

p -FORMS ON HALF-SPACES

SERAP GÜRER AND PATRICK IGLESIAS-ZEMMOUR

ref. <http://math.huji.ac.il/~piz/documents/DBlog-Rmk-kFOHS.pdf>

We prove that every differential p -form on the half-space $H^n = [0, \infty[\times \mathbf{R}^{n-1}$ is the restriction of a smooth p -form on \mathbf{R}^n .

This is the natural extension of the previous blog post on 1-forms on half-spaces [SGPIZ16].

Proposition — Let $H^n = [0, \infty[\times \mathbf{R}^{n-1}$ be the half n -space, equipped with the subset diffeology. Let $\omega \in \Omega^p(H^n)$ be a differential p -form on H^n . Then, there exists a smooth p -form $\bar{\omega}$ defined on some neighborhood of $H^n \subset \mathbf{R}^n$ such that $\omega = \bar{\omega} \upharpoonright H^n$.

Proof. Since $\mathring{H}^n =]0, \infty[\times \mathbf{R}^{n-1} \subset H^n = [0, \infty[\times \mathbf{R}^{n-1}$ inherits the usual smooth diffeology,

$$\begin{aligned} \omega \upharpoonright \mathring{H}^n &= \sum_{1 < j < \dots < k} a_{1j\dots k}(x, y) dx \wedge dy_j \wedge \dots \wedge dy_k \\ &+ \sum_{i < j < \dots < k} b_{ij\dots k}(x, y) dy_i \wedge dy_j \wedge \dots \wedge dy_k, \end{aligned}$$

where $(x, y) \in \mathring{H}^n$ and $a_{1j\dots k}, b_{ij\dots k} \in \mathcal{C}^\infty(\mathring{H}^n, \mathbf{R})$.

Now, let

$$\text{sq}_1 : (t, y) \mapsto (t^2, y),$$

then let

$$\begin{aligned} \text{sq}_1^*(\omega) &= \omega((t, y) \mapsto (t^2, y)) \\ &= \sum_{1 < j < \dots < k} A_{1j\dots k}(t, y) dt \wedge dy_j \wedge \dots \wedge dy_k \\ &+ \sum_{i < j < \dots < k} B_{ij\dots k}(t, y) dy_i \wedge dy_j \wedge \dots \wedge dy_k, \end{aligned}$$

Date: August 19, 2016.

with $A_{1j\dots k}, B_{ij\dots k} \in \mathcal{C}^\infty(\mathbf{R}^n, \mathbf{R})$. And for all $t \neq 0$,

$$A_{1j\dots k}(t, y) = 2t a_{1j\dots k}(t^2, y) \text{ and } B_{ij\dots k}(t, y) = b_{ij\dots k}(t^2, y).$$

Next, $\text{sq}_1^*(\omega)$ is invariant by $\varepsilon : (t, y) \mapsto (-t, y)$, thus

$$\begin{aligned} \text{sq}_1^*(\omega) &= \varepsilon^*(\text{sq}_1^*(\omega)) \\ &= \sum_{1 < j < \dots < k} A_{1j\dots k}(-t, y) (-dt \wedge dy_i \wedge \dots \wedge dy_k) \\ &+ \sum_{i < j < \dots < k} B_{ij\dots k}(-t, y) dy_i \wedge dy_j \wedge \dots \wedge dy_k. \end{aligned}$$

Thus, $-A_{1j\dots k}(-t, y) = A_{1j\dots k}(t, y)$ and $B_{ij\dots k}(-t, y) = B_{ij\dots k}(t, y)$. In particular, $A_{1j\dots k}(0, y) = 0$. Hence, there exists a smooth function $\underline{A}_{1j\dots k} \in \mathcal{C}^\infty(\mathbf{R}^n, \mathbf{R})$ such that $A_{1j\dots k}(t, y) = 2t \underline{A}_{1j\dots k}(t, y)$, for all $t \in \mathbf{R}$. Thus, for all $t \neq 0$, $a_{1j\dots k}(t^2, y) = \underline{A}_{1j\dots k}(t, y)$. Now, $\underline{A}_{1j\dots k}$ is even in t , as well as the $B_{ij\dots k}$. We can then apply the Hassler Whitney Theorem [Whi43, Theorem 1 and final remark], stated as follows:

Theorem [H. Whitney] *If a smooth function $f(t, x)$ is even in t , $f(t, x) = f(-t, x)$, then there exists a smooth function $g(t, x)$ such that $f(t, x) = g(t^2, x)$.*

Hence, there exists smooth functions $\underline{a}_{1j\dots k}(t, y)$ and $\underline{b}_{ij\dots k}(t, y)$, such that $\underline{A}_{1j\dots k}(t, y) = \underline{a}_{1j\dots k}(t^2, y)$ and $B_{ij\dots k}(t, y) = \underline{b}_{ij\dots k}(t^2, y)$. Then, for all $t > 0$, $a_{1j\dots k}(t, y) = \underline{a}_{1j\dots k}(t, y)$ and $b_{ij\dots k}(t, y) = \underline{b}_{1j\dots k}(t, y)$.

