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Chapitre 1IntrodutionLa théorie géométrique des groupes, développée au ours des vingt dernières années, a permis grâeà l'appliation de onepts de géométrie lassique omme la ourbure de résoudre de nombreuxproblèmes de théorie des groupes jusqu'alors abordés d'un point de vue ombinatoire ou purementalgébrique. La représentation d'un groupe par un espae métrique permet l'apparition de notionstelles que la quasi-isométrie entre deux groupes, et de nouvelles lasses de groupes omme elledes groupes hyperboliques ou enore des groupes CAT(0). Les propriétés géométriques de l'espaeassoié à un groupe, au-delà de leur intérêt intrinsèque, s'avèrent être profondément liées auxpropriétés algébriques lassiques du groupe en question.Plus réemment, ette approhe géométrique s'est révélée partiulièrement frutueuse pourl'étude de questions empruntées à la logique, notamment à la théorie des modèles. Cette nouvelleimpulsion trouve ses fondements prinipalement dans les divers travaux e�etués sur le problèmede Tarski, notamment par Zlil Sela dans [Sel01℄ ainsi que dans ses autres artiles de la même série(voir aussi les travaux de Kharlampovih et Myasnikov [KM06℄). L'approhe de Sela utilise demanière extensive la théorie de Bass-Serre sur les ations de groupes sur les arbres simpliiaux, lathéorie des déompositions JSJ, qui permet de dérire toutes les ations d'un groupe donné surun arbre simpliial, ainsi que la théorie de Rips, qui analyse des ations de groupes sur un arbreréel. Les résultats obtenus révèlent une orrélation signi�ative entre les propriétés géométriquesd'un groupe et sa théorie du premier ordre : Sela montre par exemple qu'un groupe de type �niélémentairement équivalent à un groupe hyperbolique sans torsion est lui même hyperbolique sanstorsion (voir [Sel℄).Ce point de vue géométrique a don permis de résoudre plusieurs problèmes di�iles de théoriedes modèles. Les outils développées pour omprendre es questions de logique ont onsidérable-ment enrihi en retour la théorie géométrique des groupes. Par ailleurs, d'autres problèmes quipeuvent sembler extérieurs aux deux domaines ont pu être résolus grâe aux tehniques déve-loppées : on peut penser à l'étude des groupes ω-résiduellement libres, ou enore à la résolutiond'équations sur les groupes libres. Par exemple, Sela obtient dans [Sel01℄ une nouvelle preuve del'existene d'un diagramme de Makanin-Razborov (le résultat original est obtenu par Razborovdans [Raz85℄ et généralisé par Kharlampovih et Myasnikov dans [KM98℄), diagramme qui permetde lassi�er les homomorphismes d'un groupe de type �ni dans un groupe libre. La nature géomé-trique de la preuve lui permet ensuite dans [Sel℄ une généralisation du résultat aux morphismesd'un groupe de type �ni dans un groupe hyperbolique sans torsion. Cei a enore été généralisépar Groves aux groupes hyperboliques relativement à une olletion de groupes abéliens libresdans [Gro05℄.Une notion de base de la théorie des modèles est elle de plongement élémentaire, qui déritomment une struture se plonge dans une autre, de manière indisernable pour la logique du1



2 CHAPITRE 1. INTRODUCTIONpremier ordre. Dans ette thèse, on s'intéresse aux groupes élémentairement plongés dans ungroupe hyperbolique sans torsion.1.1 Plongements élémentairesPoour une introdution rapide à la théorie des modèles, on pourra onsulter [Cha℄. On appellelangage des groupes l'ensemble de symboles
L = {=, (, ),¬,∨,∧, ∀, ∃, 1, ∗,−1 } ∪ V,où V est un ensemble de variables in�ni dénombrable. On rappelle que le symbole ∨ représente ladisjontion (� ou �), le symbole ∧ la onjontion (� et �), et le symbole ¬ la négation (� non �). Lesymbole 1 représentera l'élément unité du groupe, ∗ est la loi de omposition (mais on s'autoriseraà représenter le produit par la onaténation), et −1 permet d'exprimer l'inversion. Une formuledu premier ordre (ou formule élémentaire) dans le langage L est une suite �nie d'élémentsde L qui onstituent une formule mathématique � grammatialement orrete �. Par la suite,nous utiliserons fréquemment les symboles mathématiques usuels pour représenter une suite desymboles de L, omme le symbole →, où A→ B représente B ∨ ¬A.On dit qu'une variable x apparaissant dans une formule du premier ordre est libre si elle n'estpréédée ni de ∀x ni de ∃x. Une formule du premier ordre φ est dite lose (on dit aussi que φest un énoné) si auune des variables apparaissant dans la formule n'est libre. Un groupe Gsatisfait une formule lose φ dans le langage L si l'interprétation de la formule est vraie dans G.On note alors G |= φ.Exemple 1.1: Si φ est la formule ∀x∀y x ∗ y ∗ x−1 ∗ y−1 = 1, un groupe G satisfait φ si etseulement s'il est abélien.Dé�nition 1.2 : (théorie élémentaire) Soit G un groupe. La théorie élémentaire de G dans L estl'ensemble des formules loses du premier ordre dans L que G satisfait.Il est important de remarquer que l'on ne peut quanti�er que sur les éléments du groupe, etpas sur les sous-parties, ni sur les entiers naturels.Exemple 1.3: Pour exprimer qu'un groupe est sans torsion, on pourrait érire la formule suivante

∀x (x 6= 1)→
∞∧

n=1

(xn 6= 1)Cependant, elle-i n'est pas une formule du premier ordre, puisque si on devait l'érire enutilisant uniquement les symboles de L (sans raouris), on aurait une formule in�nie. De lamême manière, la formule
∀x (x 6= 1)→ ∀n ∈ N (xn 6= 1)n'est pas une formule du premier ordre puisqu'on quanti�e sur les entiers.Dé�nition 1.4 : (élémentairement équivalent) Deux groupes G et G′ sont élémentairement équi-valents s'ils ont la même théorie élémentaire dans le langage des groupes. On note alors G ≡ G′.Exemple 1.5: Soient G et G′ deux groupes élémentairement équivalents.

• Si G est abélien, G′ l'est aussi.
• Si G est �ni, G′ aussi, et ils ont le même ardinal. En fait, ils sont isomorphes : la table demultipliation de G peut être exprimée par une formule du premier ordre, que G′ satisfait.



1.1. PLONGEMENTS ÉLÉMENTAIRES 3
• Si G est sans torsion, G′ aussi. Bien que � être sans torsion � ne peut pas être exprimé parune formule du premier ordre, mais peut être exprimé par la famille in�nie d'énonés

{∀x (x 6= 1→ xn 6= 1)}n∈N−{0}.Si G est sans torsion, il satisfait haune de es formules, don G′ aussi.Exemple 1.6: Les groupes Z et Z
2 ne sont pas élémentairement équivalents. En e�et, Z satisfait
∃x∀y∃z (y = z2) ∨ (y = z2x),qui exprime que dans Z, un élément est soit pair soit impair. Clairement, Z

2 ne satisfait pas eténoné. On peut en fait montrer de ette façon que Z
k ≡ Z

l si et seulement si k = l.On peut maintenant énoner le problème suivant :Question 1: Supposons 1 < m < n. Les groupes libres de rang m et n sont-ils élémentairementéquivalents ?Ce problème, posé par le logiien Alfred Tarski dans les années 40, est onnu sous le nom deproblème de Tarski. Sela a répondu de manière positive à ette question dans [Sel06℄. Les travauxde Kharlampovih et Myasnikov proposent une autre approhe de e problème (voir [KM06℄).Sela donne également une aratérisation de tous les groupes de type �ni élémentairement équi-valents aux groupes libres (voir Théorème 1.15). Le lien ave la géométrie se manifeste de manièrefrappante dans le résultat suivant, qui est un orollaire de ette aratérisation :Théorème 1.7 : Le groupe fondamental d'une surfae fermée de aratéristique d'Euler au plus
−2 est élémentairement équivalent à un groupe libre de type �ni non abélien.On peut s'intéresser dans le adre des groupes libres à d'autre notions lassiques de la théoriedes modèles, omme elle de sous-struture élémentaire.Dé�nition 1.8 : (plongement élémentaire) Soit G un groupe et soit H un sous-groupe de G.On note LH le langage des groupes L auquel on ajoute pour tout élément h de H une nouvelleonstante ⌈h⌉. On dit que le plongement H ⊆ G est élémentaire, ou enore que H est un sous-groupe élémentaire de G si pour tout énoné du premier ordre φ dans le langage LH , le sous-groupe
H satisfait φ si et seulement si G satisfait φ. On note alors H � G.Remarquons que ette dé�nition équivaut à dire que H et G sont élémentairement équivalentsdans le langage LH , et don entraîne l'équivalene élémentaire lassique (dans le langage L).Exemple 1.9: Soit G un groupe et soit H un sous-groupe de G. Soit h un élément de H .Considérons l'énoné

φh : ∀x[⌈h⌉, x] = 1.C'est un énoné du premier ordre dans le langage LH . Le groupeH (respetivement G) satisfait φhsi et seulement si h appartient au entre Z(H) de H (respetivement Z(G) de G). En partiulier,si H � G, on voit que h ∈ Z(H) si et seulement si h ∈ Z(G) et on en déduit Z(H) = H ∩ Z(G).Lorsque l'on s'intéresse à la théorie du premier ordre des groupes libres, la question suivanteest naturelle :Question 2: Dérire les plongements élémentaires dans un groupe libre.Pour montrer l'équivalene élémentaire des groupes libres de type �ni, Sela montre en fait leThéorème 1.10 : [Sel06, Theorem 4℄ Soit i : Fk → Fn le plongement anonique d'un groupe libreà k générateurs dans un groupe libre à n générateurs pour 2 ≤ k ≤ n. Alors i est un plongementélémentaire.



4 CHAPITRE 1. INTRODUCTIONIl est don naturel de se demander si tous les plongements élémentaires dans un groupe librede type �ni sont de ette forme, 'est-à-dire si un sous-groupe élémentaire d'un groupe libre estnéessairement un fateur libre. Un premier résultat dans ette diretion peut être obtenu par desarguments simples :Lemme 1.11 : Soit H un sous-groupe élémentaire d'un groupe libre de type �ni F . Alors H estun rétrat de F .Démonstration. Notons que H est un groupe libre. On hoisit BH = (h1, h2, . . .) une base (quipeut être in�nie) pour H , et (a1, a2, . . . , an) une base pour F . Chaun des éléments hi s'exprimepar un mot wi en les éléments aj , on note hi = wi(a1, . . . , an).On ommene par montrer par ontradition que le rang de H est au plus n. Supposons que
BH a au moins n+ 1 éléments : en partiulier, H s'érit omme un produit libre H ′ ∗H ′′, où H ′est le sous-groupe librement engendré par h1, . . . , hn+1 et H ′′ peut être trivial.Considérons l'énoné du premier ordre

φ : ∃x1 . . . xn

n+1∧

i=1

⌈hi⌉ = wi(x1, . . . , xn)C'est un énoné dans LH , et il est satisfait par F : en e�et, il su�t de prendre omme � solution �
xj = aj . Comme H est un sous-groupe élémentaire de F , il satisfait également φ. Cei impliquel'existene d'éléments b1, . . . bn de H tels que pour 1 ≤ i ≤ n+ 1, on a hi = wi(b1, . . . , bn).Soit B le sous-groupe de H engendré par b1, . . . , bn. Par le théorème de Kurosh, B hérite unedéomposition en fateurs libres de la déomposition H = H ′ ∗H ′′, et l'un des fateurs de ettedéomposition héritée est B ∩H ′. Or pour 1 ≤ i ≤ n+ 1, on sait que hi = wi(b1, . . . , bn) est dans
B, don B ∩H ′ = H ′. Mais H ′, qui est un groupe libre de rang n+ 1, ne peut pas être un fateurlibre de B qui est de rang au plus n : on a une ontradition. Le sous-groupe H est don de rangau plus n.On onsidère maintenant l'énoné φ′ donné par

∃x1 . . . xn

k∧

i=1

⌈hi⌉ = wi(x1, . . . , xn),où k = Card(BH). Cet énoné est satisfait par F , don par H , et omme préédemment onobtient des éléments b1, . . . bn de H tels que pour tout 1 ≤ i ≤ k, on a hi = wi(b1, . . . , bn). Soit fle morphisme G→ H dé�ni par f(aj) = bj. On a f(hi) = f(wi(a1, . . . , an)) = wi(b1, . . . , bn) = hi,don f est une rétration de F sur H .Cei n'est pas su�sant pour montrer que H doit être un fateur libre, mais on montrera leThéorème A : (Corollary 7.22) Un sous-groupe élémentairement plongé dans un groupe librede type �ni est un fateur libre.On obtiendra e résultat omme orollaire du résultat prinipal de ette thèse, qui répond àla question un peu plus générale suivante :Question 3: Dérire les plongements élémentaires dans un groupe hyperbolique sans torsion.La desription obtenue est donnée par leThéorème B : (Theorem 7.4) Soit G un groupe hyperbolique sans torsion. Soit H un groupeélémentairement plongé dans G. Alors G admet une struture de tour hyperbolique sur H.Les tours hyperboliques sont des strutures dé�nies par Sela (qui les appelle � hyperboli ω-residually free towers �). Elles permettent de répondre à plusieurs questions de théorie des modèlessur les groupes libres et les groupes hyperboliques sans torsion. Ces strutures font l'objet de lasetion suivante.



1.2. TOURS HYPERBOLIQUES 51.2 Tours hyperboliquesOn donne la dé�nition suivante :Dé�nition 1.12 : (tour hyperbolique) Soient G un groupe et H un sous-groupe de G. On diraque G est une tour hyperbolique sur H s'il existe une suite �nie G = G0 > G1 > . . . > Gm > Hde sous-groupes de G tels que :
• pour tout k dans [[0,m−1]], il existe une rétration rk : Gk → Gk+1 telle que (Gk, Gk+1, rk)est un étage hyperbolique.
• Gm = H ∗F ∗S1 ∗ . . .∗Sp où F est un groupe libre (éventuellement trivial), p ≥ 0, et haque
Si est le groupe fondamental d'une surfae fermée de aratéristique d'Euler au plus −2.On n'a pas dé�ni la notion d'étage hyperbolique, ei sera fait dans la dé�nition 7.1. Enattendant, en voii un exemple :Exemple 1.13: Soit G un groupe, et soit r : G → G′ une rétration sur un sous-groupe de G.Supposons que G admet un sindement au-dessus d'un sous-groupe ylique in�ni C de la forme

G = G′ ∗C S, où S est le groupe fondamental d'une surfae à une omposante de bord, qui estsoit un tore peré, soit de aratéristique d'Euler au plus −2, et telle que le groupe fondamentalde l'unique omposante de bord est C. Si de plus l'image r(S) de S par la rétration est nonabélienne, alors (G,G′, r) est un étage de tour hyperbolique.En général, S peut orrespondre à une surfae non onnexe, à plusieurs omposantes de bord.On supposera alors que l'image du groupe fondamental de haque omposante a une image nonabélienne par la rétration.Exemple 1.14:
• Un groupe libre admet une struture de tour hyperbolique sur n'importe lequel de sesfateurs libres.
• Le groupe fondamental d'une surfae fermée de aratéristique d'Euler au plus −2 admetune struture de tour hyperbolique sur 1. De même, un produit libre de groupes de surfaesfermées de aratéristique d'Euler au plus −2 est une tour hyperbolique sur 1, ou surn'importe lequel de ses fateurs libres.
• Soit Σ une surfae fermée de aratéristique d'Euler au plus −2. Soit γ0 une ourbe ferméesimple sur Σ qui sépare Σ en deux sous-surfaes Σ0 et Σ1. On suppose que Σ0 est soit untore peré, soit de aratéristique d'Euler au plus −2. Considérons le graphe de groupes àdeux sommets de groupes π1(Σ) et π1(Σ0) respetivement. Ces deux sommets sont jointspar une arête de groupe ylique in�ni qui s'envoie dans π1(Σ) isomorphiquement sur ungroupe ylique maximal orrespondant à γ0, et dans π1(Σ0) isomorphiquement sur ungroupe de bord maximal. Alors, le groupe fondamental G de e graphe de groupes est unetour hyperbolique sur π1(Σ). En e�et, π1(Σ) ontient un sous-groupe isomorphe à π1(Σ0),l'appliation r qui est l'identité sur π1(Σ) et qui envoie π1(Σ0) sur e sous-groupe est biendé�nie, et fait de (G, π1(Σ), r) un étage de tour hyperbolique (voir �gure 1.1).La struture de tour hyperbolique apparaît dans plusieurs résultats de Sela. Par exemple, danssa résolution du problème de Tarski, en plus de montrer que les groupes libres de type �ni ont lamême théorie élémentaire, Sela obtient une desription des groupes de type �ni qui ont la mêmethéorie élémentaire qu'un groupe libre. Elle est donnée par le résultat suivant :Théorème 1.15 : [Sel06, Proposition 6℄ Soit G un groupe de type �ni. Le groupe G est élé-mentairement équivalent à un groupe libre de type �ni non abélien si et seulement s'il admet unestruture de tour hyperbolique sur le groupe trivial.



