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We show that, for the subset diffeology, differential forms defined on half-
spaces or corners of Euclidean spaces, are the restrictions of a differential
forms defined on an open neighborhood of the corner in the ambient
Euclidean space.

Usually, smooth maps from corners Kn = {(x1, . . . , xn) | xi ≥ 0} into the
real line R are just defined as restrictions of smooth maps, defined on
some open neighborhood of the corner [Cer61] [Dou62] etc. This heuristic
becomes a theorem in diffeology where Kn is equipped with the subset
diffeology. Indeed every map from Kn to R such that composed with a
smooth parametrisation1 P: U → Rn, taking its values in Kn, is smooth,
is the restriction of a smooth maps defined on some open neighborhood
of the corner [PIZ13, §4.16].

It is always a progress when a convention, based on mathematicians’
intuition, becomes a theorem in a well defined axiomatic. Here the ax-
iomatic is the theory of Diffeology. Noticing that C∞(Kn, R) is just the
space of differential 0-forms Ω0(Kn), it is legitimate to ask about the be-
havior of differential k-forms on Kn, that is, Ωk(Kn) a it is defined in
[PIZ13, §6.28]. In this paper we prove the following theorem (art. 4):

Theorem. Every differential form on the corner Kn is the restriction
of a smooth form on an open neighborhood of Kn in Rn. Precisely,
the pullback : j∗ : Ωk(Rn) → Ωk(Kn) is surjective, where j denotes the
inclusion from Kn into Rn.
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1A parametrisation is just a map defined on an open subset of an Euclidean space.
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Let us just remind that a differential k-form on a diffeological space
X is a mapping α that associates with each plot P in X, a smooth k-
form α(P) on dom(P), such that the smooth compatibility condition
α(F ◦ P) = F∗(α(P)) is satisfied, where F is any smooth parametrisation
in dom(P).

Smooth Structure on Corners

1. Corners as Diffeologies. — We denote by Kn the corner

Kn = {(xi)n
i=1 ∈ Rn | xi ≥ 0, i = 1, . . . , n}.

And we equip it with the subset diffeology. A plot in Kn is just a regular
smooth parametrization in Rn but taking its values in Kn.

(A) The corner Kn is the diffeological n-power of the half-line K = [0, ∞[ ⊂
R, equipped with the subset diffeology.

(B) The corner Kn is embedded in Rn, and closed. That is, the D-
topology of the induction Kn ⊂ Rn coincides with the induced topology2

of Rn, see [PIZ13, §2.13].
(C) Let X0 = {0} ⊂ X1 ⊂ · · · ⊂ Xn = Kn be the natural filtration of Kn,
where the levels Xj are defined by

Xj = {(xi)n
i=1 ∈ Kn | there exist i1 < · · · < in–j such that xiℓ = 0}.

Then, the stratum
Sj = Xj – Xj–1

is the subset of points in Rn that have j, and only j, coordinates strictly
positive. The strata Sj are equipped with the subset diffeology3.

Sj =
{

(xi)n
i=1 ∈ Rn

∣∣∣∣ There exist i1 < · · · < ij such that xiℓ > 0,
and xm = 0 for all m /∈ {i1, . . . , ij.}

}
.

Then, Sj is D-open in Xj, j ≥ 1. As a subset of Xj, Sj is the (diffeological)
sum of

(n
j
)

connected components indexed by a string of j ones and n – j
zeros.

Proof. For the first item, it’s immediately by definition. Considering
the second item: for any subset U ⊂ Kn open for the induced topology,
there exists (by definition) an open subset O ∈ Rn such that U = O∩Kn.
Then, for all plots P in Kn, P–1(U) = P–1(O) is open, because plots are
continuous. On the other hand, let U ⊂ Kn be D-open. Then, sq –1(U) ⊂
Rn is open, where sq : Rn → Kn is the map sq (xi)n

i=1 = (x2
i )n

i=1. And

2The standard topology of Rn is the D-topology of its standard smooth structure.
3Recall that, by transitivity of subset diffeology, to be a subspace of Sℓ or Kn or of

Rn is identical.
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sq –1(U) ↾ Kn is open for the induced topology of Rn. Now, the map sq
restricted to Kn is an homeomorphism. Hence, since U = sq (sq –1(U) ↾
Kn), U is open for the induced topology of Rn. Therefore the D-topology
of the induction coincides with the induced topology, as we claimed.

