1-FORMS ON HALF-LINES

PAUL DONATO PATRICK IGLESIAS-ZEMMOUR

ref. http://math.huji.ac.il/~piz/documents/DBlog-Rmk-1FOHL.pdf

In this note we characterize the differential 1-forms, defined on the various half-lines Δ , Δ_n , Δ_{∞} , that share the same underlying set $[0,\infty[$.

Diffeologies on the half-line

We consider a series of diffeologies on the set $[0, \infty[$:

- A) Equipped with the subset diffeology, it is a manifold with boundary $\{0\}$, [DBook, 4.12, 4.16]. It is denote by Δ .
- B) Equipped with the pushforward of the standard diffeology of \mathbb{R}^n , n > 0, by the norm-square map:

$$\operatorname{Sq}: \mathbf{R}^n \to [0, \infty[\quad \text{with} \quad \operatorname{Sq}: x \mapsto \|x\|^2,$$

it represents the quotients $\Delta_n = \mathbf{R}^n/O(n)$ [DBook, 1.50, Ex. 50]. We denote $\Delta_{\infty} = \lim_{n \to \infty} \Delta_n$, and when we write Δ_n , we allow n to represent also ∞ .

- Note 1. There are no two different half-lines above that are diffeomorphic. We recall that $\dim_0(\Delta_n) = n$, $\dim_0(\Delta_\infty) = \infty$ and $\dim_0(\Delta) = \infty$, [DBook, Ex. 50,51] and [DBlog].
- Note 2. The choice of the function Sq to characterize the quotient $\mathbf{R}^n/\mathcal{O}(n)$ is irrelevant. Every other bijection with the space of orbits could have been used to push forward the standard diffeology of \mathbf{R}^n , as explained in [DBook, 1.52]. For example we could have chosen equivalently $X \mapsto \|X\|$, but then the injection $j: [0, \infty[\to \mathbf{R}]$ would have not been smooth.

Date: December 22, 2014.

1-forms on the half-lines

1. The 1-forms are closed. Every differential 1-form defined on Δ_n , Δ_{∞} , or $\Delta \subset \mathbf{R}$, is closed. Moreover, every half-line is contractible. Therefore, every 1-form is exact.

Note. In the case n=1, the 1-forms are closed simply because the dimension of Δ_1 is 1 [DBook, 6.39]. But because the dimension of Δ_n and Δ at the origin are n or ∞ , the argument of the dimension doesn't apply so simply.

Proof. Any of these half-lines has $[0,\infty[$ as underlying space, only the diffeology change. In each case, the subset $]0,\infty[$ is D-open. In each case, the diffeology induced on $]0,\infty[$ is the standard diffeology. The difference of behavior in the diffeology happens only on the neighborhood of $\{0\}$. Now, let α be a 1-form on a half-line, let P be a m-plot and $U \subset \mathbf{R}^m$ be its domain. The subset $V = P^{-1}(]0,\infty[)$ is open in U and because $]0,\infty[$ is 1-dimensional $d[\alpha(P \mid V)] = 0$. The complementary W of V in U is closed. On its interior \mathring{W} the plot is constant, therefore $\alpha(P \mid \mathring{W}) = 0$, and then $d[\alpha(P \mid \mathring{W})] = 0$. Now, on the boundary $\partial V = \bar{V} - V = W - \mathring{W}$, every point r is a limit $\lim_{n\to\infty} r_n$, with $r_n \in V$. Thus, by continuity, for all $\xi, \xi' \in \mathbf{R}^m$, $d[\alpha(P)]_r(\xi, \xi') = \lim_{n\to\infty} d[\alpha(P \mid V)]_{r_n}(\xi, \xi') = 0$. Hence, $d\alpha(P) = 0$ everywhere, that is, $d\alpha = 0$.

Next, about contractibility. The radial retraction $x\mapsto sx$ in \mathbf{R}^n is equivariant under the action of O(n). Thus, the quotients $\Delta_n=\mathbf{R}^n/O(n)$ are contractible, and also the limit Δ_∞ . For Δ we have the retraction $\rho_s:t\mapsto s^2t$. The map $(s,t)\mapsto s^2t$, defined on $\mathbf{R}\times\Delta$ takes its values in Δ and is smooth. Thus, Δ is contractible. According to [DBook, 6.90] every closed differential form on a contractible diffeological space is exact. Therefore, every 1-form on these half-lines is the differential of a smooth function, this function can be normalized by zero at the origin, and then is unique.

2. The case of Δ . Every differential 1-form on the embedded halfline $\Delta \subset \mathbf{R}$ is the restriction of a differential 1-form defined on \mathbf{R} . In other words, the natural induction $j:[0,\infty[\to\mathbf{R}]$ induces a surjective pullback $j^*:\Omega^1(\mathbf{R})\to\Omega^1(\Delta)$. That is, for all $\alpha\in\Omega^1(\Delta)$, there exists $a\in \mathcal{C}^\infty(\mathbf{R},\mathbf{R})$ such that $\alpha_x=a(x)\,dx$, for all $x\geq 0$.

Proof. Thanks to [DBook, 4.13] we know that a smooth function from Δ to \mathbf{R} is the restriction of a smooth function from \mathbf{R} to \mathbf{R} . Together with the proposition 1, that gives the result.

3. The case of Δ_n . The set $[0, \infty[$ is equipped with the pushforward of the standard diffeology of \mathbf{R}^n by the norm-square map Sq. That identifies Δ_n with $\mathbf{R}^n/O(n)$ by $\mathrm{class}(X) \simeq \|X\|^2$. The injection $j: \Delta_n \simeq [0, \infty[\to \mathbf{R} \text{ is smooth.}]$ The pullback $j^*: \Omega^1(\mathbf{R}) \to \Omega^1(\Delta_n)$ is, here again, surjective 1.

