

Domains(Rn) = {U ⊂ Rn | U is open }.
We denote by Domains the set of all the n-numerical domains when n runs
over the integers,

U ∈ Domains ⇔ ∃n ∈ N, U ∈ Domains(Rn).

The elements of Domains are called numerical domains, or simply domains.

Let X be any set, we call n-parametrization of X any map P : U −→ X where
U is a n-numerical domain. We denote by Paramn(X) the set of all the n-
parametrizations of X.

Paramn(X) = {P : U −→ X | U ∈ Domains(Rn)}.
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We denote by Param(X) the set of all the n-parametrizations of X, when n
runs over the integers,

Param(X) =
⋃

n∈N

Paramn(X) = {P : U −→ X | U ∈ Domains}.

We denote by dom(P) the definition set of a parametrization P, we call it the
domain of P. That is, if P ∈ Param(X) and P : U −→ X, then dom(P) = U.

Let X be any set, and x be some point of X. A superset of x is any subset
V of X containing x. If X is a topological space, an open superset of x is any
superset of x which is open for the given topology of X. In particular, if r is
some point of a numerical space Rn, an open superset of r is any n-domain V
containing the point r.

1.2 Smooth maps and tangent linear maps Let U be any n-domain
and V be any m-domain. Let f : U −→ V be a smooth map, that is an
infinitely differentiable map, f ∈ C∞(U, V).

The tangent linear map, or differential, of f will be denoted by D(f), it is a
smooth map from U to the space of linear maps L(Rn,Rm). Its value at the
point x ∈ U will be denoted by D(f)(x) or by D(f)x, it is the matrix made up
with the partial derivatives:

D(f)(x) =

⎛
⎜⎜⎜⎜⎜⎝

∂y1

∂x1

· · · ∂y1

∂xn
...

. . .
...

∂ym

∂x1

· · · ∂ym

∂xn

⎞
⎟⎟⎟⎟⎟⎠

where f : x =

⎛
⎜⎝

x1
...

xn

⎞
⎟⎠ 	→ y =

⎛
⎜⎝

y1
...

ym

⎞
⎟⎠ .

Every partial derivative is a smooth map defined on U with values in R.

2 Diffeologies and diffeological spaces

We remind the basic definition of a diffeology, and the very basic example of the
standard diffeology of domains. More about diffeology or Chen’s differentiable
space can be found in [Che77], [Sou81], [Sou84], [Don84], [DI85], [Igl85], [Igl86],
[Igl87], [IL90], [PIZ05], [PIZ05a], [IKZ05].
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2.1 Diffeology and diffeological spaces Let X be any set. A diffeo-
logy of X is a subset D of parametrizations of X whose elements, called plots,
satisfy the following axioms.

D1. Covering Any constant parametrization is a plot : for any point x of
X and for any integer n, the constant map x : Rn −→ X, defined by
x(r) = x for all r in Rn, is a plot.

D2. Locality For any parametrization P : U −→ X, if P is locally a plot at
each point of U then P is a plot. This means that, if for any r in U there
exists a superset V of r such that the restriction P � V is a plot, then P
is a plot.

D3. Smooth compatibility The composite of a plot with any smooth para-
metrization of its source is a plot: let P : U −→ X be a plot and let F
be a parametrization belonging to C∞(V, U), where V is any numerical
domain, then P ◦ F is a plot.

A set equipped with a diffeology is called a diffeological space. Note that we
do not assume any structure on X, X is simply an amorphous set. To refer to
any element of D we shall say equivalently: a “plot for the diffeology D”, or a
“plot of the diffeological space X”.

♣ The set of all the plots for the diffeology D, defined on a numerical
domain U, will be denoted by D(U). A plot defined on an n-domain
U ⊂ Rn is called a n-plot. The set of all the n-plots will be denoted by
Dn.

The first axiom implies that each point of X is covered by a plot. The second
axiom clearly means that to be a plot is a local condition. Note that “P � V
is a plot” implies that V is a domain (art. 1.1). And, the third axiom defines
the class of differentiability of the diffeology.

Formally, a diffeological space is a pair of a set X and a diffeology D of X.
But most of the time the diffeological space will be denoted by a single capital
letter or a group of letters. Note however that a diffeology contains always its
underlying set as the set of its 0-plots, that is X � D0 = D(R0) = D({0}).
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2.2 Standard diffeology of domains The set C∞
O of all smooth para-

metrizations of a numerical domain O is a diffeology. That is, for any domain
U, C∞

O(U) = C∞(U, O). We shall call this diffeology the standard diffeology, or
the smooth diffeology , of the numerical domain O.

3 Differentiable maps

Diffeological spaces are the objects of a category whose morphisms are
differentiable maps, and isomorphisms are diffeomorphisms.

3.1 Differentiable maps and diffeomorphisms Let X and Y be two
diffeological spaces and F : X −→ Y be a map. The map F is said to be
differentiable if for each plot P of X, F◦P is a plot of Y. The set of differentiable
maps from X to Y is denoted C∞(X, Y). A bijective map F : X −→ Y is said
to be a diffeomorphism if both F and F−1 are differentiable. The set of all
diffeomorphisms of X is a group denoted by Diff(X).

3.2 The Diffeology Category The composite of two differentiable
maps is a differentiable map. Diffeological spaces, together with differentiable
maps, define a category, denoted by {Diffeology}. The isomorphisms of the
category are diffeomorphisms.