6 CHAPITRE 1. INTRODUCTION
Σ0

ΣFigure 1.1 � Un exemple de tour hyperbolique.Dans [Sel℄, qui fait suite à sa résolution du problème de Tarski, Sela généralise ses tehniquesdes groupes libres aux groupes hyperboliques sans torsion. Il dé�nit, pour tout groupe hyperbo-lique sans torsion Γ, un ensemble de sous-groupes deux à deux isomorphes, qu'il appelle des ÷ursélémentaires (elementary ores), sur lesquels le groupe admet une struture de tour hyperbolique.Un ÷ur élémentaire H de Γ est tel que Γ n'admet pas de struture de tour hyperbolique surun sous-groupe propre de H . Alors la lasse d'isomorphisme des ÷urs d'un groupe hyperboliquesans torsion Γ détermine sa lasse d'équivalene élémentaire, omme l'exprime leThéorème 1.16 : [Sel, Theorem 7.10℄ Soit Γ un groupe hyperbolique non abélien et sans torsion.Si G est un groupe de type �ni, G et Γ sont élémentairement équivalents si et seulement si G esthyperbolique sans torsion et les ÷urs de G et Γ sont isomorphes.Sela montre également que si G est un groupe hyperbolique non abélien sans torsion qui n'estpas libre, le ÷ur de G est un sous-groupe élémentaire de G. Le Théorème B exprime que, ommele ÷ur, tout sous-groupe élémentaire forme la base d'une struture de tour hyperbolique pour
G.1.3 Struture de la preuve du théorème BSoit H un sous-groupe élémentaire d'un groupe hyperbolique sans torsion G. Pour montrer que Gadmet une struture de tour hyperbolique sur H , il faut ommener par trouver l'étage supérieurde la tour : on veut trouver une rétration r de G dans un sous-groupe G′ telle que (G,G′, r) estun étage hyperbolique.Pour e faire, on utilise un résultat, impliite dans la preuve de la proposition 6 de [Sel06℄,qui nous permet de onstruire une telle rétration à partir d'un morphisme G → G qui respeteertaines propriétés d'une déomposition en graphe de groupes Λ de G. Cette déompositiondoit satisfaire ertaines propriétés d'aylindriité, et ertains de ses groupes de sommets sontdes groupes fondamentaux de surfaes à bord dont les sous-groupes de bord sont exatement lesgroupes d'arêtes adjaents. De tels sommets sont appelés sommets de type surfae. Une déom-position qui satisfait es hypothèses sera appelée déomposition de type JSJ, puisqu'en pratique,on onsidérera la plupart du temps soit la déomposition JSJ (voir [RS97℄), soit la déompositionJSJ relative à un sous-groupe.Le résultat qu'on utilise est donné par la proposition suivante, qui apparaîtra sous une formelégèrement di�érente dans la proposition 7.15.Proposition C : Soit G un groupe hyperbolique non abélien sans torsion. Soit Λ une déom-position de type JSJ de G. On suppose qu'il existe un morphisme f : G → G non injetif tel



1.3. STRUCTURE DE LA PREUVE DU THÉORÈME B 7que
• si R est un groupe de sommet de Λ qui n'est pas de type surfae, la restrition de f à R estune onjugaison par un élément gR de G ;
• si S est un groupe de sommet de type surfae de Λ, f(S) n'est pas abélien.Alors il existe une rétration r de G sur un sous-groupe G′, telle que (G,G′, r) est un étagehyperbolique. De plus, si R0 est un groupe de sommet qui n'est pas de type surfae, on peuthoisir r de telle manière que R0 ≤ G′.Pour trouver l'étage supérieur d'une struture de tour hyperbolique pour G, il nous su�t donde montrer qu'un morphisme f : G → G satisfaisant les hypothèses de la proposition C existe.C'est là qu'on utilisera la logique du premier ordre. Nous allons maintenant essayer d'indiquerquelques éléments des deux étapes prinipales de la preuve : la preuve de la proposition C, et laonstrution d'un morphisme qui satisfait les onditions de la proposition C.1.3.1 Constrution du morphisme fSoit don G un groupe hyperbolique non ylique et sans torsion, et soit H un sous-groupe proprede G dont l'inlusion dans G est élémentaire.Supposons pour simpli�er que G est librement indéomposable par rapport à H . On onsidère

Λ la déomposition JSJ de G par rapport à H . On supposera aussi que H est �niment engendré :attention, ei n'est pas néessairement le as à priori, et l'argument qu'on utilise dans le asdes groupes libres ne se généralise pas ii. En fait, on obtiendra que H est �niment engendréseulement omme onséquene du Théorème B.Si Λ est triviale, on n'a auun espoir de trouver un morphisme f qui satisfait les hypothèsesde la proposition C : en e�et, G lui-même est un groupe de sommet qui n'est pas de type surfaedon f est simplement une onjugaison. Mais alors f est néessairement injetive. Heureusement,on a leLemme 1.17 : La déomposition Λ n'est pas triviale.On utilisera l'existene d'un ensemble de fatorisation pour HomH(G,G), dérit par le résultatsuivant :Théorème D : (as partiulier du Theorem 6.29) Soit G un groupe hyperbolique non abélien,sans torsion et librement indéomposable par rapport à un sous-groupe H. Il existe un ensemble�ni de quotients propres {η1 : G → L1, . . . ηk : G → Lk}, appelé ensemble de fatorisation pour
HomH(G,G), tel que tout morphisme non injetif G→ G qui �xe H se fatorise par l'un de esquotients après préomposition par un automorphisme modulaire de G relativement à H.Ce résultat est bien évidemment à rapproher de l'existene d'un ensemble de fatorisationpour Hom(A,Fn), l'ensemble des morphismes d'un groupeA de type �ni dans un groupe libre (voirproposition 6.9). Sela donne une preuve de e résultat dans [Sel01℄, qu'il généralise ensuite dans[Sel℄ à la preuve de l'existene d'un ensemble de fatorisation pour Hom(A,Γ), où Γ est un groupehyperbolique sans torsion (voir proposition 6.19). On montrera une version relative de e résultat(proposition 6.29), 'est-à-dire l'existene d'un ensemble de fatorisation pour HomH(A,Γ) où Hse plonge dans A et dans Γ. Le théorème D est un as partiulier de e résultat dans le as où
A = Γ = G.Démonstration du lemme 1.17. Fixons quelques notations. Soit h1, . . . , hn une partie génératriepour H . On hoisit également une présentation �nie de G donnée par G = 〈g | ΣG(g)〉 où ΣGdénote un ensemble �ni de mots en les éléments de g. Chaque hj est représenté par un mot hj(g).



8 CHAPITRE 1. INTRODUCTIONSi Λ est triviale, le groupe modulaire de G relativement à H est trivial également, don lethéorème D nous donne un ensemble �ni de quotients propres ηi de G, tel que tout morphismenon injetif de G dans G qui �xe H se fatorise par l'un des ηi. On hoisit pour haque i unélément non trivial vi de Ker(ηi). Chaque vi est représenté par un mot vi(g).Notons maintenant que si φ est un morphisme de G dans H qui �xe H , il ne peut pasêtre injetif puisque H est un sous-groupe propre de G. Par ailleurs, omme 'est également unmorphisme de G dans G, il doit se fatoriser par l'un des quotients ηi.L'ensemble des morphismes G→ H est en bijetion ave l'ensemble des solutions de l'équation
ΣG(g) = 1 dans H : à une solution x est assoié le morphisme φx qui envoie g sur x. L'image par
φx d'un élément représenté par un mot w(g) est alors représentée par le mot w(x). On voit donque le morphisme φx �xe H si et seulement si on a hi = hi(x) pour tout i.Comme tout morphisme de G dans H qui �xe H se fatorise par l'un des quotients ηi, l'énonédu premier ordre sur LH

∀x[ΣG(x) = 1 ∧
n∧

i=1

⌈hi⌉ = hi(x)]→
r∨

i

vi(x) = 1est satisfait par H .Puisque H est plongé élémentairement dans G, et énoné doit également être satisfait par
G. Mais prenons dans G la solution tautologique x = g. Elle satisfait l'équation ΣG(g) = 1,et on a par dé�nition hi = hi(g) pour tout i. Cependant, auun des mots vi(g) ne représentel'élément neutre. C'est une ontradition : la déomposition JSJ de G relativement à H n'est pastriviale.De la même manière, si Λ ne ontient pas de sommets de type surfae, un morphisme f quisatisfait les hypothèses de la proposition C est un isomorphisme. Là enore, on peut montreromme dans le preuve du lemme préédent que e as ne se produit pas.Pour le as général, on utilisera de même l'existene d'un ensemble de fatorisation pourtrouver un énoné du premier ordre dans LH satisfait par H . Cependant, lorsque le groupemodulaire est su�samment omplexe, 'est-à-dire quand la déomposition JSJ omporte dessommets de type surfae, il est impossible d'exprimer l'existene d'un ensemble de fatorisationpar une formule du premier ordre. L'énoné qu'on onsidère exprime alors une a�rmation plusfaible, et son interprétation dans G nous permettra de trouver un morphisme f : G → G quisatisfait les onditions de la proposition C.1.3.2 Preuve de la proposition COn onsidère deux possibilités simples pour la déomposition Λ.Exemple 1.18: Supposons que Λ est un graphe à deux sommets de groupes A et B qui ne sontpas de type surfae et à une arête joignant es deux sommets. Un morphisme f : G → G dontla restrition à A et à B est une onjugaison par des éléments gA et gB respetivement est unautomorphisme. Il est don forément injetif, et la proposition est trivialement vraie.Exemple 1.19: Supposons maintenant que Λ est un graphe sur deux sommets vA et vS et unearête les joignant. On suppose de plus que seul vS est de type surfae, et on dénote A et S lesgroupes de sommets de A et B respetivement. Soit f : G → G un morphisme qui satisfait lesonditions de la proposition C. On suppose de plus qu'auun élément orrespondant à une ourbefermée simple sur la surfae orrespondant à S n'est dans le noyau de f . Quitte à onjuguer f ,on peut supposer que f est l'identité sur A.On onsidère l'image de S par f . Si f(S) ≤ A, alors f est une rétration de G dans A, et onvoit ensuite aisément que (G,A, f) est un étage de tour hyperbolique.



1.4. CONTENU DE LA THÈSE 9Si f(S) ≤ S, en utilisant le fait que f ne tue auun élément orrespondant à une ourbe ferméesimple, on peut montrer que f(S) doit être un sous-groupe d'indie �ni de S. Mais le rang de
f(S) est au plus égal au rang de S, or le rang d'un sous-groupe d'indie �ni dans un groupe librede rang k est de rang au moins k, ave égalité si et seulement si l'indie est 1. On en déduit que
f(S) = S. Comme les groupes libres sont hop�en, f restreint à S est un isomorphisme. Don fest un isomorphisme, e qui ontredit sa non-injetivité.Pour traiter le as général, on note que S agit via f sur l'arbre simpliial orrespondant à Λ :il hérite don d'une déomposition en graphe de groupes, dont on peut montrer qu'elle est duale àun ensemble de ourbes fermées simples sur la surfae Σ orrespondante. Ces ourbes divisent Σen un nombre �ni de sous-surfaes dont les groupes fondamentaux ont une image par f elliptiquepour Λ. Si une telle sous-surfae Σ0 a pour groupe fondamental S0, et si f(S0) est un sous-groupenon abélien de S, on peut appliquer un argument similaire à elui du paragraphe préédent pourvoir que Σ0 doit être au moins aussi omplexe que Σ (pour une notion de omplexité un peu pluspréise que le rang du groupe fondamental). Cei n'est pas possible si Σ0 est une sous-surfaepropre de Σ. On peut don montrer que les groupes fondamentaux de toutes les sous-surfaesobtenues sont envoyés par f dans un onjugué de A. Cei permet �nalement de voir que f est larétration herhée.1.4 Contenu de la thèseDans le hapitre 3 sont exposés quelques rappels sur la théorie de Bass-Serre, qui dérit les ationsde groupe sur des arbres simpliiaux. On rappellera aussi quelques propriétés élémentaires desespaes métriques hyperboliques, et on dé�nira la topologie de Gromov-Hausdor�. Les hapitres4, 5 et 6 ont pour thème l'argument du raourissement et ertaines de ses onséquenes. Dansle hapitre 4, on donne diverses variantes de l'argument du raourissement, et on présente unepreuve de ertains résultats de raourissement sur des suites de morphismes. Pour e faire, onutilise les résultats de raourissement sur des suites d'ations, dont la preuve est l'objet duhapitre 5. Ces résultats nous permettent de montrer tout d'abord ertaines propriétés de typeo-Hopf pour les groupes hyperboliques, puis l'existene d'ensembles de fatorisations dans lehapitre 6 : là enore, on énone les diverses versions de e résultat (pour les morphismes vers lesgroupes libres, vers les groupes hyperboliques sans torsion, relativement à un sous-groupe), quiproviennent de diverses formes de l'argument du raourissement.Dans le reste de la thèse, on donne la preuve du Théorème B : le hapitre 7 expose le résultatqu'on prouve en utilisant la proposition C. En�n, les hapitres 8, 9 et 10 sont onsarés à la preuvede la proposition C.
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Chapter 2Introdution in EnglishIn the last deades, the apparition of geometri group theory has led to the resolution of manyproblems in groups theory. The introdution of typially geometri onepts suh as urvature, orgeodesis, has allowed to takle questions that the traditional ombinatorial or purely algebraiapproah had left unsolved. Representing a group by a metri spae allows to de�ne new notionssuh as quasi-isometry between groups, and new lasses of groups like that of hyperboli orCAT(0) groups. The geometri properties of the spae assoiated to a group are of independentinterest, but have also proved to bear strong relation to the lassial algebrai properties of thegroup.More reently, suh a geometrial approah has proved partiularly fruitful when applied toquestions borrowed from model theory. This new interation �nds its soure mainly in the workof Sela on Tarski's problem, in [Sel01℄-[Sel℄ (see also Kharlampovih and Myasnikov's approahin [KM06℄). The results of Sela make an extensive use of Bass-Serre theory about ations onsimpliial trees, of the JSJ theory, whih desribes all suh possible ations, and of Rips theory,whih analyses ations on real trees. Here again, the results highlight a deep onnetion betweenthe geometri properties of a group, and its �rst-order theory. For example, Sela shows that agroup whih has the same �rst-order theory as a torsion-free hyperboli group must be torsion-freehyperboli itself.This geometri approah has thus been useful to solve several di�ult model-theoretial ques-tions, but has also onsiderably enrihed the tools of geometri group theory. Moreover, someproblems whih at �rst might seem unrelated to both areas have been resolved along the way,suh as the study of ω-residually free groups, or the resolution of equations over free groups. Forexample, Sela obtains in [Sel01℄ a new proof of the existene of a Makanin-Razborov diagram(the original result was proved by Razborov in [Raz85℄, and generalised by Kharlampovih andMyasnikov in [KM98℄). Suh a diagram lassi�es homomorphisms from a given �nitely gener-ated group into a free group. Beause the proof is essentially geometri, it an be generalisedto torsion-free hyperboli groups, whose geometry is lose to that of free groups, so Sela gets in[Sel℄ a Makanin-Razborov diagram for morphisms into a torsion-free hyperboli group. Grovesgeneralises this result further to groups that are hyperboli with respet to a olletion of freeabelian groups in [Gro05℄.One of the basi notions of model theory is that of an elementary embedding, whih desribeshow a struture embeds in another in a way whih makes them indistinguishable for �rst-ordertheory. The main purpose of this thesis is to study elementary embeddings in torsion-free hyper-boli group. 11



12 CHAPTER 2. INTRODUCTION IN ENGLISH2.1 Elementary embeddingsThe language of groups is the following set of symbols
L = {=, (, ),¬,∨,∧, ∀, ∃, 1, ∗,−1 } ∪ Vwhere V is an in�nite ountable set of variables. Reall that the symbol ∨ represents disjuntion("or"), the symbol ∧ onjuntion ("and"), and the symbol ¬ negation ("not"). The symbol 1represents the unit element of the group, ∗ is the multipliation (but we will mostly representprodut simply by onatenation), and −1 denotes the inverse. A �rst-order formula (or ele-mentary formula) in the language L is a �nite sequene of elements of L whih onstitutes a"grammatially orret" mathematial formula. In the sequel, we will often use usual mathemat-ial symbols to represent a �nite set of elements of L, suh as for example the symbol →, where

A→ B represents B ∨ ¬A.A variable x whih appears in a �rst-order formula is free if neither ∀x nor ∃x appears beforeit in the formula. A �rst-order formula φ is said to be losed (we will also say that φ is asentene) if none of the variables whih appear in φ are free. A group G satis�es a sentene φof the language L if the interpretation of the formula holds in G. We denote this by G |= φ.Example 2.1: If φ is the formula ∀x∀y x ∗ y ∗ x−1 ∗ y−1 = 1, a group G satis�es φ if and only ifit is abelian.De�nition 2.2: (elementary theory) Let G be a group. The elementary theory of G in L is theset of losed �rst-order formulas over L satis�ed by G.It is important to note that quanti�ation is allowed only on elements of the group. Inpartiular, it is not allowed on subsets of the group, nor on integers.Example 2.3: To express the fat that a group is torsion-free, we might want to write thefollowing formula
∀x (x 6= 1)→

∞∧

n=1

(xn 6= 1)However, this is not a �rst-order formula, sine if we rewrote it using only symbols of L (withoutshort uts), we would get an in�nite formula. Similarly, the formula
∀x (x 6= 1)→ ∀n ∈ N (xn 6= 1)is not a �rst-order formula, sine we quantify on integers.De�nition 2.4: (elementary equivalent) Two groups G and G′ are elementary equivalent if theyhave the same elementary theory in the language of groups. We denote this by G ≡ G′.Example 2.5: Let G and G′ two groups for whih G ≡ G′.

• If G is abelian, so is G′.
• If G is �nite, so is G′, and they have the same ardinality. In fat, they are isomorphi: themultipliation table of G an be expressed by a �rst-order formula, whih is satis�ed by G′.
• If G is torsion-free, so is G′. Indeed, even though 'being torsion-free' annot be expressedby one �rst-order formula, it an be expressed by the following in�nite family of sentenes:

{∀x [(x 6= 1)→ (xn 6= 1)]}n∈N−{0}.If G is torsion-free, it satis�es eah one of these formulas, hene so does G′.



