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Abstract. This text presents the basics of Diffeology and themain domains:

Homotopy, FiberBundles,Quotients, Singularities, Cartan-deRhamCalculus

—which form the core of differential geometry— from the point of view of

this theory. We show what makes diffeology special and relevant in regard to

these traditional subjects.

Introduction

Since its creation, in the early 1980s,Di�eology has become an alternative, or rather
a natural extension of traditional differential geometry. With its developments in

higher homotopy theory, fiber bundles, modeling spaces, Cartan-de Rham calcu-

lus, moment map and symplectic
1

program, for examples, diffeology now covers

a large spectrum of traditional fields and deploys them from singular quotients

to infinite-dimensional spaces — and mixes the two — treating mathematical

objects that are or are not strictly speaking manifolds, and other constructions, on

an equal footing in a common framework. We shall see some of its achievements

through a series of examples, chosen because they are not covered by the geom-

etry of manifolds, because they involve infinite-dimensional spaces or singular

quotients, or both.

The growing interest in diffeology comes from the conjunction of two strong

properties of the theory:

1. Mainly, the category {Diffeology} is stable under all set-theoretic construc-

tions: sums, products, subsets, andquotients. One says that it is a complete

and co-complete category. It is also Cartesian closed, the space of smooth

maps in diffeology has itself a natural functional di�eology.
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2. Just as importantly: quotient spaces, even non-Hausdorff,
2

get a natural

non-trivial and meaningful diffeology. That is in particular the case of ir-
rational tori, non-Hausdorff quotients of the real line by dense subgroups.

They own, as we shall see, a non trivial diffeology, capturing faithfully the

intrication of the subgroup into its ambient space. This crucial property

will be the raison d’être of many new constructions, or wide generaliza-

tions of classical constructions, that cannot exist in almost all extensions

of differential geometry.
2

The treatment of any kind of singularities, maybe more than the inclusion of

infinite-dimensional spaces, reveals howdiffeology changes thewayweunderstand

smoothness and discriminates this theory among the various alternatives; see, for

example, the use of dimension in diffeology [21], which distinguishes between

the different quotientsRn/O(n).
The diagram in Figure 1 shows the inclusivity of diffeology, with respect to differ-

ential constructions, in comparison with the classical theory.

Connecting a FewDots. The story began in the early 1980s, when Jean-Marie

Souriau introduced his di�éologies in a paper titled “Groupes Différentiels” [48].
It was defined as a formal but light structure on groups,

3
and it was designed for

dealing easily with infinite-dimensional groups of diffeomorphisms, in particular

the group of symplectomorphisms or quantomorphisms. He named the groups

equipped with such a structure groupes di�érentiels,4 as announced in the title of
his paper.

5
His definition was made of five axioms that we can decompose today

into a first group of three that gave later the notion of diffeology on arbitrary sets,

and the last two, for the compatibility with the internal group multiplication.

But it took three years, from 1980 to 1983, to separate the first three general ax-

ioms from the last two specific ones and to extract the general structure of espace
di�érentiel from the definition of groupe di�érentiel. That was the ongoing work
of Paul Donato on the covering of homogeneous spaces of differential groups, for

2
Trivial under the various generalizations of C∞ differential geometry à la Sikorski or Frölicher

[35] etc. I am not considering the various algebraic generalizations that do not play on the same

level of intuition and generality and do not concern exactly the same sets/objects, lattices instead

of quotients etc.

3
Compared to functional analysis heavy structures.

4
Which translates in to English as “differential” or “differentiable groups.”

5
Actually, difféologies are built on the model of K.-T. Chen’s di�erentiable spaces [3], for which

the structure is defined over convex Euclidean subsets instead of open Euclidean domains. That

makes diffeology more suitable to extending differential geometry than Chen’s differentiable

spaces, which focus more on homology and cohomology theories.
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Figure 1 The scope of diffeology.

one part, and mostly our joint work on the irrational torus, which made urgent
and unavoidable a formal separation between groups and spaces in the domain

of Souriau’s di�erential structures, as that gave a new spin to the theory. Actu-

ally, the first occurrence of the wording “espace différentiel”, including quotes,

appears in the paper “Exemple de groupes différentiels : flots irrationnels sur le

tore,” published in July 1983 [7].
6
The expression was used informally, for the

purposes of the case, without giving a precise definition. The formal definition

was published a couple of months later, inOctober 1983, in “Groupes différentiels

et physique mathématique” [49]. It took then a couple of years to bring the

theory of espaces di�érentiel to a new level: with Souriau on generating quantum

structures [50]; with Donato’s doctoral dissertation on covering of homogeneous

spaces, defended in 1984 [9], and with my doctoral dissertation, defended in 1985,

in which I troduced higher homotopy theory and diffeological fiber bundles
7
[17].

6
The final version has been published in the French Acad. Sci. Proc. [8].

7
That is in this thesis that the first occurence of di�eological space appears, in replacement of

di�erential space which would have been confused with other structures.
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What follows is an attempt to introduce the main constructions and results in

diffeology, past and recent, through several meaningful examples. More details

on the theory can be found in the textbookDi�eology [23] and in related papers.

The Unexpected Example: The Irrational Torus

Let us beginwith the irrational torusTα. At this time, in the early 1980s, physicists

were interested in quantizing one-dimensional systems with a quasi-periodic

potential, that is, a function u from R to R which is the pullback of a smooth

function U on a torus T2 =R2/Z2
along a line of slope α, with α ∈R−Q. If

you prefer, u(x) =U(e2iπx , e2iπαx), where U ∈C∞(T2,R). That problem has

drawn the attention of physicists and some mathematicians to the question of

the statute of the quotient space

Tα =T2/∆α,

where ∆α ⊂T2
is a one-parameter subgroup, the projection fromR2

of the line

y = αx , that is, ∆α = {(e2iπx , e2iπαx)}x∈R.

As a topological space, Tα is trivial, because α is irrational and ∆α “fills” the torus,

that is, its closure is T2
. And a trivial topological space is of no help. The various

differentiable approaches
8
lead also to dead ends; the only smooth maps from Tα

toR are constantmaps, because the compositionwith the projectionπ : T2→Tα
should be smooth. For these reasons, the irrational toruswas regarded by everyone

as an extremely singular space.

But when we think a little bit, the irrational torus Tα is a group, moreover, an

Abelian group, and there is nothingmore regular and homogeneous than a group.

And thatwas the point thatmade us,
9
eager to exploreTα through the approach of

diffeologies. But diffeologies were invented to study infinite-dimensional groups,

such as groups of symplectomorphisms, and it was not clear that they could be

of any help for the study of such “singular” spaces as Tα, except that, because a

diffeology on a set is defined by its smooth parameterizations, and because smooth
parameterizations onTα are just (locally) the composites of smooth parameteriza-

tions intoT2
by the projectionπ : T2→Tα, it was already clear that the diffeology

of Tα was not the trivial di�eologymade of all parameterizations, and neither was
it the discrete di�eologymade only of locally constant parameterizations. Indeed,

8
Sikorski, Frölicher, ringed spaces, etc.

9
Paul Donato and I.
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considering two smooth parameterizations
10 P andP′ inT2

, there is a great chance

that π ◦P and π ◦P′ are different. And because P and P′ are not any parameter-
izations but smooth ones, that makes Tα neither trivial nor discrete. That was

already a big difference with the traditional topological or differential approches

we mentioned above that makes Tα coarse.

But how to measure this non triviality? To what ends did this new approach

lead? That was the true question. We gave some answers in the paper “Exemple

de groupes différentiels: flots irrationnels sur le tore” [7]. Thanks to what Paul

Donato had already developed at this time on the covering of homogeneous di�er-
ential spaces, and which made the core of his doctoral dissertation [9], we could
compute the fundamental group of Tα and its universal covering T̃α. We found

that

π1(Tα) = Z×Z and T̃α =R,

with π1(Tα) included in R as Z+αZ. That was a first insightful result showing
the capability of diffeology concerning these spaces regarded ordinarily as (highly)

singular. Needless to say, since then, they become completely admissible.

In the second half of the 1970s, the quantum mechanics of quasi-periodic po-

tentials hit the field of theoretical physics
11
and the question of the structure of

the space of leaves of the linear foliation of the 2-torus sparked a new level of

interest. In particular, French theoretical physicists used the techniques of non-
commutative geometry developed by Alain Connes. So, the comparison between
the two theories became a natural question. The notion of fundamental group

or universal covering was missing at that time in noncommutative geometry,
12
so

it was not with these invariants that we could compare the two approaches. That

came eventually from the following result:

Theorem 1 (Donato-Iglesias, 1983). Two irrational tori Tα and Tβ are di�eomor-
phic if and only if α and β are conjugate modulo GL(2,Z), that is, if there exists
a matrix

M=
�

a b
c d

�

∈GL(2,Z) such that β=
aα+ b
cα+ d

.

10
A parameterization in a set X is just any map P defined on some open subset U of some

numerical spaceRn
into X.

11
The most famous paper on the question was certainly fromDinaburg and Sinai, on “The

One-Dimensional Schrödinger Equation with a Quasiperiodic Potential" [5].

12
And are still missing today, except for a few attempts to fill in the holes [30].
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⟼

Figure 2—A diffeomorphism from Tα to Tβ.

That result had its correspondence in Connes’s theory, due toMarc Rieffel [42]:

theC∗-algebras associated withα and β areMorita-equivalent if and only ifα and

β are conjugate moduloGL(2,Z). At this moment, it was clear that diffeology
was a possible alternative to noncommutative geometry. Its advantage was to stay

close to the special intuition and concepts developed by geometers along history.

Actually, because of irrationality of α and β, we showed that a diffeomorphism
ϕ: Tα → Tβ could be fully lifted at the level of the covering R2

of T2
into an

affine diffeomorphism Φ(Z) =AZ+B, where A preserves the lattice Z2 ⊂R2
,

that is, A ∈GL(2,Z), and B ∈R2
. The fact that these natural isomorphisms are

preserved a minima in diffeology was of course an encouragement to continue
the exploration of this example, and to push the test of diffeology even further.

And that is not all that could be said, and has been said, on irrational tori. Indeed,

the category {Diffeology} has many nice properties: in particular, as we shall see

in the following, it is Cartesian closed. That means in particular that the set of
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smooth maps between diffeological spaces has a natural diffeology. We call it the

functional di�eology. Thus any set of smooth maps between diffeological spaces
has a fundamental group, in particular the group Diff(Tα) of diffeomorphisms
of Tα. And its computation gives us another surprise:

Theorem 2 (Donato-Iglesias, 1983). The connected component of Diff(Tα) is Tα,
acting by multiplication on itself. Its group of connected components is

π0(Diff(Tα)) =
�

{±1}×Z if α is quadratic
{±1} otherwise.

We recall that a number is quadratic if it is a solution of a quadratic polynomial

with integer coefficients. That result was indeed discriminating, since it did not

appear in any other theory pretending to extend ordinary differential geometry.

That clearly showed that diffeology, even for such a twisted example, was subtle

enough to distinguish between numbers, quadratic or not. This property was

not without reminding us about the periodicity of the continued fraction of real

numbers.

This computation has been generalized on theπ0(Diff(TH)) [19], whereH⊂Rn

is a totally irrational hyperplane and TH =Tn/H.

Theorem 3 (Iglesias-Lachaud, 1990). Let H ⊂ Rn be a totally irrational hy-
perplane, that is, H ∩ Zn = {0}. Let TH = Tn/pr(H), where pr is the pro-
jection from Rn to Tn . Let w = (1, w2, . . . , wn) be the normalized 1-form
such that H = ker(w). The coefficients wi are independent on Q. Let Ew =
Q+w2Q+ · · ·+wnQ⊂R be the Q-vector subspace of R generated by the wi .
The subset

Kw = {λ∈R | λEw ⊂ Ew}

is an algebraic number field, a finite extension of Q. Then, π0(Diff(TH)) is the
group of the units of an order of Kw . Thanks to the Dirichlet theorem,

π0(Diff(TH))' {±1}×Zr+s−1,

where r and s are the number of real and complex places of Kw .

