FUNCTIONAL DIFFEOLOGY ON FOURIER COEFFICIENTS

PATRICK IGLESIAS-ZEMMOUR

ref. http://math.huji.ac.il/~piz/documents/DBlog-Ex-FDOFC.pdf

In this exercise we transfer the functional diffeology defined on smooth complex periodic functions to the space of Fourier coefficients of smooth complex periodic functions.

We denote by $\mathcal{C}^\infty_{\text{per}}(\boldsymbol{R},\boldsymbol{C})$ the space of 1-periodic complex valued real functions,

$$\mathcal{C}_{\mathrm{per}}^{\infty}(\mathbf{R},\mathbf{C}) = \{ f \in \mathcal{C}^{\infty}(\mathbf{R},\mathbf{C}) \mid f(x+1) = f(x) \}.$$

This space is then equipped with the functional diffeology. Let $f \in \mathbb{C}_{per}^{\infty}(\mathbf{R}, \mathbf{C})$, and $(f_n)_{n \in \mathbf{Z}}$ be its sequence of Fourier coefficients

$$f_n = \int_0^1 f(\mathbf{x}) e^{-2i\pi n\mathbf{x}} \, d\mathbf{x}, \ n \in \mathbf{Z}.$$

We know that the Fourier series converges to f, uniformly on [0, 1] (see for example [Vil68, §2 Thm. 1]). We note

$$f(x) = \lim_{N \to \infty} \sum_{n=-N}^{+N} f_n e^{2i\pi nx} \quad \text{or} \quad f(x) = \sum_{n \in \mathbb{Z}} f_n e^{2i\pi nx}.$$

The set of Fourier coefficients of the smooth periodic real functions with values in C is a vector subspace \mathcal{E} of Maps(Z, C). Let

 $j: \mathfrak{C}^\infty_{\operatorname{per}}(\mathbf{R}, \mathbf{C}) \to \operatorname{Maps}(\mathbf{Z}, \mathbf{C}) \quad \text{with} \quad j(f) = (f_n)_{n \in \mathbf{Z}}.$

The map j is injective. We denote by \mathcal{E} the subspace of Maps(**Z**, **C**) made of the Fourier coefficients of the smooth periodic functions, that is,

$$\mathcal{E} = \left\{ (f_n)_{n \in \mathbf{Z}} = j(f) \mid f \in \mathcal{C}_{per}^{\infty}(\mathbf{R}, \mathbf{C}) \right\}.$$

Date: April 2, 2014.

We know that the subspace \mathcal{E} is made exactly of all rapidly decreasing sequences of complex numbers (op. cit.),

for all
$$p \in \mathbf{N}$$
, $n^p f_n \xrightarrow[|n| \to \infty]{} 0$.

Sequences of complex numbers defined above.

Q1. Show that the parametrizations $P: r \mapsto (f_n(r))_{n \in \mathbb{Z}}$ in \mathcal{E} satisfying the following conditions define a diffeology.

- (1) The functions $f_n : \operatorname{dom}(\mathsf{P}) \to \mathbf{C}$ are smooth.
- (2) For all ball $\mathcal{B} \subset \text{dom}(P)$, for all $k, p \in \mathbb{N}$, there exists a positive number $M_{k,p}$ such that for all nonzero integer n

$$\left|\frac{\partial^k f_n(r)}{\partial r^k}\right| \leq \frac{M_{k,p}}{|n|^p} \quad \text{for all } r \in \mathcal{B}.$$

Q2. Show that the diffeology defined by (\clubsuit) is the pushforward on \mathcal{E} , by *j*, of the functional diffeology on $\mathbb{C}_{per}^{\infty}(\mathbf{R}, \mathbf{C})$

Note 1. In other words, the parametrization $r \mapsto (f_n(r))_{n \in \mathbb{Z}}$ is a plot of the pushed forward functional diffeology if the functions f_n are smooth and their derivatives are uniformly rapidly decreasing, what we denote (rather imprecisely) by

$$n^p rac{\partial^k f_n(r)}{\partial r^k} \xrightarrow[|n| \to \infty]{} 0.$$

Note 2. Thanks to paracompacity, it is enough that, for every point $r_0 \in \text{dom}(P)$, there exists a ball \mathcal{B}' centered at r_0 such that (\clubsuit) holds to ensure that (\clubsuit) holds on every ball $\overline{\mathcal{B}} \subset \text{dom}(P)$.

C Solution: We verify, first of all, that the condition (\clubsuit) defines a diffeology on the space \mathcal{E} of rapidly decreasing sequences of complex numbers.

A1 (Covering axiom). If $f_n(r) = f_n$ is constant in r, for all n, then the condition (4) is trivially satisfied for k > 0, and for k = 0 it means that the series is rapidly decreasing, what it is.

A2 (Locality axiom). According to Note 2, the condition (\clubsuit) is local in r.