2.1. ELEMENTARY EMBEDDINGS 13Example 2.6: The groups Z and Z
2 are not elementary equivalent. Indeed, Z satis�es thefollowing sentene

∃x∀y∃z (y = z2) ∨ (y = z2x)whih expresses that in Z, an element is either even or odd. Clearly, Z
2 does not satisfy thissentene. It an be showed in this way that Z

k ≡ Z
l if and only if k = l.We an now state the following problem:Question 4: Suppose that 1 < m < n. Are free groups of rank m and n elementary equivalent?This question was asked by the logiian Alfred Tarski around 1945, and is known as Tarski'sproblem. Sela answered it positively in [Sel06℄. Kharlampovih and Myasnikov have anotherapproah to this problem (see [KM06℄). Sela also gives a haraterisation of all �nitely gen-erated groups whih are elementary equivalent to non-abelian free groups (see Theorem 2.15).The onnetion with geometry is striking in the following result, whih is a orollary of thisharaterisation:Theorem 2.7: The fundamental group of a losed surfae whose Euler harateristi is at most

−2 is elementary equivalent to a non-abelian free group.It is natural to study in the ontext of free groups other lassial notions of model theory,suh as that of elementary embedding.De�nition 2.8: (elementary embedding) Let G be a group, and let H be a subgroup of G. Wedenote by LH the language of groups L to whih have been added for eah element h of H anew onstant ⌈h⌉. We say that the embedding H ⊆ G is elementary, or that H is an elementarysubgroup of G if for any �rst-order sentene φ in the language LH , the subgroup H satis�es φ ifand only if G satis�es φ. We denote this by H � G.Note that this de�nition is equivalent to saying that H and G are elementary equivalent inthe language LH , and thus implies standard elementary equivalene (in the language L).Example 2.9: Let G be a group, let H be a subgroup of G. Let h be an element of H . Considerthe following sentene
φh : ∀x[⌈h⌉, x] = 1It is a �rst-order sentene in the language LH . The group H (respetively G) satis�es φh if andonly if h lies in the entre Z(H) of H (respetively Z(G) of G).In partiular, if H � G we see that h ∈ Z(H) if and only if h ∈ Z(G), we thus have

Z(H) = H ∩ Z(G).When studying the �rst-order theory of free groups, the following question omes up naturally:Question 5: Desribe elementary embeddings in free groups.In his proof of the elementary equivalene of free groups, Sela shows in fat theTheorem 2.10: (Theorem 4 of [Sel06℄) Let i : Fk → Fn be the anonial embedding of a freegroup of rank k in the free group of rank n for 2 ≤ k ≤ n. Then i is an elementary embedding.It is thus natural to ask if all the elementary embeddings in a free groups are of this type,that is, whether an elementary subgroup of a free group is neessarily a free fator. A �rst stepin this diretion is:Lemma 2.11: Let H be an elementary subgroup of a �nitely generated free group F . Then H isa retrat of F .Proof. Note that H is a free group. We hose BH = (h1, h2, . . .) a basis for H (it might bein�nite), and (a1, a2, . . . , an) a basis for F . Eah element hi an be expressed by a word wi inthe elements aj , we write hi = wi(a1, . . . , an).



14 CHAPTER 2. INTRODUCTION IN ENGLISHLet us �rst see by ontradition that the rank of H is at most n. Suppose that BH has atleast n + 1 elements: in partiular, H an be written as a free produt H ′ ∗ H ′′, where H ′ isthe subgroup freely generated by h1, . . . hn+1 and H ′′ is possibly trivial. Consider the following�rst-order sentene
φ : ∃x1 . . . xn

n+1∧

i=1

⌈hi⌉ = wi(x1, . . . , xn).It is a sentene of LH whih is satis�ed by F : indeed, we an take xj = aj as a "solution".Sine H is an elementary subgroup of F , it also satis�es φ. This implies that there exist elements
b1, . . . bn of H suh that for any 1 ≤ i ≤ n+ 1, we have hi = wi(b1, . . . bn). Let B be the subgroupof H generated by b1, . . . bn. By Kurosh's theorem, B inherits a free produt deompositionfrom H = H ′ ∗ H ′′, in whih one of the fators is B ∩ H ′. But for 1 ≤ i ≤ n + 1, we have
hi = wi(b1, . . . bn) so hi ∈ B. Thus B ∩H ′ = H ′ is a free group of rank n+ 1, so it annot be afree fator of B whose rank is at most n: we get a ontradition. The subgroup H has rank atmost n.We now onsider the sentene φ′ given by

∃x1 . . . xn

k∧

i=1

⌈hi⌉ = wi(x1, . . . , xn).where k = Card(BH). It is satis�ed by F , thus it is satis�ed by H and we get elements b1, . . . bnof H suh that for 1 ≤ i ≤ k, we have hi = wi(b1, . . . bn). Let f be the morphism G→ H de�nedby f(aj) = bj. We get f(hi) = f(wi(a1, . . . , an)) = wi(b1, . . . , bn) = hi, thus f is a retrationfrom F to H .This is not enough to show that H must be a free fator, but we will see:Theorem A: (Corollary 7.22) An elementary subgroup of a �nitely generated free group is a freefator.This will be a orollary of the main result of the thesis, whih answers the following question:Question 6: Desribe elementary embeddings in torsion-free hyperboli groups.The desription we obtain is given byTheorem B: (Theorem 7.4) Let G be a torsion-free hyperboli group. Let H be a subgroupelementarily embedded in G. Then G has a struture of hyperboli tower over H.Hyperboli towers are strutures de�ned by Sela (who alls them 'hyperboli ω-residually freetowers'). They appear in the answer to several questions about the �rst-order theory of free andhyperboli groups. They are the subjet of the following setion.2.2 Hyperboli towersWe give the following de�nition:De�nition 2.12: (hyperboli tower) Let G be a group, and let H be a subgroup of G. We saythat G is a hyperboli tower over H if there is a �nite sequene G = G0 > G1 > . . . > Gm > Hof subgroups of G suh that:
• for any k in [0,m− 1], there is a retration rk : Gk → Gk+1 suh that (Gk, Gk+1, rk) is ahyperboli �oor.
• Gm = H ∗ F ∗ S1 ∗ . . . ∗ Sp where F is a (possibly trivial) free group, p ≥ 0, and eah Si isthe fundamental group of a losed surfae of Euler harateristi at most −2.



2.2. HYPERBOLIC TOWERS 15
Σ0

ΣFigure 2.1: An example of hyperboli tower.We have not de�ned hyperboli �oors yet, this will be done in de�nition 7.1. In the meantime,let us give an example:Example 2.13: Let G be a group, and let r : G → G′ be a retration onto a subgroup of G.Suppose that G has a splitting over an in�nite yli subgroup C of the form G = G′ ∗C S, where
S is the fundamental group of a surfae with exatly one boundary omponent, whih either isa puntured torus, or has Euler harateristi at most −2, and suh that the fundamental groupof the unique boundary omponent is C. If moreover the image r(S) of S by the retration isnon-abelian, then (G,G′, r) is a hyperboli �oor.In general, S might orrespond to a disonneted surfae, with several boundary omponents.We will then assume that the image of the fundamental group of eah onneted omponent hasnon-abelian image by the retration.Example 2.14:
• A free group has a struture of hyperboli tower over eah of its free fators.
• The fundamental group of a losed surfae of Euler harateristi at most −2 has a strutureof hyperboli tower over 1. Similarly, a free produt of fundamental groups of surfaes ofEuler harateristi at most −2 is a hyperboli tower over 1, and over eah of its free fators.
• Let Σ be a losed surfae of Euler harateristi at most −2. Let γ0 be a simple losedurve on Σ whih separates Σ into two subsurfaes Σ0 and Σ1. We assume that Σ0 iseither a puntured torus, or of Euler harateristi at most −2. Consider the graph ofgroup on two verties of groups π1(Σ) and π1(Σ0) respetively, joined by an edge of in�niteyli edge group, whih injets in π1(Σ) isomorphially onto a maximal yli subgrouporresponding to γ0, and in π1(Σ0) isomorphially on a maximal boundary subgroup. Then,the fundamental group G of this graph of groups is a hyperboli tower over π1(Σ). Indeed,
π1(Σ) ontains a subgroup isomorphi to π1(Σ0): the map r whih restrits to the identityon π1(Σ) and whih sends π1(Σ0) on this subgroup is well-de�ned, and makes (G, π1(Σ), r)a hyperboli �oor (see �gure 2.1).Hyperboli towers appear in several results of Sela. For example, in his solution to Tarski'sproblem, as well as showing that �nitely generated free groups are all elementary equivalent, Selagives a desription of �nitely generated groups whih have the same elementary theory as a freegroup. It is given by the following result:Theorem 2.15: (Proposition 6 [Sel06℄) Let G be a �nitely generated group. The group G iselementary equivalent to a non-abelian �nitely generated free group if and only if it admits a



16 CHAPTER 2. INTRODUCTION IN ENGLISHstruture of hyperboli tower over the trivial group.In a paper whih follows his resolution of Tarski's [Sel℄, Sela generalises his tehniques fromfree groups to torsion-free hyperboli groups. Given a torsion-free hyperboli group Γ, he de�nessubgroups of Γ alled elementary ores, whih are all isomorphi, and over whih Γ admits astruture of hyperboli tower. A ore H of Γ is suh that Γ is not a hyperboli tower over anyproper subgroup of H . Then, the isomorphism lass of the ores of a torsion-free hyperboli group
Γ determines its elementary equivalene lass, so that we haveTheorem 2.16: (Theorem 7.10 in [Sel℄) Let Γ be a non-abelian, torsion-free hyperboli group. If
G is a �nitely generated group, G and Γ are elementary equivalent if and only if G is torsion-freehyperboli and the ores of G and Γ are isomorphi.Sela shows also that if Γ is a non-abelian torsion-free hyperboli group whih is not free, theore of Γ is an elementary subgroup of Γ. Theorem B says that, as the ore, any elementarysubgroup is the basis of a hyperboli tower struture for Γ.2.3 Struture of the proof of theorem BLet H be an elementary subgroup of a torsion-free hyperboli group G. To show that G has astruture of hyperboli tower over H , we must �rst �nd the top �oor of the tower. In other words,we want to show that there is a retration r from G to a subgroup G′ suh that (G,G′, r) is ahyperboli �oor.To do this, we use a result whih is impliit in the proof of proposition 6 of [Sel06℄, andwhih enables us to build suh a retration from a morphism G → G whih respets someproperties of a graph of groups deomposition Λ of G. This deomposition must satisfy someonditions of aylindriity, and some of its verties are fundamental groups of surfaes withboundary whose boundary subgroups are exatly the adjaent edge groups. Suh verties arealled surfae type verties. A deomposition whih satis�es these hypotheses will be alled aJSJ-like deomposition, sine in fat most of the deompositions of this type that we onsider willbe either JSJ deompositions (see [RS97℄), or JSJ deompositions relative to a subgroup.The result we use is given by the following proposition, whih will appear in a slightly di�erentform in proposition 7.15.Proposition C: Let G be a non-abelian torsion-free hyperboli group. Let Λ be a JSJ-like de-omposition of G. Suppose that there exists a non-injetive morphism f : G→ G suh that
• if R is a vertex group of Λ whih is not of surfae type, the restrition of f to R is aonjugation by an element gR of G;
• if S is a vertex group of Λ whih is of surfae type, f(S) is not abelianThen there exists a retration r from G onto a subgroup G′, suh that (G,G′, r) is a hyperboli�oor. Moreover, if R0 is a vertex group whih is not of surfae type, we an hoose r suh that

R0 ≤ G′.Thus, to �nd the top �oor of a hyperboli tower struture for G, it is enough to show thatthere exists a morphism whih satis�es the hypotheses of proposition C. This is where we use�rst-order logi. We will now give a few elements of the two main steps of the proof of TheoremB: the proof of proposition C, and the onstrution of a morphism satisfying the onditions ofproposition C.



2.3. STRUCTURE OF THE PROOF OF THEOREM B 172.3.1 Constrution of the morphism fLet thus G be a non-abelian torsion-free hyperboli group, and let H be a proper subgroup of Gwhose embedding in G is elementary.Let us assume for the sake of simpliity that G is freely indeomposable with respet to H ,and onsider Λ the JSJ deomposition of G with respet to H . We also assume that H is �nitelygenerated: this is not neessarily the ase a priori, and the argument we gave in the ase offree groups does not generalise here. In fat, we will only get that H is �nitely generated as aonsequene of Theorem B.If Λ is trivial, there is no hope to �nd a morphism f whih satis�es the hypotheses of propo-sition C: indeed, G itself is a vertex group whih is not of surfae type, so f is just a onjugation.But this means f has to be injetive. Lukily, we haveLemma 2.17: The deomposition Λ is not trivial.To prove this, we use the existene of a fator set for HomH(G,G), desribed in the followingresult:Theorem D: (partiular ase of Theorem 6.29) Let G be a non-abelian torsion-free hyperboligroup whih is freely indeomposable with respet to a subgroup H. There is a �nite set of properquotients η1 : G → L1, . . . ηk : G → Lk, alled a fator set for HomH(G,G), suh that any non-injetive morphism G→ G �xing H fatorises through one of these quotients after preompositionby a modular automorphism of G relative to H.This result is of ourse related to the existene of a fator set for Hom(A,Fn), the set ofmorphisms from a �nitely generated group A to a free group (see proposition 6.9). Sela gives aproof of this result in [Sel01℄, that he then generalises in [Sel℄ to the proof of the existene of afator set for Hom(A,Γ), where Γ is a torsion-free hyperboli group (see proposition 6.19). Wewill show a relative version of this result (proposition 6.29), that is we will show the existene ofa fator set for HomH(A,Γ) where H embeds both in A and in Γ. Theorem D is the partiularase of this result when A = Γ = G.Proof. Let us �x some notations. Let h1, . . . hn be a generating set for H . We also hoose a �nitepresentation of G given by G = 〈g | ΣG(g)〉 where ΣG denotes a �nite set of words in the elementsof g. Eah hj is represented by a word hj(g) in the elements g.If Λ is trivial, the modular group of G relatively to H is trivial, so Theorem D gives us a �niteset of proper quotients ηi of G, suh that any non-injetive morphism from G to G whih �xes
H fatorises through one of the maps ηi. We pik for eah i a non-trivial element vi of Ker(ηi).Eah vi is represented by a word vi(g).Let us restrit ourselves to the set of morphisms G → H : it is in bijetion with the set ofsolutions of the equation ΣG(g) = 1 in H . To a solution x is assoiated the morphism φx whihsends g to x. The image by φx of an element represented by the word w(g) is then representedby w(x). Thus we see that the morphism φx �xes H if and only if we have hi = hi(x) for all i.Now remark that if φ is a morphism from G to H whih �xes H , it annot be injetive sine
H is a proper subgroup of G. On the other hand, it is also a morphism from G to G, so it mustfatorise through one of the quotients ηi and for some index i we have vi(x) = 1.This tells us that the following sentene

∀x

[

ΣG(x) = 1 ∧
n∧

i=1

⌈hi⌉ = hi(x)

]

→
r∨

i

vi(x) = 1is satis�ed by H .Sine H is elementarily embedded in G, this sentene must also be satis�ed by G. But takein G the tautologial solution x = g. It satis�es the equation ΣG(g) = 1, and by de�nition, we



18 CHAPTER 2. INTRODUCTION IN ENGLISHhave hi = hi(g) for all i. However, none of the words vi(g) represents the trivial word. This is aontradition, so the JSJ deomposition of G relative to H isn't trivial.Similarly, if Λ does not ontain surfae type verties, a morphism f whih satis�es the hy-potheses of proposition C is an isomorphism. We an show as in the previous lemma that thisase does not our.For the general ase, we will also use the existene of a fator set to �nd a �rst-order senteneon LH satis�ed by H . However, when the modular group is omplex enough, namely when theJSJ deomposition ontains surfae type verties, it is impossible to express the existene of afator set by a �rst-order formula. The sentene we then onsider expresses something weaker,and its interpretation in G will give us a morphism f : G → G whih satis�es the hypotheses ofproposition C.2.3.2 Proof of Proposition CWe onsider two simple ases for the deomposition Λ.Example 2.18: Suppose that Λ is a graph of groups on two verties whih are not of surfaetype, whose groups we denote by A and B, and with a single edge joining the two verties. Amorphism f : G → G whose restrition to A and to B is a onjugation by elements gA and gBrespetively is an automorphism. The proposition is trivially true.Example 2.19: Suppose now that Λ is a graph on two verties vA and vS of groups A and
S, with vS of surfae type, and a single edge joining the two verties. Let f : G → G be amorphism whih satis�es the onditions of proposition C. We assume moreover that no elementorresponding to a simple losed urve on the surfae orresponding to S is in the kernel of f .Up to onjugating f , we may assume that f is the identity on A.Consider the image of S by f . If f(S) ≤ A, f is a retration from G to A, and we see easilythat (G,A, f) is a hyperboli �oor.If f(S) ≤ S, using the fat that f does not kill elements orresponding to simple losed urves,we an show that f(S) must be a �nite index subgroup of S. But the rank of f(S) is at mostequal to the rank of S, and the rank of a �nite index subgroup in a free group of rank k has rankat least k, with equality if and only if the index is 1. We dedue that f(S) = S. Sine free groupsare Hop�an, f restrited to S is an isomorphism. Thus f is an isomorphism, whih ontraditsits non-injetivity.To deal with the general ase, note that S ats via f on the simpliial tree orresponding to Λ:it inherits a graph of groups deomposition. We an show that this deomposition is dual to a setof simple losed urves on the surfae Σ. These urves divide Σ into a �nite number of subsurfaeswhose fundamental groups have ellipti image for Λ. If suh a subsurfae Σ0 has fundamentalgroup S0, and if f(S0) is a non-abelian subgroup of S, we an use an argument similar to theone above to see that Σ0 must be at least as omplex as Σ (for a notion of omplexity whih isslightly more ompliated than the rank of the fundamental group). This is not possible if Σ0 isa proper subsurfae of Σ. We an thus show that the fundamental groups of all the subsurfaesare sent to a onjugate of A by f . This �nally enables us to see that f is the retration we werelooking for.2.4 Content of the thesisThe �rst half of the thesis revolves around the shortening argument and some of its onsequenes.We start in hapter 3 by realling some basi notions about graphs of groups, hyperboli metrispaes and Gromov-Hausdor� topology. In hapter 4, we state various versions of the shortening