Now, since we have seen what diffeology is capable of, we may have gotten your

attention, and it is time to give some details on what exactly a di�eology on an
arbitrary set is. Then we shall see other applications of diffeology and examples,

some of them famous.
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What is a Diffeology?

It is maybe time to give a precise meaning to what we claimed on the (one-

dimensionnal) irrational torus. As a preamble, let us say that, contrarily to many

constructions in differential geometry, diffeologies are defined just on sets – dry

sets – without any preexisting structure, neither topology nor anything else. That

is important enough to be underlined, and that is also what makes the difference

with the other approaches. A diffeology on a set X consists in declaring what

parameterizations are smooth. Let us first introduce formally a fundamental word

of this theory.

1. Parametrization. We call parameterization in a set X any map P: U→X
such that U is some open subset of a Euclidean space. If we want to be specific,

we say that P is an n-parameterization when U is an open subset ofRn
. The set

of all parameterizations in X is denoted by Params (X). É

Note that there is no condition of injectivity on P, neither any topology precon-
dition on X a priori. And also: we shall say Euclidean domain for “open subset
of an Euclidean space.” Now,

2.Definitionofadiffeology. Adi�eologyonX is any subsetD ofParams (X)
that satisfies the following axioms:

1. Covering: D contains the constant parameterizations.

2. Locality: Let P be a parameterization in X. If, for all r ∈ dom(P),
there is an open neighborhoodV of r such that P �V ∈D , then P ∈D .

3. Smooth compatibility: For all P ∈D , for all F ∈C∞(V,dom(P)),
whereV is a Euclidean domain, P ◦F ∈D .

A space equipped with a diffeology is called a di�eological space. The elements of
the diffeology of a diffeological space are called the plots of (or in) the space.13 É

The first and foremost examples of diffeological spaces are the Euclidean domains,

equipped with their smooth di�eology, that is, the ordinary smooth parametriza-
tions. Pick, for example, the smooth R2

: we have a diffeology on T2 =R2/Z2
by

lifting locally the parameterizations inR2
. That is, a plot of T2

will be a param-

eterization P: r 7→ (zr , z ′r ) such that, for every point in the domain of P, there
exist two smooth parameterizations θ and θ′, in R, defined in the neighborhood

13
There is a discussion about diffeology as a sheaf theory in [18, Annex]. But we do not develop

this formal point of view in general, because the purpose of diffeology is to minimize the technical

tools in favour of a direct, more geometrical, intuition.
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of this point, with (zr , z ′r ) = (e
2iπθ(r ), e2iπθ′(r )), that is, the usual diffeology that

makes T2
the manifold we know. But that procedure can be extended naturally

to Tα. Indeed, a parameterization P: r 7→ τr in Tα is a plot if there exists lo-

cally, in the neighborhood of every point in the domain of P, a parameterization
ζ : r 7→ (zr , z ′r ), such that τr = π(ζ(r )). That construction is summarized by
the sequence of arrows:

R2 pr
−−−−→T2 π−−−−→Tα.

That is exactly the diffeology we consider when we talk about the irrational

torus. But this construction of diffeologies by pushforward is actually one of the
fundamental constructions of the theory. However, to go there, we need first to

introduce an important property of diffeologies.

3. Comparing diffeologies. Inclusion defines a partial order in diffeology.

IfD andD ′ are two diffeologies on a set X, one says thatD is finer thanD ′ if
D ⊂D ′, orD ′ is coarser thanD . Moreover, diffeologies are stable by intersection,

which gives the following property:

Proposition. This partial order, called fineness, makes the set of di�eologies on a
set X, a lattice. That is, every set of di�eologies has an infimum and a supremum.
As usual, the infimum of a family is obtained by intersection of the elements of the
family, and the supremum is obtained by intersecting the di�eologies coarser than
any element of the family.
The infimum of every diffeology, the finest diffeology, is called the discrete di�e-
ology. It consists of locally constant parameterizations. The supremum of every

diffeology, the coarsest diffeology, is called the coarse or trivial di�eology, and it is
made of all the parameterizations. As we shall see, these bounds will be useful for

defining diffeologies by properties (Boolean functions). É

Now, we can write the construction by pushforward:

4. Pushing forward diffeologies. Let f : X→X′ be a map, and let X be a

diffeological space, with diffeologyD . Then, there exists a finest diffeology on
X′ such that f is smooth. It is called the pushforward of the diffeology of X. We

denote it by f∗(D). If f is surjective, its plots are the parameterizations P in X′

that can be written Supi f ◦Pi , where the Pi are plots of X such that the f ◦Pi
are compatible, that is, coincide on the intersection of their domains, and Sup
denotes the smallest common extension of the family { f ◦Pi}i∈I .
In particular, the diffeology of T2

is the pushforward of the smooth diffeology

of R2
by pr, and the diffeology on Tα is the pushforward of the diffeology of T2



10 PATRICK IGLESIAS-ZEMMOUR

by π, or, equivalently, the pushforward of the smooth diffeology of R2
by the

projection π ◦ pr.

Note 1. Let π : X→ X′ be a map between diffeological spaces. We say that π
is a subduction if it is surjective and if the pushforward of the diffeology of X
coincides with the diffeology of X′. In particular pr: R2→T2

and π : T2→Tα
are two subductions. Subductions make a subcategory, since the composite of

two subductions is again a subduction. É
Note 2. Let X be a diffeological space and∼ be an equivalence relation on X.

LetQ=X/∼ be the quotient set,
14
that is,

Q= {class (x) | x ∈X} and class (x) = {x ′ | x ′ ∼ x}.

The pushforward onQ of the diffeology ofX by the projection class is called the
quotient di�eology. Equipped with the quotient diffeology,Q is called the quotient
space of X by∼. This is the first important property of the category {Diffeology},
it is closed by quotient.

Then, after having equipped the irrational tori with a diffeology (actually the

quotient diffeology), we would compare different irrational tori with respect to

diffeomorphisms. For that, we need a precise definition.

5. Smooth maps. Let X and X′ be two diffeological spaces. A map f : X→X′

is smooth if, for any plot P in X, f ◦P is a plot in X′. The set of smooth maps
from X to X′ is denoted, as usual, byC∞(X,X′).

Note 1. The composition of smooth maps is smooth. Diffeological spaces,

together with smooth maps, make a category that we denote by {Diffeology}.

Note 2. The isomorphisms of the category {Diffeology} are the bijective maps,

smooth as well as their inverses. They are called di�eomorphisms. É

6. What about manifolds. The time has come to make a comment on mani-

folds. Every manifold is naturally a diffeological space; its plots are the smooth

parameterizations in the usual sense. That makes the category {Manifolds} a full

and faithful subcategory of {Diffeology}. But we should insist on diffeology not

be understood as a generalization of the theory of manifolds. It happens that,

between many other things, diffeology extends the theory of manifolds, but its

true nature is to extend the differential calculus on domains in Euclidean spaces,

and is the way it should be regarded. É

14
I regard always a quotient set as a subset of the set of all subsets of a set.
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Let us continue to explore our example of the irrational torus Tα. We still have

to describe its fundamental group and its universal covering. Actually, the way

it was treated in the founding paper [7] used special definitions adapted only to

groups and homogeneous spaces, because at this time, diffeology was only about

groups. It was clear at this moment that considering diffeology only on groups

was insufficient, and that we missed a real independent theory of fiber bundles

and homotopy in diffeology. That was the content of my doctoral dissertation

“Fibrations difféologiques et homotopie” [17].

Let us begin with the covering thing. A covering is a special kind of fiber bundle

with a discrete fiber. But all these terms must be understood in the sense of

diffeology, especially the word discrete. Let me give an example:

Proposition. The rational numbers Q are discrete in R.

This is completely natural for everyone, except that this is false as far as topology

is concerned. But we are talking diffeology: if we equip Q with the diffeology

induced byR, it is not difficult to prove
15
that Q is discrete, that is, its diffeology

is discrete. And that is the meaning we want to give to be a discrete subset of
a diffeological space. Well, we still have to elaborate a little bit about induced
di�eology.

7. Pulling back diffeologies. Let f : X → X′ be a map, and let X′ be a
diffeological space with diffeology D ′. Then, there exists a coarsest diffeology
on X such that f is smooth. It is called the pullback of the diffeology of X′. We

denote it by f ∗(D ′). Its plots are the parameterizations P in X such that f ◦P is

a plot of X′.

In particular, that gives to any subset A⊂X, where X is a diffeological space, a

subset di�eology, that is, j ∗(D), where j : A→X is the inclusion andD is the dif-

feology of X. A subset equipped with the subset diffeology is called a di�eological
subspace. Now it is clear what is meant by a discrete subset of a diffeological space:
it is a subset such that its induced diffeology is discrete.

Note. Let j : X→X′ be a map between diffeological spaces. We say that j is an
induction if j is injective and if the pullback of the diffeology ofX′ coincides with
the diffeology of X. For example, in the case of the irrational torus, the injection

t 7→ (e2iπ t , e2iπαt ) from R to T2
is an induction. That means precisely that if

r 7→ (zr , z ′r ) is smooth inT2
but takes its values in ∆α, then there exists a smooth

parameterization r 7→ tr inR such that zr = e2iπ tr and z ′r = e2iπαtr . É

15
A nice application of the intermediate value theorem.
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Then, with this construction, the category {Diffeology}, which was closed by

quotient, is also closed by inclusion.

Now, continuing with our example, there are two reasons we need a good concept

of fiber bundle in diffeology.

1. Coverings of diffeological spaces should be defined as fiber bundles with

discrete fiber. (We shall see then that we are even able to build a universal

covering, unique up to isomorphism, for every diffeological space.)

2. If we look closely at the projection π : T2 → Tα, we observe that this

looks like a fiber bundle with fiber ∆α ' R. Thus, if the long homo-
topy sequence could apply to diffeological fiber bundles, we would get

immediately π1(Tα) = π1(T
2) = Z2

, since the fiberR is contractible.

Fiber Bundles

Of course, the classical definition of locally trivial fiber bundles is powerless here,

since Tα has a trivial topology. The situation is more subtle – we are looking for a

definition
16
that satisfies the following two conditions:

1. The quotient of a diffeological group by any subgroup is a diffeological

fibration, whatever the subgroup is.

2. For diffeological fibrations, the long exact homotopy sequence applies.

Since we refer to diffeological groups, we have to clarify their definition.

8. Diffeological groups. A diffeological group is a groupG that is also a

diffeological space such that, the multiplication (g , g ′) 7→ g g ′ and the inversion
g 7→ g−1

are smooth. É

That needs a comment on the product of diffeological spaces, since we refer to the

multiplication in a diffeological groupG which is defined on the productG×G.

9. Product of diffeological spaces. Let {Xi}i∈I be any family of diffeo-

logical spaces. There exists on the product X=
∏

i∈I Xi a coarsest diffeology

such that every projectionπi : X→Xi is smooth. It is called the product di�eology.
A plot in X is just a parameterization r 7→ (xi ,r )i∈I such that each r 7→ xi ,r is a

plot of Xi .

Note. The category {Diffeology} is then closed by products. É

16
The definition of fiber bundles in diffeology— their two equivalent versions— has been

introduced in “Fibrés difféologiques et homotopie” [17].
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There are two equivalent definitions of diffeological bundles; the following one is

the pedestrian version.

10. Diffeological fiber bundles. Let π : Y→ X be a map with X and Y
two diffeological spaces. We say that π is a fibration, with fiber F, if, for every plot
P: U→X, the pullback

pr1 : P∗(Y)→U with P∗(Y) = {(r, y) ∈U×Y | P(r ) = π(y)},

is locally trivial with fiber F. That is, every point in U has an open neighborhood

V such that there exists a diffeomorphism φ : V×F→ pr−1
1 (V)⊂ P∗(Y), with

pr1 ◦ φ = pr1 :

V×F P∗(Y) �V Y

V X

pr1

φ

pr1

pr2

π

P �V

This definition extends the usual definition of smooth fiber bundles in differential

geometry. But it contains more:

Proposition. The projection π : G→G/H, where G is a di�eological group
and H⊂G is any subgroup, is a di�eological fibration.

Wehave now the formal frameworkwhereπ : T2→Tα is a legitimate fiber bundle.