Proof. The smoothness of the injection comes from the smoothness of the square $\operatorname{Sq}: \mathbf{R}^n \to [0, \infty[$, with $\operatorname{Sq}(X) = \|X\|^2$. Now, for the same reason than previously, every 1-form α on Δ_n is exact, that is, there exists a function $f \in \mathcal{C}^{\infty}(\Delta_n, \mathbf{R})$ such that $\alpha = df$. Pulled back on \mathbb{R}^n , we have $\operatorname{Sq}^*(\alpha) = \operatorname{Sq}^*(df) = d(f \circ \operatorname{Sq})$. The function $F = f \circ Sq$ is smooth and invariant by O(n). Conversely every smooth function $F: \mathbb{R}^n \to \mathbb{R}$ that is O(n)-invariant is the pullback, by Sq, of a smooth function f on Δ_n . So, every 1-form on Δ_n is the pushforward of a differential dF, where F is smooth and O(n)invariant. Let us restrict F to the subspace of the vectors (x, 0), $x \in \mathbb{R}$, and let F(x) for F(x,0). We have $F(x) = f(x^2)$, that is, F(+x) = F(-x). Thanks to Whitney theorem [Whi43], there exists a smooth function $g \in \mathcal{C}^{\infty}(\mathbf{R}, \mathbf{R})$ such that $F(x) = g(x^2)$. Thus, $f(x^2) = g(x^2)$, in other words: $f = g \mid [0, \infty[$, f is the restriction of a smooth function to the interval $[0, \infty[$. Thus $\alpha = df = d(g \circ j) =$ $j^*(dg)$; written differently, $\alpha_t = a(t) dt$, for all $t \in [0, \infty[$. On \mathbb{R}^n , the pullback of α writes,

$$Sq^*(\alpha)_X = 2a(\|X\|^2) X \cdot dX = 2a(\|X\|^2) \sum_{i=1}^n X^i dX^i,$$

where a is a smooth function on R.

4. The 1-forms vanish at the origin. Every differential 1-form α , defined on any half-line Δ or Δ_n or Δ_∞ , vanishes at the origin [DBook, 6.40]. That is, for every 1-plot γ pointed at the origin, $\gamma(0) = 0$, we have $\alpha(\gamma)_0 = 0$.

In other words, the *cotangent space* reduces to $\{0\}$ at the origin, [DBook, 6.48]; it is equal to \mathbf{R} everywhere else. An interesting question would be to describe the diffeology of the cotangent space,

¹Note that the inclusion j is smooth injective but not an induction.

and to study its parasymplectic structure², that is, the struture defined by the differential of its Liouville form [DBook, 6.49].

Proof. According to what comes before, in every case the injection j from the half-line into \mathbf{R} is smooth, and the form α is the pullback, by j, of some smooth 1-form $A \in \Omega^1(\mathbf{R})$. Thus, $\alpha(\gamma)_0 = j^*(A)(\gamma)_0 = A(j \circ \gamma)_0$. But $j \circ \gamma(0) = 0$ and $j \circ \gamma(t) \geq 0$ imply $d\gamma(t)/dt \mid_{t=0} = 0$. Therefore, $A(j \circ \gamma)_0 = A_0(d\gamma(t)/dt \mid_{t=0}) = 0$, and $\alpha(\gamma)_0 = 0$.

- 5. The 1-forms as a 1-dimensional module. From what precedes we conclude that, in every case: $\Delta_{\star} = \Delta$ or Δ_{n} or Δ_{∞} , the space of differential 1-forms $\Omega^{1}(\Delta_{\star})$ is a 1-dimensional module on $\Omega^{0}(\Delta_{\star})$, with $dt \upharpoonright [0, \infty[$ as a generator.
- 6. Gauges on diffeological spaces. There is a notion of volume for diffeological spaces of finite constant dimension, in [DBook, 6.44] that almost applies to the half-lines but not completely. First of all, in our case the dimension is not constant (except for the case n=1), but more importantly, the 1-form vanishes at the origin, and volumes are assumed to be nowhere vanishing. Nevertheless, in every case above, the space of 1-forms is a 1-dimensional module on the space of smooth functions, and that is an important remark. That leads to the introduction of the concept of k-jauge on a diffeological space, which is slightly different from the concept of volume, but pursues the same idea:

Definition. We call a k-gauge on a diffeological space X, any k-form generating $\Omega^k(X)$ as a 1-dimensional module on $\Omega^0(X)$.

In our case, for every half-line X, the pullback $j^*(dt)$, where j is the smooth injection of $[0,\infty[$ into \mathbf{R} , is a generator of $\Omega^1(X)$. The concept of k-gauge on diffeological spaces worth being studied. There are a few questions around it that need to be answered.

References

[DBook] Patrick Iglesias-Zemmour. *Diffeology*, Mathematical Surveys and Monographs, vol. 185. Am. Math. Soc., Providence, 2012. http://www.ams.org/bookstore-getitem/item=SURV-185

[DBlog] Patrick Iglesias-Zemmour and Enxin Wu. A few half-lines, Blog. http://math.huji.ac.il/~piz/documents/DBlog-Rmk-AFHL.pdf

²Terminology introduced in [PIZ14].

- [PIZ14] Patrick Iglesias-Zemmour. Example of Singular Reduction in Symplectic Diffeology. Preprint, 2014. http://math.huji.ac.il/~piz/documents/EOSRISD.pdf
- [Whi43] Hassler Whitney. Differentiable even functions, Duke Mathematics Journal, 10, 159–160, 1943.

E-mail address: piz@math.huji.ac.il URL: http://math.huji.ac.il/~piz/