3.3 Plots are the smooth parametrizations The set of differentiable
maps from a numerical domain U to a diffeological space X is just the set of
plots of X defined on U. This is a direct consequence of the axiom D3. Hence,
C∞(U, X) = D(U) (art. 2.1, ♣). If we add that, for any numerical domain
X = O, D(U) is the set of smooth parametrizations C∞(U, O) (art. 2.2), that
justifies a posteriori the use of the symbol C∞ to denote the differentiable maps
between diffeological spaces. For the same reason we may use indifferently the
word smooth or the word differentiable.

3.4 Comparing diffeologies A great number of constructions in diffeo-
logy use the following relation on diffeologies. A diffeology D of a set X is said
to be finer than another D ′ if D is included in D′. Fineness is a partial order
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defined on the set of diffeologies of any set X. If X denotes a set equipped with
a diffeology D and X′ the same set equipped with the diffeology D′, we denote
X 
 X′ to mean that D is finer than D′. We say indifferently that D is finer
than D ′ or D ′ coarser than D. Note that coarser means more plots and finer
means fewer plots.

3.5 Discrete and coarse diffeology There are a priori two universal
diffeologies defined on any set X.

♣ The finest diffeology, finer than any other diffeology. This diffeology is
called discrete diffeology. The plots of the discrete diffeology are the
locally constant parametrizations.

♠ The coarsest diffeology, containing any other diffeology. This diffeology
is called the coarse diffeology. The plots of the coarse diffeology are all
the parametrizations of X, that is the whole set Param(X).

In these two cases, the three axioms of diffeology, covering, locality and smooth
compatibility, are obviously satisfied. Therefore, any diffeology is somewhere
between the discrete and the coarse diffeologies.

3.6 Intersecting diffeologies Let X be a set and F be any family of
diffeologies of X. The intersection

inf(F) =
⋂

D∈F

D

is a diffeology. It is the coarsest diffeology contained in every element of F,
the finest being the discrete diffeology. This proposition is used to prove that
every family of diffeology has a supremum and an infimum. In other words,
diffeologies form a lattice.

4 Generating families

Generating families are a main tool for defining diffeologies, starting with any
set of parametrizations. They are defined by the following proposition.
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4.1 Generating families Let X be a set, let F be any subset of parame-
trizations of X. There exists a finest diffeology containing F. This diffeology
will be called the diffeology generated by F and denoted 〈F 〉. This diffeology
is the infimum (art. 3.6) of all diffeologies containing F, that is the intersection
of all the diffeologies containing F. Given a diffeological space X, a family F

generating the diffeology of X is called a generating family for X. The plots of
the diffeology generated by F are given by the following characterization

♣ A parametrization P : U −→ X is a plot of the diffeology generated by
F if and only if for any point r of U there exists a superset V ⊂ U of r
such that either P � V is a constant parametrization, or there exists a
parametrization Q : W −→ X element of F and a smooth parametrization
F from V to W such that P � V = Q ◦ F.

In the second case, we say that the plot P lifts locally along F, or that Q is a
local lifting of P along F (fig. 1). Note that the process of generating family is
a projector, that is for any diffeology D we have 〈D〉 = D.

4.2 Generated by the empty set As a remark, note that for any set X
the empty family F = ∅ ⊂ Param(X) generates the discrete diffeology.

5 Dimension of a diffeology

We define, in this paragraph, the global dimension of a diffeology or a
diffeological space. This dimension is a diffeological invariant. Further we
will see a finer invariant, the dimension map.

5.1 Dimension of a parametrization Let P be any n-parametrization
of some set X, for some integer n. We say that n is the dimension of P, and
we denote it by dim(P). That is,

For all P ∈ Param(X), dim(P) = n ⇔ P ∈ Paramn(X).
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Figure 1: Local lifting of P along F.

5.2 Dimension of a family of parametrizations Let X be a set and
let F be any family of parametrizations of X. We define the dimension of F as
the supremum of the dimensions of its elements (art. 1.1),

dim(F) = sup{dim(F) | F ∈ F}.

Note that dim(F) can be infinite if for any n ∈ N there exists an element F of
F such that dim(F) = n. In this case we denote dim(F) = ∞.

5.3 Dimension of a diffeology Let D be a diffeology. The dimension of
D is defined as the infimum of the dimensions of its generating families:

dim(D) = inf{dim(F) | 〈F 〉 = D}.

Let X be a diffeological space and D be its diffeology, we define the dimension
of X as the dimension of D:

dim(X) = dim(D) ∈ N ∪ {∞}.

5.4 Dimensions of numerical domains As we can expect, the diffeolo-
gical dimension of a numerical domain U ⊂ Rn, equipped with the standard
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diffeology (art. 2.2), is equal to n. That is, for all U ∈ Domains(Rn),
dim(U) = n.