This definition of fiber bundle satisfies also the long sequence of homotopy; we

shall come back to that subject later.

Since we have a definition of fiber bundles, we inherit naturally the notion of a

diffeological covering:

DefinitionofCoverings.A covering of a di�eological space X is a di�eological
fibration π : X̂→X with a discrete fiber.

Note. The projectionπ : R→R/(Z+αZ) is a simply connected covering, since
R is a diffeological group andZ+αZ is a subgroup. The fact thatR/(Z+αZ) is
diffeomorphic to Tα is an exercise left to the reader. É

There is an alternative to the definition of fiber bundles involving a groupoid of

diffeomorphisms. This alternate definition is maybe less intuitive, but it is more

internal to diffeology. It is based on the existence of a natural diffeology on the

set of smooth maps between diffeological spaces.
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11. The functional diffeology. Let X and X′ be two diffeological spaces.
There exists onC∞(X,X′) a coarsest diffeology such that the evaluation map

ev: C∞(X,X′)×X→X′ defined by ev( f , x) = f (x),

is smooth. Thus diffeology is called the functional di�eology.

Note 1. A parameterization r 7→ fr is a plot for the functional diffeology if the

map (r, x) 7→ fr (x) is smooth.

Note 2. There exists a natural diffeomorphism betweenC∞(X,C∞(X′,X′′))
andC∞(X×X′,X′). That makes the category {Diffeology} Cartesian closed,
which is a pretty nice property. É

12. Fiber bundles: the groupoid approach. Let π : Y→X be a map with

X and Y two diffeological spaces. Consider the groupoidKwhose objects are the

points ofX and the arrows from x to x ′ are the diffeomorphisms fromYx toYx ′ ,

where the preimages Yx = π−1(x) are equipped with the subset diffeology.

There is a functional di�eology on K that makes it a di�eological groupoid. The set
Obj(K) =X is obviously equipped with its own diffeology. Next, a parameteri-

zation r 7→ φr in Mor(K), defined on a domain U, will be a plot if

1. r 7→ (src(φr ), trg(φr )) is a plot of X×X.

2. The maps ev: Usrc→Y and ev: Utrg→Y, defined by ev (r, y) = φr (y)
and ev (r, y) = φ−1

r (y), on Usrc = {(r, y) ∈ U×Y | y ∈ def (φr )} and
Utrg = {(r, y) ∈ U×Y | y ∈ def (φ−1

r )}, are smooth, where these two
sets are equipped with the subset diffeology of the product U×Y.

We have, then, the following theorem [17] :

Theorem. The map π is a fibration if and only if the characteristic map

χ : Mor(K)→X×X, defined by χ( f ) = (src( f ), trg( f )),

is a subduction.

Thanks to this approach, we can construct, for every diffeological fiber bundle, a

principal fiber bundle— by spliting the groupoid—with which the fiber bundle

is associated. It is possible then to refine this construction and define fiber bundles

with structures (e.g., linear). É

The next step concerning fiber bundles will be to establish the long homotopy se-

quence, but that requires preliminary preparation, beginning with the definition

of the homotopy groups.
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Homotopy Theory

The basis of homotopy begins by understanding what it means to be homotopic,
that is, to share the same “place” (τόπος) or “component”.

13. Homotopy and connexity. Let X be a diffeological space; we denote by

Paths (X) the space of (smooth) paths in X, that is,C∞(R,X). The ends of a
path γ are denoted by

0̂(γ) = γ(0), 1̂(γ) = γ(1) and ends(γ) = (γ(0),γ(1)).

We say that two points x and x ′ are connected or homotopic if there exists a path γ
such that x = 0̂(γ) and x ′ = 1̂(γ).
To be connected defines an equivalence relation whose equivalence classes are

called connected components, or simply components. The set of components is
denoted by π0(X).
Proposition. The space X is the sum of its connected components, that is,

X=
∐

Xi∈π0(X)

Xi .

Moreover, the partition in connected components is the finest partition of X that
makes X the sum of its parts. É

It is time to give the precise definition of the sum of diffeological spaces that

founds the previous proposition.

14. Sum of diffeological spaces. Let {Xi}i∈I be a familly of diffeological

spaces. There exists a finest diffeology on the sum X=
∐

Xi∈I Xi such that each

injection ji = x 7→ (i , x), fromXi toX, is smooth. We call this the sum di�eology.
The plots of X are the parameterization r 7→ (ir , xr ) such that r 7→ ir is locally

constant. É

With that definition, we close one of the most interesting aspects of the category

{Diffeology}. This category is stable by all the set-theoretic constructions: sum,

product, part, quotient. It is a complete and co-complete category, every direct or

inverse limit of diffeological spaces having their natural diffeology. Moreover, the

category is Cartesian closed.

That is by itself very interesting, as a generalization of the smooth category of

Euclidean domains. But there are a few other generalizations that have these same

properties (Frölicher spaces, for example). What really makes the difference is

that, these nice properties apply to a category that includes non trivially extremely
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singular spaces, as we have seen with the irrational tori, and that is what makes

{Diffeology} so unique. But let us now come back to the homotopy theory.

15. The fundamental group and coverings. Let X be a connected dif-

feological space, that is, π0(X) = {X}. Let x ∈ X be some point. We denote

by Loops (X, x) ⊂ Paths (X) the subspaces of loops in X, based at x , that is,
the subspace of paths ` such that `(0) = `(1) = x . As a diffeological space,
with its functional diffeology, this space has a set of components. We define the

fundamental group17 of X, at the point x , as

π1(X, x) = π0(Loops (X, x), x̂),

where x̂ is the constant loop t 7→ x . The group multiplication on π1(X, x) is
defined as usual, by concatenation:

τ · τ′ = class
�

t 7→
�

`(2t ) if t ≤ 1/2
`′(2t − 1) if t > 1/2

�

,

where τ = class (`) and τ′ = class (`′). The inverse is given by τ−1 = class [t 7→
`(1− t )]. Actually, we work with stationary paths for the concatenation to be
smooth. A stationary path is a path that is constant on a small interval around 0
and also around 1. We have now a few main results.

Proposition. The groups π1(X, x) are conjugate to each other when x runs over
X. We denote π1(X) their type.
We say that X is simply connected if its fundamental group is trivial, π1(X) = {0}.
Now we have the following results.

Theorem [Universal Covering]. Every connected di�eological space X has
a unique — up to isomorphism — simply connected covering π : X̃→X. It is a
principal fiber bundle with group π1(X). It is called the universal covering; every
other connected covering is a quotient of X̃ by a subgroup of π1(X).
Actually, the universal covering is half of the Poincaré groupoid, quotient of the
space Paths (X) by fixed-end homotopy relation [23, Section 5.15]. This is the
second meaningful construction of groupoid in the development of diffeology.

Monodromy theorem. Let f : Y→X be a smooth map, where Y is a simply
connected di�eological space. With the notations above, there exists a unique lifting
f̃ : Y→ X̃ once we fix f̃ (y) = x̃, with x = f (y) and x̃ ∈ π−1(x).
These are the more relevant constructions and results, familiar to the differential

geometer, concerning the fundamental group on diffeological spaces. É
17
Formally speaking, the homotopy groups are objects of the category {Pointed Sets}. In

particular, π0(X, x) = (π0(X), x).
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16. Two examples of coverings. Let us now come back to our irrational

torus Tα = T2/∆α = [R
2/Z2]/∆α, that is, Tα = R2/[Z2 × {(x,αx)}x∈R] =

[R2/{(x,αx)}x∈R]/Z
2
. The quotient R2/{(x,αx)}x∈R can be realized by R

with the projection (x, y) 7→ y −αx . Then, the action of Z2
onR2

induces the

action on Z2
on R by (n, m)(x, y) = (x + n, y +m) 7→ y +m−α(x + n) =

y−αx+(m−αn). That is, (n, m) : t 7→ t+m−αn. Therefore,Tα 'R/Z+αZ.
SinceR is simply connected, thanks to the theorem on existence and unicity of

the universal covering, T̃α =R and the π1(Tα) injects inR asZ+αZ. Of course,
there is no need for all these sophisticated tools to get this result, as we have seen

in [7]. But this shows how the pedestrian computation integrates seamlessly the

general theory.

Another example
18
of this theory, is one in infinite dimensions: the universal

covering of Diff(S1). The group is equipped with its functional diffeology. Let f
be a diffeomorphism of S1 =R/Z, and assume that f fixes 1. Let π : t 7→ e2iπ t

,

fromR to S1
, be the universal covering. The composite f ◦π is a plot. Thanks

to the monodromy theorem, since R is simply connected, f ◦ π has a unique

smooth lifting f̃ : R→R, such that f̃ (0) = 0 :

R R

S1 S1

f̃

π π

f

Then, π ◦ f̃ = f ◦ π implies that f̃ (t + 1) = f̃ (t ) + k , k ∈ Z, but f cannot

be injective unless k =±1. Next, f being a diffeomorphism implies that f̃ is a

diffeomorphism ofR, that is, a strictly increasing or decreasing function. Assume

that f̃ is increasing; then f̃ (t+1) = f̃ (t )+1. Thus, the positive di�eomorphisms
of S1

are the quotient of the increasing diffeomorphisms of R satisfying that

condition. Now, let f̃s (t ) = f (t ) + s(t − f̃ (t )), with s ∈ [0,1]. We still have

f̃s (t + 1) = f̃s (t )+ 1 and f̃ ′s (t ) = s +(1− s) f̃ ′(t ), which still is positive. Thus,
since f̃0(t ) = f̃ (t ) and f̃1(t ) = t , the group

ÞDiff+(S
1) = { f̃ ∈ Diff+(R) | f̃ (t + 1) = f̃ (t )+ 1}

is contractible, hence simply connected. It is the universal covering of Diff+(S
1),

the group of the positive diffeomorphisms of S1
. The monodromy theorem

18
It was first elaborated by Paul Donato in his dissertation [9]. We just reinterpret it with our

tools.
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indicates that there are only Z different liftings f̃ of a given diffeomorphism f .
Hence, π1(Diff+(S

1)) = Z. É

17. Higher homotopy groups. Let X be a diffeological space and x ∈ X.

Since Loops (X, x) is a diffeological space that contains x̂ : t 7→ x , there is no
obstruction to defining the higher homotopy groups by recursion:

πn(X, x) = πn−1(Loops (X, x), x̂), n ≥ 1.

One can also define the recursion of diffeological spaces:

X0 =X, x0 = x ∈X0 ; X1 = Loops (X0, x0), x1 = [t 7→ x0] ∈X1 ; . . .
. . . ; Xn = Loops (Xn−1, xn−1), xn = [t 7→ xn−1] ∈Xn ; . . .

Thus, πn(X, x) = πn−1(Loops (X, x), x̂), that is, πn(X, x) = πn−1(X1, x1) =
· · ·= π1(Xn−1, xn−1) = π0(Xn, xn). Since πn(X, x) is the fundamental group of
a diffeological space, it is a group. And that is the formal definition of the n-th
homotopy group19 of X at the point x .

We can feel in particular here, the benefits of considering all these spaces – X,

Paths (X), Loops (X), and so on – on an equal footing. Being all diffeological
spaces, the recursion does not need any supplementary construction than the

ones already defined. É

18. Thehomotopy sequenceof a fiber bundle. One of themost important

properties of diffeological fiber bundles is their long homotopy sequence. Let

π : Y→X be a fiber bundle with fiber F. Then, there is a long exact sequence of
group homomorphisms [17],

· · · → πn(F)→ πn(Y)→ πn(X)→ πn−1(F)→ ·· ·
· · · → π0(F) → π0(Y) → π0(X)→ 0.

As usual in these cases, if the fiber is homotopy trivial, then the base space has the

homotopy of the total space. And that is what happens for the irrational torus

πk(Tα) = πk(T
2), k ∈N.

Let us consider another example, in infinite dimensions this time. Let S∞ be the

infinite-dimensional sphere in the Hilbert spaceH = `2(C). We equip firstH
with the fine diffeology of vector space [23, Section 3.7]. Then, we prove that

S∞ ⊂H , equipped with the subset diffeology, is contractible [23, Section 4.10].