Let us then define $\bar{\omega}$ on \mathbf{R}^n ,

$$\begin{aligned} \bar{\omega} &= \sum_{1 < j < \dots < k} \underline{a}_{1j\dots k}(x, y) dx \wedge dy_j \wedge \dots \wedge dy_k \\ &+ \sum_{i < j < \dots < k} \underline{b}_{ij\dots k}(t, y) dy_i \wedge dy_j \wedge \dots \wedge dy_k. \end{aligned}$$

The form $\bar{\omega}$ is a smooth p -form defined on an open neighborhood of \mathbf{H}^n , and $\omega \mid \mathring{\mathbf{H}}^n = \bar{\omega} \mid \mathring{\mathbf{H}}^n$. Let us prove now that ω and $\bar{\omega}$ coincide on the whole \mathbf{H}^n . Since ω and $\bar{\omega} \mid \mathbf{H}^n$ are two differential p -forms on \mathbf{H}^n , it is enough to show that they take the same value on any smooth p -path.

Let σ be any p -path in \mathbf{H}^n . Let $\mathcal{O} = \sigma^{-1}(\mathring{\mathbf{H}}^n)$, $\mathcal{O} \subset \mathbf{R}^p$ is open, and on this open subset $\bar{\omega}(\sigma) = \omega(\sigma)$. Hence, by continuity $\bar{\omega}(\sigma) = \omega(\sigma)$ on the closure $\bar{\mathcal{O}}$ of \mathcal{O} (since $\bar{\omega}(\sigma)$ and $\omega(\sigma)$ are smooth). But on the open subset $\mathbf{R}^p - \bar{\mathcal{O}}$, σ takes its values in $\partial \mathbf{H}^n = \{0\} \times \mathbf{R}^{n-1}$; $\bar{\sigma} = \sigma \mid \mathbf{R}^p - \bar{\mathcal{O}}$ is a plot of the boundary $\partial \mathbf{H}^n$. Let $i : \mathbf{R}^{n-1} \rightarrow \partial \mathbf{H}^n$,

$i(y) = (0, y)$. Then, $i^*(\omega)$ and $i^*(\bar{\omega})$ are both p -forms on \mathbf{R}^{n-1} . Let us prove that they coincide. On the one hand

$$i^*(\bar{\omega}) = \sum_{i < j < \dots < k} \underline{b}_{ij\dots k}(0, y) dy_i \wedge dy_j \wedge \dots \wedge dy_k.$$

On the other hand, let us notice that

$$i = \text{sq}_1 \circ i : y \mapsto (0, y) \mapsto (0^2, y).$$

Thus, $i^*(\omega) = i^*(\text{sq}_1^*(\omega))$ and then

$$i^*(\omega)_y(\delta_1 y, \dots, \delta_{p-1} y) = \text{sq}_1^*(\omega)_{(0,y)}(0, \delta_1 y, \dots, \delta_{p-1} y).$$

Hence,

$$\begin{aligned} \text{sq}_1^*(\omega) &= \sum_{i < j < \dots < k} B_{ij\dots k}(0, y) dy_i \wedge dy_j \wedge \dots \wedge dy_k \\ &= \sum_{i=1}^{n-1} \underline{b}_{ij\dots k}(0, y) dy_i \wedge dy_j \wedge \dots \wedge dy_k, \end{aligned}$$

since $A(0, y) = 0$ and $B_{ij\dots k}(t, y) = \underline{b}_{ij\dots k}(t^2, y)$. Hence ω and $\bar{\omega}$ coincide on ∂H^n and then $\bar{\omega}(\sigma)$ and $\omega(\sigma)$ coincide everywhere. Therefore, since $\bar{\omega}$ and ω coincide on the p -plots, they coincide as p -forms [PIZ13, §6.37], and then, $\omega = \bar{\omega} \upharpoonright H^n$. \square

References

- [PIZ13] Patrick Iglesias-Zemmour. *Diffeology*, Mathematical Surveys and Monographs, vol. 185. Am. Math. Soc., Providence, 2012.
<http://www.ams.org/bookstore-getitem/item=SURV-185>
- [SGPIZ16] Serap Gürer and Patrick Iglesias-Zemmour. *1-Forms On Half Spaces*. In PIZ Blog, 2016
<http://math.huji.ac.il/~piz/documents/DBlog-Rmk-1FOHSL.pdf>
- [Whi43] Hassler Whitney, Differentiable even functions, Duke Mathematics Journal, (10), pp. 159–160, 1943.

Serap Gürer, Galatasaray University, Istanbul, Turkey.

Patrick I-Z, CNRS France & HUJI, Israel.

URL: <http://math.huji.ac.il/~piz/>