For the third item: let x ∈ Xj, then the number ν of coordinates of x
that are 0 is at least n – j, i.e. ν ≥ n – 1. Next, if x ∈ Xj and x /∈ Xj–1,
then ν ≥ n – j and ν < n – j + 1, thus, ν = n – j. Therefore, Xj – Xj–1 is the
subset of points in Rn that have exactly n – j coordinates equal to 0 and
the other j strictly positive:

Consider now a point x = (x1, . . . , xn) ∈ Sj – Sj–1. Since the j non-
zero coordinates of x are strictly positive, there exists ε > 0 such that
xi – ε > 0, for all non-zero coordinate of x. The open n-parallelepiped
Cx =]x1 – ε, x1 + ε[× · · · ×]xn – ε, xn + ε[⊂ Rn contains x, and Cx ∩ Sj ⊂
Sj – Sj–1. Thus,

Sj – Sj–1 =
∪

x∈Sj–Sj–1

Cx ∩ Sj.

Now, let P : U → Sj be a plot for the subset diffeology. Then, P–1(Sj –
Sj–1) = ∪x∈Sj–Sj–1P–1(Cx ∩Sj), but P–1(Cx ∩Sj) = P–1(Cx) since val(P) ⊂
Sj. Next, since P is smooth as a map into Rn and Cx is open, P–1(Cx)
is open and then P–1(Sj – Sj–1) is open. Therefore, Sj – Sj–1 is D-open in
Sj. □

2. Smooth Maps on Corners. — It has been proved that a map f : Kn → R,
is smooth in the sense of diffeology, if and only if it is the restriction of
a smooth map F defined on some open neighborhood O of Kn into R
[PIZ13, §4.16]. That is, f ∈ C∞(Kn, R) if and only if, f = F ↾ Kn and
F ∈ C∞(O, R).

3. The Square Function Lemma. — Let sq : Rn → Kn be the smooth
parametrisation:

sq (x1, . . . , xn) = (x2
1 , . . . , x2

n).

Then sq ∗ : Ωk(Kn) → Ωk(Rn) is injective. That is, for all α ∈ Ωk(Kn), if
sq ∗(α) = 0, then α = 0.

Proof. Note that each component of Sj – Sj–1 is isomorphic to Rj. Hence,
if sq ∗(α) = 0, since sq ↾ sq –1(Sj – Sj–1) is a 2-folds covering over Sj – Sj–1,
α ↾ Sj – Sj–1 = 0. that is, for all plot Q in Sj – Sj–1, α(Q) = 0. Let then,
for some j ≥ 1, Pj : Uj → Sj be a plot. In view of what precedes, the
subset Oj = P–1

j (Sj – Sj–1) is open, and α(Pj ↾ Oj) = α(Pj) ↾ Oj = 0. By
continuity, α(Pj) ↾ Oj = 0, where Oj is the closure of Oj. Let then Uj–1 =
Uj – Oj and Pj–1 = Pj ↾ Uj–1. Then, Uj–1 is open and Pj–1 : Uj–1 → Sj–1
is a plot. This construction gives a descending recursion, starting with
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any plot P: U → Kn, by initializing Pn = P, Un = U and Sn = Kn. One
has Pj = P ↾ Uj, Uj–1 ⊂ Uj, the recursion ends with a plot P0 with values
in S0 = {0}, and α(P0) = 0 since P0 is constant. Therefore α = 0. □

4. Differential Forms On Corners. — The previous article (art. 2) deals
with smooth real functions on corners, that is, Ω0(Kn). It is a particular
case of the more general theorem:
Theorem. Any differential k-form on the corner Kn, equipped with the
subset diffeology of Rn, is the restriction of a smooth differential k-form
defined on some open neighborhood of the corner. Precisely, the pullback
: j∗ : Ωk(Rn) → Ωk(Kn) is surjective, where j denotes the inclusion from
Kn to Rn.