Then we consider the infinite projective space CP∞ = S∞/S1
, where S1

acts on

the `2
sequences by multiplication. The projection π : S∞ → CP∞ is then a

19
It is Abelian for n = 2.
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diffeological principal fibration with fiber S1
. The homotopy exact sequence gives

then π2(CP∞) = Z and πk(CP∞) = 0 if k 6= 2, which is what we expected.

That would prove if necessary that we can work on singular constructions or

infinite-dimensional spaces, using the same tools and the same intuition as when

we deal with ordinary differential geometry. É

19. Connections on fiber fundles and homotopy invariance. Let

π : Y → X be a principal fiber bundle with group G. That fabricates a new

principal fibration π∗ : Paths (Y)→ Paths (X) with structure group Paths (G).
Roughly speaking, a connection on π is a reduction of this paths fiber bundle to
the subgroupG⊂ Paths (G), consisting of constant paths [23, Section 8.32]. We

require for this reduction to satisfy a few axioms: locallity (sheaf condition on

the interval of R), compatibility with concatenation, and so on. The main point

is that once we have a path γ in X and a point y over x = γ(t ), there exists a
unique lift γ̃ of γ such that γ̃(t ) = y , this is called the horizontal lift. Moreover,

if y ′ = gY(y), the lift γ
′
of γ passing at y ′ at the time t is the shifted γ ′ = gY ◦ γ.

That property is exactly what we call a reduction of π∗ toG.

An important consequence of the existence of a connection on a principal fiber

bundle is the homotopy invariance of pullbacks.

Proposition. Let π : Y→X be a principal fiber bundle with groupG, equipped
with a connection. Let t 7→ ft be a smooth path in C∞(X′,X), where X′ is any
di�eological space. Then, the pullbacks pr0 : f ∗0 (Y)→X′ and pr1 : f ∗1 (Y)→X′

are equivalent.
Corollary. Any di�eological fiber bundle equipped with a connection over a
contractible space is trivial.
We know that this is always true in ordinary differential geometry, because every

principal bundle over a manifold can be equipped with a connection. É

20. The group of flows of a space. Connections are usually defined in

ordinary differential geometry by a differential form with values in some Lie

algebra. As we have seen, that is not the way chosen in diffeology, for a few good

reasons. First, for such an important property as the homotopy invariance of

pullbacks, a broad definition of connection is enough. Moreover, we have no

indisputable concept of Lie algebra in diffeology,
20
and choosing one definition

rather than another would link a universal concept, such as parallel transport, to
an arbitrary choice.

20
Even for the moment map, in symplectic diffeology, we do not need the definition of a Lie

algebra, as we shall see later on.
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And there is also a new diffeological construction where the difference between

general connections and form-valued connections is meaningful enough to justify

a posteriori our choice. That is the computation of the group of flows over the
irrational torus [23, Section 8.39]. Let us begin with a definition:

Definition.We shall call flow over a di�eological space X, any (R,+)-principal
bundle over X.
There is an additive operation on the set Flows(X) of (equivalence classes of) flows.
Let a = class (π : Y→ X) and a′ = class (π′ : Y′→ X) be two classes of flows.
Consider the pullbackπ∗(Y′) = {(y, y ′) ∈Y×Y′ | π(y) = π′(y ′)}. It is a (R2,+)
principal bundle over X by (y, y ′) 7→ π(y) = π′(y ′). Let Y′′ be the quotient of
π∗(Y′) by the antidiagonal action ofR, that is, t (y, y ′) = (tY(y),−tY′(y

′)). And
let π′′ : Y′′→X be the projection π′′(class (y, y ′)) = π(y) = π′(y ′). We define

then a+ a′ = a′′ with a′′ = class (π′′ : Y′′→X).
The set Flows(X), equipped with this addition, is an Abelian group. The neutral
element is the class of the trivial bundle, and the inverse of a flow is the samebundle

but with the inverse action ofR. Note that this group is a kind of Picard group on

a diffeological space, but withR instead of S1
as structure group, and if this group

doesn’t appear in ordinary differential geometry, it is because every principal

bundle with fiberR over a manifold is trivial. But that is not the case in diffeology,

and we know one such nontrivial bundle, the irrational torus π : T2→Tα.

Let π : Y → Tα be a flow. Consider the pullback pr1 : pr∗(Y) → R, where
pr: R→Tα is the universal covering. It is an R-principal fiber bundle over R, so

it is trivial. Letφ : R×R→ pr∗(Y) be an isomorphism. ThusY'R×R/pr2◦φ.
But pr2 ◦ φ is any lifting on the second factor of R×R, of the action of Z⊕αZ
on the first one:

R×R pr∗(Y) Y

R Tα

φ

pr1
pr1

pr2

π

pr

A lifting of a subgroup Γ ⊂ R on the second factor of R×R, where Γ acts by

translation on the first factor, is given, for all k ∈ Γ and (x,τ) ∈R×R, by

k : (x, t ) 7→ (x + k , t + τ(k)(x)),

where τ : Γ→C∞(R) is a cocycle satisfying

τ(k + k ′)(x) = τ(k)(x + k ′)+ τ(k ′)(x).
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Two cocycles τ and τ′ define the same flow if they differ from a coboundary δσ:

τ′(k)(x) = τ(k)(x)+ σ(x + k)− σ(x), with σ ∈C∞(R).

In other words,

Flows(R/Γ) =H1(Γ,C∞(R)).
Applied to Γ = Z+ αZ, that gives Flows(Tα) equivalent to the group of real
1-periodic functions f , after some normalization, modulo the relation:

f ∼ f ′ if f ′(x) = f (x)+ g (x +α)− g (x).

This relation is known as the small divisors Arnold’s cohomology relation. The
solution depends on the arithmetic of α: if α is a diophantine or a Liouville

number, Flows(Tα) is one-dimensional or∞-dimensional.
21

Moreover, every flow π : Y→T=R/Γ defined by a cocycle τ, can be naturally
equipped with the connection associated with the covering pr: R→T [23, Sec-

tion 8.36]. However, not all these bundles support a connection form [23, Section

8.37], only those whose cocycle τ defining π is equivalent to a homomorphism

from Γ toR; see [23, Exercise 139]. In other words, if the cocycle τ is not cohomol-
ogous to a homomorphism, then there is no connection that can be defined by a

connection form. In particular, for Tα, the only flow equipped with connections

defined by a connection form is the Kronecker flow (with arbitrary speeds). É

Modeling Diffeology

Now we have seen a few constructions in diffeology and applications to unusual

situations: singular quotients and infinite-dimensions spaces. It will be interesting

to revisit some constructions of differential geometry and see what diffeology can

do with them.

21. Manifolds. Every manifold owns a natural diffeology, for which the plots

are the smooths parameterizations. There is a definition internal to the category

diffeology:
22

Definition. An n-manifold is a di�eological space locally di�eomorphic to Rn

at each point.
With this definition, as diffeological spaces, {Manifolds} form a full subcategory

of the category {Diffeology}. É

Of course, this definition needs a precise use of the wording locally di�eomorphic.
21
As H1(Γ,C∞(R)), the group Flows(R/Γ) is obviously a real vector space.

22
We could use too the concept of generating families; see [23, Section 1.66].
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22. Local smoothmaps, D-topology and so on. Very soon after the initial

works in diffeology, it was clear that we needed to enrich the theory with local

considerations, which were missing until then. To respect the spirit of diffeology,

I defined directly the concept of local smoothness [17], as follows:

Definition. Let X and X′ be two di�eological spaces. Let f be a map from a
subset A⊂X into X′. We say that f is local smooth if, for each plot P in X, f ◦P
is a plot of X′.

Note that f ◦P is defined on P−1(A), and a first condition for f ◦P to be a plot

of X′ is that P−1(A) be open. That leads immediately to a second definition:

Definition. A subset A ⊂ X will be said to be D-open if P−1(A) is open
for all plots P in X. The D-open subsets in X define a topology on X called the
D-topology.

We have, then, the following proposition linking these two definitions:

Proposition. A map f defined on a subset A⊂X to X′ is local smooth if and
only if: A is D-open, and f : A→ X′ is smooth when A is equipped with the
subset di�eology.

To avoid misunderstanding and signify that f is local smooth— not just smooth

for the subset diffeology—we note f : X⊃A→X.

Next, since we have local smooth maps, we have local di�eomorphisms too.

Definition. We say that f : X ⊃ A→ X′ is a local diffeomorphism if f is
injective, if it is local smooth, and if its inverse f −1 : X′ ⊃ f (A)→ X is local
smooth. We say that f is a local di�eomorphism at x ∈X if there is a superset A
of x such that f �A: X⊃A→X′ is a local di�eomorphism.

In particular, these definitions give a precise meaning to the sentence “the space

X is locally diffeomorphic to X′ at each/some point”.

That was the beginning of the new concept of local di�eologywhich guides every-
thing modeling in diffeology. É

23. Orbifold as diffeologies. The word orbifold was coined by Thurston
[52, Chapter 13] in 1978 as a replacement for V-manifold, a structure invented by
Ichiro Satake in 1956 [43].

These new objects have been introduced to describe the smooth structure of

spaces that look like manifolds, except around a few points, where they look

like quotients of Euclidean domains by finite linear groups. Satake captured

the smooth structure around the singularities by a family of compatible local
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Figure 3—The Teardrop as Satake’s Orbifold.

uniformizing systems defining the orbifold.23 Figure 3 gives an idea about what
would be an uniformizing system for the “teardrop” with one conic singularity.

The main problem with Satake’s definition is that it does not lead to a satisfactory

notion of smoothmaps between orbifolds, and therefore prevents the conception

of a category of orbifolds. Indeed, in [44, p. 469], Satake writes this footnote:

“The notion ofC∞-map thus defined is inconvenient in the point
that a composite of twoC∞-maps defined in a different choice of
defining families is not always aC∞ map.”

For a mathematician, that is very annoying.

Considering orbifolds as diffeologies solved the problem. Indeed, in [29], we

defined a di�eological orbifold by a modelling process in the same spirit as for

smooth manifolds

Definition.An orbifold is a di�eological space that is localy di�eomorphic, at
each point, to some quotient space Rn/Γ, for some finite subgroup Γ of the linear
groupGL(n,R), depending possibly on the point.

Figure 4 gives an idea about what is a diffeological orbifold: the teardrop as some

diffeology on the sphere S2
.

23
We will not discuss this construction here. The original description by Satake is found in

[43], and a discussion of this definition is in [29].
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C

Figure 4—The teardrop as diffeology.

Once this definition is given, we could prove (op. cit.) that, according to this defi-
nition, every Satake defining family of a local uniformizing system was associated

with a diffeology of orbifold and, conversely, that every diffeological orbifold was

associated with a Satake defining family of a local uniformizing system. And we

proved that these constructions are inverse to each other, modulo equivalence.

Thus, the diffeology framework fulfilled Satake’s programby embedding orbifolds

into diffeological spaces, and providing them naturally with good, workable,

smooth mappings.

The difficulty met by Satake is subtle and can be explained as follows: he tried

to define smooth maps between orbifolds as maps that have equivariant liftings

on the level of Euclidean domains, before quotienting. But the embedding of

orbifolds into {Diffeology} shows that, if that is indeed satisfied for local diffeo-

morphisms (see [29, Lemma 20, 21, 22]), it is not necessarily the case for ordinary

smooth maps, as this counter-example 25 shows.

Consider the cone orbifoldsQn =R2/Zn , and let f : R2→R2
,

f (x, y) =











0 if r > 1 or r = 0

e−1/r ρn(r )(r, 0) if
1

n+1 < r ≤ 1
n and n is even

e−1/r ρn(r )(x, y) if
1

n+1 < r ≤ 1
n and n is odd,

where r =
p

x2+ y2
and ρn is a smooth non-zero real function which is zero

outside the interval ]1/(n + 1), 1/n[. Then, for all integers m dividing n, f
projects onto a smooth map φ :Qm → Qn that cannot be lifted locally in an

equivariant smooth map, over a neighborhood of 0. Again, diffeology structured
the problem in a way that almost solved it. É

24. Noncommutative geometry & diffeology: the case of

orbifolds. The question of a relation between diffeology and noncommu-

tative geometry appeared immediately with the study of the irrational torus [7].
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The condition of diffeomorphy between two irrational tori Tα and Tβ, that is, α
and β conjugate moduloGL(2,Z), coincided clearly in noncommutative geome-
try, with the Morita-equivalent of theC∗-algebras associated with the foliations
[42]. That suggested a structural relationship between diffeology and noncom-

mutative geometry deserving to be explored, but that question had been left aside

since then.

