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We propose a formal framework for Riemannian diffeology, with a
definition for Riemannian metric that coincides with the standard
definition for manifolds.

Pointed or pointwise diffeology

The notion of pointed or pointwise diffeology has been used
at a few places already: for the dimension in diffeology [PIZ13,
§2.19/20], or for the construction of differential p-forms bundles
and p-vectors bundles [PIZ13, §6.45]. We can detach the definition
of pointwise diffeological objects from an ambient diffeology, and
make it depending only of a pointed diffeology. Let us remind first
that:
Definition (pointed parametrization). A pointed parametrization
in a set X at a point x is any parametrization P : U → X such
that: 0 ∈ U and P(0) = x. We denote by Paramx(X) the set of all
parametrizations pointed at x.
Definition (pointed diffeology). Let X a set and x ∈ X, we call a
pointed diffeology at x any set Dx ⊂ Paramx(X) that satisfies the
two axioms:

(1) The constant parametrization 0 7→ x belongs to Dx.
(2) For all parametrization P : U → X belonging to Dx and for

all smooth parametrization F : V → U, pointed at 0, P ◦ F
belongs to Dx.

Note that a pointed diffeology at x is always the germ at the
point x of the diffeology it generates [PIZ13, §1.6]. And, for any
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diffeology D, the subset Dx ⊂ D of plots pointed at x is a pointed
diffeology.
Definition (pointed path). A pointed path at x ∈ X is a pointed
smooth parametrization at x, defined on R or some interval ]a, b[.
Definition (A pointed p-form). A pointed p-form at x is a map αx
that associates to every pointed plot P at x a linear p-form αx(P) ∈
Λ

p(Rn) at 0 ∈ dom(P) ⊂ Rn, such that αx(F ◦ P) = F∗(αx(P))0,
that is:

αx(F ◦ P)(v1, . . . , vp) = αx(P)(Mv1, . . . , Mvp),

with M = D(F)(0),

for all smooth parametrisation F in dom(P) pointed at 0. We shall
denote the space of pointed p-forms at x by λpx(X).

Note that, the value at x of a (global) p-form is a pointed p-
form, but maybe not all pointed p-forms are values of a (global)
p-form. We have denoted by Λpx(X) the space of values of p-forms
at x [PIZ13, §6.45]. Actually, according to our notations:

Λ
p
x(X) ⊂ λpx(X).

Smooth covariant tensor

We recall [PIZ13, §6.20 Note, 6.21] that a smooth covariant ten-
sor on a diffeological space is a map ε that associates to every plot
P in X a smooth covariant tensor ε(P) on U = dom(P), such that

ε(P ◦ F) = F∗(ε(P))

for all smooth parametrization F : V → U. The tensor ε is symetric
if ε(P)is symetric for all P. In the following we deal with symetric
2-tensor and we denotes their space by

Σ
2(X),

and the space of symetric 2-tensor on the Euclidean subset U by
Σ

2(U) with the identification ε ∼ ε(1U).
About the notations, if ε is a smooth covariant k-tensor on a

domain U ⊂ Rn, we denote by εr(v1) · · · (vk) the evaluation of ε at
the point r ∈ U, applied to the k-uple of vectors v1, · · · , vk ∈ Rn.
For n = 1, a vector is just a number and 1 is the canonical basis
vector.



ON RIEMANNIAN METRIC IN DIFFEOLOGY 3

Riemannian metric on a diffeological space

Definition. (Riemannian metric) We shall define, for now, a Rie-
mannian metric on a diffeological space X a covariant 2-tensor that
satifies the following conditions:

• (Symetric) The tensor g is symetric:

g ∈ Σ2(X).

• (Positive) For all path γ ∈ Paths(X), g(γ) ≥ 0, that is

g(γ)t(1)(1) ≥ 0 for all t ∈ R.

Actually we can restrict the case to paths defined on R
or on intervals ]a, b[, in that case g(γ)t(1)(1) ≥ 0 for all
t ∈ dom(γ) obviously.

• (Definite) The tensor g is positive definite:

g(γ)t(1)(1) = 0 ⇒ ∀α ∈ Ω1(X), α(γ)t(1) = 0.

The last condition can be weakened by considering pointed dif-
ferential forms, as defined above. Considering the space λkx(X) of
pointed k-forms at x by, the positivity condition becomes:

• (Definite’) The tensor g is positive definite if for all point
x ∈ X, for all path γ pointed at x :

g(γ)0(1)(1) = 0 ⇒ ∀αx ∈ λ1x(X), αx(γ)0(1) = 0.

It is not clear what definition is the best, for many examples
built with manifolds and spaces of smooth maps they do coincide.
But they may differ in general and, depending on the problem,
one must choose one or the other.
Definition. (Length and energy of a path) Let g be a Riemannian
metric on a diffeological space X. For all path γ in X, we define
its length and its energy by:

length(γ) =
∫ 1

0

√
g(γ)t(1)(1) dt, and E(γ) =

1
2

∫ 1

0
g(γ)t(1)(1) dt .

