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In this note we characterize the differential 1-forms, defined on
the various half-lines Δ, Δn, Δ∞, that share the same underlying
set [0,∞[.

Diffeologies on the half-line

We consider a series of diffeologies on the set [0,∞[:
A) Equipped with the subset diffeology, it is a manifold with

boundary {0}, [DBook, 4.12, 4.16]. It is denote by Δ.
B) Equipped with the pushforward of the standard diffeology of

Rn, n > 0, by the norm-square map:

Sq : Rn → [0,∞[ with Sq : x 7→ ‖x‖2,
it represents the quotients Δn = Rn/O(n) [DBook, 1.50, Ex. 50].
We denote Δ∞ = limn→∞ Δn, and when we write Δn, we allow n to
represent also ∞.

Note 1. There are no two different half-lines above that are
diffeomorphic. We recall that dim0(Δn) = n, dim0(Δ∞) = ∞ and
dim0(Δ) = ∞, [DBook, Ex. 50,51] and [DBlog].

Note 2. The choice of the function Sq to characterize the quo-
tient Rn/O(n) is irrelevant. Every other bijection with the space
of orbits could have been used to push forward the standard dif-
feology of Rn, as explained in [DBook, 1.52]. For example we
could have chosen equivalently X 7→ ‖X‖, but then the injection
j : [0,∞[→ R would have not been smooth.
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1-forms on the half-lines

1. The 1-forms are closed. Every differential 1-form defined on Δn,
Δ∞, or Δ ⊂ R, is closed. Moreover, every half-line is contractible.
Therefore, every 1-form is exact.
Note. In the case n = 1, the 1-forms are closed simply because the
dimension of Δ1 is 1 [DBook, 6.39]. But because the dimension of
Δn and Δ at the origin are n or ∞, the argument of the dimension
doesn’t apply so simply.

Proof. Any of these half-lines has [0,∞[ as underlying space, only
the diffeology change. In each case, the subset ]0,∞[ is D-open.
In each case, the diffeology induced on ]0,∞[ is the standard dif-
feology. The difference of behavior in the diffeology happens only
on the neighborhood of {0}. Now, let α be a 1-form on a half-
line, let P be a m-plot and U ⊂ Rm be its domain. The subset
V = P–1(]0,∞[) is open in U and because ]0,∞[ is 1-dimensional
d[α(P � V)] = 0. The complementary W of V in U is closed. On its
interior

◦
W the plot is constant, therefore α(P �

◦
W) = 0, and then

d[α(P �
◦
W)] = 0. Now, on the boundary ∂V = V̄ – V = W–

◦
W, ev-

ery point r is a limit limn→∞ rn, with rn ∈ V. Thus, by continuity,
for all ξ, ξ′ ∈ Rm, d[α(P)]r(ξ, ξ′) = limn→∞ d[α(P � V)]rn(ξ, ξ

′) = 0.
Hence, dα(P) = 0 everywhere, that is, dα = 0.
Next, about contractibility. The radial retraction x 7→ sx in Rn

is equivariant under the action of O(n). Thus, the quotients Δn =
Rn/O(n) are contractible, and also the limit Δ∞. For Δ we have the
retraction ρs : t 7→ s2t. The map (s, t) 7→ s2t, defined on R×Δ takes
its values in Δ and is smooth. Thus, Δ is contractible. According
to [DBook, 6.90] every closed differential form on a contractible
diffeological space is exact. Therefore, every 1-form on these half-
lines is the differential of a smooth function, this function can be
normalized by zero at the origin, and then is unique. �

2. The case of Δ. Every differential 1-form on the embedded half-
line Δ ⊂ R is the restriction of a differential 1-form defined on
R. In other words, the natural induction j : [0,∞[→ R induces a
surjective pullback j∗ : Ω1(R) → Ω1(Δ). That is, for all α ∈ Ω1(Δ),
there exists a ∈ C∞(R,R) such that αx = a(x)dx, for all x ≥ 0.
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Proof. Thanks to [DBook, 4.13] we know that a smooth function
from Δ to R is the restriction of a smooth function from R to R.
Together with the proposition 1, that gives the result. �

3. The case of Δn. The set [0,∞[ is equipped with the pushforward
of the standard diffeology of Rn by the norm-square map Sq. That
identifies Δn with Rn/O(n) by class(X) ' ‖X‖2. The injection
j : Δn ' [0,∞[→ R is smooth. The pullback j∗ : Ω1(R) → Ω1(Δn) is,
here again, surjective1.