Proof. Let ω ∈ Ωk(Kn) and K̊n = {(xi)n
i=1 | xi > 0, i = 1, . . . , n}. One has

ω ↾ K̊n =
∑

i1<···<ik
ai1...ik (x1, . . . , xn) dxi1 ∧ · · · ∧ dxik ,

with ij = 1, . . . , n and ai1...ik ∈ C∞(K̊n, R). Recall that sq : (xi)n
i=1 7→

(x2
i )n

i=1, then

sq ∗(ω) =
∑

i1<···<ik
Ai1...ik (x1, . . . , xn) dxi1 ∧ · · · ∧ dxik ,

where Ai1...ik ∈ C∞(Rn, R). Let εj : (x1, . . . , xj, . . . , xn) 7→ (x1, . . . , –xj, . . . , xn),
then sq ◦ εj = sq and (sq ◦ εj)∗(ω) = ε∗j (sq ∗(ω)), that is, sq ∗(ω) =
ε∗j (sq ∗(ω)). Hence,

ε∗j (sq ∗(ω)) =
∑

i1<···<ik
iℓ ̸=j

Ai1...ik (x1, . . . , –xj, . . . , xn) dxi1 ∧ · · · ∧ dxik

–
∑

i1<···≤j≤···<ik

Ai1...j...ik (x1, . . . , –xj, . . . , xn) dxi1 ∧ . . . dxj · · · ∧ dxik .

Then,

A i1...ik
iℓ ̸=j

(x1, . . . , –xj, . . . , xn) = Ai1...ik (x1, . . . , xj, . . . , xn),

Ai1...j...ik (x1, . . . , –xj, . . . , xn) = –Ai1...j...ik (x1, . . . , xj, . . . , xn).

Hence,
Ai1...j...ik (x1, . . . , xj = 0, . . . , xn) = 0.

Thus,

Ai1...j...ik (x1, . . . , xj, . . . , xn) = 2xjAi1...j...ik (x1, . . . , xj, . . . , xn),

with Ai1...j...ik ∈ C∞(Rn, R). Therefore, there are real smooth functions
Âi1...ik defined on Rn such that

Ai1...ik (x1, . . . , xn) = 2kxi1 . . . xik Âi1...ik (x1, . . . , xn).
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Now,
sq ∗(ω ↾ K̊n) = sq ∗(ω) ↾ {xi ̸= 0}

implies ∑
i1<···<ik

2kxi1 . . . xik ai1...ik (x2
1 , . . . , x2

n) dxi1 ∧ · · · ∧ dxik

=
∑

i1<···<ik
2kxi1 . . . xik Âi1...ik (x1, . . . , xn) dxi1 ∧ · · · ∧ dxik .

Hence,

Âi1...ik (x1, . . . , xn) = ai1...ik (x2
1 , . . . , x2

n) for xi ̸= 0, i = 1, . . . , n.

Thus (x1, . . . , xn) 7→ Âi1...ik (x1, . . . , xn), which belongs to C∞(Rn, R),
is even in each variable. Therefore, according to Schwartz Theorem
[Sch75]4, there exist

ai1...ik ∈ C∞(Rn, R),

such that
Âi1...ik (x1, . . . , xn) = ai1...ik (x2

1 , . . . , x2
n).

One deduces:

ai1...ik (x1, . . . , xn) = ai1...ik (x1, . . . , xn), for all (x1, . . . , xn) ∈ K̊n.

Then, defining the k-form ω on Rn by

ω =
∑

i1<···<ik
ai1...ik (x1, . . . , xn) dxi1 ∧ · · · ∧ dxik ,

one has already
ω ↾ K̊n = ω ↾ K̊n.

Let us show that ω ↾ Kn = ω. That is, let us check that for all plot
P: U → Rn, P∗(ω) = ω(P). Actually, one has

sq ∗(ω) = sq ∗(ω ↾ Kn).