Proof – Let us denote by U the domain U equipped with the standard
diffeology. Let 1U be the identity map of U. The singleton {1U} is a generating
family of U, therefore (art. 5.3) dim(U) ≤ dim {1U}. But dim {1U} = n,
hence dim(U) ≤ n. Now let us assume that dim(U) < n. So, there exists
a generating family F for U such that dim(F) < n. Since the identity map
1U is a plot of U, it lifts locally at every point along some element of F.
Thus, for any r ∈ U there exists a superset V of r, a parametrization F : W
−→ U, element of F (that is F ∈ C∞(W, U)) and a smooth map Q : V
−→ W such that 1U � V = 1V = F ◦ Q. But dim(F) < n implies that
dim(F) = dim(W) < n. Now, the rank of the linear tangent map D(F ◦ Q)
(art. 1.2) is less or equal to dim(W) < n, but D(F ◦ Q) = D(1V) = 1Rn , thus
rank(D(F ◦ Q)) = rank(1Rn) = n. Therefore, there is no generating family F

of U with dim(F) < n, and dim(U) = n. �

5.5 Dimension zero spaces are discrete A diffeological space has di-
mension zero if and only if it is discrete.

Proof – Let X be a set equipped with the discrete diffeology. Any plot P : U
−→ X, is locally constant. So, for any r ∈ U, P lifts locally, on some domain
containing r, along the 0-plot x = [0 	→ x], where x = P(r). Hence, the 0-plots
form a generating family and dim(X) = 0. Conversely, let X be a diffeological
space such that dim(X) = 0. So, the 0-plots generate the diffeology of X.
But, any plot lifting locally along a 0-plot is locally constant. Therefore, X is
discrete. �

5.6 The dimension is a diffeological invariant If two diffeological
spaces are diffeomorphic, then they have the same dimension.

Proof – Let X and X′ be two diffeological spaces. Let f : X −→ X′ be
a diffeomorphism. Let F be a generating family of X. The pushforward
F′ = f∗(F) made up with the plots f ◦ F, where F ∈ F, is clearly a generating
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family of X′. Conversely let F′ a generating family of X′, the pullback f ∗(F′) =
(f−1)∗(F

′) is a generating family of X. And these two operations are inverse
each from the other. It is then clear that dim(X) = dim(X′). �

5.7 Has the set {0, 1} dimension 1? Let’s consider the set {0, 1}. Let
π : R −→ {0, 1} be the parametrization defined by:

π(x) = 0 if x ∈ Q, and π(x) = 1 otherwise.

Let {0, 1}π be the set {0, 1} equipped with the diffeology generated by π
(art. 4.1). Since {π} is a generating family, the dimension of {0, 1}π is less
than or equal to 1 = dim({π}). But, since the plot π is not locally constant,
by density of the rational (or irrational) numbers in R, the space {0, 1}π is
not discrete. Hence, dim{0, 1}π �= 0 (art. 5.5), and finally dim{0, 1}π = 1. So,
a finite set may have a non zero dimension, this example illustrates well the
meaning of the dimension of a diffeological space. This can be compared with
the topological situation for which a space consisting in a finite number of
points can be equipped with the discrete or the coarse topology, for example.

5.8 Example: Dimension of tori Let Γ ⊂ R be any strict subgroup of
(R, +) and let TΓ be the quotient R/Γ, whose diffeology is generated by the
projection π : R −→ R/Γ. So

dim(TΓ) = 1.

This applies in particular to the circles R/aZ, with length a > 0, or to
irrational tori when Γ is generated by more than one generators, rationally
independent.

Proof – Since R is a numerical domain, π is a plot of the quotient, and
F = {π} is a generating family of R/Γ, and dim(F) = 1. Thus, as a
direct consequence of the definition (art. 5.3), dim(R/Γ) ≤ 1. Now, if
dim(R/Γ) = 0, then the diffeology of the quotient is generated by the
constant parametrizations (art. 5.5). Now, π is not locally constant, therefore
dim(R/Γ) = 1. �
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6 The dimension map of a diffeological space

Because diffeological spaces are not necessarily homogeneous, the global
dimension of a diffeological space (art. 5.3) is a too rough invariant. It
is necessary to refine this definition and to introduce the dimension of a
diffeological space at each of its points.

6.1 Pointed plots and germ of a diffeological space Let X be a
diffeological space, let x ∈ X. Let P : U −→ X be a plot. We say that P
is pointed at x if 0 ∈ U and P(0) = x. We will agree that the set of germs of
the pointed plots of X at x represents the germ of the diffeology at this point,
and we shall denote it by Dx.

6.2 Local generating families Let X be a diffeological space and let x
be any point of X. We shall call local generating family at x any family F of
plots of X such that:

1. Every element P of F is pointed at x, that is 0 ∈ dom(P) and P(0) = x.

2. For any plot P : U −→ X pointed at x, there exists a superset V of
0 ∈ U, a parametrization F : W −→ X belonging to F and a smooth
parametrization Q : V −→ W pointed at 0 ∈ W such that F ◦Q = P � V.

We shall say also that F generates the germ Dx of the diffeology D of X at the
point x (art. 6.1). And we denote, by analogy with (art. 4.1), Dx = 〈F〉.
Note that, for any x in X, the set of local generating families at x is not empty,
since it contains at the set of all the plots pointed at x, and this set contains
the constant parametrizations with value x (art. 2.1).