We recently reopened the case of this relationship, considering orbifolds. And

we exhibited a simple construction associating naturally, with every diffeological

orbifold a C∗-algebra, such that two diffeomorphic orbifolds give two Morita-

equivalent algebras [30]. Before continuing, we need to recall a general definition

[23, Sections 1.66 and 1.76].

Definition. Let X be a di�eological space. We define the nebula of a setF of
plots in X as the di�eological sum

N =
∐

P∈F
dom(P) = {(P, r ) | P ∈F , r ∈ dom(P)},

where each domain is equipped with its standard smooth di�eology. Then, we
define the evaluation map

ev:N →X by ev: (P, r ) 7→ P(r ).

We say thatF is a generating family of X if ev is a subduction.

Now, letQ be an orbifold. A local diffeomorphism F from a quotient Rn/Γ
toQ will be called a chart. A setA of charts whose images coverQ will be

called an atlas. With every atlasA is associated a special generating familyF
by considering the strict lifting of the charts F ∈ A to the corresponding Rn

.

Precisely, let πΓ = Rn → Rn/Γ, F: Rn/Γ ⊃ dom(F)→ Q; thenF = {F ◦
πΓ}F∈A . We callF the strict generating family associated withA , and we denote

byN its nebula.

Next, we consider the groupoid G whose objects are the points of the nebulaN ,

and the arrows, the germs of local diffeomorphisms ϕ ofN that project on the

identity by ev, that is, ev ◦ϕ= ev. We call G the structure groupoid ofQ. Then,

for a suitable but natural functional di�eology onG, we have the following [30]:

Theorem 1. The groupoid G is Hausdor� and etale. The groupoids associated
with di�erent atlases are equivalent as categories.

Hence, thanks to the etale property, we can associate aC∗-algebraAwithG by

the process described by Renaud in [41]. We have, then,
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Theorem2. The groupoids associated with di�erent atlases of an orbifold are
equivalent in the sense of Muhly–Renault–Williams [38]. Therefore, their C∗-
algebras are Morita-equivalent.
ThisMorita-equivalence between theC∗-algebras associated with different atlases
of the orbifold is the condition required to make this construction meaningful

and categorical. That construction is the first bridge between diffeology and

noncommutative geometry; it gives an idea where and how diffeology and non-

commutative geometry respond to each other, at least at the level of orbifolds.
24

{Diffeology} ⊃ {Orbifolds} C∗-Algebras

Groupoids

As an example, let us consider the simple orbifold ∆1 =R/{±1}. The structure
of the orbifold is represented by the pushforward of the standard diffeology from

R to [0,∞[, by the square map sqr : t 7→ t 2
. The singletonF = {sqr} is a strict

generating family, and the structure groupoid G is the groupoid of the action of

Γ = {±1}, that is,

Obj(G) =R and Mor(G) = {(t ,ε,εt ) | ε=±1} 'R×{±1}.

A continuous function f on Mor(G) to C is a pair of functions f = (a, b ),
where a(t ) = f (t , 1) and b (t ) = f (t ,−1). With this convention, the algebra of

the orbifold is then represented by a submodule of M2(C)⊗C 0(R,C),

f = (a, b ) 7→M=
�

t 7→
�

a(t ) b (−t )
b (t ) a(−t )

�

�

,

with M∗(t ) = [τM(t )]∗. The superscript τ represents the transposition, and the
asterisk represents the complex conjugation element by element.

Note that we still trace the orbifold in the characteristic polynomial PM(λ), which
is invariant by the action of {±1}, and is then defined on the orbifold ∆1 itself,

PM(λ) : t 7→ λ2− λtr(M(t ))+ det(M(t )), where tr(M(t )) = a(t )+ a(−t ) and
det(M(t )) = a(t )a(−t )− b (t )b (−t ) are obviously {±1} invariant. É

25.Manifoldswithboundaryandcorners. Oneday, in 2007, I received an

e-mail from a mathematical physicist, wondering how diffeology behaves around

the corners. . .Here is an excerpt:

24
There is a more general subcategory of {Diffeology} for which such a construction leads to

the same conclusion. It is the subject of a work in progress.
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“I have just one worry about this theory. I found it very difficult

to check that there’s a diffeology on the closed interval [0,1] such
that a smooth function f : [0,1]→R is smooth in the usual sense,

even at the endpoints. . . . This problem would become very easy

to solve using Chen’s definition of smooth space, which allows for

plots whose domain is any convex subset ofRn
.”

And our colleague to end his remark by this wish, that people interested in diffeol-

ogy “are hoping you could either solve this problem in the context of diffeologies,

or switch to Chen’s definition. . .”.

The good news is that it is not necessary to give up diffeology to be happy. There

is indeed a diffeology on [0,1] such that “a smooth function f : [0,1]→ R is

smooth in the usual sense”. And that diffeology is simply the subset diffeology,

precisely [23, Section 4.13],

Theorem. Let Hn ⊂ Rn be the half-space defined by x1 ≥ 0, equipped with
the subset di�eology. Let f ∈C∞(Hn,R); then there exists a smooth function F,
defined on an open superset of Hn in Rn, such that f = F �Hn .

This proposition is a consequence of a famous Whitney theorem on extension of

smooth even functions [53]. By the way, it gives a solid basis to the vague concept

of “smooth in the usual sense”, as to be smooth in the usual sense means then to

be smooth for the diffeology.

We can investigate further and characterize the local diffeomorphisms of half-

spaces [23, Section 4.14] :

Theorem. A map f : A→Hn , with A⊂Hn , is a local di�eomorphism for the
subset di�eology if and only if: A is open in Hn, f is injective, f (A∩ ∂ Hn)⊂
∂ Hn, and for all x ∈ A there exist an open ballB ⊂ Rn centered at x and a
local di�eomorphism F:B →Rn such that f and F coincide onB ∩Hn .

Thanks to this theorem, it is then easy to include themanifoldswithboundary into

the category {Diffeology}, in the same way we included the categories {Manifolds}

and {Orbifolds}.

Definition. An n-dimensional manifold with boundary is a di�eological space
X which is di�eomorphic, at each point, to the half-space Hn . We say that X is
modeled on Hn .

Thanks to the previous theorems, it is clear that this definition covers completely,

and not more, the usual definition of manifold with boundary one can find for

example in [10] or [37]. In other words, the ordinary category {Manifolds with
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Boundary} is a natural full subcategory of {Diffeology}, the category {Manifolds}

being itself a full subcategory of {Manifolds with Boundary}.

Moreover, we have a similar result for the subset diffeology of corners, thanks to

a Schwartz theorem
25
[45] :

Theorem. Let Kn be the positive n-corner in Rn defined by xi ≥ 0, with
i = 1, . . . , n, equipped with the subset di�eology. Let f ∈C∞(Kn,R); then there
exists a smooth function F, defined on an open superset of Kn in Rn, such that
f = F �Kn .

Actually, this property extends to anydifferential k-formonKn
: it is the restriction

of a smooth k-form onRn
[13].

As for manifolds with boundary, it is natural to define the n-dimensionalmani-
folds with corners as diffeological spaces that are locally diffeomorphic to Kn

at

each point. We get naturally then the category {Manifolds with Corners} as a new

subcategory of {Diffeology}.

Back to the alternative Chen versus Souriau: the three axioms of diffeologies are

indeed identical to the preceding three axioms of Chen’s differentiable spaces [3],

except for the domains of plots that are open instead of being convex. Chen’s

spaces had been introduced with homology and cohomology in mind, and that is

why he chose the convex subsets as domains for his plots. On another side, the

choice of open subsets positions diffeology as a competitor to differential geometry

itself. And now, the fact that smooth maps for half-spaces or corners, equipped

with the subset diffeology, coincidewithwhatwas guessed heuristically to describe

manifolds with boundary or corners, is another confirmation that there is no need

to amend the theory in any way. For example, we could define smooth simplices

in diffeological spaces as smooth maps from the standard simplices, equipped

with its subset diffeology. And that would cover the usual situation in differential

geometry. É

26. Frölicher spaces as reflexives diffeological spaces. We recall that

a Frölicher structure on a set X is defined by a pair of setsF ⊂Maps(X,R) and
C ⊂Maps(R,X) that satisfies the double condition:

C = {c ∈Maps(R,X) | F ◦ c ⊂C∞(R,R)},
F = { f ∈Maps(X,R) | f ◦C ⊂C∞(R,R)}.

25
In this case, it is a simple corollary of the Whitney theorem [53, Remark p. 310].
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A set X equipped with a Frölicher structure is called a Frölicher space [35]. Now,

let X be a diffeological space,D be its diffeology, andC∞(X,R) be its set of real
smooth maps.

Definition.We say that X is reflexive if D coincides with the coarsest di�eology
on X, for which the set of real smooth maps is exactly C∞(X,R).
Then, thanks to Boman’s theorem [1], one can show

26
that a Frölicher space,

equipped with the coarsest diffeology such that the elements ofF are smooth, is

reflexive. And one can check conversely that a reflexive diffeological space satisfies

the Frölicher conditions above; see [23, Exercises 79 and 80]. In other words,

Proposition. The category of Frölicher spaces coincides with the subcategory of
reflexive di�eological spaces. É

Cartan–de Rham Calculus

With fiber bundles and homotopy, differential calculus is one of the most devel-

oped domains in diffeology. We begin first with the definition of a differential

form on a diffeological space.

27. Differential forms. Let U⊂Rn
; we denote by Λk(Rn) the vector space

of linear k-forms onRn
, k ∈N. We call smooth k-form on U any smooth map

a : U→ Λk(Rn).
Now, let X be a diffeological space.

Definition.We call differential k-form on X any map α that associates, with
every plot P: U→X, a smooth k-form α(P) on U that satisfies the compatibility
condition:

α(P ◦F) = F∗(α(P)),

for all smooth parameterizations F in U.
The set of k-forms on X is denoted byΩk(X). Note thatΩ0(X) =C∞(X,R).
Note also that one can consider an n-domain U as a diffeological space; in this

case, a differential k-form α is immediately identified with its value a = α(1U) on
the identity, α ∈Ωk(U) and a ∈C∞(U,Λk(Rn)).
The two main operations on the differential forms on a diffeological space are as

follows:

26
The concept of reflexive space has been suggested by Yael Karshon, and we established the

equivalence with Frölicher spaces, together with Augustin Batubenge and Jordan Watts, at a

seminar in Toronto in 2010.
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1. The pullback. Let f ∈ C∞(X′,X) be a smooth map between diffe-
ological spaces, and let α ∈ Ωk(X). Then f ∗(α) ∈ Ωk(X′) is the k-form
defined by

[ f ∗(α)](P′) = α( f ◦P′),

for all plots P′ in X′.
2. The exterior derivative. Let α ∈Ωk(X); its exterior derivative dα ∈

Ωk+1(X) is defined by

[dα](P) = d [α(P)],

for all plots P in X.

Then, we have a de Rham complexΩ∗(X), with an endomorphism d that satisfies

d ◦ d = 0, and

�

Z∗dR(X) = ker(d : Ω∗(X)→Ω∗+1(X))
B∗dR(X) = d (Ω∗−1(X))⊂ Z∗dR(X).

This defines a de Rham cohomology series of groups

Hk
dR(X) = Zk

dR(X)/B
k
dR(X).

Note that this series begins with k = 0, for which B0
dR(X) = {0}.