2.4. CONTENT OF THE THESIS 19argument, and we present a proof of the shortening for a sequene of morphisms in the lassialand the relative ase. To do so, we use the shortening result for a sequene of ations, whoseproof is the objet of hapter 5. This enables us to show �rst some properties of Co-Hopf typefor hyperboli groups, then the existene of fator sets in hapter 6: here again, we give di�erentversions of this result (for morphisms to free groups, to torsion-free hyperboli groups, relativelyto a subgroup), whih follow from the di�erent versions of the shortening argument.In the seond half, we give the proof of Theorem B. Chapter 7 exposes the result and provesit using proposition C. Finally, the last three hapters are devoted to the proof of proposition C.
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Chapter 3Basi notions3.1 Ations on simpliial trees and graphs of groupsThe notion of graph of groups an be seen as a generalisation of the notion of amalgamatedprodut. Similarly to amalgams, it enables us to understand the struture of a group, and toredue questions about a group to questions about a �nite number of its subgroups. The theorywas developed by Jean-Pierre Serre and Hyman Bass, and the main referene is [Ser83℄. In thissetion, we de�ne graphs of groups, and explain the orrespondene between them and ations onsimpliial trees. We then de�ne a few simple operations that an be applied to a graph of groups,and that will be of use later.De�nition of a graph of groups. We will use the de�nitions and results of [Ser83℄ on graphsof groups. Reall that a graph of groups Λ is given by
• an underlying oriented graph (that we also denote by Λ), with vertex set V (Λ) and edge set
E(Λ), whih is endowed with� an involution ¯: E(Λ)→ E(Λ) suh that ȳ 6= y;� appliations o : E(Λ) → V (Λ) and t : E(Λ) → V (Λ) whih assoiate to eah edge itsendpoints, and suh that for any e ∈ E(Λ), we have o(e) = t(ē);
• a olletion of groups {Gv}v∈V (Λ), and a olletion of groups {Ge}e∈E(Λ), suh that if
e ∈ E(Λ), then Ge = Gē;
• injetive group morphisms ie : Ge → Gt(e) for eah e in E(Λ).Pik a maximal subtree Λ0 in the graph underlying Λ. The fundamental group π1(Λ) ofthe graph of groups Λ is de�ned as the group generated by the groups Gv for v ∈ V (Λ) togetherwith the set {te | e ∈ E(Λ)}, with the following relations added:
• te = t−1

ē for every edge e of Λ;
• te = 1 for every edge e of Λ0;
• ie(g) = teiē(g)t−1

e , for every edge e of Λ, and every element g of Ge.Note that the isomorphism lass of the fundamental group of Λ does not depend on the hoie ofthe maximal subtree Λ0, whih justi�es the notation π1(Λ).21



22 CHAPTER 3. BASIC NOTIONSGraphs of groups and ations on trees. Suppose that a group G ats on a simpliial tree Twithout inversions, so that if an element of G stabilises an edge of T , it �xes it pointwise. Thenthere is a graph of groups assoiated to this ation, whose fundamental group is isomorphi to G.Suh an isomorphism an be built as follows.We hoose a fundamental domain T0 of the ation of G on (the topologial realisation) of T ,namely a onneted subspae of T whih ontains exatly one point in eah orbit. If e is an edgewhose interior lies in T0 note that we must have o(e) ∈ T0 or t(e) ∈ T0 by onnetedness. ABass-Serre element orresponding to e is an element γe of G suh that
• γe · o(e) ∈ T0 if o(e) /∈ T0;
• γ−1

e · t(e) ∈ T0 if t(e) /∈ T0;
• 1 otherwise.Note that the de�nition implies that for any edge e of T0, we have γē = γ−1

e .Suppose we hose a fundamental domain T0, and for eah edge e of T0, a Bass-Serre element
γe for the ation of G on T . Denote by π the projetion T → G\T . Consider the graph of groups
Λ with underlying graph G\T , given by
• Gπ(e) = StabG(e) for eah edge e whose interior is in T0,
• Gπ(v) = StabG(v) for eah vertex v in T0,
• if e is an edge whose interior lies in T0, the map iπ(e) : Gπ(e) → Gπ(t(e)) is given by g 7→ gif t(e) ∈ T0, and by g 7→ γ−1

e gγe if t(e) /∈ T0.Théorème 13 in [Ser83℄ tells us that the map from π1(Λ) to G de�ned by g 7→ g for g ∈ Gπ(v),and te 7→ γe, is an isomorphism. Note that the hoie of a di�erent fundamental domain, or ofdi�erent Bass-Serre elements, gives us a di�erent isomorphism.Conversely, the fundamental group G of a graph of groups Λ ats on a tree that we denote TΛ,the Bass-Serre tree orresponding to Λ, in suh a way that the graph of groups assoiatedto this ation is the original graph of groups Λ. We all vertex groups and edge groups of
Λ all the stabilisers of a vertex, respetively of an edge, of the tree T assoiated to Λ. In otherwords, the vertex groups of Λ are the onjugates in G of the groups Gv for v in V (Λ), and theedge groups of Λ are the onjugates in G of the groups Ge for e in E(Λ).If Λ is a graph of groups with fundamental group G, we say that Λ is a splitting for G. If allthe edge groups of Λ are yli, or abelian, we say that Λ is a yli splitting, respetively anabelian splitting for G. If the underlying graph of Λ has only one edge, we all Λ a one edgesplitting for G: it gives for G a struture of amalgamated produt (if Λ has two verties) or ofHNN extension (if Λ has only one vertex).Re�ning graphs of groups. Suppose we are given a minimal ation of a group G on a tree
T (i.e. T has no proper G-invariant subtree), with orresponding graph of groups Λ. Let v bea vertex of T , and suppose that the stabiliser Gv of v has a minimal ation on a tree Tv, withorresponding graph of groups Γ. Suppose moreover that for any edge e of T adjaent to v, thestabiliser of e �xes a vertex ve in the ation of Gv on Tv.We build a new G-tree T ′ from T and Tv. To do this, replae v by Tv, attahing eah adjaentedge e to ve. Extend equivariantly to get T ′. There is a anonial ation of G on T ′ that we allthe re�nement of the ation of G on TΛ by the ation of Gv on TΓ. It is minimal, and if theoriginal ations weren't both trivial, it is non-trivial. We all the orresponding graph of groupthe re�nement of Λ by Γ.



3.2. HYPERBOLIC METRIC SPACES 23Quotients of graphs of groups. Let Λ be a graph of group with fundamental group G.Suppose that for eah vertex v of Λ with orresponding group Gv, we are given a surjetivemorphism qv : Gv → qv(Gv), whose restrition to eah ie(Ge) ontained in Gv is injetive.We build a graph of groups Λq from Λ as follows: for eah vertex v of Λ, we replae theorresponding vertex group Gv by qv(Gv), and for eah edge e suh that t(e) = v, we replae ieby qv ◦ ie. The fundamental group of Λq is obtained by quotienting G by the smallest normalsubgroup of G ontaining the kernels of all the qv. We all the graph of groups Λq the quotientof Λ by the maps (qv)v∈V (Λ).Extending vertex automorphisms. Let Λ be a graph of groups with fundamental group G.Let φv be an automorphism of the vertex group Gv orresponding to some vertex v of Λ. Supposethat for every edge e of Λ whih is adjaent to v, there exists an element ge of Gv suh that on
ie(Ge), the map φv restrits to onjugation by ge. Then we an extend φv to an automorphismof G. To see this, start by piking a maximal subtree of Λ. For any vertex w of Λ, if the pathbetween w and v in this maximal subtree ends by an edge e, de�ne φ to be onjugation by ge on
Gw. Suppose now that t is the generating element orresponding to an edge f whih is not in themaximal subtree, with o(f) = w and t(f) = w′. Suppose that on Gw and Gw′ respetively, wede�ned φ as onjugation by some element ge and ge′ respetively. Then we set φ(t) = getg−1

e′ . Itis straightforward to hek that φ is well de�ned, and that it is an automorphism. We all this astandard extension of φv to G. Suh an element φ of Aut(G) is alled a vertex automorphismof G relative to Λ.3.2 Hyperboli metri spaesThe notion of hyperboliity, originally related to urvature of Riemannian manifolds, was extendedto general metri spaes by Gromov. We give here several haraterisations of hyperboliity, aswell as some basi results. The referenes here are [GdlH90℄ and [CDP90℄.De�nition 3.1: (δ-hyperboli metri spae) Let (X, d) be a geodesi metri spae. A geodesitriangle ∆(x, y, z) = [x, y]∪ [y, z]∪ [z, x] in X is said to be δ-thin if any point p of ∆(x, y, z) is inthe losed δ-neighbourhood of at least two faes. We say that (X, d) is δ-hyperboli if all geodesitriangles are δ-thin.Given a geodesi triangle ∆(x, y, z) in a metri spae, let T (x′, y′, z′) be the unique tripodwhose endpoints x′, y′, z′ are at distanes d(x, y) = d(x′, y′), d(y, z) = d(y′, z′) and d(x, z) =
d(x′, z′). There exist a unique map p∆ : ∆(x, y, z) → T (x′, y′, z′) whih restrits to an isometryon eah side of the triangle. The the following lemma gives us an equivalent de�nition for δ-hyperboliity (see proposition 21 of hapter 2 of [GdlH90℄).Lemma 3.2: The geodesi metri spae (X, d) is δ-hyperboli if and only if for any geodesitriangle ∆(x, y, z) in X, and for any points z, z′ of ∆(x, y, z) suh that p∆(z) = p∆(z′), we have
d(z, z′) ≤ δ.The following lemma is an easy onsequene of this haraterisation.Lemma 3.3: Let Z be a geodesi quadrilateral ontained in X. There exists a simpliial tree
T (Z), and a map p : Z → T (Z), whose restrition to eah side of the quadrilateral is an isometry,and suh that for any two points z, z′ of Z we have

d(p(z), p(z′))) ≤ d(z, z′) ≤ d(p(z), p(z′)) + 2δ.Remark that in the previous lemma, we may assume that the tree T (Z) is spanned by the im-ages u, v, w, x of the verties of the geodesi quadrilateral. In suh a tree, the following inequality



24 CHAPTER 3. BASIC NOTIONSholds:
d(u, v) + d(w, x) ≤ max{d(u,w) + d(v, x); d(u, x) + d(v, w)}.This suggests yet another haraterisation of hyperboliity, that is also found in [GdlH90℄. It isslightly more general in that it makes sense even if the spaes we onsider are not geodesi. Notethe hanges in the hyperboliity onstants.Lemma 3.4: If (X, d) is a geodesi metri spae suh that for any four points v, w, y, z of X wehave
d(v, w) + d(y, z) ≤ max{d(v, y) + d(w, z), d(v, z) + d(w, y)} + δthen (X, d) is 2δ-hyperboli. Conversely, if X is δ-hyperboli then for any four points v, w, y, z of

X we have
d(v, w) + d(y, z) ≤ max{d(v, y) + d(w, z), d(v, z) + d(w, y)} + 4δ.We will also need some properties of isometries f : X → X of a geodesi δ-hyperboli spae

X . The following lemma will prove very useful.Lemma 3.5: Let X be a geodesi δ-hyperboli spae X. Let f : X → X be an isometry. Suppose
x and y are two points of X. Let t 7→ v(t) be a geodesi parametrisation of a geodesi segment
[x, y] for whih v(−T ) = x and v(T ) = y.Suppose that d(x, f(x)) + d(y, f(y)) < 2d(x, y) − 4δ. Then there exists a real number λ suhthat |λ| ≤ max{d(x, f(x)), d(y, f(y))}, and for |t| < T −max{d(x, f(x)), d(y, f(y))}, we have

d(f(v(t)), v(t + λ)) < 2δ and d(f−1(v(t)), v(t − λ)) < 2δ.This lemma motivates the following de�nitionDe�nition 3.6: (quasitranslation) Let t 7→ x(t) be a possibly in�nite geodesi ar I in a geodesi
δ-hyperboli spae X. We say that the map f : X → X ats as an η-translation of length λ on asubar J of I if for any point x(t) of J , x(t+ λ) is de�ned and d(f(x(t)), x(t + λ)) < η.Thus lemma 3.5 says that if a map f moves two points of X by a distane whih is smaller thanthe distane between them, it ats as a 2δ-quasitranslation far from the endpoints of a geodesisegment between these two points. Let us prove it.Proof. Choose geodesi segments [x, f(x)] and [y, f(y)]. Consider the geodesi quadrilateral Zformed by these segments together with [x, y] and f([x, y]).We apply lemma 3.3 to get a simpliial tree T (Z), and a map p : Z → T (Z). We have

d(p(x), p(f(x))) + d(p(y), p(f(y))) ≤ d(x, f(x)) + d(y, f(y))
< 2d(x, y)− 4δ
= d(x, y) + d(f(x), f(y))− 4δ
≤ d(p(x), p(y)) + d(p(f(x)), p(f(y)))so the segments [p(x), p(f(x))] and [p(y), p(f(y))] do not interset in T (Z). Denote by m and m′the points for whih [m,m′] is the shortest path joining these two segments. Let a = d(p(x),m)and b = d(p(f(x)),m), and let also a′ = d(p(y),m′) and b′ = d(p(f(y)),m′).If t ∈ [−T, T ], the point f(v(t)) lies on [f(x), f(y)] at a distane t+T of f(x) and T −t of f(y).Thus its image by p lies at a distane t+T of p(f(x)), and T − t of p(f(y)). If t ∈ [−T + b, T − b′],this implies that it lies in [m,m′]. In this ase, its distane to p(x) is t−T − b+ a. Let λ = a− b:the point p(v(t+ λ)) lies in p([x, y]) at a distane t− T − b+ a of p(x), so it lies on [m,m′] andwe have p(f(v(t))) = p(v(t+ λ))). We get

d(f(v(t)), v(t + λ)) < 2δ.



3.2. HYPERBOLIC METRIC SPACES 25Note now that d(p(x), p(y)) = a+d(m,m′)+a′, and that d(p(f(x)), p(f(y))) = b+d(m,m′)+b′so that λ = a− b = b′ − a′. If t′ ∈ [−T + a, T − a′], we let t = t′ − λ: then t ∈ [−T + b, T − b′] sowe have
d(v(t′ − λ), f−1(v(t′))) = d(f(v(t′ − λ)), v(t′)) = d(f(v(t)), v(t + λ)) < 2δ.Finally, note that a+ b = d(p(x), p(f(x))) = d(x, f(x)). Thus a and b are at most d(x, f(x)),and a′ and b′ are at most d(y, f(y)). This implies in partiular that |λ| = |a − b| is bounded by

max{d(x, f(x)), d(x, f(x))}, and if |t| < T −max{d(x, f(x)), d(x, f(x))} we have t ∈ [−T + b, T −
b′] ∩ [−T + a, T − a′] so

d(f(v(t)), v(t + λ)) < 2δ and d(f−1(v(t)), v(t − λ)) < 2δ.A geodesi hyperboli metri spae X an be ompati�ed by the addition of a boundary ∂X(see hapter 2 of [CDP90℄). The losure of a geodesi of X in X ∪ ∂X intersets the boundaryin two points, alled the points at in�nity of this geodesi. We have (this is proposition 2.2 ofhapter 2 in [CDP90℄)Lemma 3.7: Two geodesis whih have the same points at in�nity lie within 8δ of eah other.Isometries of a hyperboli metri spae an be lassi�ed into three types: ellipti, paraboliand hyperboli. We will only be interested in the latter.De�nition 3.8: (hyperboli isometry) An isometry f : X → X is hyperboli if there exists apoint x in X for whih the map from Z to X de�ned by n 7→ fn(x) is a quasi-isometry.It is easy to see that in this de�nition we an replae "there exists a point x" by "for any point
x". The quasi-isometry n 7→ fn(x) de�nes two points of the boundary, the limits limn→∞ fn(x)and limn→−∞ fn(x) that we denote by f(∞) and f(−∞) respetively. We know that f an beextended to a homeomorphism of the boundary ∂X : it is lear that this extension �xes these twopoints. It an be shown that f �xes exatly these two points on the boundary. Moreover, anypower of f also �xes f(−∞) and f(∞).De�nition 3.9: (axis of a hyperboli isometry)We denote by Ax(f) the union of all the geodesis
t 7→ x(t) of X suh that limt→−∞ = f(−∞) and limt→−∞ = f(−∞).Then Ax(f) is stabilised by f , and if k ∈ Z, the axis Ax(fk) of fk is just Ax(f).De�nition 3.10: (translation length) If f : X → X is a hyperboli isometry, its translationlength is tr(f) = infx∈Ax(f) d(x, f(x)).Usually the translation length is de�ned as the infemum of d(x, f(x)) for x ranging over thewhole spae X . However, in the few results we use, this de�nition is more onvenient, and it anbe shown that it only di�ers from the usual translation length by a few δ's.Lemma 3.11: If x ∈ Ax(f), we have d(x, f(x)) ≤ tr(f) + 16δ.Proof. Suppose x lies on a geodesi L ontained in Ax(f). Let y ∈ Ax(f). The map k 7→ fk(y)is a quasi-isometry, and its image lies in a 8δ-neighbourhood of L by lemma 3.7. Thus if yk is apoint of L suh that d(yk, fk(y)) < 8δ, the map k 7→ yk is also a quasi-isometry. Thus there isan integer k suh that x ∈ [yk, yk+1], so that x lies at distane at most 8δ of a geodesi segment
[fk(y), fk+1(y)]. Let z be a point of [fk(y), fk+1(y)] for whih d(x, z) < 8δ. Note that
d(z, f(z)) ≤ d(z, fk+1(y)) + d(fk+1(y), f(z)) = d(fk(y), z) + d(z, fk+1(y)) = d(fk(y), fk+1(y))



26 CHAPTER 3. BASIC NOTIONSsine z lies on a geodesi segment between fk(y) and fk+1(y). Thus d(z, f(z)) ≤ d(y, f(y)). Nowwe have by the triangle inequality
d(x, f(x)) ≤ 2d(x, z) + d(z, f(z)) ≤ 16δ + d(y, f(y)).This holds for every point y of Ax(f), so the result holds.Lemma 3.12: Let f : X → X be a hyperboli isometry. Then f ats as a 20δ-quasitranslationof length tr(f) on any geodesi ontained in Ax(f).Proof. Suppose t 7→ v(t) parametrises a geodesi in the axis of f , with limt→−∞ v(t) = f(−∞),and limt→∞ v(t) = f(∞). Let T ∈ R suh that 4T > 2tr(f) + 36δ.We then let x and y be the points of Ax(f) given by x = v(−T ) and y = v(T ). We have

d(x, f(x)) + d(y, f(y)) ≤ 2tr(f) + 32δ by lemma 3.11, so
d(x, f(x)) + d(y, f(y)) < 4T − 4δ = 2d(x, y)− 4δ.Therefore we an apply lemma 3.5 to see that for |t| < T − tr(f)− 16δ, there is a real number

λ so that we have
d(f(v(t)), v(t + λ)) < 2δ.Moreover, we know that

d(v(t), f(v(t))) − 2δ ≤ |λ| ≤ d(x, f(x))so that tr(f)− 2δ ≤ |λ| ≤ tr(f) + 16δ.Finally we get d(f(v(t)), v(t + tr(f))) < 2δ + 18δ ≤ 20δ. This proves the laim.We showLemma 3.13: Let X be a geodesi δ-hyperboli spae. If f is a hyperboli isometry X → Xwith tr(f) > 12δ, for any point x of X, the midpoint m of a geodesi ar [x, f(x)] satis�es
d(m,Ax(f)) < 4δ.Proof. Let x̄ be a point of Ax(f) suh that |d(x,Ax(f))− d(x, x̄)| < δ. Note that then,

|d(f(x),Ax(f(x))) − d(f(x), f(x̄))| < δ.A geodesi segment [x̄, f(x̄)] lies within 2δ of Ax(f).Consider a geodesi quadrilateral Z formed by {x, x̄, f(x̄), f(x)}. We apply lemma 3.3 to �nda simpliial tree T (Z) and a map p : Z → T (Z).There are only two "ombinatorial" possibilities for p(Z). Suppose �rst that p([x, f(x)]) and
p([x̄, f(x̄)]) interset in a non-trivial segment [z, z′]. Note then that

d(p(x), z) ≥ d(x,Ax(f)) ≥ d(x, x̄)− δso d(z, p(x)) ≤ 2δ. We dedue
d(z, z′) ≥ d(p(x̄), p(f(x̄)))− 2δ

≥ d(x̄, f(x̄))− 4δ
≥ tr(f)− 4δ ≥ 8δ.This implies that p(m) ∈ [z, z′]). Thus there exists a point y on [x̄, f(x̄)] suh that p(y) = p(m),and this implies d(m,Ax(f)) < 4δ.