6.3 Union of local generating families Let X be a diffeological space.
Let us choose, for every x ∈ X, a local generating family Fx at x. The union
F of all these local generating families,

F =
⋃

x∈X

Fx,

is a generating family of the diffeology of X.
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Proof – Let P : U −→ X be a plot, let r ∈ U and x = P(r). Let Tr be the
translation Tr(r

′) = r′ + r. Let P′ = P ◦Tr defined on U′ = T−1
r (U). Since the

translations are smooth, the parametrization P′ is a plot of X. Moreover P′ is
pointed at x, P′(0) = P◦Tr(0) = P(r) = x. By definition of a local generating
family (art. 6.2), there exists an element F : W −→ X of Fx, a superset V′ of
0 ∈ U′ and a smooth parametrization Q′ : V′ −→ W, pointed at 0, such that
P′ � V′ = F ◦ Q′. Thus, P ◦ Tr � V′ = F ◦ Q′, that is P � V = F ◦ Q, where
V = Tr(V

′) and Q = Q′ ◦ T−1
r . Hence, P lifts locally, at every point of its

domain, along an element of F. Therefore, F is a generating family (art. 4.1)
of the diffeology of X. �

6.4 The dimension map Let X be a diffeological space and let x be a point
of X. By analogy with the global dimension of X (art. 5.3), we define the
dimension of X at the point x by:

dimx(X) = inf{dim(F) | 〈F〉 = Dx}.

The map x 	→ dimx(X), with values in N ∪ {∞}, will be called the dimension
map of the space X.

6.5 Global dimension and dimension map Let X be a diffeological
space. The global dimension of X is the supremum of the dimension map
of X:

dim(X) = sup
x∈X

{dimx(X)} .

Proof – Let D be the diffeology of X. Let us prove first that for every
x ∈ X, dimx(X) ≤ dim(X), which implies that supx∈X dimx(X) ≤ dim(X). For
that we shall prove that for any x ∈ X and any generating family F of D,
dimx(X) ≤ dim(F). Then, since dim(X) = inf{dim(F) | F ∈ D and 〈F〉 = D}
we shall get, dimx(X) ≤ dim(X). Now, let F be a generating family of D. For
any plot P : U −→ X pointed at x let us choose an element F of F such that there
exists a superset V of 0 ∈ U and a smooth parametrization Q : V −→ def(F)
such that F ◦ Q = P � V. Then, let r = Q(0) and Tr be the translation
Tr(r

′) = r′ + r. Let F′ = F ◦Tr, defined on T−1
r (def(F)). So F′(0) = x, and F′

is a plot of X, pointed at x, such that dim(F′) = dim(F). Let Q′ = T−1
r ◦ Q,
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so Q′ is smooth and P � V = F′ ◦ Q′. Thus, the set F′
x of all these plots

F′ associated with the plots pointed at x is a generating family of Dx, and
for each of them dim(F′) = dim(F) ≤ dim(F). Therefore dim(F′

x) ≤ dim(F).
But, dimx(X) ≤ dim(F′

x), hence dimx(X) ≤ dim(F). And we conclude that
dimx(X) ≤ dim(X), for any x ∈ X, and supx∈X dimx(X) ≤ dim(X).

Now, let us prove that dim(X) ≤ supx∈X dimx(X). Let us assume that
supx∈X dimx(X) is finite. Otherwise, according to the previous part we have
supx∈X dimx(X) ≤ dim(X), and then dim(X) is infinite and supx∈X dimx(X) =
dim(X). Now, for any x ∈ X, dimx(X) is finite. And since the sequence of
the dimensions of the generating families of Dx is lower bounded, there exists
for any x a generating family Fx such that dimx(X) = dim(Fx). For every
x in X let us choose one of them. Now, let us define Fm as the union of
all these chosen families. Thanks to (art. 6.3), Fm is a generating family
of D. Hence, dim(X) ≤ dim(Fm). But dim(Fm) = supF∈Fm

dim(F) =
supx∈X supF∈Fx

dim(F) = supx∈X dim(Fx) = supx∈X dimx(X). Therefore
dim(X) ≤ supx∈X dimx(X). And we can conclude, from the two parts above,
that dim(X) = supx∈X dimx(X). �

6.6 Local differentiable maps and diffeomorphisms Let X and X′

be two diffeological spaces. Let f be a map from a subset A of X, to X′. The
map f is said to be a local differentiable map if for any plot P of X, f ◦ P
is a plot of X′. That is, P−1(A) is a domain, and either P−1(A) is empty or
f ◦ P � P−1(A) is a plot of X′.

♣ The composite of two local differentiable maps is a local differentiable map.

The map f is said to be a local diffeomorphism if f is injective, locally
differentiable as well as its inverse f−1, defined on f(A).

Let x be a point of X and x′ be a point of X′. A local diffeomorphism from x
to x′ is a local diffeomorphism f defined on some superset A of x such that
f(x) = x′. We say that X, at the point x, is locally equivalent to X′ at the
point x′.

♠ For X = X′, the local diffeomorphisms split the space X into classes according
to the relation: x ∼ x′ if and only if there exists a local diffeomorphism f
mapping x to x′. These classes are called the orbits of the local diffeomorphisms
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of X.