The first cohomology group H0
dR(X) is easy to compute. The differential d f

of a smooth function f ∈ Ω0(X) vanishes if and only if f is constant on the

connected components of X. Thus, HdR(X) is the real vector space generated by
π0(X), that is, Maps(π0(X),R). É

28. Quotienting differential forms. One of the main procedures on

differential forms is quotienting forms. I mean the following: let X and X′ be two
diffeological spaces, and let π : X→X′ be a subduction. The following criterion
[50] identifies f ∗(Ω∗(X′)) intoΩ∗(X) :
Proposition. Let α ∈ Ω∗(X). There exists β ∈ Ω∗(X′) such that α= π∗(β) if
and only if, for all pairs of plots P and P′ in X, if π◦P= π◦P′, thenα(P) = α(P′).
That proposition helps us to compute HdR(Tα), for example. Actually, the crite-
rion above has a simple declination for coverings.

Proposition. Let X be a di�eological space and π : X̃→X its universal covering.
Let α̃ ∈ Ω∗(X̃). There exists α ∈ Ω∗(X) such that α̃= π∗(α) if and only if, α̃ is
invariant by π1(X), that is, k∗(α̃) = α̃ for all k ∈ π1(X).
Indeed, for the criterion above, π ◦P= π ◦P′ if and only if, locally on each ball in
the domain of the plots, there exists an element k ∈ π1(X) such that P′ = k ◦P
on the ball.
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Now, let us apply this criterion to any irrational torus T = R/Γ, where Γ is a

strict dense subgroup ofR. A 1-form α̃ ∈Rwrites ã(x)dx . It is invariant by Γ if

and only if a(x) = a is constant. Let θ be the 1-form whose pullback is dx ; then

Ω1(T) =Rθ and H1
dR(T) =R.

Obviously, H0
dR(T) =R and Hk

dR(T) = {0} if k > 1. É

29. Parasymplectic form on the space of geodesics. It is well known

that, if the spaceGeod(M) of (oriented) geodesic trajectories (aka unparametrized
geodesics) of a Riemannian manifold (M, g ) is a manifold, then this manifold
is naturally symplectic for the quotient of the presymplectic form defining the

geodesic flow. A famous example is the geodesics of the sphere S2
, for which the

space of geodesics is also S2
, equipped with the standard surface element.

27
In

this case, the mapping from the unit bundle US2
toGeod(S2) is realized by the

moment map of the rotations:

` : US2 = {(x, u) ∈ S2× S2 | u · x = 0}→Geod(S2)with `(x, u) = x ∧ u.

Now, what about the space of geodesics of the 2-torusT2 =R2/Z2
, for example?

It is certainly not a manifold because of the mix of closed and unclosed geodesics.

And about the canonical symplectic structure, does it remain something from it?

And what? That is exactly the kind of question diffeology is able to answer.

The geodesics of T2
are the characteristics of the differential dλ of the Liouville

1-form λ on UT2
, associated with the ordinary Euclidean product:

λ(δy) = u · δx, with y = (x, u) ∈UT2
and δy ∈Ty(UT2).

And then,

Geod(T2) =
§

pr{x + t u}t∈R×{u} ⊂T2× S1 | (x, u) ∈UT2
ª

.

The direction of the geodesicpr2 : (pr{x+ t u}t∈R, u) 7→ u is a natural projection

on S1
:

UT2 Geod(T2)

S1

π

pr2 pr2

The fiber pr−1
2 (u)⊂Geod(T2), is the torus Tu of all lines with slope u . We have

seen that, depending on whether the slope is rational or not, we get a circle or an

irrational torus. As we claimed,Geod(T2) equipped with the quotient diffeology
27
For a judicious choice of constant.
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of UT2
is not a manifold. However, there exists onGeod(T2) a closed 2-form ω

such that dλ= π∗(ω) [26]. We say thatGeod(T2) is parasymplectic.28

Actually, this example is just a special case of the general situation [27].

Theorem. Let M be a Riemannian manifold. Let Geod(M) be the space of
geodesics, defined as the characteristics of the canonical presymplectic 2-form dλ on
the unit bundle UM. Then, there exists a closed 2-form ω on Geod(M) such that
dλ= π∗(ω).
This result is a direct application of the criterion above on quotienting forms. It is

strange that we had to wait so long to clarify this important point, which should

have been one of the first results in diffeology. É

30. Differential forms on manifolds with corners. We claimed previ-

ously that the smooth maps f : Kn→R, where Kn is the n-dimensional corner,
are the restrictions of smooth functions defined on some open neighborhood of

Kn inRn
. We have more [11] :

Proposition. Let ω ∈ Ωk(Kn) be a di�erential k-form on Kn . Then, there
exists a smooth k-form ω̄ defined on some open neighborhood of Kn ⊂ Rn such
that ω= ω̄ �Kn .
This proposition has, then, a corollary (op. cit.) :
Theorem. Let M be a smooth manifold. Let W⊂M, equipped with the subset
di�eology, be a submanifold with boundary and corners. Any di�erential form on
W is the restriction of a smooth form defined on an open neighborhood.
That closes the discussion about the compatibility between diffeology and mani-

folds with boundary and corners for any question relative to the de Rham com-

plex. É

31. The problem with the de Rham homomorphism. Let us focus on

1-forms, precisely, the 1-forms on Tα, to take an example. The integration on

paths defines the first de Rham homomorphism. Let ε be a closed 1-form on Tα
(actually any 1-form, since they are all closed). Consider the map

γ 7→
∫

γ
ε=

∫ 1

0
ε(γ)x(1)dx,

where γ ∈ Paths (Tα). Because ε is closed and because the integral depends only
on the fixed end homotopy class of γ, restricted to Loops (Tα), this integral
defines a homomorphism from π1(Tα) to R. And since the integral on a loop of

28
The meaning of the word symplectic in diffeology is still under debate. That is why I use the

wording parasymplectic to indicate a closed 2-form.
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a differential d f vanishes, the integral depends only on the cohomology class of ε.
Thus, we get the first de Rham homomorphism:

29

h : H1
dR(Tα)→Hom(π1(Tα),R) defined by ε 7→ [` 7→

∫

`

ε].

Now, since H1
dR(Tα) =R and Hom(π1(Tα),R) =R2

, the de Rham homomor-

phism cannot be an isomorphism, as it is the case for Euclidean domains, or more

generally ordinary manifolds. Actually, it is precisely given by

h : a 7→ [(n, m) 7→ a(n+αm)],

where a ∈H1
dR(Tα) is represented by adt onR, and π1(Tα) = Z+αZ⊂R.

This hiatus is specific to diffeology, versus differential geometry. It is, however,

still true that, for any diffeological space, the first de Rham homomorphism is

injective, and we can interpret geometrically its cokernel.
30

Let T̃α(= R) denote the universal covering of Tα. Consider then a homomor-

phism ρ from π1(Tα) to (R,+). Then, build the associated bundle pr: T̃α×ρ

R → Tα, where π1(Tα) acts diagonally on the product T̃α ×R. That is, for
all (x, t ) ∈ T̃α × R and all k ∈ π1(Tα), k : (x, t ) 7→ (x + k , t + ρ(k)). Let
class : T̃α×R→ T̃α×ρ R be the projection.

T̃α×R T̃α×ρ R

T̃α Tα

class

pr1 pr

π

The right down arrow, pr: class (x, t ) 7→ π(x) is a principal (R,+) fiber bundle
for the action s : class (x, t ) 7→ class (x, t + s). This principal fiber bundle has
a natural connection induced by the connection of the universal covering. Pick

a path γ in Tα and a point x̃ over x = γ(t ); there exists a unique lifting γ̃ such

that γ̃(t ) = x̃ . Then, we define the horizontal lifting γ̄ of γ passing through

class (x̃, s)by γ̄(t ′) = class (γ̃(t ′), t ′−t+s). This connection is, by construction,
flat. Indeed, the subspace {class (x̃, 0) | x̃ ∈ T̃α} is a reduction of the principal
fiber bundlepr: T̃α×ρR→Tα to the groupπ1(Tα)/ker(ρ). Now, in [23, Section
8.30], we prove that a homomorphism ρ : π1(Tα)→R gives a trivial fiber bundle

pr if and only if ρ is the de Rham homomorphism of a closed 1-form ε. And
eventually, we prove the following:

29
See [23, Section 6.74] for the general construction and for the justifications needed.

30
For differential forms in higher degree, this is still a work in progress.
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Proposition. The cokernel of the de Rham homomorphism is equivalent to the
set of equivalence classes of (R,+)-principal bundle over Tα, equipped with a flat
connection. This result is actually general for any di�eological space X.
Note that this analysis puts on an equal footing the surjectivity of the first de

Rham homomorphism and the triviality of principal (R,+)-principal bundles
over manifolds. That deserved to be noticed. É

32. The chain-homotopy operator. The chain-homotopy operator K is a

fundamental construction in differential calculus [23, Section 6.83]. It is related

in particular to integration of closed differential forms, homotopic invariance of

de Rham cohomology, and the moment map in symplectic geometry, as we shall

see in the following.

Let X be a diffeological space; there exists a smooth linear operator

K: Ωp(X)→Ωp−1(Paths (X)) with p ≥ 1,

that satisfies

K ◦ d + d ◦K= 1̂∗− 0̂∗,

where 0̂, 1̂ : Paths (X)→X are defined by t̂ (γ) = γ(t ).
Explicitly, let α be a p-form of X, with p > 1, and P: U → Paths (X) be an
n-plot. The value of Kα on the plot P, at the point r ∈U, evaluated on (p − 1)
vectors (v)pi=2 = (v2) . . . (vp) ofRn

, is given by

Kα (P)r (v)
p
i=2 =

∫ 1

0
α
��

t
r

�

7→ P(r )(t )
�

( tr)

�

1
0

��

0
vi

�p

i=2

dt .

For p = 1,

Kα : γ 7→
∫

γ
α=

∫ 1

0
α(γ)t dt

is the usual integration along the paths.

Note that there is no equivalent to this operator in ordinary differential geometry

since there is no concept of differential forms on the space of paths, even for a

manifold. Of course, there are a few bypasses, but none is as direct or efficient as

the operator K, as we shall see now. É

33. Homotopic invariance of de Rham cohomology. Consider an ho-

motopy t 7→ ft in Paths (C∞(X,X′)), where X and X′ are two diffeological
spaces.

Proposition. Let α ∈Ωk(X′) and dα= 0. Then, f ∗1 (α) = f ∗0 (α)+ dβ, with
β ∈Ωk−1(X).
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In other words, the de Rham cohomology is homotopic invariant:

class ( f ∗1 (α)) = class ( f ∗0 (α)) ∈Hk
dR(X).

Let us prove this rapidly. Consider the smooth map ϕ: X → Paths (X′) de-
fined by ϕ(x) = [t 7→ ft (x)]. Take the pullback of the chain-homotopy identity,
ϕ∗(K(dα)+d (Kα)) = ϕ∗(1̂∗(α))−ϕ∗(0̂∗(α)). That is,ϕ∗(d (Kα)) = d (ϕ∗(Kα)) =
(1̂ ◦ ϕ)∗(α) − (0̂ ◦ ϕ)∗(α). But, t̂ ◦ ϕ = ft , thus f ∗1 (α) − f ∗0 (α) = dβ with

β= ϕ∗(Kα).

That is one of the most striking uses of this chain-homotopy operator, and it

proves at the same time how one can take advantage of diffeology, even in a

traditional course on differential geometry. É

34. Integration of closed 1-forms. Consider a manifold M and a closed

1-form α on M. We know that if α is integral, that is, its integral on every loop is a

multiple of some number called the period, then there exists a smooth function
f from M to the circle S1

such that α = f ∗(θ), where θ is the canonical length
element. This specific construction has an ultimate generalization in diffeology

that avoids the integral condition – and that is what diffeology is for, indeed.

Let α be a closed 1-form on a connected diffeological space X. Consider the

equivalence relation on Paths (X) defined by

γ ∼ γ ′ if ends(γ) = ends(γ ′) and

∫

γ
α=

∫

γ ′
α.

The quotient Xα = Paths (X)/ ∼ is a groupoid for the addition
31 class (γ) +

class (γ ′) = class (γ ∨ γ ′), when γ(1) = γ ′(0). Because the integral of α on γ
does not depend on its fixed-endpoints homotopy class, the groupoid Xα is a

covering groupoid, a quotient of the Poincaré groupoidX. Let Fα : Xα→R be

Fα(class (γ)) =Kα(γ) =
∫

γ
α.

