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Abstract. We prove that, for a conelike stratified diffeological spaces, a zero-
perverse form is the restriction of a global differential form if and only if its index
is equal to 1 for every stratum.

Introduction

In the previous paper “Differential Forms On Stratified Spaces” [GIZ18], for each
zero-perverse form defined on the regular part of a diffeological stratified space, we
introduced an index for every stratum, counting the number of different forms gen-
erated by the zero-perverse form around the stratum. We showed that under some
natural condition on the stratification — if two points could be connected by a path
cutting the singular subset in a finite number of points — the zero-perverse form is
the restriction of a differential form, defined globally on the space, if and only if the
index is equal to 1 for every stratum.

In this paper, we prove this statement for locally conelike diffeological stratified spaces,
without accessory conditions.

Thanks. — We are thankful to the referee who, by his relevant remarks, allowed us
to improve the readability and the content of the paper.

Locally Conelike Diffeological Stratified Spaces

We suggest Benoît Kloeckner’s survey [Klo07] for the classical topological approach
of stratified spaces. About diffeology, we refer to the textbook [PIZ13], and about
conelike stratified spaces, Larry Siebenmann’s paper [Sie72].
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Let us begin by specifying what we understand by Stratified Diffeological Spaces. Note
that the topology of a diffeological space we referring to in the following is its natural
D-Topology, defined in [PIZ13, §2.8].

1. Stratified Diffeological Spaces. A stratification of a diffeological space X by
manifolds is a finite family of subspaces S = {Si}i∈I , called strata, such that:

(1) The strata form a partition of X.
(2) Each stratum is a manifold for the subset diffeology1.
(3) The strata satisfy the frontier condition:

Si ∩ S j 6=∅ ⇒ Si ⊂ S j .

(4) Let m =max{dim(Si )}i∈ I . Then,

Xreg =
⋃

i∈I |dimSi=m

Si

is an open dense subset, called the regular part of the stratification.
(5) Let I ′ be the subset of indices i ∈ I such that dim(Si ) < m. If I ′ is not

empty, then let S ′ = {Si}i∈I ′ and X′ = ∪i∈I ′Si , equipped with the subset
diffeology. Then S ′ is a stratification of X′.

The spaceX is assumed to beHausdorff, metrisable and connected for theD-topology.
The subset X′ wich is equal to X−Xreg is called the singular part of the stratification,
and can be sometimes denoted by Xsing. The elements of S ′ are called the singular
strata. The first four axioms can be called the structure axioms and the fifth, the recur-
sion axiom. For topological stratified spaces, the definition can be found in Pflaum
survey [Pfl01]. By this recursion we get a filtration of diffeological subspaces:

X0 ⊂X1 ⊂ · · · ⊂X` ⊂ · · · ⊂Xk−1 ⊂Xk .

where Xk = X, Xk−1 = X′ etc. Each term X` of the filtration is a stratified space
with the according subset S` of strata, and the main strata has some dimension n`.
Each term being the singular part of the term above.

The next step consists in specializing the structure near the singular strata. We said
that the stratification is locally fibered [GIZ18] — or the space is a locally fibered strat-
ified spaces — if there exists a tube system {πS : TS→ S}S∈S such that:

(A) TS is an open neighborhood of S, called a tube over/around S.
(B) The map πS : TS→ S is a smooth retraction which is a diffeological fibration.
(C) For all x ∈TS∩TS′ ∩π−1

S′ (TS), one has πS(πS′(x)) = πS(x).

The fiber Fx = π−1
S (x), with x ∈ S, is a diffeological space itself which is stratified

inherited by the ambient stratification. Its intersection with the stratum is reduced
to one point: Fx ∩ S= {x}. We call it the apex of the fiber.

1See [PIZ13, §4.1] for manifolds as diffeologies.
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Figure 1. — A formal cone (left) and a geometric cone (right).

Note. —To be locally fibered is not a priori recursive. Dowe need a natural recursion
on the local fibration? This is a legitimate question, but we do not need this property
for the case treated in this paper.