Proof – Let us prove the assertion ♣. Let X, X′ and X′′ be three diffeological
spaces. Let f be a locally differentiable map defined on A, and f ′ be a locally
differentiable map defined on A′. Let f ′′ = f ′ ◦ f defined on A′′ = f−1(A′).
Assume A′′ not empty. Let show that f ′′ is locally differentiable. Let P : U
−→ X be a plot of X. The map f is a locally differentiable, so P−1(A) is a
domain and f ◦ P � P−1(A) is a plot of X′. Since f ′ is locally differentiable,
and f ◦P � P−1(A) is a plot of X′, so [f ◦P � P−1(A)]−1(A′) = (f ◦P)−1(A′) is
a domain and f ′◦ [f ◦P � P−1(A)] � [(f ◦P)−1(A′)] = f ′◦f ◦P � (f ◦P)−1(A′) is
a plot of X′′. But (f ◦ P)−1(A′) = P−1(f−1(A′)) = P−1(A′′), thus P−1(A′′) is a
domain. And f ′◦f ◦P � (f ◦P)−1(A′) = f ′′◦P � P−1(A′′), thus f ′′◦P � P−1(A′′)
is a plot of X′′. Therefore f ′′ is locally differentiable.

Now, let us prove the assertion ♠. To be related by a local diffeomorphism is
clearly reflexive: the identity is a local diffeomorphism, and symmetric: if f
is a local diffeomorphism f−1 is also a local diffeomorphism. We have just to
check its transitivity. But this is a consequence of the transitivity of the local
differentiability proved above and the transitivity of injectivity. �

6.7 The dimension map is a local invariant Let X and X′ be two
diffeological spaces. If x ∈ X and x′ ∈ X′ are two points related by a local
diffeomorphism (art. 6.6), then dimx(X) = dimx′(X′). In other words, local
diffeomorphisms (a fortiori global) can exchange only points where the spaces
have the same dimension. In particular, for X = X′, the dimension map is
invariant under the local diffeomorphisms of X, that is constant on the orbits
of local diffeomorphisms (art. 6.6).

6.8 Transitive and locally transitive spaces A diffeological space
X is said to be transitive if for any two points x and x′ there exists a
diffeomorphism F (art. 3.1) such that F(x) = x′. The space is said to be locally
transitive if for any two points x and x′ there exists a local diffeomorphism f
(art. 6.6) defined on a superset of x such that f(x) = x′. If the space X is
transitive it is a fortiori locally transitive.
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As a direct consequence of (art. 6.7) : if a diffeological space X is locally
transitive the dimension map (art. 6.4) is constant, a fortiori if the space X is
transitive.

7 Pushforwards of diffeologies, subductions and dimen-
sions

It is a well known property that the category of diffeological spaces is stable
by quotient. That is, any quotient of a diffeological space has a natural
diffeology, called the quotient diffeology. We shall see that, as we can expect,
the dimension of the quotient is less than or equal to the dimension of the total
space. Let us remind first some needed diffeological constructions.

7.1 Pushforward of diffeologies Let X be a diffeological space. Let X′

be a set and f : X −→ X′ be a map. There exists a finest diffeology (art. 3.4) on
X′ such that f is differentiable. This diffeology is called the pushforward (or
image) of the diffeology D of X and is denoted by f∗(D). A parametrization
P : U −→ X is an element of f∗(D) if and only if for any r ∈ U there exists a
superset V of r such that either P � V is a constant parametrization or there
exists a plot Q : V −→ X such that P � V = f ◦Q. In other words, the diffeology
f∗(D) is generated (art. 4.1) by the plots of the form f ◦ Q where Q is a plot
of X.

7.2 Subductions Let X and X′ be two diffeological spaces. A map f : X
−→ X′ is called a subduction if it is a surjection and if the image of the
diffeology of X (art. 7.1) coincides with the diffeology of X′. In this case,
a parametrization P : U −→ X′ is a plot if and only if for any r ∈ U there exists
a superset V of r and a plot Q : V −→ X such that P � V = f ◦ Q.

7.3 Quotients of diffeological spaces Let X be a diffeological space
and ∼ be any equivalence relation on X. The quotient space X′ = X/∼ carries
a quotient diffeology, image of the diffeology of X by the projection π : X −→ X′.
A parametrization P : U −→ X′ is a plot of the quotient diffeology if and only
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if for any r of U there exists a superset V of r and a plot P′ : V −→ X such
that P � V = π ◦ P′.

Note that injective subductions are diffeomorphisms, and the composite of two
subductions is again a subduction. This makes subductions a subcategory of
the diffeology category.

7.4 Uniqueness of quotients Let X, X′ and X′′ be three diffeological
spaces. Let π′ : X −→ X′ and π′′ : X −→ X′′ be two subductions (art. 7.2).
If there exists a bijection f : X′ −→ X′′ such that f ◦ π′ = π′′, then f is a
diffeomorphism. In other words the quotient diffeological structure is unique.

Proof – Let P : U −→ X′ be a plot and r ∈ U. Since π′ is a subduction there
exits a superset V of r, a plot Q : V −→ X such that π′ ◦ Q = P � V. Thus,
f ◦ P � V = f ◦ π′ ◦ Q = π′′ ◦ Q. But, π′′ is differentiable, so π′′ ◦ Q is a plot
of X′′. Hence, f ◦P is locally a plot of X′′ at every point of U, therefore it is a
plot (art. 2.1, D2). Thus, the map f is differentiable. Now, since f−1◦π′′ = π′,
the same holds for f−1 and f is a diffeomorphism. �

7.5 Dimensions and quotients of diffeologies Let X and X′ be two
diffeological spaces, let π : X −→ X′ be a subduction. So we have dim(X′) ≤
dim(X). In other words, for any equivalence relation ∼ defined on X, dim(X/∼
) ≤ dim(X).

