EMBEDDING A DIFFEOLOGICAL SPACE INTO ITS POWERSET

PAUL DONATO AND PATRICK IGLESIAS-ZEMMOUR

ref. http://math.huji.ac.il/~piz/documents/DBlog-Rmk-EADSIIPS.pdf

In this note we prove that the natural inclusion of a diffeological space into its powerset is an embedding. And a closed embedding if the space is Hausdorff.

The main ingredient is the *Powerset Diffeology* of a diffeological space, defined in the the exercise 62 page 60 of the textbook [DBook]. We recall, in the first article, the results of this exercise.

1. The inclusion map. — Let X be a diffeological space and $\mathfrak{P}(X)$ be its powerset, equipped with the powerset diffeology. The natural *inclusion map*

 $j: X \to \mathfrak{P}(X)$ with $j: x \mapsto \{x\}$,

is smooth and is an induction [DBook, §1.29].

Proof. Let $P: U \to X$ be a plot in X, we have to check that $j \circ P: r \mapsto j(P(r)) = \{P(r)\}$ is a plot for the powerset diffeology. For all $r_0 \in U$ and for all plot Q_0 with value in $\{P(r_0)\}$, which is necessarily constant, we define the following family of constant plots:

 $r \mapsto Q_r : \operatorname{dom}(Q_0) \to X$, with $Q_r(s) = P(r)$.

Since $val(Q_r) \subset j(P(r)) = \{P(r)\}$, and $(r, s) \mapsto Q_r(s) = P(r)$ is clearly smooth, the conditions to be a powerset plot are satisfied by $j \circ P$. Thus, j is smooth.

Let us check that j is now an induction. Let $P: U \to \mathfrak{P}(X)$ be a powerset plot with value in j(X), we have to check that $j^{-1} \circ P$ is

Date: April 25, 2017.

a plot in X. Indeed, for all $r \in U$ there exists $x_r \in X$ such that $P(r) = \{x_r\}$. For any fixed $r_0 \in U$ and for any plot Q_0 such that $val(Q_0) \subset P(r_0) = \{x_{r_0}\}$, there exists an open neighborhood V of r_0 and a smooth family $r \mapsto Q_r$ of plots, defined on V, such that $val(Q_r) \subset P(r) = \{x_r\}$. Thus, $(s, r) \mapsto Q_r(s) = x_r = j^{-1} \circ P$ is locally smooth, and $r \mapsto x_r$ is a plot of X.

2. Embedding X in its Powerset. — The inclusion $j: X \to \mathfrak{P}(X)$ is not just an induction, it is an embedding [DBook, §2.13]. That is, the pullback of the D-topology of $\mathfrak{P}(X)$ coincides with the D-topology of X.

Proof. We have to prove that, for any D-open subset $\mathcal{O} \subset X$, there exists an D-open set \mathcal{O}' in $\mathfrak{P}(X)$ such that $j(\mathcal{O}) = j(X) \cap \mathcal{O}'$.

Let us define

 $\mathcal{O}' = \{ \mathsf{A} \in \mathfrak{P}(\mathsf{X}) \mid \mathsf{A} \cap \mathcal{O} \neq \varnothing \}.$

Clearly $j(0) = j(X) \cap 0'$. It remains to prove that 0' is D-open in $\mathfrak{P}(X)$. Then, for any plot $P: U \to \mathfrak{P}(X)$, we have to prove that

 $\mathsf{P}^{-1}(\mathfrak{O}') = \{ r \in \mathsf{U} \mid \mathsf{P}(r) \cap \mathfrak{O} \neq \emptyset \}$

is open. Let $r_0 \in P^{-1}(\mathcal{O}')$, thus $P(r_0) \cap \mathcal{O} \neq \emptyset$. Pick $x_0 \in P(r_0) \cap \mathcal{O}$ and the constant plot $Q_0(s) = x_0$, there exists a smooth family of plots Q_r for r near r_0 such that $val(Q_r) \subset P(r)$ and $(s, r) \mapsto Q_r(s)$ is smooth. Since \mathcal{O} is open, by continuity of $Q_r(s)$, it exists a product of two balls $\Omega = B(s, \varepsilon) \times B(r_0, \eta)$ (s is arbitrary choosen) such that for all $(s, r) \in \Omega$, $Q_r(s) \in \mathcal{O}$, the condition $val(Q_r) \subset P(r)$ implies that $P(r) \cap \mathcal{O} \neq \emptyset$. Thus, $B(r_0, \eta) \subset P^{-1}(\mathcal{O}')$, that is, $P^{-1}(\mathcal{O}')$ is open, and therefore, \mathcal{O}' is D-open. \Box