A3 (Smooth compatibility axiom). Let $P : (r \mapsto f_n(r))_{n \in \mathbb{Z}}$ satisfying (\clubsuit) and $F : s \mapsto r$ be a smooth parametrization in the domain

of P. We have, for all k > 0,

$$\frac{\partial^k f_n(s)}{\partial s^k} = \sum_{\ell=1}^k \frac{\partial^\ell f_n(r)}{\partial r^\ell} \cdot Q_{k,\ell}\left(\frac{\partial r}{\partial s}, \dots, \frac{\partial^k r}{\partial s^k}\right),$$

where the $Q_{k,\ell}$ are polynomials. Now, since the function $s \mapsto r$ is smooth, the operators $Q_{k,\ell}$ are bounded on every ball. Let then $s_0 \in \text{dom}(F)$, $r_0 = F(s_0)$ and \mathcal{B} be a ball centered at r_0 such that the condition (**4**) is satisfied. Let $\mathcal{B}' \subset F^{-1}(\mathcal{B})$ be a ball centered at s_0 , we have for all $s \in \mathcal{B}'$,

$$\begin{aligned} \left| \frac{\partial^{k} f_{n}(s)}{\partial s^{k}} \right| &\leq \sum_{\ell=1}^{k} \left| \frac{\partial^{\ell} f_{n}(r)}{\partial r^{\ell}} \right| \left| \mathsf{Q}_{k,\ell} \left(\frac{\partial r}{\partial s}, \dots, \frac{\partial^{k} r}{\partial s^{k}} \right) \right| \\ &\leq \sum_{\ell=1}^{k} \frac{\mathsf{M}_{\ell,p}}{|n|^{p}} \sup_{s \in \mathcal{B}'} \left| \mathsf{Q}_{k,\ell} \left(\frac{\partial r}{\partial s}, \dots, \frac{\partial^{k} r}{\partial s^{k}} \right) \right|, \end{aligned}$$

where the $M_{\ell,p}$ are the constants of the inequality (\clubsuit) for the ball \mathcal{B} . Let then

$$m_{k,\ell} = \sup_{s \in \mathcal{B}'} \left| \mathsf{Q}_{k,\ell} \left(\frac{\partial r}{\partial s}, \dots, \frac{\partial^k r}{\partial s^k} \right) \right| \text{ and } \mathsf{M}'_{k,p} = \sum_{\ell=1}^k m_{k,\ell} \, \mathsf{M}_{\ell,p} \,,$$

we get, for all $s \in \mathcal{B}'$,

$$\left|\frac{\partial^k f_n(s)}{\partial s^k}\right| \leq \frac{M'_{k,p}}{|n|^p}.$$

Hence, thanks to Note 2, $P \circ F$ still satisfies the condition (\clubsuit). Therefore, this condition defines a diffeology on the set \mathcal{E} of rapidly decreasing sequences of complex numbers.

Let us show now that the diffeology defined on \mathcal{E} by (\clubsuit) is the pushforward by j of the functional diffeology of $\mathbb{C}_{per}^{\infty}(\mathbf{R}, \mathbf{C})$.

1.— Let us prove, first of all, that j is smooth, where $\mathcal{C}_{per}^{\infty}(\mathbf{R}, \mathbf{C})$ is equipped with the functional diffeology and \mathcal{E} with the diffeology defined by (**4**). Let $P: r \to f_r$ be a plot of $\mathcal{C}_{per}^{\infty}(\mathbf{R}, \mathbf{C})$ defined on some real domain U, the composite $j \circ P$ writes

$$j \circ \mathbb{P} : r \mapsto (f_n(r))_{n \in \mathbb{Z}}$$
 with $f_n(r) = \int_0^1 f_r(x) e^{-2i\pi nx} dx$.

Clearly, since $(r, x) \mapsto f_r(x)$ is smooth, the $f_n : r \mapsto f_n(r)$ are smooth, and we have

$$\frac{\partial^k f_n(r)}{\partial r^k} = \int_0^1 \frac{\partial^k f_r(x)}{\partial r^k} e^{-2i\pi nx} dx$$

For all nonzero integer n, after p integrations by parts, we get

$$\frac{\partial^k f_n(r)}{\partial r^k} = \frac{1}{(2i\pi n)^p} \int_0^1 \frac{\partial^p}{\partial x^p} \left(\frac{\partial^k f_r(x)}{\partial r^k} \right) \, e^{-2i\pi nx} \, dx$$

Therefore, defining for every ball $\mathcal{B} \subset \text{dom}(\mathsf{P})$ the number

$$M_{k,p} = \frac{1}{(2\pi)^p} \sup_{r \in \mathcal{B}} \sup_{x \in [0,1]} \left| \frac{\partial^p}{\partial x^p} \frac{\partial^k}{\partial r^k} f_r(x) \right|,$$

we have

$$\left|rac{\partial^k f_n(r)}{\partial r^k}
ight|\leq rac{\mathrm{M}_{k,p}}{|\,n\,|^p} \quad ext{for all } r\in \mathcal{B}.$$

Hence, $j \circ P$ is a plot of \mathcal{E} . Therefore j is smooth.