Proof – Let D and D′ be the diffeologies of X and X′. Let Gen(D) and
Gen(D′) be the set of all the generating families of D and D′.

Let us prove first that for any F ∈ Gen(D), π ◦F is a generating family of D′,
that is π ◦ Gen(D) ⊂ Gen(D′). Let P : U −→ X′ be a plot and r ∈ U. Since
π is a subduction, there exists a superset V of r and a plot Q : V −→ X such
that π ◦ Q = P � V. Since F generates D, there exists a superset W ⊂ V,
a plot F ∈ F and a smooth parametrization φ : W −→ dom(F), such that
F◦φ = Q � W. Then, P � W = (π ◦F)◦φ. Hence, any plot P of X′ lifts locally
along some element of π ◦ F. Thus, π ◦ F is a generating family of X′.
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Now, for any plot P : U −→ X, dim(P) = dim(U) = dim π ◦ P. Hence, for any
generating family F ∈ Gen(D), dim(F) = dim(π ◦ F). It follows:

dim(X′) = infF′∈Gen(D′) dim(F′) (by definition)
≤ infF∈Gen(D) dim(π ◦ F) (since π ◦ Gen(D) ⊂ Gen(D′))
≤ infF∈Gen(D) dim(F) (since dim(π ◦ F) = dim(F))
≤ dim(X) (by definition)

Therefore dim(X′) ≤ dim(X). �

7.6 Pointed subduction and dimension Let X and X′ be two diffeolo-
gical spaces, and π : X −→ X′ be a subduction. Let x be a point of X and
x′ = π(x). We shall say that π is a subduction at the point x if the the germ
of the diffeology of X′ at the point x′ is the pushforward of the germ of the
diffeology of X at the point x. That is, If for any plot P′ : U′ −→ X′ pointed at
x′, there exists a superset U of 0 ∈ U′ a plot P : U −→ X, pointed at x, such
that π ◦ P = P′ � U. So, we have dimx′(X′) ≤ dimx(X).

Proof – The same arguments developed in (art. 7.5) apply here. �

7.7 Example: The dimension of Rn/O(n,R) Let Δn = Rn/O(n,R),
n ∈ N, equipped with the quotient diffeology (art. 7.3). Then,

dim0(Δn) = n, and dimx(Δn) = 1 if x �= 0.

Hence, the global dimension of the quotient is dim(Δn) = n.

Proof – 1) Let us denote by πn : Rn −→ Δn the projection from Rn onto its
quotient. Since, by the very definition of O(n,R), ‖x′‖ = ‖x‖ if and only if
x′ = Ax, with A ∈ O(n,R), there exists a bijection f : Δn −→ [0,∞[ such that
f ◦ πn = νn, where νn(x) = ‖x‖2.

Δn [0,∞[�
f

νn

�
�

�
���

Rn

�

πn
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Now, thanks to the uniqueness of quotients (art. 7.4), f is a diffeomorphism
between Δn equipped with the quotient diffeology and [0,∞[, equipped with
the pushforward of the standard diffeology of Rn by the map νn. Now, let us
denote by Dn the pushforward of the standard diffeology of Rn by νn. The
space ([0,∞[ , Dn) is a representation of Δn (art. 7.4).

2) Let us denote by 0k the zero of Rk. Now, let us assume that the plot νn

can be lifted at the point 0n along a p-plot P : U −→ Δn, with p < n. Hence,
there exists a smooth parametrization φ : V −→ U such that P ◦ φ = νn � V.
We can assume without loss of generality that P(0p) = 0 and φ(0n) = 0p. If it
is not the case we compose P with a translation mapping φ(0n) to 0p. Now,
since P is a plot of Δn it can be lifted locally at the point 0p along νn. That
is, there exists a smooth parametrization ψ : W −→ Rn such that 0p ∈ W
and νn ◦ ψ = P � W. Let us denote V′ = φ−1(W), we have the following
commutative diagram:

V′ [0,∞[�
νn � V′ Rn�

νn

W

φ � V′

�
�

�
�

���

�

P � W ψ

�
�

�
�

���

Now, denoting F = ψ ◦ φ � V′, we get νn � V′ = νn ◦ F, with F ∈ C∞(V′,Rn),
0n ∈ V′ and F(0n) = 0n, that is:

‖x‖2 = ‖F(x)‖2.

The derivative of this identity gives:

x · δx = F(x) · D(F)(x)(δx), for all x ∈ V′ and for all δx ∈ Rn.

The second derivative, computed at the point 0n, where F vanishes, gives then:

1n = M̄M with M = D(F)(0n),

and where M̄ is the transposed matrix of M. But D(F)(0n) = D(ψ)(0p) ◦
D(φ)(0n). Let us denote A = D(ψ)(0p) and B = D(φ)(0n), A ∈ L(Rp,Rn)
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and B ∈ L(Rn,Rp). So M = AB and the previous identity 1n = M̄M becomes
1n = B̄ĀAB. But, the rank of B is less than or equal to p which is, by
hypothesis, strictly less than n which would imply that the rank of 1n is strictly
less than n. And this is not true since the rank of the 1n is n. Therefore, the
plot νn cannot be lifted locally at the point 0n by a p-plot of Δn with p < n.