3.3. LIMITS OF METRIC SPACES 27If p([x, f(x)]) and p([x̄, f(x̄)]) do not interset, there are points y and y′ on [x, f(x)] and
[x̄, f(x̄)] respetively suh that [p(y), p(y′)] is the path between them. Then

d(p(x), p(x̄)) ≤ d(x, x̄) ≤ d(x,Ax(f)) + δ ≤ d(x, y′) + 3δ ≤ d(p(x), p(y′)) + 5δso that d(p(x̄), p(y′)) < 5δ. Similarly, we an see that d(p(f(x̄)), p(y′)) < 5δ. Thus
d(x̄, f(x̄)) < d(p(x̄), p(f(x̄))) + 2δ < d(p(x̄), y′) + d(y′, p(f(x̄))) + 2δ < 12δ.We will also needLemma 3.14: Let Γ be a torsion-free hyperboli group. Denote by X its Cayley graph with respetto some generating set Σ. For R > 0, there exists a onstant MR suh that for any non-trivialelement g, the translation length of gMR is at least R.The proof follows that of proposition 3.1 in [Del96℄.Proof. Denote by δ a hyperboliity onstant for X , we an assume without loss of generality thatit is an integer. We �x an order on the generating set Σ, and then order words in the elementsof Σ lexiographially. We say that a geodesi L in X is speial if for any two points g and g′ on

L, the word in Σ orresponding to the segment of L between g and g′ is minimal among wordsrepresenting g−1g′. It an be shown by following the proof of proposition 2.2 in hapter 2 of[CDP90℄ that any two points on the boundary of X are joined by a least one speial geodesi. Ifwe pik two points in the boundary of X , and two disjoint balls of radius 8δ entred on a speialgeodesi joining them, we see by lemma 3.7 that any other speial geodesi must pass throughboth these balls. On the other hand, given any pair of points x, y in X , there is at most onespeial geodesi ontaining both x and y. Thus the number of speial geodesis joining any twopoints on the boundary is bounded by |B8δ(X)|2.Let now g be a non-trivial element of G. It is a known result (see Théorème 3.3 and Théorème3.4 in hapter 9 of [CDP90℄) that any non-trivial element of a hyperboli group ats hyperboliallyon its Cayley graph. Thus g �xes two points on the boundary. The image by g of a speial geodesijoining them must also be a speial geodesi: g permutes the set of speial geodesis. Thus if
M = |B8δ(X)|2!, we know that gM �xes all the speial geodesis. In partiular, its restritionto a speial geodesi is a translation, of length at least 1 sine the distane funtion has integervalues. Let MR = M(R + 16δ): the element gMR restrited to a speial geodesi is a translationof length at least R+ 16δ. We onlude by applying lemma 3.11.3.3 Limits of metri spaesIn all this setion, G is a group endowed with a �nite generating set ΣG. We want to de�ne atopology on a set of pointed metri G-spaes, and to give a riterion for a sequene in suh a setto admit a onvergent subsequene. Then, we look at the partiular ase where the metri spaesin the sequene are all hyperboli, and we see under whih onditions the limit is a real tree.3.3.1 The Gromov-Hausdor� topologyLet A(G) be a set of pointed metri G-spaes, that is, metri spaes endowed with an ation of
G by isometries. We want to de�ne a topology on A(G) alled the equivariant Gromov-Hausdor�topology. It is a generalisation of the Gromov-Hausdor� topology on a set of ompat metrispaes (see [Pau88℄).



28 CHAPTER 3. BASIC NOTIONSDe�nition 3.15: (ǫ-approximation) Let (K, d), (K ′, d′) be two ompat metri spaes. Let ǫ < 0.An ǫ-approximation between K and K ′ is a binary relation R ⊂ K ×K ′ whose projetions on Kand K ′ are surjetive, and suh that for x, y ∈ X and x′, y′ ∈ X ′, if xRx′ and yRy′, then
|d(x, y)− d′(x′, y′)| < ǫ.The Gromov-Hausdor� distane between two ompat metri spaes is the infemum of theset of ǫ for whih an ǫ-approximation exists. This an be generalised to a topology on sets ofnon-ompat pointed metri spaes, where a sequene (Xn, xn) onverges to (X,x) if the GromovHausdor� distane between the ball entred on xn of radius n and the ball of radius n entred on

X tends to 0 as n tends to in�nity. We want to further generalise this to metri spaes endowedwith an ation of G.De�nition 3.16: (neighbourhoodsN(G0,K, ǫ)) Let (X,x) be an element of A(G). Given a �nitesubset K of X, a �nite subset G0 of G, and ǫ > 0, we say that an element (X ′, x′) of A(G) is in
N(G0,K, ǫ)(X,x) if there exists a �nite subset K ′ of X ′, and an ǫ-approximation R between Kand K ′ suh that if y, z ∈ K and y′, z′ ∈ K ′, and if yRy′, zRz′, then for any element g of G0

|d(y, g · z)− d′(y′, g · z′)| < ǫDe�nition 3.17: (equivariant Gromov-Hausdor� topology) The equivariant Gromov-Hausdor�topology on A(G) is the topology generated by the neighbourhoods of the form N(G0,K, ǫ) for
(X,x) ∈ A(G), for G0 a �nite subset of G, for K a �nite subset of X, and ǫ > 0.3.3.2 Ultraproduts and limit of sequenesWe want to give a su�ient ondition on a sequene (Xn, xn) in A(G) to ensure that it ontainsa onvergent subsequene. To build a limit, we will need the following tools.De�nition 3.18: (�lter) A �lter F on N is a non-empty subset of P(N) suh that
• if A,B ∈ F , then A ∩B ∈ F ;
• if A ∈ F and if A ⊆ B, then B ∈ F .Example 3.19:
• the prinipal �lter over an element n of N is the set of all subsets of N whih ontain n;
• the Frehet �lter is the set of all o�nite subset of N.De�nition 3.20: (ultra�lter) A �lter is an ultra�lter if it is maximal for inlusion.Remark 3.21: A �lter is an ultra�lter if and only if for eah subset A of N, it ontains exatlyone of A, N−A.A prinipal �lter is an ultra�lter. The Frehet �lter isn't an ultra�lter (it ontains neither theset of even numbers, nor the set of all odd numbers its omplement).By applying Zorn's lemma, we an show that any �lter is ontained in an ultra�lter. Thus wean enlarge the Frehet �lter to an ultra�lter whih is easily seen to be non-prinipal. Conversely,any non-prinipal ultra�lter ontains the Frehet �lter.De�nition 3.22: (limits with respet to ω) Let ω be a non-prinipal ultra�lter. We say that thesequene (un)n∈N of real numbers tends to u with respet to ω if for all ǫ > 0, the set {n ∈ N |

|un − u| < ǫ} is in ω. We denote this limω un = u.



3.3. LIMITS OF METRIC SPACES 29If a sequene of reals (un)n∈N tends to a limit u as n tends to in�nity, then it tends to uwith respet to any non-prinipal ultra�lter ω. If a sequene of reals (un)n∈N is bounded, thenit admits a limit with respet to any non-prinipal ultra�lter ω. In fat, if a sequene (un)n∈N isbounded with respet to ω, namely if there exists a onstant M suh that {n ∈ N | un < M} liesin ω, then it tends to a limit with respet to ω. If this is not the ase, we say that un tends to ∞with respet to ω.Let (Xn, xn)n∈N be a sequene of pointed metri spaes. Let ω be a non-prinipal ultra�lter.De�ne X∞ to be the set
{(yn)n∈N ∈ Πn∈NXn| lim

ω
dn(xn, yn) <∞}quotiented by the following equivalene relation:

(yn)n∈N ∼ (zn)n∈N ⇐⇒ {n ∈ N| yn = zn} ∈ ω.We will usually denote (yn) both the sequene and its lass for ∼. We hoose (xn) as a basepointfor X∞.Now for all (yn), (zn) ∈ X∞ we set:
d∞((yn), (zn)) = lim

ω
dn(yn, zn).This limit exists sine dn(yn, zn) ≤ dn(yn, xn) + dn(xn, zn), and both dn(yn, xn) and dn(xn, zn)are bounded with respet to ω by hypothesis. This de�nes a pseudometri on X∞. Denote by

(Xω, xω) the quotient of X∞ by the equivalene relation given by d∞((yn), (zn)) = 0, and by dωthe metri on Xω. Again we abuse notations and denote the equivalene lass of a point (yn) of
X∞ by (yn).Suppose now that eah Xn is endowed with an ation of G suh that, for any element a of thegenerating set ΣG, the sequene (dn(xn, a · xn))n∈N is bounded with respet to ω. Then for anyelement (yn) of Xω, and any element g = a1 . . . as with ai ∈ ΣG, we have

dn(xn, g · yn) ≤ dn(xn, g · xn) + dn(g · xn, g · yn)
≤ Σs

i=1dn(xn, ai · xn) + dn(xn, yn)Thus the sequene dn(xn, g · yn) is bounded with respet to ω, so the sequene (g · yn)n∈N de�nesa point in Xω. It is straightforward to hek that (g, (yn)n) 7→ (g ·yn) gives an ation of the group
G on Xω by isometries.De�nition 3.23: (ultraprodut of a sequene of G-spaes) Let (Xn, xn) be a sequene in A(G)for whih there exists a non-prinipal ultra�lter ω, suh that for any element g of the generatingset ΣG, the sequene (dn(xn, g · xn))n∈N is bounded with respet to a non-prinipal ultra�lter ω.The spae (Xω, xω) endowed with the ation of G given by

(g, (yn)n) 7→ (g · yn)is alled the ultraprodut of the G-spaes (Xn, xn) with respet to ω.Ultraproduts are natural limits for sequenes of G-spaes.Lemma 3.24: Let (Xn, xn)n∈N be a sequene in A(G). Let ω be a non-prinipal ultra�lter suhthat (Xω , xω) is de�ned and lies in A(G). Then (Xω, xω) lies in the losure of {(Xn, xn) | n ∈ N}in A(G) with respet to the equivariant Gromov-Hausdor� topology.Proof. Let g be an element of G, let y = (yn) and z = (zn) be points in Xω, and let ǫ > 0. Weget from the de�nition of dω that the set Aǫ(g, y, z) de�ned by
Aǫ(g, y, z) = {n ∈ N | |dn(yn, g · zn)− dω(y, g · z)| < ǫ}



30 CHAPTER 3. BASIC NOTIONSlies in ω.For any �nite subset G0 of G, any �nite subset K of Xω and any ǫ > 0, the intersetion
Aǫ(G0,K) of all the sets of the form Aǫ(g, y, z) for g in G0 and y, z in K is still in ω, in partiularit is not empty. But (Xn, xn) lies in N(G0,K, ǫ) preisely if n lies in Aǫ(g, y, z) for all g in G0and y, z in K. This proves the lemma.Note that this lemma implies in partiular that some subsequene of (Xn, xn)n∈N tends to
(Xω , xω). Thus, for a sequene (Xn, xn)n∈N to admit a onvergent subsequene, it is enoughthat there exist a non-prinipal ultra�lter ω with respet to whih the sequene dn(xn, g · xn) isbounded for every element g of ΣG. This boundedness ondition might not be satis�ed, but byresaling properly we an overome this problem. For this, de�neDe�nition 3.25: (length of an ation) If (X,x) is a pointed G-spae, we de�ne the length of theation to be

l(X,x) = max
g∈ΣG

d(x, g · x),the maximal displaement of the basepoint by a generator.If X is a spae endowed with a metri d, and a a positive real, we denote by 1
a
X the metrispae whose underlying set is X , and whose metri is d/a.Remark 3.26: Let (Xn, xn)n∈N be a sequene of G-spaes: if we resale the metri on Xnby ln = l(Xn, xn), the sequene ( 1

ln
(Xn, xn))n∈N satis�es the ondition of boundedness whihensures that the ultraprodut of the spaes 1

ln
(Xn, xn) is de�ned with respet to any non-prinipalultra�lter ω. Thus, up to resaling by the ation lengths, any sequene of metri G-spaes admitsa onvergent subsequene. This trik will prove very useful in the sequel.3.3.3 Limits of pointed hyperboli G-spaesWe will be interested in limits of sequenes of hyperboli G-spaes. We get the following resultabout the ultraprodut of path-onneted hyperboli spaes:Lemma 3.27: Let ω be a non-prinipal ultra�lter. Let (Xn, xn)n∈N be a sequene in A(G). Ifeah Xn is a geodesi δn-hyperboli spae, if limω δn = 0, and if (Xω, xω) is de�ned, it is a real

G-tree.Proof. To see that Xω is a real tree, it is enough to see that it is 0-hyperboli and path onneted.For a proof of this, see for example Théorème 4.1 in hapter 3 of [CDP90℄.Reall the haraterisation of hyperboliity given by lemma 3.4. If (vn), (wn), (yn), (zn) ∈ Xω,we have:
dω((vn), (wn)) + dω((yn), (zn)) = lim

ω
(dn(vn, wn) + dn(yn, zn))

≤ lim
ω

(max{dn(vn, yn) + dn(wn, zn), dn(vn, zn) + dn(yn, wn)}+ 2δn)

≤ max{lim
ω

[dn(vn, yn) + dn(wn, zn)], lim
ω

[dn(vn, zn) + dn(yn, wn)]}+ 2 lim
ω
δn

= max{dω((vn), (yn)) + dω((wn), (zn)), dω((vn), (zn)) + dω((yn), (wn))}whih proves Xω is 0-hyperboli.Let us see that Xω is path onneted. Let (vn) ∈ Xω. We know that dn(xn, vn) is boundedwith respet to ω, in partiular there exists a positive onstant M suh that the set A = {n |
dn(xn, vn) < M} lies in ω. If n ∈ A, let t 7→ vn(t) for t ∈ [0,M ] be a 1-Lipshitz path from vn to
xn (it exists sine Xn is a geodesi metri spae). If n /∈ A, let vn(t) be the onstant path. Thenthe map t 7→ (vn(t)) is ontinuous sine the vn are all 1-Lipshitz, and it is a path from (vn) to
(xn) in Xω.