Paths (X) X Xα R

X×X Tα =R/Pα

ends

class class Fα

pr

fα

31
Actually, this addition is defined on the stationary paths, but since the space of stationary

paths is a deformation retract of the space of paths, that does not really matter.
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The functionF integratesαonXα, in the sense that, thanks to the chain-homotopy

identity, dFα = 1̂∗(α)− 0̂∗(α). Let o ∈ X be a point defined as an origin of X,

and define Xα to be the subspace ofXα made of classes of paths with origin o.
Let π = 1̂ � Xα; then dF= π∗(α), with F = Fα � Xα. The covering Xα of X is

the smallest covering where the pullback of α is exact. We call it the integration

covering of α. Its structure group Pα is the group of periods of α, that is,

Pα =
§
∫

`

α | ` ∈ Loops (X)
ª

.

Proposition. If the group of periods Pα is a strict subgroup of R, then pr: R→
Tα = R/Pα is a covering, and there exists a smooth map f : X→ Tα such that
f ∗(θ) = α, with θ being the projection of dt on Tα by pr.
This proposition [23, Section 8.29] is the ultimate generalization of the integration

of integral 1-forms in differential geometry, allowed by diffeology. We can notice

that the usual condition of second countability for manifolds is in fact a sufficient

precondition. The real obstruction, valid for manifolds as well as for general

diffeological spaces, is that the group of periods Pα is discrete in R, and that is
equivalent to being a strict subgroup ofR. É

Symplectic Diffeology

During the 1990s a lot of symplectic-like geometry situations were explored, essen-

tially in infinite-dimensional spaces, but not only, with more or less success. What

these attempts at generalizationmissed was a uniform framework of concepts and

vocabulary, precise definitions framing the context of their studies. Each example

came with its own heuristic and context, for example, the nature of the moment

maps were not clearly stated: for the case of the moment of imprimitivity [54], it

was a function with values the Dirac delta functions (distributions); for another

example involving the connections of a torus bundle [6], it was the curvature of

the connection. And Elisa Prato’s quasifolds [40], for which the moment map is

defined on a space that is not a legitimate manifold but a singular quotient, adds

up to these infinite-dimensional examples.

What we shall see now is how diffeology is the missing framework, where all these

examples find their places, are treated on an equal footing, and give what we are

waiting for from them.

The general objects of interest will be arbitrary closed 2-forms on diffeological
spaces, for which we introduce this new terminology:
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Definition.We call parasymplectic space32 any di�eological space X, equipped
with a closed 2-form ω.
Next, we consider the group of symmetries (or automorphisms) of ω, denoted by
Diff(X,ω). The pseudogroup Diffloc(X,ω) of local symmetries will play some
role too. Then, to introduce themoment map for any group of symmetriesG, we

need to clarify some vocabulary and notations:
33

Definition. We shall call momentum34 of a di�eological group G any left-
invariant 1-form. We denote by G ∗ its space of momenta, that is,

G ∗ = {ε ∈Ω1(G) | L(g )∗(ε) = ε, for all g ∈G}.

The set G ∗ is obviously a real vector space35.

35. Themomentmap. Let (X,ω) be a parasymplectic space andG be a diffeologi-

cal group. A symmetric action ofG on (X,ω) is a smoothmorphism g 7→ gX from

G to Diff(X,ω), where Diff(X,ω) is equipped with the functional diffeology.
That is,

for all g ∈G, g ∗X(ω) = ω.

Now, to grab the essential nature of the moment map, which is a map from X
toG ∗, we need to understand it in the simplest possible case. That is, when ω is

exact,ω= dα, and whenα is also invariant byG, g ∗X(α) = α. In these conditions,
the moment map is given by

µ : X→G ∗ with µ(x) = x̂∗(α),

where x̂ : G→ X is the orbit map x̂(g ) = gX(x). We check immediately that,

since α is invariant byG, x̂∗(α) is left invariant byG, and therefore µ(x) ∈G ∗.
But, as we know, not all closed 2-forms are exact, and even if they are exact, they
do not necessarily have an invariant primitive. We shall see now, how we can

generally come to a situation, so close to the simple case above, that, modulo some

minor subtleties, we can build a good moment map in all cases.

Let us consider now the general case, with X connected. Let K be the chain-

homotopy operator, defined previously. Then, the differential 1-form Kω, de-
fined on Paths (X), satisfies d [Kω] = (1̂∗− 0̂∗)(ω), andKω is invariant byG [23,

32
The quality of being symplectic or presymplectic will be discussed and get a precise meaning.

The word parasymplectic seemed free and appropriate to denote a simple closed 2-form.
33
Remember that a diffeological group is a group that is a diffeological space such that the

multiplication and the inversion are smooth.

34
Pluralmomenta.

35
It is also a diffeological vector space for the functional diffeology, but we shall not discuss

that point here.
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Section 6.84]. Considering ω̄= (1̂∗− 0̂∗)(ω) and ᾱ=Kω, we are in the simple
case: ω̄ = d ᾱ and ᾱ invariant byG. We can apply the construction above and

then we define the paths moment map by

Ψ : Paths (X)→G ∗ with Ψ(γ) = γ̂∗(Kω),

where γ̂ : G→ Paths (X) is the orbit map γ̂(g ) = gX ◦ γ of the path γ.
The paths moment map is additive with respect to the concatenation,

Ψ(γ ∨ γ ′) =Ψ(γ)+Ψ(γ ′),

and it is equivariant by G, which acts by composition on Paths (X), and by

coadjoint action onG ∗. That is, for all g , k ∈G and ε ∈G ∗,

Ad(g ) : k 7→ g k g−1
and Ad∗(g ) : ε 7→Ad(g )∗(ε) =Ad(g−1)∗(ε).

Then, we define the holonomy of the action ofG on X as the subgroup

Γ = {Ψ(`) | ` ∈ Loops (X)} ⊂ G ∗.

The group Γ is made of (closed)Ad∗-invariant momenta. ButΨ(`) depends only
on the homotopy class of `, so then Γ is a homomorphic image of π1(X), more
precisely, its abelianized.

Definition. If Γ = {0}, we say that the action of G on (X,ω) is Hamiltonian.
The holonomy Γ is the obstruction for the action of the groupG to be Hamiltonian.
Now, we can push forward the paths moment map onG ∗/Γ, as suggested by the
commutative diagram

Paths (X) G ∗

X×X G ∗/Γ

ends

Ψ

class

ψ

and we get then the two-points moment map :

ψ(x, x ′) = class (Ψ(γ)) ∈G ∗/Γ, for any path γ such that ends(γ) = (x, x ′).

The additivity ofΨ becomes the Chasles’s cocycle condition on ψ :

ψ(x, x ′)+ψ(x ′, x ′′) = ψ(x, x ′′).

The group Γ is invariant by the coadjoint action. Thus, the coadjoint action

passes to the quotient groupG ∗/Γ, andψ is a natural group-valuedmoment map,

equivariant for this quotient coadjoint action.
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Because X is connected, there exists always a map

µ : X→G ∗/Γ such that ψ(x, x ′) = µ(x ′)− µ(x).

The solutions of this equation are given by

µ(x) = ψ(x0, x)+ c ,

where x0 is a chosen point in X and c is a constant. These are the one-point
moment maps. But thesemomentmaps µ are a priori no longer equivariant. Their
variance introduces a 1-cocycle θ ofG with values inG ∗/Γ such that

µ(g (x)) =Ad∗(g )(µ(x))+ θ(g ), with θ(g ) = ψ(x0, g (x0))+∆c(g ),

where ∆c is the coboundary due to the constant c in the choice of µ. We say that

the action ofG on (X,ω) is exact when the cocycle θ is trivial. Defining

Adθ
∗(g ) : ν 7→Ad∗(g )(ν)+ θ(g ), then Adθ

∗(g g ′) =Adθ
∗(g ) ◦Adθ

∗(g
′).

The cocycle property of θ, that is, θ(g g ′) =Ad∗(g )(θ(g
′))+ θ(g ), makes Adθ

∗
an action ofG on the groupG ∗/Γ. This action is called the affine action. For the
affine action, the moment map µ is equivariant:

µ(g (x)) =Adθ
∗(g )(µ(x)).

This construction extends to the category {Diffeology}, the moment map for

manifolds introduced by Souriau in [47]. When X is a manifold and the action

ofG is Hamiltonian, they are the standard moment maps he defined there. The

remarkable point is that none of the constructions brought up above involves

differential equations, and there is no need for considering a possible Lie algebra

either. That is a very important point. The momenta appear as invariant 1-forms
on the group, naturally, without intermediaries, and the moment map as a map

in the space of momenta.

Note that the group of automorphismsGω = Diff(X,ω) is a legitimate diffeo-
logical group. The above constructions apply and give rise to universal objects:

universal momentaG ∗ω, universal path moment mapΨω, universal holonomy Γω,

universal two-points moment map ψω, universal moment maps µω, and universal
Souriau’s cocycles θω.

A parasymplectic action of a diffeological groupG is a smooth morphism h : G→
Gω, and the objects, associated withG, introduced by the above moment maps

constructions, are naturally subordinate to their universal counterparts.

We shall illustrate this construction by two examples in the next paragraphs. More

examples can be found in [23, Sections 9.27 – 9.34] É
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36. Example 1: Themomentof imprimitivity. Consider the cotangent space
T∗M of a manifold M, equipped with the standard symplectic form ω = dλ ,
where λ is the Liouville form. LetG be the Abelian groupC∞(M,R). Consider
the action ofG on T∗M defined by

f : (x,a) 7→ (x,a− d fx),

where x ∈M, a ∈T∗xM, and d fx is the differential of f at the point x . Then, the
moment map is given by

µ : (x,a) 7→ d [ f 7→ f (x)] = d [δx],

where δx is the Dirac distribution δx( f ) = f (x).

Since δx is a smooth function onC∞(M,R), its differential is a 1-form. Let us
check that this 1-form is invariant:

Let h ∈ C∞(M,R), L(h)∗(µ(x)) = L(h)∗(d [δx]) = d [L(h)∗(δx)] = d [δx ◦
L(h)], but δx ◦ L(h) : f 7→ δx( f + h) = f (x) + h(x). Then, d [δx ◦ L(h)] =
d [ f 7→ f (x)+ h(x)] = d [ f 7→ f (x)] = µ(x).

We see that in this case, the moment map identifies with a function with values

distributions but still has the definite formal statute of a map into the space of

momenta of the group of symmetries.

Moreover, this action is Hamiltonian and exact. This example, generalized to

diffeological space, is developped in [23, Exercise 147]. É

37. Example 2: The 1-forms on a surface. LetΣ be a closed surface, oriented

by a 2-form Surf. Consider Ω1(Σ), the infinite-dimensional vector space of 1-
forms on Σ, equipped with the functional diffeology. Letω be the antisymmetric

bilinear map defined onΩ1(Σ) by

ω(α,β) =
∫

Σ
α∧ β,

for all α, β inΩ1(Σ).36 With this bilinear form is naturally associated a differential

2-form ω onΩ1(Σ), defined by

ω(P)r (δr,δ′ r ) =
∫

Σ

∂ P(r )
∂ r

(δr )∧ ∂ P(r )
∂ r

(δ′ r ),

36
Since the exterior product α ∧ β is a 2-form of Σ, there exists ϕ ∈ C∞(Σ,R) such that

α∧ β= ϕ× Surf. By definition,
∫

Σ α∧ β=
∫

Σ ϕ× Surf.
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for all n-plots P: U→ X, for all r ∈U, δr and δ′ r in Rn
. Moreover, ω is the

differential of the 1-form λ onΩ1(Σ) :

ω= dλ with λ(P)r (δr ) = 1

2

∫

Σ
P(r )∧ ∂ P(r )

∂ r
(δr ).

Define now the action of the additive groupC∞(Σ,R) onΩ1(Σ) by

f : α 7→ α+ d f .

Then,C∞(Σ,R) acts by symmetry on (Ω1(Σ),ω), for all f inC∞(Σ,R), f ∗(ω) =
ω.

The moment map ofC∞(Σ,R) onΩ1(Σ) is given (up to a constant) by

µ : α 7→ d
�

f 7→
∫

Σ
f × dα

�

.