2.— Conversely, remember that j is injective, then let us show that $j^{-1}: \mathcal{E} \to \mathcal{C}^{\infty}_{per}(\mathbf{R}, \mathbf{C})$ is smooth. Let $P: r \mapsto (f_n(r))_{n \in \mathbf{Z}}$ be a parametrization in \mathcal{E} satisfying the condition (\clubsuit), and let

$$j^{-1} \circ \mathsf{P} : r \mapsto [x \mapsto f_r(x)].$$

The parametrization $r \mapsto f_r$ is given by

$$f_r(x) = \lim_{N \to \infty} S_N(r, x)$$
 with $S_N(r, x) = \sum_{n=-N}^{+N} f_n(r) e^{2i\pi nx}$.

The S_N are smooth for all N, we want to show that the limit $(r, x) \mapsto f_r(x)$ is smooth too. For all $k, p, N \in \mathbf{N}$, let us introduce the series of partial derivatives

$$S_{N}^{k,p}(r,x) = \frac{\partial^{p}}{\partial x^{p}} \frac{\partial^{k}}{\partial r^{k}} S_{N}(r,x) = \sum_{-N}^{+N} (2i\pi n)^{p} \frac{\partial^{k} f_{n}(r)}{\partial r^{k}} e^{2i\pi nx}.$$

The functions $S_N^{k,p}$ are smooth, with respect to the pair (r, x), for all N, k, p. Let us denote by $|S|_N^{k,p}(r, x)$ the series of moduli of the terms of $S_N^{k,p}$

$$|\mathbf{S}|_{\mathbf{N}}^{k,p}(\mathbf{r},\mathbf{x}) = \sum_{-\mathbf{N}}^{+\mathbf{N}} |2\pi\mathbf{n}|^{p} \left| \frac{\partial^{k} f_{\mathbf{n}}(\mathbf{r})}{\partial \mathbf{r}^{k}} \right|.$$

Then, let $\mathcal{B} \subset \text{dom}(\mathsf{P})$ be some ball. Thanks to the hypothesis, applying (2) of Q1 to p + 2, we have, for all $r \in \mathcal{B}$,

$$\sum_{n=-N}^{+N} |2\pi n|^p \left| \frac{\partial^k f_n(r)}{\partial r^k} \right| \leq c+2\sum_{n=1}^N (2\pi)^p \frac{M_{k,p+2}}{n^2},$$

where c, corresponding to n = 0, is some constant. Hence, for all $r \in \mathcal{B}$, $x \in [0, 1]$ and $N \in \mathbf{N}$

$$|S|_{N}^{k,p}(r,x) \leq K$$

where $K = c+2(2\pi)^p M_{k,p+2}(\pi^2/6)$. Next, since the series $|S|_N^{k,p}(r,x)$ is increasing and upper bounded, it is convergent, and therefore the series $S_N^{k,p}(r,x)$ is also convergent. Moreover, according to what preceded: the sequence of smooth functions $S_N^{k,p}$ converges uniformly on $\mathcal{B} \times [0,1]$ to some function $S_{\infty}^{k,p}$ when $N \to \infty$. Now, according to (an obvious improvement of) [Don00, Thm. 3.10] the map $(r, x) \mapsto f_r(x) = \lim_{N\to\infty} S_N(r, x)$ is smooth, and the $S_{\infty}^{k,p}$ are the partial derivatives

$$S^{k,p}_{\infty}(r,x) = \frac{\partial^p}{\partial x^p} \frac{\partial^k}{\partial r^k} f_r(x).$$

Thus, the parametrization $r \mapsto [x \mapsto f_r(x)]$ is a plot of $\mathcal{C}_{per}^{\infty}(\mathbf{R}, \mathbf{C})$ such that $j(r \mapsto f_r) = (f_n(r))_{n \in \mathbf{Z}}$. Therefore, j is a diffeomorphism from $\mathcal{C}_{per}^{\infty}(\mathbf{R}, \mathbf{C})$, equipped with the functional diffeology, to \mathcal{E} , equipped with the diffeology defined by (\clubsuit). In other words, the diffeology defined on \mathcal{E} by (\clubsuit) is the pushforward of the functional diffeology on $\mathcal{C}_{per}^{\infty}(\mathbf{R}, \mathbf{C})$.

References

- [Don00] Paul Donato, Calcul différentiel pour la licence. Dunod, Paris (2000).
- [PIZ13] Patrick Iglesias-Zemmour, Diffeology. Mathematical Surveys and Monographs, vol. 185. Am. Math. Soc., Providence RI, (2013).
- [Vil68] Naum Vilenkin, Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs. Am. Math. Soc., Providence RI (1968).

E-mail address: piz@math.huji.ac.il *URL*: http://math.huji.ac.il/~piz/