Chapter 4Shortening argumentThe shortening argument has many variants, of whih we will present two. The lassial resultasserts that, given a sequene of morphisms from a freely indeomposable group G to a torsion-free hyperboli group Γ, either we an 'shorten' some of the morphisms in the sequene, or thestable kernel is non-trivial (see Theorem 4.25). The length of a morphism f : G→ Γ depends onthe hoie of generating sets for G and Γ, and of a basepoint in the orresponding Cayley graphof Γ. It is the maximal displaement of this basepoint by the image of one of the generatingelements hosen for G. Then 'shortening' a morphism f : G → Γ is just preomposing it by anautomorphism σ of G, in suh a way that the length of f ◦ σ is stritly smaller than that of f .We will also give a relative version of the shortening argument, in whih the group G is onlyassumed to be freely indeomposable relative to a subgroupH , but the morphisms in the sequeneare assumed to �x H in the limit (see Theorem 4.33). We all this type of results morphismsshortening results.In the proof of both the standard and the relative versions of the shortening argument formorphisms, the �rst step is to onstrut from the given sequene of maps G → Γ a sequene ofations on δn-hyperboli spaes Xn.De�nition 4.1: (ation X [h] indued by a morphism) Let G and Γ be groups endowed with �nitegenerating sets ΣG and ΣΓ. If h : G → Γ is a morphism, G ats on Γ by (g, γ) 7→ h(g)γ. Thisindues an ation of G on the Cayley graph X of Γ with respet to ΣΓ, giving it a struture of
G-spae that we denote by X [h].We will see that given a sequene of morphisms hn : G→ Γ, by suitably resaling the metrion X [hn] and hoosing the right basepoint, we get a sequene of ations on hyperboli spaeswhih onverges to a non-trivial ation on a real tree T .The seond step is to prove an "ation shortening result" (theorem 4.20 and theorem 4.28respetively), whih tells us that if a sequene of ations on hyperboli spaes onverges to anation on real tree satisfying ertain onditions, we an shorten all but �nitely many of the ations.This ation shortening result should be onsidered as the heart of the shortening argument; indeedit an be used to prove results about sequenes of ation whih do not neessarily ome frommorphisms to a free or a hyperboli group (see for example [Sel97a℄).In this hapter, we prove the "morphism shortening results" using the "ation shorteningresults". In the �rst setion, we explain how to get a sequene of ations onverging to a realtree from a sequene of morphisms G → Γ. In the seond and the third setion, we state theation shortening theorems and use them to prove the morphism shortening results in the lassialand the relative ase respetively. The fourth setion gives a result whih is a straightforwardonsequene of the shortening argument, and whih we will use in the proof of the main result ofthis thesis. The proof of the ation shortening result is given in the next hapter.31



32 CHAPTER 4. SHORTENING ARGUMENT4.1 Limit of morphisms to a hyperboli groupFor this whole setion, let G be a group endowed with a �nite generating set ΣG, and let Γ be atorsion-free hyperboli group endowed with a �nite generating set ΣΓ. Denote by X the Cayleygraph of Γ with respet to ΣΓ.This lemma gives the setting whih we will onsider in this setion. Reall that in de�ni-tion 3.25, the length of an ation of G on a pointed metri spae was de�ned as the minimaldisplaement of the basepoint by an element of ΣG.Lemma 4.2: Let hn : G → Γ be a sequene of morphisms. Suppose that there is a sequeneof basepoints xn for the spaes X [hn], and a non-prinipal ultra�lter ω, for whih the sequene
ln = l(X [hn], xn) tends to in�nity with respet to ω. Then the ultraprodut (X [h, ω], xω) of thespaes 1

ln
(X [hn], xn) is a real G-tree.Proof. By remark 3.26 the ultraprodut of the spaes 1

ln
(X [hn], xn) is de�ned. Moreover, thespae X [hn] is δ-hyperboli, so that 1

ln
(X [hn], xn) is δ/ln-hyperboli. Now δ/ln tends to 0 withrespet to ω, so by lemma 3.27, the ultraprodut (X [h, ω], xω) of the spaes 1

ln
(X [hn], xn) isde�ned, and is a real G-tree.We want to study some properties of suh a limit ation. The proofs we give are inspired bythose found in [Pau97℄. The following lemma will prove useful.Lemma 4.3: Suppose we are in the setting desribed in 4.2. For any pair of points y, z of

(X [h, ω], xω), we de�ne Dyz as the set
{aba−1b−1 | a, b ∈ G suh that d(y, a · y), d(y, b · y), d(z, a · z), d(z, b · z) < d(y, z)/12}.Let R be the ardinal of the ball of radius 8δ in Γ (where Γ is endowed with the word metriassoiated to ΣΓ). If y, z are points in (X [h, ω], xω), and if D0

yz is a �nite subset of Dyz, theardinal of hn(D0
yz) is bounded by R with respet to ω.Proof. Let y, z be points of X . Let A0

yz be a �nite set of pairs (a, b) of elements of G suh that
d(y, a · y), d(y, b · y), d(z, a · z), d(z, b · z) < d(y, z)/12 and [a, b] ∈ D0

yz. Let ǫ < d(y, z)/20. Thereis a set U in ω suh that for any n in U , there is an ǫ approximation between T and Xn relativeto y, z, and to the elements of the pairs whih lie in A0
y,z. We an assume moreover that if n ∈ Uand suh that 2δn < ǫ. Fix an index n in U , and let yn and zn be some points approximating yand z.Note that d(y, z) < 10dn(yn, zn)/9 so 2δn < ǫ < dn(yn, zn)/9. Let (a, b) ∈ A0

yz. Supposeone of hn(a) or hn(b) is trivial: then hn(aba−1b−1) = 1. Sine we want to bound the ardinal of
{hn([a, b]) | (a, b) ∈ A0

yz}, we an ignore this ase.Consequently, the elements hn(a) and hn(b) at hyperbolially on X . Let [yn, zn] be a geodesisegment, and let t 7→ w(t) be a geodesi parametrisation [−T, T ]→ [yn, zn]. The elements hn(a)and hn(b) move yn and zn by a distane whih is small ompared to the distane between them.More preisely, we have
dn(yn, a · yn) < d(y, a · y) + ǫ < d(y, z)/10 + ǫ < 3d(y, z)/20 < dn(yn, zn)/6,so in partiular dn(yn, a ·yn) < dn(yn, zn)−2δn. Similarly we show that dn(yn, b ·yn), dn(zn, a ·zn)and dn(zn, b · zn) are all smaller than 3d(y, z)/20, so that they are smaller than dn(yn, zn)− 2δn,and lemma 3.5 an be applied to the isometries given by a and b on Xn.Thus, there exists reals λa and λb, with |λa| < max{dn(yn, a·yn), dn(zn, a·zn)} < 3d(y, z)/20 <

T/3 and |λb| < T/3 suh that a, b, a−1 and b−1 at as 2δn-quasitranslations of length λa, λb,−λaand −λb on the subsegment {w(t) | |t| < 2T/3} of [zn, yn].



4.1. LIMIT OF MORPHISMS TO A HYPERBOLIC GROUP 33The idea is now that, up to a few δn's, a and b ommute on a subsegment of [yn, zn], so theirommutator does not move the midpoint w(0) of [yn, zn] by more than R.Sine both |λa| and |λb| are less than T/3, we an apply the inequality given in 3.5 to t = −λb,
t = −λb − λa, and t = −λa. We dedue

dn(w(0), aba−1b−1 · w(0)) ≤ dn(w(0), aba−1 · w(−λb)) + 2δn

≤ dn(w(0), ab · w(−λa − λb)) + 4δn

≤ dn(w(0), a · w(λb − λb − λa)) + 6δn

≤ dn(w(0), w(λa + λb − λa − λb)) + 8δn

= dn(w(0), w(0)) + 8δn = 8δnThis shows that for any n in U , the translates of w(0) under elements of hn(D0
yz) all lie in theball of radius 8δn. Thus, there is a point w of X whose translates by the elements of hn(D0

yz) liein a ball of radius 8δ around w. But the ation of Γ on its Cayley graph X is free and disrete,and the ardinal of the set of elements translating a point of X by less than a onstant C isbounded by the ardinal of the ball of radius C in Γ endowed with the word metri. This provesthe laim.De�nition 4.4: (stable kernel with respet to an ultra�lter) The stable kernel with respet to ωof a sequene of morphisms hn : G → Γ is the set of elements g of G suh that {n | hn(g) = 1}lies in ω. We denote it by Ker←−−ω(hn).Suppose we are in the setting of lemma 4.2. Then the stable kernel with respet to ω atstrivially on (X [h, ω], xω). Indeed, denote by dn the metri on 1
ln

(X [hn], xn): we have dn = dΣΓ/ln.For an element g in the stable kernel of (hn)n∈N with respet to ω, and for any point (yn) in
(X [h, ω], xω), the set of indies n for whih the distane dn(yn, g · yn) is zero lies in ω. Thus wehave

dω((yn), g · (yn)) = lim
ω
dn(yn, g · yn)) = 0.We now showLemma 4.5: Suppose we are in the setting given by 4.2. The elements of G whih stabilise anon-trivial tripod of (X [h, ω], xω) lie in the stable kernel of (hn)n∈N with respet to ω.Proof. Let a, b, c be points of X [h, ω] whih form a non-trivial tripod of entre e. Let g be anelement of G whih �xes this tripod pointwise. Let ǫ < min{d(a, e), d(b, e), d(c, e)}/10. There isan element Ug of ω suh that if n ∈ Ug, there is an ǫ-approximation between X [h, ω] and Xn withrespet to a, b, c and g.Let n be in Ug. Denote by an, bn, cn the points approximating a, b, c, and let ∆(anbncn) be ageodesi triangle with verties an, bn, cn in Xn.Reall there is a unique map p∆ : ∆(anbncn) → Y , where Y is the unique tripod whosesides have the same lengths as the sides of ∆(anbncn), and the restrition of p∆ to eah faeof ∆(anbncn) is an isometry. Let xn, yn, and zn be the points of [an, bn], [bn, cn] and [an, cn]respetively suh that p∆(xn),p∆(yn) and p∆(zn) are all equal to the entre of the tripod Y . Bylemma 3.2, the diameter of {xn, yn, zn} is less than δn.We have dn(an, g · an) ≤ ǫ and dn(bn, g · bn) ≤ ǫ so far from its endpoints, the path g · [an, bn]by g lies in a 2δn-neighbourhood of [an, bn]. In partiular, we get

dn(g · xn, [an, bn]) < 2δnand we an �nd a point x′
n on [an, bn] suh that d(x′

n, g · xn) < 2δn. Similarly, we an �nd points
y′

n in [bn, cn] for whih dn(y′
n, g · yn) < 2δn and z′

n in [an, cn] suh that dn(z′
n, g · zn) < 2δn. The



34 CHAPTER 4. SHORTENING ARGUMENTdiameter of {g · xn, g · yn, g · zn} is less than δn so the diameter of {x′
n, y′

n, z′
n} is at most 5δn.Sine x′

n, y′
n and z′

n lie on the three di�erent faes of the triangle ∆(anbncn), their images by p∆annot all lie on the same leg of the tripod Y . Thus they are 5δn-lose to the entre of Y , so that
d(p∆(x′

n), p∆(xn)) < 5δn and we get
dn(g · xn, xn) < dn(xn, x′

n) + dn(x′
n, g · xn) < d(p∆(x′

n), p∆(xn)) + δn + 2δn < 8δn.Thus any element of G �xing the tripod a, b, c translates xn by at most 8δn. But if g �xesthe tripod, all its powers do, therefore, the ardinal of the set {hn(gk)}k∈Z is bounded by theardinal of the ball of radius 8δ in Γ endowed with the word metri assoiated to ΣΓ. Sine it isa subgroup of Γ, and sine Γ is torsion-free, it must be trivial. Thus for every n in Ug, we have
hn(g) = 1, and g lies in the stable kernel of (hn)n∈N with respet to ω.Reall that the elements of the stable kernel of (hn)n∈N with respet to ω at trivially on
X [h, ω]. The following lemma gives a partial onverse.Lemma 4.6: Suppose we are in the setting desribed in 4.2.If (X [h, ω], xω) isn't a line, the kernel of the ation of G on (X [h, ω], xω) is preisely the stablekernel of the sequene (hn)n∈N with respet to ω.If the stable kernel of the sequene (hn)n∈N with respet to ω is trivial, and if (X [h, ω], xω) isa line, then hn(G) is yli for all n.Proof. Suppose that X [h, ω] is not a line: it ontains a non-trivial tripod, whih is �xed by anyelement whih lies in the kernel of the ation. But by lemma 4.5, elements of G �xing a tripodin X [h, ω] lie in the stable kernel of (hn)n∈N with respet to ω. The other inlusion has alreadybeen proved.Suppose now X [h, ω] is a line L, and that Ker←−−ω(hn) = 1. Let D0 be a �nite set of ommutatorsof G, and let G0 be a �nite subset of G suh that any element in D0 is a ommutator of twoelements in D0. The elements of G0 either �x a point of L, or they at by translation: denote by
M the maximum of their translation lengths. Let y, z be two points of L suh that d(y, z) > 12M .Note that D0 is a subset of the set Dyz de�ned in lemma 4.3, so there is a set U in ω suh thatfor any index n in U , the ardinal of hn(D0) is bounded by the onstant R(Γ). However, thereexists also a set U ′ in ω suh that for any index n in U ′, the map hn is injetive on D0. Sine
U ∩ U ′ is not empty, we see that the ardinal of D0 is bounded by R(Γ). This show that the setof ommutators of G is �nite, so by lemma 1.A in [Pau97℄, G is virtually abelian. For any index
n, the image hn(G) is virtually abelian. Sine it is a subgroup of a torsion-free hyperboli group,it is in fat yli. Indeed, abelian groups in torsion-free hyperboli groups are in�nite yli, andvirtually yli torsion-free groups are yli (to see this, show �rst that the entre of a virtuallyyli group must have �nite index, then show that if the entre of a group has �nite index, thenthe derived subgroup must be �nite).Finally, we haveLemma 4.7: Suppose we are in the setting given by 4.2. Suppose moreover that any virtuallyabelian subgroup of G is abelian, and that the stable kernel of (hn)n∈N with respet to ω is trivial.Then the pointwise stabiliser of an ar of (X [h, ω], xω), is abelian.Proof. Let [y, z] be an ar in X [h, ω]. Let G1 be a �nitely generated subgroup of Stab([y, z]),and suppose that the set D1 of its ommutators is in�nite. Let D0 be a �nite subset of D1 with
|D0| > R(Γ).Note that D0 lies in Dyz, so by lemma 4.3, there is a set U of ω suh that for any index n in
U , the set hn(D0) has ardinal bounded by R(Γ). The stable kernel of the sequene (hn)n∈N withrespet to ω is trivial, so there exists a set U ′ in ω suh that for n ∈ U ′, the map hn is injetiveon D0. Sine U ∩ U ′ is not empty, we get a ontradition.



4.2. SHORTENING MORPHISMS IN THE CLASSICAL CASE 35Thus G1 has a �nite set of ommutators, so by lemma 1.A in [Pau97℄, G1 is virtually abelian.By hypothesis it is in fat abelian. Any �nitely generated subgroup of Stab([z, y]) is abelian: itmust itself be abelian.4.2 Shortening morphisms in the lassial ase4.2.1 Modular groupWe start by de�ning a subgroup of the group of automorphisms Aut(G) of G alled the modulargroup. We need the following de�nitions.De�nition 4.8: (Dehn twist) Let G be a �nitely generated group. Suppose Λ is a one edgesplitting for G, with edge group C, and let c be an element in the entre of C. A Dehn twist about
c is an automorphism φ of G de�ned as follows:1. If G = A ∗C B, φ is the unique automorphism of G whih is the identity on A, and onju-gation by c on B.2. If G = A∗C , and t is a stable letter of this HNN extension, φ is the unique automorphismof G whih is the identity on A, and sends t to tc.If Λ is a graph of groups deomposition of G, the Dehn twists of Λ are the Dehn twists assoiatedto one-edge splittings of G obtained from Λ by ollapsing all its edges exept one.De�nition 4.9: (generalised Dehn twist) Suppose G has a graph of groups deomposition Λ, andlet A be an abelian vertex group in this deomposition. Let A1 be the subgroup of A generated byall the inident edge groups. Any automorphism of A whih �xes A1 pointwise an be extended toan automorphism of the whole group, whih we all a generalised Dehn twist.To de�ne yet another type of automorphisms, we needDe�nition 4.10: (maximal boundary subgroups, boundary subgroups, boundary elements) Let
Σ be a surfae with boundary. Denote by S its fundamental group (S is a free group).To eah boundary omponent of Σ orresponds a onjugay lass of maximal yli subgroupsof S: we all suh groups maximal boundary subgroups. We will refer to generators of maximalboundary subgroups as maximal boundary elements. A non-trivial non-trivial subgroup of a max-imal boundary subgroup is a boundary subgroup, and non-trivial elements of suh subgroups areboundary elements.Remark 4.11: The set of onjugay lasses of the maximal boundary subgroups is in bijetionwith the set of onneted omponents of the boundary of Σ.De�nition 4.12: (graph of groups with surfaes) A graph of groups with surfaes is a graph ofgroups Γ together with a subset VS of V (Γ) suh that any vertex v in VS satis�es:
• there are no loops at v, i.e. no edges both of whose endpoints are v;
• there exists a ompat onneted surfae with boundary Σ whih is not a disk, a Möbiusband or a ylinder, and suh that the vertex group Gv is S = π1(Σ);
• for eah edge e suh that t(e) = v, the injetion ie : Ge →֒ Gv maps Ge onto a maximalboundary subgroup of S;
• this indues a bijetion between the set of edges t−1(v) and the set of onjugay lasses in
S of maximal boundary subgroups of S;



36 CHAPTER 4. SHORTENING ARGUMENTThe verties of VS are alled surfae type verties. A vertex of the tree TΓ, whose projetion in Γis of surfae type, is also said to be of surfae type. The surfaes orresponding to surfae typeverties of Γ are alled the surfaes of Γ.Remark 4.13: Note that the hoie of the set VS is part of the struture: it does not neessarilyontain all the verties of Λ whih satisfy the onditions listed above.De�nition 4.14: (surfae type automorphism) Let G be a group whih admits a deompositionas a graph of groups with surfaes Λ, and let S be a surfae type vertex group in this deomposi-tion. An automorphism of S whih restrits to onjugation by an element of S on eah maximalboundary subgroups has a standard extension (reall setion 3.1) to an automorphism of the wholegroup, whih we all a surfae type automorphism.It is a famous result, proved �rst by Dehn and later independently by Likorish ( see [Li64℄),that if S is the fundamental group of an orientable surfae with boundary, the group of auto-morphisms of S whih preserve the onjugay lass of boundary subgroups is generated by Dehntwists of splittings of S in whih boundary subgroups are ellipti. Thus in the orientable ase,surfae type automorphisms orresponding to S are in the subgroup generated by Dehn twists of
G.De�nition 4.15: (modular group Mod(Λ) of a graph of groups Λ) Let G be a group whihadmits a deomposition as a graph of group with surfaes Λ. The modular group Mod(Λ) of Λ isthe subgroup of Aut(G) generated by inner automorphisms, Dehn twists, generalised Dehn twists,and surfae type automorphisms.De�nition 4.16: (abelian modular group Mod(G) of a group G) Let G be a �nitely generatedgroup. We de�ne the abelian modular group of G, denoted by Mod(G), to be the subgroup of
Aut(G) generated by the modular groups of all the abelian splittings of G.4.2.2 Ation shortening resultReall that in de�nition 3.25, we de�ned the length of an ation λ of G on a pointed metrispae (X,x) to be the maximal displaement of the basepoint x by an element of the generatingset ΣG. If σ is an automorphism of G, we denote λ ◦ σ the ation of G on (X,x) given by
(g, x) 7→ λ(σ(g), x), and we giveDe�nition 4.17: (short ation) An ation λ of a group G on a pointed spae (X,x) is short iffor any element σ of Mod(G), the length of λ is at most the length of λ ◦ σ.The ation shortening result we want to state now is a slightly altered version of the one provedby Rips and Sela (see [RS94℄ or [Sel97a℄). It asserts that, under the right set of onditions, if asequene λn of ations of a �nitely generated freely indeomposable groupG on pointed hyperbolispaes (Xn, xn) onverges (in the equivariant Gromov Hausdor� topology) to an ation λ on areal tree T , then at most �nitely many of the ations λn are short.There are various possible sets of hypotheses on the G-spaes Xn and on the limit G-tree
T for whih some shortening result holds. The hypotheses on T should enable us to analyse itusing Rips theory, whih deomposes real G-trees into simple building bloks of given types (seeTheorem 10.8 in [RS94℄, or Theorem 5.1 of [Gui08℄). One of the onditions an ation needs tosatisfy for Rips theory to apply is the following.De�nition 4.18: (superstable) An ation on a real tree is said to be superstable if for any pairof ars J, I with J ⊆ I and Fix(I) 6= 1, we have Fix(I) = Fix(J).In Theorem 10.8 of [RS94℄, Rips and Sela give the existene of a deomposition for a real treeunder a weaker ondition, however Guirardel showed in [Gui08℄ that this stronger hypothesis isneessary. To see that an ation is superstable, we will use the following riterion.