The moment map is invariant by the action of C∞(Σ,R), that is, exact, and
Hamiltonian. And here again, the moment map is a function with values distri-

butions.

Now, µ(α) is fully characterized by dα. This is why we find in the literature on
the subject, that the moment map for this action is the exterior derivative (or

curvature, depending on the authors) α 7→ dα. As we see again in this example
that, diffeology gives a precise meaning by procuring a unifying context. One can

find the complete conputation of this example in [23, Section 9.27]. É

38. Symplectic manifolds are coadjoint orbits. Because symplectic

forms of manifolds have no local invariants, as we know thanks to Darboux’s

theorem, they have a huge group of automorphisms. This group is big enough

to be transitive [2], so that the universal moment map identifies the symplectic

manifold with its image, which, by equivariance, is a coadjoint orbit (affine or

not) of its group of symmetries. In other words, coadjoint orbits are the universal

models of symplectic manifolds.

Precisely, let M be a connected Hausdorff manifold, and let ω be a closed 2-form
on M. Let Gω = Diff(M,ω) be its group of symmetries and G ∗ω its space of

momenta. Let Γω be the holonomy, and µω be a universal moment map with

values inG ∗ω/Γω. We have, then, the following:

Theorem. The form ω is symplectic, that is non-degenerate, if and only if:

1. the group Gω is transitive on M;
2. the universal moment map µω : M→G ∗ω/Γω is injective.
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This theorem is proved in [23, Section 9.23], but let us make some comments

on the keys elements. Consider the closed 2-form ω= (x2+ y2)d x ∧ d y ; one
can show that it has an injective universal moment map µω. But its groupGω is

not transitive, since ω is degenerate in (0,0), and only at that point. Thus, the
transitivity ofGω [2] is necessary.

Let us give some hint about the sequel of the proof. Assume ω is symplectic. Let

m0, m1 ∈M and p be a path connecting these points. For all f ∈ C∞(M,R)
with compact support, let

F: t 7→ e tgradω( f )

be the exponential of the symplectic gradient of the f . Then, F is a 1-parameter

group of automorphisms, and its value onΨω(p) is:

Ψω(p)(F) = [ f (m1)− f (m0)]× dt .

Now, if µω(m0) = µω(m1), then there exists a loop ` in M such that Ψω(p) =
Ψω(`). Applied to the 1-plot F, we deduce f (m1) = f (m0) for all f . Therefore
m0 = m1, and µω is injective.

Conversely, let us assume thatGω is transitive, and µω is injective. By transitiv-

ity, the rank of ω is constant. Now, let us assume that ω is degenerate, that

is, dim(ker(ω)) > 0. Since the distribution ker(ω) is integrable, given two

different points m0 and m1 in a characteristic, there exists a path p connect-

ing these two points and drawn entirely in the characteristic, that is, such that

d p(t )/dt ∈ ker(ω) for all t . But that implies Ψω(p) = 0 [23, Section 9.20].

Hence, µω(m0) = µω(m1). But we assumed µω is injective. Thus, ω is nondegen-

erate, that is, symplectic. É

39. Hamiltonian diffeomorphisms. Let (X,ω) be a parasymplectic diffeo-
logical space. We have seen above that the universal moment map µω takes its

values into the quotient G ∗ω/Γω, where the holonomy Γω ⊂ G ∗ω is a subgroup

made of closedAd∗-invariant 1-forms onG. This groupΓω is the very obstruction

for the action of the group of symmetriesGω= Diff(X,ω) to be Hamiltonian.

Proposition. There exists a largest connected subgroup Ham(X,ω) ⊂ Gω
with vanishing holonomy. This group is called the group of Hamiltonian dif-

feomorphisms. Every Hamiltonian smooth action on (X,ω) factorizes through
Ham(X,ω).
Hence, the moment map µ̄ω with respect to the action of Hω = Ham(X,ω)
takes its values in the vector space of momentaH ∗

ω . One can prove also that the

Hamiltonianmomentmap µ̄ω is still injective whenX is amanifold. It is probably
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an embedding in the diffeological sense [23, Section 2.13], but that has still to be

proved.

Perhaps most interesting is how this group is built. LetG◦ω be the neutral com-
ponent of Gω, and π : G̃◦ω → G◦ω be its universal covering.

37
For all γ ∈ Γω,

let Fγ ∈ Hom∞(G̃◦ω,R) be the primitive of π∗(γ), that is, dFγ = π∗(γ) and
Fγ(1G̃◦ω

) = 0. Next, let

F: G̃◦ω→RΓω =
∏

γ∈Γω

R defined by F( g̃ ) = (Fγ( g̃ ))γ∈Γω
.

Themap F is a smooth homomorphism, whereRΓω is equipped with the product

diffeology. Then [23, Section 9.15],

Ham(X,ω) = π(ker(F)).

This definition gives the same group of Hamiltonian diffeomorphisms whenX is

a manifold [23, Section 9.16].

Now, let Pγ be the group of periods of γ ∈ Γω, that is,

Pγ = F(π1(G
◦
ω,1G◦ω

)) =
§
∫

`

γ | ` ∈ Loops (G◦ω,1)
ª

.

Then, let

Pω=
∏

γ∈Γω

Pγ and Tω=
∏

γ∈Γω

Tγ with Tγ =R/Pγ .

Each homomorphism Fγ projects onto a smooth homomorphism fγ : G◦ω→Tγ ,

and the homomorphismF projects onto a smooth homomorphism f : G◦ω→ Tω,

according to the following commutative diagram of smooth homomorphisms:

G̃◦ω RΓω

G◦ω Tω

π

F

pr

f

with ker(π) = π1(G
◦
ω,1G◦ω

), ker(pr) = Pω= F(ker(π)). We get, then,

Ham(X,ω) = ker( f ),

an alternative, somewhat intrinsic, definition of the group of Hamiltonian diffeo-

morphisms as the kernel of the holonomy homomorphism f . É
37
For universal covering of diffeological groups, see [23, Section 7.10].
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In Conclusion

We have proposed in this text to switch from the rigid category {Manifolds} to

the flexible category {Diffeology}, which is now well developed. This is a category

closed under every set-theoretic operation, complete, co-complete, and Cartesian

closed, which includes on an equal footing: manifolds, singular quotients, and

infinite-dimensional spaces. It is an ideal situation already, from the pure point

of view of categoricians, and mainly the reason for the interest of the theory

in that discipline; see for example “Model Category Structures”, [4] [32], or

“Differentiable Homotopy Theory”
38
[31].

39

But of course, the primary interest of diffeology lies first and foremost in its very

strength in geometry. The geometer will find pleasant and useful the flexibility

of diffeology, to extend in a unique formal and versatile framework, different

constructions in various fields, without inventing each time a heuristic framework

that momentarily satisfies its needs. For example, the construction of themoment

map and the integration of any closed 2-form on any diffeological space [23,

Section 8.42], are the prerequisite for an extension of symplectic geometry on

spaces that are not manifolds, but that have bursted into mathematical physics

these last decades with the problems of quantization and field theory.

Then, beyond all these circumstances and technicalities, what does diffeology

have to offer on a more formal or conceptual level? The answer lies partly in Felix

Klein’s Erlangen program [34] :

The totality of all these transformations we designate as the prin-
cipal group of space-transformations; geometric properties are not
changed by the transformations of the principal group. And, con-
versely, geometric properties are characterized by their remaining
invariant under the transformations of the principal group...
As a generalization of geometry arises then the following com-

prehensive problem:

Given a manifoldness and a group of transformations of the same;
to investigate the configurations belonging to the manifoldness with
regard to such properties as are not altered by the transformations of
the group.

38
Opposed to intrinsic geometric homotopy theory, which we described previously in this

chapter.

39
The Japanese school is very productive in these fields these days, using diffeology as a tool or

a general framework. One can consult other papers on the subject, already published or not, for

examples [46, 33, 15, 16, 36].
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As we know, these considerations are regarded by mathematicians as the modern

understanding of the word/concept of geometry. A geometry is given as soon as a

space and a group of transformations of this space are given.
40
.

Consider Euclidean geometry, defined by the group of Euclidean transformations,

our principal group, on the Euclidean space. We can interpret, for example, the

Euclidean distance as the invariant associated with the action of the Euclidean
group on the set of pairs of points. We can superpose a pair of points onto another

pair of points, by an Euclidean transformation, if and only if the distance between

the points is the same for the two pairs.
41
Hence, geometric properties or geometric

invariants can be regarded as the orbits of the principal group in some spaces built
on top of the principal space, and also as fixed/invariant points, since an orbit is a

fixed point in the set of all the subsets of that space. In brief, what emerges from

these considerations suggested by Felix Klein’s principle is the following:

Claim. A geometry is associated with/defined by a principal group of transfor-
mations of some space, according to Klein’s statement. The various geometric

properties/invariants are described by the various actions of the principal group

on spaces built on top of the principal space: products, sets of subsets, and so on.

Each one of these properties, embodied as orbits, stabilizers, quotients, and so on,

captures a part of this geometry.

Now, how does diffeology fits to this context?

- One can regard a diffeological space as the collection of the plots that gives its

structure. That is the passive approach.
- Or we can look at the space through the action of its group of diffeomor-

phisms:
42
on itself, but also on its powers or parts or maps. That is the active

approach.
This dichotomy appears already for manifolds, where the change of coordinates

(transition functions of an atlas) is the passive approach. The active approach, as

the action of the group of diffeomorphisms, is often neglected, and there are a

few reasons for that. Among them, the group of diffeomorphisms is not a Lie

group stricto sensu – it does not fit in the category {Manifolds} – and that creates

a psychological issue. A second reason is that its action on the manifold itself is

40
Jean-Marie Souriau reduces the concept of geometry to the group itself [51] But this is an

extreme point of view I am not confident to share, for several reasons.

41
We could continue with the case of triangles and other elementary constructions – circles,

parallels etc. – and a comparison between Euclidean and symplectic geometry, for example, from

a strict Kleinian point of view. See the discussion in [20].

42
We consider more precisely the action of the pseudo-group of local diffeomorphisms.
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transitive –
43
there are no immediate invariants, one having first to consider some

secondary/subordinate spaces to make the first invariants appear.

These obstacles, psychological or real, vanish in diffeology. First of all, the group

of diffeomorphisms is naturally a diffeological group. And here is an example of

space, where the action of the group of diffeomorphisms, the principal group in

the sense of Klein, captures a good preliminary image of its geometry.
44

Figure 5 —A diffeomorphism of the square.

Consider the square Sq = [−1,+1]2, equipped with the subset diffeology. Its
decomposition in orbits, by its group of diffeomorphisms, is the following:

1. the 4-corners-orbit;
2. the 4-edges-orbit;

3. the interior-orbit.

Any diffeomorphism preserves separately the interior of the square and its border,

which is a consequence of the D-topology.
45
But the fact that a diffeomorphism

of the square cannot map a corner into the interior of an edge is a typical smooth

property (see [12, 13], and some comments on more general stratified spaces [14]).

On the basis of this simple example, we can experiment the Klein’s principle with

the group of diffeomorphisms of a non-transitive diffeological space. The square

being naturally an object of the theory, there is no need for heuristic extension

here.
46

43
Generally, manifolds are regarded as connected, Haussdorf, and second countable.

44
And not just of its topology.

45
A diffeomorphism is in particular an homeomorphism for the D-topology. We can use that,

or homotopy.

46
See paragraph 25 above.
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Claim. Hence, considering the group of di�eomorphisms of a di�eological space as
its principal group, we can look at di�eology as the formal framework that makes
differential geometry, the geometry — in the sense of Felix Klein — of the group
of di�eomorphisms. Or possibly, the (larger) pseudogroup of local di�eomorphisms.
That principle, in the framework of diffeology, can be regarded as the definitive

expression of Souriau’s point of view, developed in his paper “Les groupes comme

universaux” [51].

Because diffeology is a such large and stable category that encompasses satisfacto-

rily so many various situations, from singular quotients to infinite dimensions,

mixing even these cases [25], one can believe that this interpretation of diffeology

fulfills its claim and answers in some sense to the second part of the title of this

book.
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