DIFFEOLOGICAL SPACES ARE LOCALLY CONNECTED

PATRICK IGLESIAS-ZEMMOUR

ref. http://math.huji.ac.il/~piz/documents/DBlog-Rmk-KSODS.pdf

Every diffeological space is locally connected for the D-Topology,

Every diffeological space X naturally has a topology: the D-topology, defined originally in [Igl85]. This is the finest topology for which the plots are continuous. A subset $0 \subset X$ is open for the D-topology, or is a *D*-open, if $P^{-1}(0)$ is open in dom(P) for all plots P in X.

It has been shown that a the connected components for the D-topology are the path-connected components, and that the space X is the sum of its connected components [PIZ13, §5.7, 5.8]. We can add moreover:

Proposition. Every diffeological space is locally connected. That means that every D-open subset is the sum of its connected components for the D-topology. Since connected components for the D-topology coincide with pathwise connected components, Every connected diffeological space X is locally pathwise connected.

Proof. Let us prove that D-open subsets $\mathcal{O} \subset X$ are embedded [PIZ13, §2.14]. That is, every D-open subset \mathcal{U} of the subspace $\mathcal{O} \hookrightarrow X$ is the imprint of a D-open subset \mathcal{U}' of X, *i.e.* $\mathcal{U} = \mathcal{U}' \cap \mathcal{O}$. On the one hand, since \mathcal{U} is open for the D-topology of the subspace \mathcal{O} of X, then for every plot P in \mathcal{O} , that is, for every plot P in X taking its values in \mathcal{O} , $P^{-1}(\mathcal{U})$ is open. On the other hand, let P be any plot in X. since $P^{-1}(\mathcal{U}) \subset P^{-1}(\mathcal{O})$, $P^{-1}(\mathcal{U}) = [P \upharpoonright P^{-1}(\mathcal{O})]^{-1}(\mathcal{U})$. But, $P^{-1}(\mathcal{O})$ is open since \mathcal{O} is D-open, then $P \upharpoonright P^{-1}(\mathcal{O})$ is still a plot in X but taking its values in \mathcal{O} . That is, a plot in \mathcal{O} . Thus, $[P \upharpoonright P^{-1}(\mathcal{O})]^{-1}(\mathcal{U})$ is open, and so is $P^{-1}(\mathcal{U})$. Thus, for all plots P in X, $P^{-1}(\mathcal{U})$ is open. Therefore, \mathcal{U} is D-open in X, and since $\mathcal{U} = \mathcal{U} \cap \mathcal{O}$, \mathcal{U} as D-open \mathcal{O} is the imprint of \mathcal{U} on \mathcal{O} as D-open in X. In conclusion, every D-open subset of X is embedded.

Now, as a subspace of X, \bigcirc is the sum of its component which are D-open subset in \bigcirc , and then, D-open subset of X. Thus, \bigcirc is the sum of its

Date: November 30, 2021.

components for the D-topology of X. Therefore, X is locally connected for the D-topology. $\hfill \Box$

References

- [Igl85] Patrick Iglesias. Fibrations difféologique et homotopie. Thèse d'état, Université de Provence, Marseille (1985).
- [PIZ13] Patrick Iglesias-Zemmour. Diffeology. Mathematical Surveys and Monographs. The American Mathematical Society, vol. 185, RI USA, 2013.

Patrick Iglesias-Zemmour, Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Israel.