Proof. The smoothness of the injection comes from the smoothness
of the square Sq : Rn → [0,∞[, with Sq(X) = ‖X‖2. Now, for the
same reason than previously, every 1-form α on Δn is exact, that
is, there exists a function f ∈ C∞(Δn,R) such that α = df . Pulled
back on Rn, we have Sq∗(α) = Sq∗(df ) = d(f ◦ Sq). The function
F = f ◦ Sq is smooth and invariant by O(n). Conversely every
smooth function F : Rn → R that is O(n)-invariant is the pullback,
by Sq, of a smooth function f on Δn. So, every 1-form on Δn is
the pushforward of a differential dF, where F is smooth and O(n)-
invariant. Let us restrict F to the subspace of the vectors (x, 0),
x ∈ R, and let F(x) for F(x, 0). We have F(x) = f (x2), that is,
F(+x) = F(–x). Thanks to Whitney theorem [Whi43], there exists
a smooth function g ∈ C∞(R,R) such that F(x) = g(x2). Thus,
f (x2) = g(x2), in other words: f = g � [0,∞[, f is the restriction of
a smooth function to the interval [0,∞[. Thus α = df = d(g ◦ j) =
j∗(dg); written differently, αt = a(t)dt, for all t ∈ [0,∞[. On Rn,
the pullback of α writes,

Sq∗(α)X = 2a
(
‖X‖2

)
X · dX = 2a

(
‖X‖2

) n∑
i=1

XidXi,

where a is a smooth function on R. �

4. The 1-forms vanish at the origin. Every differential 1-form α, de-
fined on any half-line Δ or Δn or Δ∞, vanishes at the origin [DBook,
6.40]. That is, for every 1-plot γ pointed at the origin, γ(0) = 0,
we have α(γ)0 = 0.
In other words, the cotangent space reduces to {0} at the origin,

[DBook, 6.48]; it is equal to R everywhere else. An interesting
question would be to describe the diffeology of the cotangent space,

1Note that the inclusion j is smooth injective but not an induction.
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and to study its parasymplectic structure2, that is, the struture
defined by the differential of its Liouville form [DBook, 6.49].

Proof. According to what comes before, in every case the injection
j from the half-line into R is smooth, and the form α is the pullback,
by j, of some smooth 1-form A ∈ Ω1(R). Thus, α(γ)0 = j∗(A)(γ)0 =
A(j ◦ γ)0. But j ◦ γ(0) = 0 and j ◦ γ(t) ≥ 0 imply dγ(t)/dt |t=0= 0.
Therefore, A(j ◦ γ)0 = A0(dγ(t)/dt |t=0) = 0, and α(γ)0 = 0. �

5. The 1-forms as a 1-dimensional module. From what precedes
we conclude that, in every case: Δ? = Δ or Δn or Δ∞, the space
of differential 1-forms Ω1(Δ?) is a 1-dimensional module on Ω0(Δ?),
with dt � [0,∞[ as a generator.

6. Gauges on diffeological spaces. There is a notion of volume for
diffeological spaces of finite constant dimension, in [DBook, 6.44]
that almost applies to the half-lines but not completely. First of
all, in our case the dimension is not constant (except for the case
n = 1), but more importantly, the 1-form vanishes at the origin,
and volumes are assumed to be nowhere vanishing. Nevertheless,
in every case above, the space of 1-forms is a 1-dimensional mod-
ule on the space of smooth functions, and that is an important
remark. That leads to the introduction of the concept of k-jauge
on a diffeological space, which is slightly different from the concept
of volume, but pursues the same idea:
Definition. We call a k-gauge on a diffeological space X, any

k-form generating Ωk(X) as a 1-dimensional module on Ω0(X).

In our case, for every half-line X, the pullback j∗(dt), where j is
the smooth injection of [0,∞[ into R, is a generator of Ω1(X). The
concept of k-gauge on diffeological spaces worth being studied.
There are a few questions around it that need to be answered.
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