3. The case of the empty set. — Let $\mathfrak{P}(X)^*$ be the subset of non empty sets in X,

$$\mathfrak{P}(\mathbf{X})^{\star} = \mathfrak{P}(\mathbf{X}) - \{\{\emptyset\}\}.$$

Then, equipped with the powerset diffeology, $\mathfrak{P}(X)$ is the vague adjunction of the singleton $\{\varnothing\}$ to $\mathfrak{P}(X)^*$, as defined in [PB17]. That implies in particular that, for the D-topology, $\{\varnothing\} \in \mathfrak{P}(X)$ is closed, and $\mathfrak{P}(X)$ is the only neighborhood of $\{\varnothing\}$.

Proof. Indeed, for a parametrization P in $\mathfrak{P}(X)$ and a point $r_0 \in \operatorname{dom}(P)$, if $P(r_0) = \{\emptyset\}$ then the condition of the Powerset Diffeology is empty.

4. X in $\mathfrak{P}(X)$. — If X is Hausdorff for the D-topology, then its image J(X) in $\mathfrak{P}(X)^*$ is closed. Or, $J(X) \cup \{\emptyset\}$ is closed in $\mathfrak{P}(X)$.

Proof. Let us show that $\mathfrak{P}(X)^* - j(X)$ is open,

$$\mathfrak{P}(\mathbf{X})^{\star} - j(\mathbf{X}) = \left\{ \mathbf{A} \subset \mathbf{X} \mid \exists \{x, y\} \subset \mathbf{A}, x \neq y \right\}.$$

Consider a plot $P : U \to \mathfrak{P}(X)^*$, and $r_0 \in P^{-1}(\mathfrak{P}(X)^* - j(X))$. Suppose now $\{x_0, y_0\} \subset P(r_0)$ with $x_0 \neq y_0$. Let Q_0 and Q'_0 be two constant plots such that : $val(Q_0) = \{x_0\}$ and $val(Q'_0) =$ {y_0}, so there exists two smooth family U \supset V \ni r \mapsto Q_r and $U \supset V' \ni r \mapsto Q'_r$ such that $val(Q_r) \subset P(r)$ and $val(Q'_r) \subset P(r)$. As X is supposed to be Hausdorff, we may choose O and O' two disjoint D-open neighborhoods of respectively x_0 and y_0 . Given s_0 in a common domain of Q_r and Q'_r , the intersection of the preimages of ${\mathbb O}$ and ${\mathbb O}'$ by the continuous maps $(r,s)\mapsto {\sf Q}_r(s)\in{\sf X}$ and $(r,s)\mapsto \mathsf{Q}'_r(s)\in \mathsf{X}$ defines an open neigborhood $\mathsf{W}\times\mathsf{S}$ of (r_0, s_0) , with $W \subset V \cap V'$, such that $Q_r(s) \in \mathcal{O}$ and $Q'_r(s) \in \mathcal{O}'$ for any $(r,s) \in W \times S$. As $val(Q_r) \subset P(r)$ and $val(Q'_r) \subset P(r)$, the condition $0 \cap 0' = \emptyset$ insures that P(r) includes at least two distinct points of X for all $r \in W$. Hence $W \subset P^{-1}(\mathfrak{P}(X)^* - j(X))$. Thus, $P^{-1}(\mathfrak{P}(X)^* - j(X))$ is open, as a union of open subsets. Therefore, $\mathfrak{P}(X)^* - j(X)$ is D-open and j(X) is closed in $\mathfrak{P}(X)^*$.

References

- [DBook] Patrick Iglesias-Zemmour. Diffeology, Mathematical Surveys and Monographs, vol. 185. Am. Math. Soc., Providence, 2012. http://www.ams.org/bookstore-getitem/item=SURV-185
- [PB17] Vague Adjunction Of A Point To A Space. PIZ Blog April2017. http://math.huji.ac.il/~piz/documents/DBlog-Rmk-VAOAPTAS.pdf

E-mail address: piz@math.huji.ac.il

URL: http://math.huji.ac.il/~piz/