4.2. SHORTENING MORPHISMS IN THE CLASSICAL CASE 37Lemma 4.19: If a group G ats on a real tree T in suh a way that any subgroup �xing a tripodis trivial, and any subgroup �xing an ar is abelian, then the ation is superstable.Proof. Indeed, let I = [a, b] and J = [c, d] be two non-trivial ars of T with J ⊆ I. We learlyhave Fix(I) ≤ Fix(J). If we do not have equality, there is an element g whih lies in Fix(J) butnot in Fix(I) so without loss of generality g · b 6= b. We now want to see that Fix(I) must betrivial. Let h ∈ Fix(I), and note that g and h ommute sine they both �x J . We have h · a = aand h · b = b sine h ∈ Stab(I), and h · (g · b) = gh · b = g · b. The element h �xes the tripodformed by a, b and g · b, thus it must be trivial.One we know that the limit tree an be deomposed by Rips' analysis, we need to add someonditions to deal with the di�erent types of building bloks. We require for example that G befreely indeomposable to ensure that there are no Levitt (or thin) omponents. To be able to dealwith axial omponents, the assumption that solvable subgroups are free abelian will prove useful.As for the part of the shortening argument whih deals with simpliial omponents of thelimit tree, they require some hypotheses on the G-spaes Xn. The hypotheses must be su�ientto give some understanding of how an element whih �xes an ar in the limit ation ats on anapproximation of this ar in Xn for n large enough.If the spaes Xn are trees, this is muh easier to ahieve, sine isometries of trees are veryeasily desribed. In this ase, if an element �xes an ar I in the limit ation, it is easy to seethat it must at in Xn as a translation whose axis ontains a segment approximating I. It willbe important to know that this translation is not trivial: a strong hypothesis whih ensures thisis the assumption that the ations are all free, or that for eah g in G, the ation of g on Xn isfree for n large enough. This will be satis�ed if the spaes Xn are resaling of spaes of the form
X [hn] for some sequene of morphisms hn to a free group whose stable kernel is trivial. Suha set of onditions is used to show that limit groups admit fators sets (see [Sel01℄, or [Wil06℄).Another possibility is to assume that the diameter of the �xed point set of an element is boundedby dn, with dn tending to 0. This is the ase if the Xn are resaled k-aylindrial G-trees forexample, as is used in [Sel97a℄.If the spaes Xn are not trees, but only δn-hyperboli spaes, we have to be slightly moreareful. In [RS94℄, for example, the authors assume that all the ations are free, and that thenumber of translates of a point p whih are at a distane at most 10δn of p is bounded uniformlyin n and in p.However, if we know that the ations λn are resalings of ations of the form X [hn], where hnis a morphism into a δ-hyperboli group, the proof is greatly simpli�ed. Indeed in this ase, Xnis proper and geodesi, and for any element g of G whih is not in the stable kernel, for n largeenough, the ation of g on Xn is hyperboli. Moreover given a non-trivial element g of G, thereis a �xed power of g whih has translation length greater than 12δn in all the spaes Xn for nlarge enough (reall lemma 3.14), and this will also prove useful.We an now state the ation shortening theoremTheorem 4.20: Let G be a torsion-free and freely indeomposable group, endowed with a �nitegenerating set ΣG. Suppose moreover that solvable subgroups of G are free abelian groups.Let (Xn, xn)n∈N be a sequene of pointed proper and geodesi δn-hyperboli metri spae en-dowed with ations λn of G by isometries. Suppose that the sequene (Xn, xn)n∈N onverges toa pointed real G-tree (T, x). Assume that any non-trivial ar stabiliser of T ontains an elementwhih, for all n large enough, ats hyperbolially on Xn, with translation length at least 12δn. Ifthe ation λ of G on T satis�es:1. λ is non-trivial;2. tripod stabilisers are trivial;



38 CHAPTER 4. SHORTENING ARGUMENT3. pointwise ar stabilisers are abelian;4. λ is superstable;then for n large enough, the ations λn are not short.4.2.3 Morphism shortening resultLet Γ be a torsion-free hyperboli group endowed with a �nite generating set ΣΓ. Denote by Xits Cayley graph. In lemma 4.2, we saw that if we hoose basepoints properly, we an build froma sequene of morphisms hn : G→ Γ a sequene of G-spaes onverging to a real G-tree. We nowwant to �nd su�ient onditions on the morphisms hn to ensure that the sequene and its limitsatisfy the hypotheses of the ation shortening result we just saw.We �rst need to hoose basepoints for the spaes X [hn] so that the limit of our sequene of
G-spaes is a real tree endowed with a non-trivial ation of G.De�nition 4.21: (minimal displaement, minimally displaed point) Let G, Γ be groups endowedwith �nite generating sets ΣG and ΣΓ respetively. Let h : G → Γ be a morphism. The minimaldisplaement µ[h] is the infemum of the funtion Γ→ N given by

x 7→ max
s∈ΣG

|x−1h(s)x|ΣΓ .Sine the word metri is integer valued, this infemum is a minimum. The point where it is reahedis alled the minimally displaed point of h, and denoted by x[h]. We will slightly abuse notationsand identify x[h] to the orresponding point of the Cayley graph X of Γ with respet to ΣΓ.We have µ[h] = maxs∈ΣG dX(x[h], h(s) · x[h]), so the length of the ation of G on (X [h], x[h])is preisely the minimal displaement µ[h] of h.De�nition 4.22: (short morphism) A morphism G→ Γ is short if for any element σ of Mod(G),we have
µ[h] ≤ µ[h ◦ σ]In other words, the morphism h is short if and only if the ation of G on (X [h], x[h]) is short.We an then showProposition 4.23: Let G be a torsion-free group, endowed with a �nite generating set ΣG, allof whose virtually abelian subgroups are abelian. Let Γ be a torsion-free hyperboli group endowedwith a �nite generating set ΣΓ.Let hn : G → Γ be a sequene of pairwise non-onjugate morphisms, and suppose there is anon-prinipal ultra�lter ω for whih Ker←−−ω(hn) is trivial.Then the ultraprodut of the spaes 1

µ[hn] (X [hn], x[hn]) with respet to ω is de�ned, and it isa real tree (T, x) whih satis�es the onditions 1 to 4 in 4.20.Proof. To see that the ultraprodut of the spaes 1
µ[hn] (X [hn], x[hn]) with respet to ω is wellde�ned and is a real tree, it is enough to show by remark 4.2 that µ[hn] tends to in�nity withrespet to ω. Let h be a morphism G→ Γ. Note that for every g in ΣG, we have

|x−1[h]h(g)x[h]|ΣG = dX(1, x−1[h]h(g)x[h]) = dX(x[h], h(g)x[h]) ≤ µ[h].Thus h has a onjugate whih sends all the generators of G in the ball of radius µ[h] in Γ. Thereare only �nitely many suh morphisms, so sine the hn are pairwise non-onjugate, µ[hn] musttend to in�nity with respet to ω.Suppose that the ation is trivial. If y = (yn) is a point in T = X [h, ω], for every g in ΣGwe have limω dn(yn, g · yn) = 0. Thus there exists Ag in ω suh that, for any n in Ag, we have
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dn(yn, g · yn) < 1/2. For n in ⋂

g∈ΣG
Ag, we have maxg∈ΣG dn(yn, g · yn) < 1/2. By de�nition of

µ[hn], we have
max
g∈ΣG

dn(yn, g · yn) =
1

µ[hn]
max
g∈ΣG

dX(yn, hn(g) · yn)

≥
1

µ[hn]
max
g∈ΣG

dX(x[hn], hn(g) · x[hn])

≥ 1This gives a ontradition. Thus the ation of G on T is non-trivial.By lemma 4.5, we see that elements �xing a non-trivial tripod must be trivial. Sine G istorsion-free, in fat the tripods stabilisers themselves are trivial. By lemma 4.7, the pointwisestabiliser of a non-trivial ar is abelian. By remark 4.19, the ation is also superstable.We an now show the morphisms shortening results. We de�neDe�nition 4.24: (stable sequene, stable kernel) A sequene of morphisms hn : G → Γ is saidto be stable if for any element g, either hn(g) is trivial for all but �nitely many n, or hn(g) isnon-trivial for all but �nitely many n. The stable kernel Ker←−−(hn) of suh a sequene is the set ofelements g of G for whih the �rst alternative holds.Equivalently, a sequene is stable if and only if its stable kernels with respet to any twonon-prinipal ultra�lters are equal.Note that if G is �nitely generated, any sequene of morphism hn : G → Γ ontains a stablesubsequene. To see this, note that for any �nite subset B of G, we an extrat a subsequeneof morphisms whose kernels all have the same intersetion with B. Now let Bk be an exhaustingsequene of �nite subsets of G, and for eah k, extrat by indution a subsequene (hk
n)n∈N of

(hk−1
n )n∈N. The diagonal subsequene (hn

n)n∈N is then stable.Theorem 4.25: Let G be a torsion-free and freely indeomposable group, endowed with a �nitegenerating set ΣG. Suppose that virtually solvable subgroups of G are free abelian. Let Γ be atorsion-free hyperboli group endowed with a �nite generating set ΣΓ.Let hn : G→ Γ be a stable sequene of non-injetive short morphisms. Then the stable kernelof (hn)n∈N is non-trivial.Proof. Suppose by ontradition that Ker←−−(hn) is trivial. If the maps hn belonged to �nitely manyonjugay lasses, there would be only �nitely many possibilities for the kernel of hn. Then hnwould admit a subsequene all of whose terms have the same kernel. Sine Ker←−−(hn) = {1}, thiskernel would have to be trivial, whih ontradits the non-injetivity of the maps hn. Thus, upto extrating a subsequene, the maps hn are pairwise non-onjugate.Let ω be a non-prinipal ultra�lter. The stable kernel of (hn)n∈N with respet to ω is trivial,the morphisms are pairwise non-onjugate, and virtually abelian subgroups of G are solvable sothey are abelian by hypothesis. We an thus apply proposition 4.23 to see that the ultraprodutwith respet to ω of the spaes 1
µ[hn] (X [hn], x[hn]) is a pointed G-tree T , whih satis�es theonditions 1 to 4 in 4.20. Thus some subsequene of ( 1

µ[hn](X [hn], x[hn]))n∈N onverges to apointed G-tree T whih satis�es the onditions 1 to 4 in 4.20.Let g be an non-trivial element of G whih �xes an ar in T : for all n large enough, hn(g)is non-trivial, so by lemma 3.14, for all n large enough, hn(gM12δ ) has translation length at least
12δ in X [hn], so it has translation length at least 12δn in 1

µ[hn] (X [hn], x[hn]). The element gM12δ�xes the same ar as g, so the ondition in 4.20 about stabilisers of ars holds.We an thus apply Theorem 4.20 to see that for all n large enough, the ation of G on
1

µ[hn] (X [hn], x[hn]) is not short. This ontradits the shortness of the maps hn.



40 CHAPTER 4. SHORTENING ARGUMENTIf we restrit ourselves to injetive maps we getTheorem 4.26: Let G be a torsion-free and freely indeomposable group, endowed with a �nitegenerating set ΣG. Suppose that virtually solvable subgroups of G are free abelian. Let Γ be atorsion-free hyperboli group endowed with a �nite generating set ΣΓ.There exists a �nite set {i1, . . . , ik} of embeddings G →֒ Γ suh that for any embedding i :
G →֒ Γ, there is an index j with 1 ≤ j ≤ l, an element γ of Γ, and a modular automorphism σ of
G suh that

i = Conj (γ) ◦ ij ◦ σ.Proof. If this were not the ase, there would be an in�nite sequene of pairwise non-onjugate shortembeddings hn : G→ Γ. The stable kernel of suh a sequene with respet to any ultra�lter ω isof ourse trivial. Up to extration, and by proposition 4.23, the sequene ( 1
µ[hn] (X [hn], x[hn]))n∈Nonverges to a pointed G-tree T whih satis�es the onditions 1 to 4 in Theorem 4.20. Thus for

n large enough, these ations are not short: this ontradits the shortness of the embeddings
hn.4.3 Shortening morphisms in the relative aseWe will also use a relative version of the shortening argument. Here relative means that we �x asubgroup H of a group G, and we ask that this subgroup �xes a point in the ations of G on trees(real or simpliial). Similarly, instead of asking G to be freely indeomposable, we require that itbe freely indeomposable relative to H (i.e. that no proper free fator of G ontains H). Apartfrom a few modi�ations of the sort, the arguments are very similar to the non-relative ase. Themain di�erene that should be noted lies in the proof of non-triviality of the limit ation in theproof of proposition 4.31, ompared to that found in the proof of proposition 4.23.4.3.1 Ation shortening resultWe start by adapting our de�nition of the modular group.De�nition 4.27: (relative abelian modular group ModH(G)) Let G be a �nitely generated group,and let H be a subgroup of G. Let Λ be a splitting of G as a graph of groups with surfaes forwhih H is ellipti. The modular group ModH(Λ) of Λ relative to H is the subgroup of Mod(Λ)ontaining all the automorphisms whih �x H. The abelian modular group of G relative to H,denoted ModH(G), is the subgroup of Aut(G) generated by the subgroups ModH(Λ), where Λ isan abelian splitting of G in whih H is ellipti.Theorem 4.20 generalises toTheorem 4.28: Let G be a torsion-free group endowed with a �nite generating set ΣG, whosesolvable subgroups are free abelian. Let H be a subgroup of G, and assume G is freely indeom-posable relative to H.Let (Xn, xn)n∈N be a sequene of proper and geodesi pointed δn-hyperboli spaes, endowedwith isometri ations λn of G by isometries.Suppose that the sequene (Xn, xn)n∈N onverges to a pointed real G-tree (T, x). Assumethat any non-trivial ar stabiliser of T ontains an element whih, for all n large enough, atshyperbolially on Xn with translation length at least 12δn. If the ation λ of G on T satis�es:1. λ is non-trivial;2. tripod stabilisers are trivial;3. pointwise ar stabilisers are abelian;



4.3. SHORTENING MORPHISMS IN THE RELATIVE CASE 414. λ is superstable;5. H �xes a point;then for n large enough, the ations λn are not short.4.3.2 Morphism shortening resultLet G be a group endowed with a �nite generating set ΣG. Let Γ be a torsion-free hyperboligroup endowed with a �nite generating set ΣΓ. Denote by X the Cayley graph of Γ with respetto ΣΓ. Let H be a subgroup of G, and �x an embedding of H in Γ so that H is also a subgroupof Γ.Here again, we want to �nd su�ient onditions on a sequene of morphisms hn : G → Γ,so that we an build from it a sequene of ations whih satis�es the hypotheses of the ationshortening result we just saw.The main di�erene is that we need H to �x a point in the limit. This will a�et our hoie ofbasepoint: we will not hoose as a basepoint the minimally displaed point, but simply the point
e of X orresponding to the identity in Γ. To make sure H �xes the basepoint in the limit, wewill require that the following ondition hold.De�nition 4.29: (�xing H in the limit) We say that a sequene of morphisms hn : G→ Γ �xes
H in the limit if for all r ∈ N, for n large enough, hn is the identity on words of length less orequal to r (i.e. on the �nite set BG(r) ∩H).Remark 4.30: If H is non-abelian, and if (hn)n∈N is a sequene of pairwise distint maps whih�xes H in the limit, the maps hn are pairwise non-onjugate for n large enough. Indeed, let
a1, a2 ∈ H suh that [a1, a2] 6= 1. For all n greater than some onstant n0, hn(a1) = a1 and
hn(a2) = a2 so that if γ is a non-trivial element of Γ, it annot ommute both with hn(a1) and
hn(a2) (reall that torsion-free hyperboli groups are ommutative-transitive). Thus without lossof generality, Conj (γ) ◦ hn(a1) 6= a1, and Conj (γ) ◦ hn 6= hr for r ≥ n0.The following proposition expresses su�ient onditions on a sequene of morphisms hn : G→
Γ to enable us to apply Theorem 4.28.Proposition 4.31: Let G be a group endowed with a �nite generating set ΣG whose virtuallyabelian subgroups are abelian. Let Γ be a torsion-free hyperboli group endowed with a �nitegenerating set ΣΓ. Let H be a non-abelian subgroup of G with a �xed embedding in Γ.Let hn : G → Γ be a sequene of pairwise distint morphisms whih �xes H in the limit, andsuppose that ω is a non-prinipal ultra�lter suh that Ker←−−ω(hn) is trivial.Then the ultraprodut of the spaes 1

l(X[hn],e) (X [hn], e) with respet to ω is a real G-tree whihsatis�es the onditions 1 to 5 in 4.28.Proof. The fat that the hn are pairwise distint implies that the maps hn send the elements of
ΣG outside balls of larger and larger radius. Reall that

l(X [hn], e) = max
g∈ΣG

dX(e, hn(g) · e) = max
g∈ΣG

|hn(g)|ΣΓ ,so the sequene l(X [hn], e) tends to in�nity. By lemma 4.2, the ultraprodut of the spaes
1

l(X[hn],e) (X [hn], e) with respet to ω is a pointed real G-tree T . We denote the basepoint of Talso by e.By lemma 4.5, subgroups of G �xing tripods are trivial, and as G is torsion-free, tripodstabilisers are trivial. Lemma 4.7 implies that non-trivial ars have trivial pointwise stabilisers.By remark 4.19, the ation is superstable.