3) The diffeology of Δn, represented by ([0,∞[ , Dn), is generated by νn.
Hence, F = {νn} is a generating family of Δn. Therefore, by definition of
the dimension of diffeological spaces (art. 5.3), we have dim(Δn) ≤ n. Let us
assume that dim(Δn) = p with p < n. So, since νn is a plot of Δn it can be
lifted locally, at the point 0n, along an element P′ of some generating family F′

of Δn satisfying dim(F′) = p. But, by definition of the dimension of generating
families (art. 5.2), we get dim(P′) ≤ p, that is dim(P′) < n. But this is not
possible, thanks to the second point. Therefore, dim(Δn) = n. Now, since
the dimension is a diffeological invariant (art. 5.6), Δn = Rn/O(n,R) is not
diffeomorphic to Δm = Rm/O(m,R), n �= m. �

8 Pullbacks of diffeologies, inductions and dimensions

The category {Diffeology} is stable by subset operation. This stability is
expressed by the following construction.

8.1 Pullbacks of diffeologies Let X be a set, and Y be a diffeological
space. Let f : X −→ Y be a map. There exists a coarsest diffeology on X
such that the map f is differentiable. This diffeology is called the pullback
diffeology. A parametrization P : U −→ X is a plot of the pullback diffeology
if and only if f ◦ P is a plot of Y. Let D be the diffeology on Y, f ∗(D) will
denote the pullback diffeology of D by f .

f ∗(D) = {P : U −→ X ∈ Param(X) | f ◦ P ∈ C∞(U, Y)}

8.2 Composition of pullbacks Let X, Y be two sets and Z be a diffeolo-
gical space. Let f : X −→ Y and g : Y −→ Z be two maps. Let D be a diffeology
on Z, then f ∗(g∗(D)) = (g ◦ f)∗(D).
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8.3 Inductions Let X and Y be two diffeological spaces. A map f : X
−→ Y is called an induction if f is injective and if the pullback diffeology of
Y by f coincides with the diffeology of X. That is, the plots of X are the
parametrizations P of X such that f ◦P are plots of Y. The composite of two
inductions is again an induction. Inductions make up a subcategory of the
category {Diffeology}.

8.4 Surjective inductions Let f : X −→ Y be an injection, where X and
Y are diffeological spaces. The map f is an induction if and only if for any
plot P of Y, with values in f(X), the map f−1 ◦P is a plot of X. In particular,
surjective inductions are diffeomorphisms.

8.5 Subset diffeology and diffeological subspaces Let X be a dif-
feological space. Any subset A ⊂ X carries a natural diffeology induced by
the inclusion. Namely the pullback diffeology by the inclusion jA : A ↪→ X
(art. 8.3). Equipped with this induced diffeology the subset A is called a
subspace of X. This diffeology is also called the subset diffeology. The plots of
the subset diffeology of A are the plots of X taking their values in A.

8.6 Sums of diffeological spaces Let X be a family of diffeological
spaces, there exists on the disjoint union

∐
X∈X X of the elements of X a finest

diffeology such that each injection jX : X ↪→ ∐
X∈X X, X ∈ X, is differentiable.

This diffeology is called the sum diffeology of the family X. The plots of the
sum diffeology are the parametrizations P : U −→ ∐

X∈X X which are locally
plots of elements of the family F. In other words, a parametrization P : U
−→ ∐

X∈X X is a plot of the sum diffeology if and only if there exists an open
covering {Ui}i∈I of U and for each i ∈ I an element Xi of the family X, such
that P � Ui is a plot of Xi. For this diffeology, the injections jX are inductions.

It is obvious, thanks to (art. 6.5), that the dimension of a sum is the supremum
of the dimensions of its components,

dim
∐

X∈X

X = sup
X∈X

dim(X).
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8.7 Example : The dimension of the half-line Unlike the situation
of quotients (art. 7.5), there is no simple relation between the dimension of
a subspace A and the dimension of the ambient space X. The dimension of
A ⊂ X can be less than, equal or even greater than the dimension of X. The
following example is a clear illustration of that phenomenon.

Let Δ∞ = [0,∞[ ⊂ R equipped with the subset diffeology. Then,

dim0(Δ∞) = ∞, and dimx(Δ∞) = 1 if x �= 0.

Hence, the global dimension of the quotient is dim(Δ∞) = ∞.

Proof – First of all, let us remark that any map νn : Rn −→ Δ∞, defined by
νn(x) = ‖x‖2, is a plot of Δ∞. Indeed, it is a smooth parametrization of R
and it takes its values in [0,∞[. Now, let us assume that dim(Δ∞) = N < ∞.
Hence for any integer n, the plot νn lifts locally at the point 0n along some
p-plot of Δ∞, with p ≤ N. Let us choose now n > N. So, there exists a smooth
parametrization f : U −→ R such that val(f) ⊂ [0,∞[, that is f is a p-plot
of Δ∞. And, there exists a smooth parametrization φ : V −→ U such that
f ◦ φ = νn � V.

V [0,∞[�
νn � V

φ

�
�

�
�

���
U

�

f

We can assume, without loss of generality, that 0p ∈ U, φ(0n) = 0p, which
implies f(0p) = 0. Now, let us follow the method of (art. 7.7). The first
derivative of νn at a point x ∈ V′ = φ−1(V) is given by:

x = D(f)(φ(x)) ◦ D(φ)(x).