2. Diffeological Cones. Let Σ be a diffeological space. We call a cone over Σ
the quotient space Cone(Σ) = Σ × [0,∞[ / Σ × {0}, equipped with the quotient
diffeology. We recall that the quotient diffeology is the finest diffeology on the quo-
tient that makes the projection smooth [PIZ13, §1.50]. Consider now a diffeological
space F with a smooth bijection φ : Cone(Σ) → F such that φ � [Cone(Σ)− ?] is
a diffeomorphism onto its image, where ? = class(Σ× {0}) is the apex of the cone.
Thus, without their apex, these spaces are equivalent to Σ× ]0,∞[. Then, F will be
called a diffeological cone, or simply a cone, Σ is called the base of the cone. The cone
F differs from the cone over Σ only by the germ of the diffeology at the apex.

Σ× [0,∞[

Cone(Σ) F

class Φ

φ

This consideration is necessary because diffeology discriminates between cones, as
shows for example the positive cone in R3 defined by x2 + y2 = z2 & z ≥ 0,
equipped with the subset diffeology, compared with the cone over S1, Cone(S1) =
S1× [0,∞[/S1×{0} see [GIZ18, §3].

Note. — An equivocal situation arises with this definition, related to the different
types of stratified spaces [GIZ18, Introduction]. We have called geometric stratified
spaces, the stratified spaces for which the strata are the (connected components of the)
orbits of the pseudogroup of local diffeomorphisms. The formal stratified spaces are the
other ones. The same situation happens with diffeological cones when we compare
the two examples sketched in Fig. 1 above: the hemisphere (left cone) defined by x2+
y2+(z−1)2 = 1 with 0≤ z < 1, and the embedded cone (right cone) defined by x2+
y2−z2 = 0, both equipped with the subset diffeology ofR3. What differentiates these
two cones is clearly the behavior of the apex ?. On the left cone it is interchangeable
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with any other point. Precisely, the pseudogroup of local diffeomorphisms does not
distinguish the apex from the other points. On the other hand, the apex of the right
cone is alone in its orbit. That observation leads us to distinguish at least two classes
of cones:

Definition We shall say that a cone is a geometric cone if its apex is alone in its orbit
by the pseudogroup of local diffeomorphisms. Otherwise, we shall say that it is a formal
cone.

This remark has a real content, related to the idea about what is a cone. Intuitively,
the apex of a cone should be distinguished. In diffeology it is the role of local diffeo-
morphisms to discriminate between points.

3. Differential Forms On Conelike Stratifed Diffeological spaces. We
have introduced the general notion of locally fibered stratified space in [GIZ18]. They
are diffeological spaces, together with a stratification, such that the space looks like
a diffeological fiber bundle [PIZ13, §8.8, 8.9] on the neighborhood of each stratum.
This is a priori a two step generalization of the standard situation in the classical
theory of stratified spaces, where the fiber is assumed to be conelike over a stratified
base, as it is stated in [Sie72]. Hence, we have a diffeological intermediary to consider,
the analogue of the usual conelike stratified spaces:

Definition — We call a Locally Conelike Diffeological Stratified Spaces any locally
fibered stratified diffeological space with fibers some diffeological cones.

Note first that, in a locally conelike diffeological stratified space, the bases of the cones
are stratified spaces as well. Secondly, the apex of the fibers is their intersection with
the stratum.

Then, let α ∈ Ωk
0̄
[X] be a zero-perverse form defined on the regular part Xreg of a

diffeological stratified space X, and let ν the index function on zero-perverse forms,
defined in [GIZ18, §5].

Proposition — If X is a locally conelike diffeological stratified space, then there exists a
(unique) differential form α ∈Ωk (X) such that α= α �Xreg, if and only if νS(α) = 1 for
all strata S.

Note 1. Actually, the proposition applies to every stratum which is in the closure of
the regular part. But since, by definition, Xreg is dense in X then the property applies
for all strata.

Note 2. The proof of the proposition could be easily extended to the case of locally
fibered diffeological stratified spaces with contractible fibers, maybe with some condi-
tion on the retraction with respect to the connected components of the regular part.
But that would be a minor generalisation.