Exercises

✎ Exercise (1). For all x ∈ X we say that a path γ is centered at
x if γ(0) = x. Let g be a symmetric 2-tensor on X. Show that:

• g is positive if for all x ∈ X, for all path γ centered at x,
g(γ)0(1)(1) ≥ 0.
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Figure 1. The transition function.

• g is definite if for all x ∈ X, for all path γ centered at x,
g(γ)0(1)(1) = 0 implies that for all 1-form α on X, pointed
or not, α(γ)0(1) = 0.

✑ Solution — It is a part of the definition that if g(γ)t(1)(1) ≥ 0
for all path γ in X and all t ∈ dom(γ), then, for all x ∈ X, for all
path γ centered in x, g(γ)0(1)(1) ≥ 0. Conversely, assume that for
all x ∈ X, for all path γ centered in x, g(γ)0(1)(1) ≥ 0. Let γ′ be
a path in X and t ∈ dom(γ′), let x = γ′(t). Let Tt(t′) = t′ + t be
the translation by t in R and γ = γ′ ◦ Tt Then,

g(γ)0(1)(1) = g(γ′ ◦ Tt)0(1)(1)

= T∗
t(g(γ′))0(1)(1)

= g(γ′)t(1)(1) because D(Tt)0(1) = 1.

Thus, for all t ∈ dom(γ′), g(γ′)t(1)(1) ≥ 0.
The same use of translation by t proves the second proposi-

tion. □

✎ Exercise (2). Show that for X = M be a manifold, this definition
coincide with the standard definition. We choose the definition of
positive definite metric with pointed forms. Say why on manifold
the two conditions coincide.

✑ Solution — Let A be an atlas of M and let dim(M) = n.
By definition, for all chart F ∈ A, g(F) is a symetric 2-tensor
on dom(F), since a chart is a particular plot. Let x ∈ M and
two charts F, F′ ∈ A such that F(r) = F(r ′) = x. Since A is a
generating family, there exist an open neighborhood V ⊂ dom(F)
of r and a plot Q : V → dom(F′) such that F′ ◦ Q = F ↾ V,
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Q(r) = r ′, and we can choose V such that Q(V) ⊂ dom(F′). Thus,
g(F ↾ V) = g(F ◦ Q) = Q∗(g(F)), but Q = F′–1 ◦ F ↾ V is the
transition diffeomorphism, hence: g(F) = (F′–1 ◦ F)∗(g(F′)) which
is the definition of a 2-tensor on a manifold.

Now, let F be a chart of M. As we said g(F) is a symmetric 2-
tensor on dom(F) ⊂ Rn. Let g(F)r be its value in r, and x = F(r).
Let v ∈ Rn and γv : t 7→ r + tv, γv is a smooth path in dom(F),
defined on some interval in R and centered at r. Let γv = F ◦ γ,
then γv(0) = F(r) = x. Then:

g(γv)0(1)(1) = g(F ◦ γv)0(1)(1)

= γ∗v(g(F))0(1)(1)

= g(F)γv(0)(γ̇v(0))(γ̇v(0)), with γ̇v(t) =
dγv(t)

dt
= g(F)r(v)(v)

Since g(γ)0(1)(1) ≥ 0 for all γ, then, for γ = γv , g(F)r(v)(v) ≥ 0
for all r ∈ dom(F) and v ∈ Rn. Thus, g(F) is a non-negative
symmetric 2-tensor.

Now, let F be a chart and let us check that g(F) is positive
definite. Let r ∈ dom(F) and v ∈ Rn. Let x = F(r). Assume that
g(F)r(v, v) = 0. Let γv(t) = r + tv and γv = F ◦ γv , then:

g(F)r(v)(v) = g(F)γv(0)(γ̇v(0))(γ̇v(0))

= γ∗v(g(F))0(1)(1)

= g(F ◦ γv)0(1)(1)

= g(γv)0(1)(1)

So, if g(F)r(v, v) = 0 then g(γv)0(1)(1) = 0, which implies, by
hypothesis, that for all 1-form αx pointed at x, αx(γv) = 0. Con-
sider now the coordinate 1-forms e∗

i : v 7→ vi, for all v =
∑

i viei,
where (ei)n

i=1 is the canonical basis of Rn. Push the form e∗
i onto

M by the chart F : Let εxi defined as follow: for all plot P : U → X
pointed at x, there exists a smooth parametrization Q pointed
at r, with F(r) = x, defined on neighborhood V of 0 ∈ U such
that P ↾ V = F ◦ Q. Then, let εxi (P) = Q∗(e∗

i ), this is a 1-
form centered at x. Indeed, for P′ = P ◦ F, Q′ = Q ◦ F and
ε

x
i (P ◦ F) = (Q ◦ F)∗(e∗

I ) = F∗(Q∗(e∗
i )) = F∗(εxi (P)). Now, since

g is assumed to be positive definite: εxi (γv) = 0, but γv = F ◦ γv ,
thus εxi (γv) = γ∗v(e∗

i ) = (e∗
i )r(γ̇v(0)) = e∗

i (v) = vi. Hence, for all
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Figure 2. A path in a chart.