Since f is smooth, positive and f(0) = 0 we have, in particular, D(f)(0p) = 0.
Now, considering this property, the second derivative, computed at the point
0n, gives in matrix notation:

1n = M̄HM, where M = D(φ)(0) and H = D2(f)(0).
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The bar represents the transposition, and H is a symmetric bilinear map, the
hessian of φ at the point 0n. The matrix M represents the tangent map of
f at 0p. Now, since we chose n > N and assumed p ≤ N we have p < n.
Thus the map M has a non zero kernel and then M̄HM is degenerate, which
is impossible since 1n is non degenerate. In other words, the rank of M̄HM is
less than or equal to p < n, and the rank of 1n is n. Therefore the dimension
of Δ∞ is infinite. �

8.8 The diffeomorphisms of the half line We can illustrate the inva-
riance of the dimension map (art. 6.4) under diffeomorphisms (art. 6.7) by the
following characterization of the diffeomorphisms of the half line Δ∞ (art. 8.7).

A bijection f : [0,∞[ −→ [0,∞[ is a diffeomorphism, for the subset diffeology
induced by R, if and only if:

1. The origin is fixed, f(0) = 0.

2. The restriction of f to the open half line is an increasing diffeomorphism
of the open half-line, f � ]0,∞[ ∈ Diff+(]0,∞[).

3. The map f is continuously indefinitely differentiable at the origin and
its first derivative f ′(0) does not vanish.

Moreover, these three conditions are equivalent to the following: f is the
restriction to [0,∞[ of a smooth parametrization f̃ , defined on an open superset
of [0,∞[ and such that: f̃(0) = 0, f̃ is strictly increasing on [0,∞[ and
f̃ ′(0) > 0.

Proof – Let us prove first that any diffeomorphism f of Δ∞ satisfies the
three points of the proposition.

1. Since the dimension map is invariant under diffeomorphism (art. 6.7) and
since the origin is the only point where the dimension is infinite (art. 8.7), f
fixes the origin. That is f(0) = 0.

2. Since f(0) = 0 and f is a bijection we have f(]0,∞[) = ]0,∞[. Now,
since the restriction of a diffeomorphism to any subset is a diffeomorphism
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of this subset onto its image, for the subset diffeology [PIZ05], we have f �
]0,∞[ ∈ Diff(]0,∞[). The induced diffeology of the open interval being the
standard diffeology (art. 2.2). Moreover, since f(0) = 0, f restricted to ]0,∞[
is necessarily increasing.

3. Since f is differentiable, by the very definition of differentiability (art. 3.1),
for any smooth parametrization P of the interval [0,∞[ the composite f ◦P is
smooth. In particular for P = [t 	→ t2]. Hence, the map ϕ : t 	→ f(t2) defined
on R with values in [0,∞[ is smooth. Now, by theorem 1 of [Whi43], since
ϕ is smooth, f can be extended to an open superset of [0,∞[ by a smooth
function. Hence, f is continuously differentiable at the origin. Moreover since
f is a diffeomorphism of Δ∞, what has been said for f can be say for f−1.
And, since (f−1)′(0) = 1/f ′(0) and f is increasing we have f ′(0) > 0.

Conversely, it is obvious that if f is the restriction on [0,∞[ of a smooth
function f̃ such that: f̃(0) = 0, f̃ is strictly increasing on [0,∞[ and f̃ ′(0) > 0
then f is differentiable for the subset diffeology as well as its inverse. That is,
f is a diffeomorphism of Δ∞. �

9 Locality, manifolds and dimension

We remind here the diffeological definition of manifolds. We check that the
definition of dimension given in (art. 5.3) coincides with the usual definition
of the differential geometry.

9.1 Manifolds Let X be a diffeological space, and let D be its diffeology.
If there exists an integer n such that X is locally diffeomorphic to Rn in every
point x of X, then we say that X is a manifold modeled on Rn. We say also
that D is a manifold diffeology. More precisely, for every point x ∈ X, there
exists a n-domain U and a local diffeomorphism F : U −→ X (art. 6.6) such
that for some r ∈ U, F(r) = x. Such local diffeomorphism is called a chart of
X. A collection of charts whose domains cover X is called an atlas.

9.2 Dimension of manifolds For any manifold X modeled on Rn

(art. 5.3) (art. 9.1), we have dim(X) = n.
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Proof – Since X is locally diffeomorphic to Rn at every point, the group of
local diffeomorphisms of X is transitive on X. That is every point is equivalent
to any other one (art. 6.6), hence the dimension map is constant (art. 6.7),
and equal to the dimension of Rn, but dim(Rn) = n (art. 5.4). �

9.3 Diffeological manifolds A more diffeological version of manifold
follows the definition of diffeological vector spaces. Let us remind [PIZ05a] that
a diffeological vector space over a field K = R or C is a vector space (E, +, ·)
with E equipped with a diffeology such that (E, +) is a diffeological group,
and the multiplication by a scalar is differentiable from K × E to E, K being
equipped with the standard diffeology. A diffeological manifold M modeled on
E is a diffeological space locally diffeomorphic at every point to E. Since E is
transitive by translations, which are diffeomorphisms, the dimension of M is
constant and equal to the dimension of E. The infinite sphere and the infinite
projective space defined in [PIZ05a] are two examples of such diffeological
manifolds, of infinite dimension.
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rentiels homogènes, Thèse de doctorat d’état, Université de Provence,
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