Proof. If νS(α) = 1 for all S ∈ S , then there exists a (unique) differential form α ∈
Ωk (X) such that α= α �Xreg. That has been proven in a general context in [GIZ18].
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Let then α ∈ Ωk (X). For all strata S, let πS : TS → S be the retraction of the tube
around a singular stratum S, which is by hypothesis a local fibration with fiber a cone
F with base Σ. Recall that S⊂TS and for all x ∈ S, πS(x) = x .

Let α= α �Xreg, and assume that α is zero-perverse with respect to these local struc-
tures. To follow the construction of the index ν we consider the pullback of the tube
TS by the projection of the universal covering pr: S̃→ S, even if it is not completely
necessary, since our considerations will be local. Let us denote by TŜ the pullback
pr∗(TS), that is,

TŜ= {(x̃, y) ∈ S̃×TS | pr(x̃) = πS(y)}.

This pullback is actually a tube around the embbeding Ŝ of the universal covering S̃
by the smooth section σ : x̃→ (x̃, pr(x̃)).

Ŝ= {(x̃, pr(x̃)) | x̃ ∈ S̃} ⊂TŜ,

which justifies the notation. Indeed, since pr(x̃) ∈ S, pr(x̃) = πS(pr(x̃)) which is the
condition for (x̃, pr(x̃)) to belong to TŜ, and obviously pr1◦σ = 1S̃. Now,

πŜ : (x̃, y)→ (x̃,πS(y)),

is a retraction from TŜ to Ŝ. The tube TŜ is also a fibration with the same fiber F, it
is the deployment of the tube TS along the embedded universal covering Ŝ.

Hence, TŜ is everywhere locally diffeomorphic to a product O ×F, where O ⊂ Ŝ is
some open subset, and the projection πŜ : (x̃, y)→ (x̃,πS(y)) locally equivalent to the
first projection pr1 : O ×F→O . That means that there exists a local diffeomorphism
ψ, defined on O × F, into TŜ such that πŜ ◦ ψ = pr1, We choose always O to be
connected and simply connected. Now, the regular part of π−1

Ŝ
(O ) is the image by

ψ of the regular part of the product O × F, that is, O × Freg. But Freg is naturally
identified to ]0,∞[×Σreg, by construction. Therefore we have the following chain
of square commutative diagrams.

O ×Σreg× ]0,∞[ O ×Freg O ×F TŜ TS

O ×{?} Ŝ S

O O O S̃ S

pr1 pr1

π?

ψ

πŜ

pr2

πS

pr1

ψ|O×{?}

pr1

pr2

1O 1O pr

We need to make a remark here about the arrow ψ|O×{?} : O ×{?}→ Ŝ that associates
(x̃,?) with (x̃, x = pr(x̃)). For geometric cones, this arrow exists by construction
since the apex is alone in its orbit by the pseudogroup of local diffeomorphisms.
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Figure 2. — The smashing function λ.

For formal cones only, the local triviality should be understood in the category of
stratified spaces. Let us now introduce the following notations:

α̂= pr∗2(α) ∈Ωk (TŜ), and α̃= α̂ �TŜreg = pr∗2(α) ∈Ωk (TŜreg).

Next, we decompose Freg in terms of connected components and have:

O ×Freg = O ×
∐

a
Fa

reg = O ×
∐

a
Σa

reg× ]0,∞[ with a ∈ π0(Σreg).

And we get a two-squares diagram summarizing the situation we will deal with:

O ×
∐

a Σa
reg× ]0,∞[ O ×F TŜ

O O S̃

pr1
pr1

ψ

pr1

1O

Now, consider a n-plot P in S̃ defined on some open set U, and r0 ∈U. There exists
an open neighborhood V ⊂ U of r0 such that Q = P � V takes its values in some
trivialization open set O , which we assume to be connected and simply connected.
Now let y ∈ Freg =

∐

a Σa
reg × ]0,∞[, then y = Φ(z, t ) for some z ∈ Σa

reg and
t ∈ ]0,∞[, where Φ has been introduced in (art. 2). Consider then the (stationary)
smooth path

γ : s 7→ Φ(z,λ(s)t ),

where λ is the smashing function described by Fig. 2.