i, vi = 0 and then v = 0. The 2-tensor g(F) defined on dom(F) is
a positive definite metric. □

✎ Exercise (3). For two vectors v, v ′ ∈ R3, denote by ⟨v, v ′⟩ their
ordinary scalar product. Let γ ∈ Paths(R3), call a variation of γ
a path t 7→ (xt, vt) such that xt = γ(t) and vt ∈ R3. For two
variation ν = [t 7→ (xt, vt)] and ν′ = [t 7→ (xt, v ′

t)] of γ, define the
product

⟨ν, ν′⟩ =
∫ 1

0
⟨vt, v ′

t⟩ dt

Q1: Considers this product to define a formal Riemannian met-
ric on Paths(R3).

Q2: Explicit the energy of a path [s 7→ γs] in Paths(R3).

✑ Solution — Let P : U → Paths(X) be a n-plot. Let us define
g(P) a 2-tensor on U by: for all r ∈ U and v, v ′ ∈ R3,

g(P)r(v)(v ′) =
∫ 1

0

〈
∂γr(t)

∂r
(v),

∂γr(t)
∂r

(v ′)
〉

dt .

Let us prove that g is a Riemannian metric on Paths(X). Consider
g(P ◦ F), with F a smooth paramerization in U. Let us denote
F : s 7→ r, P : r 7→ γ and then P ◦ F : s 7→ r 7→ γ. We have:

g(P ◦ F)s(w)(w ′) =
∫ 1

0

〈
∂γ(t)

∂s
(w),

∂γ(t)
∂s

(w ′)
〉

dt

=
∫ 1

0

〈
∂γ(t)

∂r
∂r
∂s

(w),
∂γ(t)

∂r
∂r
∂s

(w ′)
〉

dt
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We remind that for a smooth parametrization f : x 7→ y, where x
and y are two real variables, we use indiferently the notations

D(f ) or D(x 7→ y) or
∂y
∂x

.

Then for g ◦ f : x 7→ y 7→ z, the chain-rule writes:

D(x 7→ z) = D(x 7→ y 7→ z) = D(y 7→ z) ◦ D(x 7→ x),

or:
∂z
∂x

=
∂z
∂y

◦ ∂y
∂x

.

Therefore, by denoting

v =
∂r
∂s

(w) and v ′ =
∂r
∂s

(w ′)

we get:

g(P ◦ F)s(w)(w ′) =
∫ 1

0

〈
∂γ(t)

∂r
∂r
∂s

(w),
∂γ(t)

∂r
∂r
∂s

(w ′)
〉

dt

=
∫ 1

0

〈
∂γ(t)

∂r
(v),

∂γ(t)
∂r

(v ′)
〉

dt

= g(P)r=Q(s)

(
∂Q(s)

∂s
(w)

)(
∂Q(s)

∂s
(w ′)

)
= Q∗(g(P))s(w)(w ′)

Hence, g is a covariant 2-tensor on Paths(R3). It is symmetric
because the scalar product is symetric. Now, let s 7→ γs be a path
in Paths(R3),

g(s 7→ γs)s(1)(1) =
∫ 1

0

〈
∂γs(t)

∂s
,

∂γs(t)
∂s

〉
dt

=
∫ 1

0

∥∥∥∥∥ ∂γs(t)
∂s

∥∥∥∥∥
2

dt

Obviously g(s 7→ γs)s(1)(1) is positive. Now

g(s 7→ γs)s(1)(1) = 0 ⇒
∥∥∥∥∥ ∂γs(t)

∂s

∥∥∥∥∥
2

= 0.

then
∂γs(t)

∂s
= 0 ⇒ γs = γ.
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The path s 7→ γs is constant. Thus, for all 1-form α on Paths(R3),
α(s 7→ γ) = 0, forms vanishe on constant plots [PIZ13, Ex. 96].
Therefore, the tensor g defined on Paths(R3) is positive and defi-
nite, it is a diffeological Riemannian metric according to the defi-
nition above. Hence,

E(s 7→ γs) =
1
2

∫ 1

0
ds
∫ 1

0
dt
∥∥∥∥∥ ∂γs(t)

∂s

∥∥∥∥∥
2

is the energy of the path s 7→ γs in Paths(R3). □
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