Indeed:

sq ∗(ω) =
∑

i1...ik
Ai1...ik (x1, . . . , xn) dxi1 ∧ · · · ∧ dxik

=
∑

i1...ik
2kxi1 . . . xik Âi1...ik (x1, . . . , xn) dxi1 ∧ · · · ∧ dxik

=
∑

i1...ik
2kxi1 . . . xik ai1...ik (x2

1 , . . . , x2
n) dxi1 ∧ · · · ∧ dxik .

And, on the other hand:

sq ∗(ω ↾ Kn) =
∑

i1...ik
2kxi1 . . . xik ai1...ik (x2

1 , . . . , x2
n) dxi1 ∧ · · · ∧ dxik .

4Which is a generalisation of a famous Whitney Theoreme [Whi43]
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Thus, sq ∗(ω – ω ↾ Kn) = 0. Therefore, according to the previous lemma
(art. 3), ω – ω ↾ Kn = 0. And indeed, ω is the restriction of the smooth
k-form ω on Kn. □

5. An Exemple Of Application. — Among the possible applications of
the theorems above (art. 3) and (art. 4), there is already one worthy
of mention. It is about the description of closed 2-form, invariant with
respect to the action of a Lie group. As it has been showed in particular in
the classification of SO(3)-symplectic manifolds [Igl84, Igl91], any closed
2-form form ω on a manifold M, invariant by a compact group5 G, is
characterized by its moment map μ : M → G∗ (we assume the action
Hamiltonian), and for each moment map, a closed 2-form ε ∈ Z2(M/G).
Let us be precise: the space of closed 2-forms Z2(M) is a vector space,
the space of G-equivariant maps from M to G∗ is also a vector space.
Then, the map associating its moment map6 μ with each invariant closed
2-form ω is linear. What we claim is that the kernel of this map is exactly
Z2(M/G), where M/G is equipped with the quotient diffeology.

Now, if an equivariant map is easy to conceive, it is more problematic
for a differential form on the space of orbits, which is generally not a
manifold. This is where the above theorem can help, because it happens
that M/G is not far to be a manifold with boundary or corners, as show
the following example.

Let us consider the simple case of M = R2n equipped with the stan-
dard symplectic form ω =

∑n
i=1 dqi ∧ dpi. It is invariant by the group

SO(2, R)n acting naturally, each factor on its respective copie of R2. The
(diffeological) quotient space Qn = R2n/ SO(2, R)n is the n-th power of
Q = R2/ SO(2, R). Let X = (Xi)n

i=1 with Xi = (qi, pi). There is a natural
smooth bijection j2n : Qn → Kn, given by j2n : class(X) 7→ (∥Xi∥2)n

i=1. It
turns out that this smooth bijection7 induces, by pullback, an injection
j∗2n from Ωk(Kn) into Ωk(Qn). Thus, thanks to (art. 4), for each 2-form ε
on the quotient Qn there exists a 2-form ε on Rn, such that ε = j∗2n(ε).
And the 2-form ω is characterized by μ and ε ↾ Kn, with ε ∈ Ωk(Rn).

Proof. Let us prove that j∗2n is injective. Let x = (xi)n
i=1 ∈ Rn and

ιn : x 7→ (xi, 0)n
i=1 from Rn into R2n. Let jn : Rn/{±1}n → Kn be defined

by jn : class(x) 7→ sq (x) = (x2
i )n

i=1. Then, jn = j2n ◦ ι, where ι is the

5There could a diffeological generalisation possible here to non compact group.
6The manifold M is supposed to be connected. To have a unicity of the moment maps

we decide to fix their value to 0 at some base point m0 ∈ M, for example.
7Which is not a diffeomorphism [PIZ07].
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projection of ι, from Rn/{±1}n to Qn.

Rn R2n

Rn/{±1}n Qn = R2n/ SO(2, R)n Kn = [0, ∞[n

class

ι

class

ι j2n

But sq = jn ◦class and we know that sq ∗ = class∗ ◦ j∗n : Ωk(Kn) → Ωk(Rn)
is injective (art. 3), thus j∗n : Ωk(Kn) → Ωk(Rn/{±1}) is injective. On the
other hand, jn = j2n ◦ ι, then j∗n = ι∗ ◦ j∗2n. Since jn is injective, j∗2n is
necessarilly injective too. □
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