Now:

(1) For all s ∈ ]−∞,ε], γ(s) = ? is the apex of F.
(2) For all s ∈ ]ε,∞[, γ(s) ∈ Fa

reg.
(3) In particular γ(0) = ? and γ(1) = y .
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Next, let Q× γ be the plot (r, s) 7→ (Q(r ),γ(s)), into O ×F, when (r, s) runs over
V×R. Let us fix (ui )

k
i=1 with ui ∈ Rn , and (τi )

k
i=1 with τi ∈ R. We consider then

the real smooth function defined on V×R,

f (r, s) = α̂(ψ ◦ (Q× γ))(r,s)(ui ,τi )
k
i=1

Indeed: ψ ◦ (Q× γ) is a plot in O ×Y, ψ is a local diffeomorphism into TŜ, α̂ is a
k -form on TŜ, and the (ui ,τi )

k
i=1 have been fixed.

(1) Consider firstly s ∈ ]−∞,ε[, thus γ(s) = ?. Let us denote x̃r = Q(r ), then
ψ(Q(r ),γ(s)) = ψ(x̃r ,?) = (x̃r , xr ), with xr = pr(x̃r ). Hence, we have:

f (r, s) = α̂((r, s) 7→ ψ(x̃r ,?))(r,s)(ui ,τi )
k
i=1

f (r, s) = α̂((r, s) 7→ (x̃r , xr ))(r,s)(ui ,τi )
k
i=1

= α̂((r, s) 7→ r 7→ (x̃r , xr ))(r,s)(ui ,τi )
k
i=1

= pr∗1
�

α̂(r 7→ (x̃r , xr ))
�

(r,s)(ui ,τi )
k
i=1

= α̂(r 7→ (x̃r , xr ))r (ui )
k
i=1

= α(r 7→ xr )r (ui )
k
i=1, because α̂= pr∗2(α)

= α(pr◦Q)r (ui )
k
i=1.

Therefore
f �V× ]−∞,ε[ = pr∗(α)(Q)r (ui )

k
i=1.

(2) Consider secondly s ∈ ]ε,+∞[. Then, γ(s) ∈ Fa
reg,Q×γ is a plot inO ×Fa

reg and

ψ◦ (Q×γ) is a plot of {TŜ}a , the connected component of TŜ= pr∗(TS) associated
with the component Fa

reg = Σa
reg×]0,∞[, see [GIZ18, §5, Step 1]. Hence, according

to [GIZ18, (♠)], α̂ � {TŜ}a = pr∗1(ᾱa), where ᾱa ∈Ωk (S̃). Thus,

f (r, s) = α̂((r, s) 7→ ψ(x̃r ,γ(s)))(r,s)(ui ,τi )
k
i=1

= pr∗1(ᾱa)((r, s) 7→ ψ(x̃r ,γ(s)))(r,s)(ui ,τi )
k
i=1

= ᾱa(pr1 ◦[(r, s) 7→ ψ(x̃r ,γ(s))])(r,s)(ui ,τi )
k
i=1

= ᾱa((r, s) 7→ pr1 ◦ψ(x̃r ,γ(s)))(r,s)(ui ,τi )
k
i=1

= ᾱa((r, s) 7→ x̃r )(r,s)(ui ,τi )
k
i=1, since pr1 ◦ψ= pr1

= ᾱa(r 7→ x̃r )r (ui )
k
i=1.

Therefore,
f �V× ]ε,∞[ = ᾱa(Q)r (ui )

k
i=1.

(3) In conclusion — For all r ∈ O fr : s 7→ f (r, s) is a smooth function defined on
R. On the interval ]−∞,ε[, fr is constant and equal to pr∗(α)(Q)r (ui )

k
i=1, and

on ]ε,−∞[, fr is constant and equal to ᾱa(Q)r (ui )
k
i=1. Since fr is smooth, then
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continuous, these two constants must be equal. Thus, since that is true locally for
any r and any vectors ui in Rn , we get

ᾱa = pr∗(α � S),

for all indices a. That is, ν(S) = 1. Now, that applies to every stratum which is in the
closure of Xreg. Since by definition Xreg is dense in X, ν(S) = 1 for all strata. �
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