42 CHAPTER 4. SHORTENING ARGUMENTFor an element a of H , the image hn(a) is onstant and equal to a for n large enough, so
dω(e, a · e) = lim

ω
dn(e, a · e)

= lim
ω

(dX(e, hn(a) · e)/l(Xn, e))

= lim
ω
|a|ΣΓ/l(Xn, e) = 0.Thus H �xes the point e.Suppose that e is a global �xed point: then for eah g in ΣG, the set Ag of indies n for whih

dn(e, g · e) < 1/2 lies in ω. Thus for n ∈ ⋂
g∈ΣG

Ag, we have maxg∈ΣG dn(e, g · e) < 1/2. Byde�nition of l(X [hn], e) we have
max
g∈ΣG

dn(e, g · e) =
maxg∈ΣG dX(e, hn(g) · e)

l(X [hn], e)
= 1This is a ontradition, so e is not a global �xed point.But now, if T did admit a global �xed point y, the non-trivial path between y and e wouldbe �xed by H . Sine pointwise ar stabilisers are abelian and H isn't, the ation of G on T isnon-trivial.The hange in our hoie of basepoint means that our de�nition of a short morphism mustalso be slightly modi�ed.De�nition 4.32: (short morphism with respet to H) A morphism h : G → Γ is short withrespet to H if for any element σ of ModH(G), we have

max
g∈ΣG

dX(e, h(g) · e) ≤ max
g∈ΣG

dX(e, h ◦ σ(g) · e).In other words, h is short with respet to H if the ation of G on (X [h], e) is short. We annow show the relative morphism shortening result.Theorem 4.33: Let G be a torsion-free group, endowed with a �nite generating set ΣG. Supposethat the virtually solvable subgroups of G are free abelian. Let Γ be a torsion-free hyperboli groupendowed with a �nite generating set ΣΓ. Let H be a non-abelian subgroup of G, with respet towhih G is freely indeomposable. Fix an embedding of H in Γ so that H is also a subgroup of Γ.Let hn : G→ Γ be a stable sequene of non-injetive morphisms whih �x H in the limit andare short with respet to H. Then the stable kernel of (hn)n∈N with respet to ω is non-trivial.Proof. Suppose by ontradition that Ker←−−(hn) is trivial. If (hn)n∈N has a onstant subsequene,the maps in this subsequene must have trivial kernel, whih ontradits their non-injetivity.Thus, (hn)n∈N has no onstant subsequene, so up to extrating, we may assume that the maps
hn are pairwise distint.By proposition 4.31, up to another extration, ( 1

l(X[hn],e) (X [hn], e))n∈N tends to a real G-tree
T whih satis�es onditions 1 to 5 of Theorem 4.28.Moreover, if g is a non-trivial element �xing an ar of T , we know by lemma 3.14 that for all
n large enough, hn(gM12δ ) has translation length at least 12δ.Thus we an apply Theorem 4.28, whih tells us that for n large enough, the ation of G on
(X [hn], e) is not short. This ontradits the shortness of the map hn relative to H .Similarly to the non-relative ase, we an also give a version for injetive maps.Theorem 4.34: Let G be a torsion-free group, endowed with a �nite generating set ΣG. Supposethat virtually solvable subgroups of G are free abelian groups. Let H be a non-abelian subgroupof G, with respet to whih G is freely indeomposable. Let Γ be a torsion-free hyperboli group



4.4. THE RELATIVE CO-HOPF PROPERTY FOR HYPERBOLIC GROUPS 43endowed with a �nite generating set ΣΓ. Fix an embedding of H in Γ so that H is a subgroup of
Γ. There exists a �nite set i1, . . . , ik of embeddings G →֒ Γ suh that for any embedding i : G →֒ Γwhih �xes H, there is an index j with 1 ≤ j ≤ l, and an element σ of ModH(G) suh that

i = ij ◦ σ.Remark 4.35: It looks like we get a muh better result that in the non-relative ase, sine wegot rid of the onjugation. However reall that sine H is non-abelian, if a map h �xes H, aonjugate Conj (γ) ◦ h of h �xes H if and only if γ = 1.Proof. Suppose hn : G → Γ is a sequene of pairwise distint embeddings �xing H . It is stablewith a trivial stable kernel, so we an see by proposition 4.31 that a subsequene of the spaes
( 1

l(X[hn],e) (X [hn], e))n∈N tends to a real G-tree T whih satis�es onditions 1 to 5 of Theorem4.28. Thus the ation of G on (X [hn], e) is not short for n large enough, so that hn is not shortrelative to H .This shows that there is only a �nite number of distint short embeddings G → Γ, whihproves the result.4.4 The relative Co-Hopf property for hyperboli groupsWe will prove a result whih is a diret onsequene of the shortening argument. It expressesthe fat that torsion-free hyperboli groups satisfy a relative o-Hopf property. Sela showed in[Sel97b℄ that freely indeomposable hyperboli groups are o-Hop�an, but the proof is atuallymuh harder than in the relative ase.Proposition 4.36: Let G be a torsion-free hyperboli group. Let H be a non-abelian subgroup of
G relative to whih G is freely indeomposable. If φ : G → G is injetive and �xes H then it isan isomorphism.Proof. Suppose φ is a strit embedding: then φn(G) is a stritly dereasing sequene of subgroupsof G whih are all isomorphi to G by isomorphisms �xing H .The group G is torsion-free hyperboli, so it satis�es all the hypotheses of proposition 4.34.As a onsequene, the number of subgroups of G isomorphi to G by isomorphisms �xing H is�nite. This is a ontradition.Now we an atually get a stronger statement by using the following lemma, whose proof wassuggested by Vinent Guirardel.Lemma 4.37: If a �nitely generated group G is freely indeomposable relative to a subgroup H,then H has a �nitely generated subgroup H0 relative to whih G is freely indeomposable.Proof. Suppose G′ is a subgroup of G. Denote by T (G′) the set of all simpliial G-trees τ withtrivial edge stabilisers in whih G′ �xes a vertex vτ . De�ne

A(G′) =
⋂

τ∈T (G′)

Stab(vτ )To eah τ in T (G′), we assoiate the orresponding free produt deomposition of G. Thenumber of fators of suh a deomposition is bounded, sine G is �nitely generated: let mG(G′)be the maximal number of fators that suh a deomposition an have. A deomposition with
mG(G′) fators is learly of the form

A ∗B1 ∗ . . . ∗Br



44 CHAPTER 4. SHORTENING ARGUMENTwhere B1, . . . , Br are freely indeomposable (possibly yli), and A ontains G′ and is freelyindeomposable with respet to G′. Now A(G′) < A sine this deomposition orresponds to atree τ in T (G′) for whih Stab(vτ ) = A. But A is freely indeomposable with respet to G′, thusin any tree τ of T (G′), A �xes the vertex vτ . Thus A = A(G′). Note that this implies that A(G′)is a free fator of G, and is freely indeomposable with respet to G′.If G′′ < G′, then T (G′) ⊆ T (G′′). This implies that A(G′′) < A(G′), and mG(G′) ≤ mG(G′′).Moreover, if mG(G′) = mG(G′′), a maximal deomposition for G′ is also maximal for G′′, thus
A(G′′) = A(G′).We an now prove the lemma. Let {h1, h2, . . .} be a generating set for H . Consider thesequene of subgroups Hk = 〈h1, . . . hk〉 of H . By the remarks above, the sequene (mG(Hk))k>0is dereasing, and bounded below by 1. Thus it must stabilise, and by what we saw above, thisimplies that the sequene A(Hk) stabilises after some index k0. In partiular Hk < A(Hk0 ) for all
k, so H < A(Hk0 ). But A(Hk0) is a free fator of G: sine we assumed G freely indeomposablewith respet to H , we must have A(Hk0 ) = G, so G is freely indeomposable with respet to Hk0 .Proposition 4.38: Let G be a torsion-free hyperboli group. Let H be a non-yli subgroup of
G. Suppose G freely indeomposable relative to H. There exists a �nite subset F0 of H suh thatif φ : G→ G is an injetive morphism whih �xes F0, then it is an isomorphism.Proof. Just take F0 to be a generating set for the subgroup H0 given by lemma 4.37. If φ �xes
F0, it �xes H0 relative to whih G is freely indeomposable. Thus we an apply proposition 4.36to G with the subgroup H0, to dedue that φ is an isomorphism.



Chapter 5Proof of the ation shorteningTheoremWe will present a proof of theorem 4.28. The strategy is as follows: we start by analysing the
G-tree T using Rips theory. Rips theory enables us, under ertain hypotheses like superstability,to analyse ations of �nitely generated groups on real trees by deomposing suh an ation intoelementary building bloks (see [Sel97a℄ and [Gui08℄). Then we produe for eah type of bloksan automorphism of G whih will shorten all the paths of the form [x, u · x] whih interset oneof these bloks, where u is an element of the generating set.The proof we give is based on the proof of Theorem 4.3 of [RS94℄, the fat that we are inthe relative ase does not introdue partiular di�ulties. However we altered the presentation,mainly when dealing with the disrete ase, and in general we give a more detailed versionof the various arguments. We followed also the proof given in [Wil06℄, where the non-relativeversion of the theorem is proved in the spei� ase where the ations ome from a sequene ofhomomorphisms into the free group.5.1 Some examples of ations on real treesLet us �rst give some lassial examples of ations on real trees.Example 5.1: (simpliial type) Let T be a real G-tree. Branhing points in a real tree are pointswhose omplement has more than two onneted omponents. If branhing points are isolated,we say that T is a simpliial G-tree, or that the ation is of simpliial type.Example 5.2: (axial type) Let T be a line, and let G at on T with dense orbits, in suh a waythat the image of G in Isom(R) is �nitely generated. We say that the ation of G on T is of axialtype. We then have the following exat sequene for G:

1→ K → G→ H → 1,where K �xes T pointwise, and H is a �nitely generated subgroup of Isom(R) of rank at least 2.Example 5.3: (surfae type) Consider a foliation F endowed with a transverse measure µ on asurfae with boundary Σ, as de�ned in [FLP79℄ (see also [LP97℄ or setion 1.7 of [Gui08℄). For
x ∈ Σ, let Ox be the set of points y suh that there is a path [x, y] whih is ontained in a leaf,and whih meets no singularity of the foliation. Suppose that for any point x of Σ, the set Ox isdense in Σ (a foliation whih satis�es this is alled arational). The foliation F lifts to a foliation45



46 CHAPTER 5. PROOF OF THE ACTION SHORTENING THEOREM
F̃ of a universal over Σ̃ of Σ, and µ indues a pseudometri on the set of leaves of F̃ given by

d(x, y) = inf
γ
µ(γ)where γ ranges over all the paths in Σ whih lift to a path from x to y. Quotienting the spae ofleaves by the equivalene relation indued by this pseudometri, we get a real tree T (see [MS91℄,where laminations are used instead of foliations, or [LP97℄). We then say that the ation of thefundamental group S of Σ on T is of surfae type. It is a result of [MS91℄ that suh an ationis free if Σ has no boundary, and it an be generalised to show that in the ase with boundary,the ation on the dual tree has trivial ar stabilisers, and that the only ellipti elements are theboundary elements of S.A way to get surfaes endowed with foliations is to give them a band omplex struture overan interval. To do so, we need the following de�nitions (see [BF95℄, or de�nition 2.2 of [Wil℄).De�nition 5.4: (union of bands) Let I be an interval of the real line. Given a �nite set of pairs

(Ii, I ′
i) of subintervals of I, and isometries ψi : Ii → I ′

i , we an build a topologial spae Y bygluing for eah i the band Ii × [0, 1] to I via the isometries
{
Ii × {0} → Ii

(x, 0) 7→ x and {
Ii × {1} → I ′

i

(x, 1) 7→ ψi(x)Suh a spae Y is alled a union of bands on I.De�nition 5.5: (union of bands of surfae type) A union of bands Y on an interval I for whihall but �nitely many points of I lie in exatly two bands is said to be of surfae type.Suppose Y is a union of bands of surfae type. Topologially, Y is a surfae with boundaries,and its fundamental group is the free group generated by elements (gi)1≤i<n orresponding to theloops given by the various bands.A band Ii × [0, 1] is foliated by sets of the form {x} × [0, 1]. This foliation admits a standardtransverse measure, where the measure of a transverse ar γ is the length of its projetion onthe interval Ii. The union of bands Y thus admits a natural measured foliation indued by thisfoliation of the bands. Note that every boundary omponent of Y lies in some leaf of Y .De�nition 5.6: (omplex of bands) The spae X is said to be a omplex of bands of surfae typewith underlying union of bands Y if
• Y is a union of bands of surfae type,
• X is obtained from Y by gluing 2-ells along some of the boundary omponents of Y .Note that X is also a surfae with (possibly empty) boundary, and π1(X) is generated by theelements gi orresponding to the bands of Y . The relations satis�ed by these elements are words

w(g1, . . . gn) formed by following the boundary of a 2-ell and reading out the name of the bandswhose boundary we follow. We all this presentation of π1(X) the presentation assoiated to X .Thus X is a surfae endowed with a measured foliation. We denote by TX the π1(X)-treeassoiated to the foliation on X as desribed in example 5.3. We an hoose a lift of I in theuniversal over (X̃, F̃), it is transverse to F̃ so this gives us an injetion of I in TX .In fat, it an be shown that any arational foliation F on a surfae with boundary Σ endowedwith a transverse measure µ an be built in this way: Σ admits a band omplex struture Xwhose natural measured foliation is homotopy equivalent to (F , µ). Equivalently, for any surfaetype ation of S on a tree T , there is a band omplex X suh that T and TX are isomorphi asreal S-trees.



5.2. GRAPHS OF ACTIONS 47The idea of the proof is to pik on the surfae an interval transverse to the foliation, and utalong leaves whih ontain singular points of the foliation until we meet the hosen interval. If thesingular point was not ontained in a boundary, we glue a 2-ell to the boundary thus reated.Note that by the desription above, a struture of band omplexX on Σ gives us a presentationfor S.Remark 5.7: Reall that the base interval I of the union of bands Y embeds in TX . The gener-ators of the presentation assoiated to the band omplex struture X on P translate any point xof I by a distane smaller than the length of the interval I.5.2 Graphs of ationsThe notion of graph of ations allows us to desribe the deomposition of a real G-tree intovarious omponents. They were introdued by Levitt in [Lev94℄, but we present the slightlydi�erent de�nition given in [Gui08℄:De�nition 5.8: (graph of ations) Let G be a group. A graph of ations on R-trees is given by
G = (τ, (Tv)v∈V (τ), (pe)e∈E(τ)) where1. τ is a simpliial G-tree alled the skeleton;2. for eah vertex v of τ , Tv is a real tree alled the vertex tree;3. for eah edge e of τ , pe is a point of Tt(e) alled the attahing point of e.Moreover we require that the following equivariant properties be respeted1. G ats on the disjoint union of the trees Tv in suh a way that the map Tv → v is equivariant;2. for g ∈ G and e ∈ E(τ), we have pg·e = g · pe.We assoiate to G the G-tree TG obtained by quotienting the disjoint union of the Tv by therelations pe ∼ pē. The trees Tv injet in TG, their images are alled omponents of T , and stilldenoted by Tv.We say that a G-tree T splits as a graph of ations if T is isomorphi to TG for some graphof ations G.Remark 5.9: The de�nition implies that Tv is invariant under the ation of the stabiliser Gv of

v in τ , and that pe is invariant under the ation of the stabiliser Ge of e in τ .The following result expresses, in a tree whih splits as a graph of ations, the distane betweena point and one of its translates. It will prove very useful in the sequel.Let G be a graph of ations, and let ∆τ be the graph of groups orresponding to the ationof G on τ . Denote by π the quotient map τ → G\τ . Choosing a fundamental domain τ0 in τand Bass-Serre elements te for eah edge e in τ0 gives us an isomorphism between G and thefundamental group of ∆τ . Aording to this isomorphism, an element of G an be written as aword in the elements te and in the elements of the groups Gv. Moreover, given a vertex π(v) of
∆τ , we an always hoose to represent g by a word of the form

g1te1g2te2 . . . telgl+1,where the path formed by the edges π(e1), . . . , π(el) forms a loop based at π(v), the element gilies in Go(π(ei)), the element gl+1 lies in Gπ(v), and if π(ei+1) = π(ēi), the element gi is not trivial.We all this the loop representation of g based at π(v) (it depends on the hoie of a fundamentaldomain and Bass-Serre elements).



48 CHAPTER 5. PROOF OF THE ACTION SHORTENING THEOREMLemma 5.10: Let v be a vertex of our fundamental domain τ0, and let x ∈ Tv. Let g be anelement of G, whose loop representation based at π(v) with respet to our hoie of fundamentaldomain and Bass-Serre elements is g1te1g2te2 . . . telgl+1. Then the path [x, g(x)] is the onate-nation of the following ars
• I0 = [x, g1 · pe1 ];
• Ii = g1te1 . . . gitei · [t−1

ei
· pei , gi+1 · pei+1 ] for 1 ≤ i < l;

• Il = g1te1 . . . gltel · [t−1
el
· pel , gl+1 · x].so that we have in TG

d(x, g · x) = d(x, g1 · pe1) + Σl−1
i=1d(t

−1
ei
· pei , gi+1 · pei+1) + d(t−1

el
· pel , gl+1 · x).Proof. The onatenation of the ars I0, . . . , Il forms a path between x and g · x. To see that itis indeed an ar, it is enough to show that there is no overlap. By the way we de�ned the looprepresentation, no two non-trivial ars Ii, Ij lie in the same omponent of T : there an be nooverlap.5.3 Rips deompositionWe an now state the result of Rips theory we will need: it is essentially Theorem 3.1 of [Sel97a℄,exept we have replaed the stability assumption by that of superstability, and we assume that Gis torsion-free and freely indeomposable with respet to a subgroup H . We use the terminologydeveloped in [Gui08℄, where Theorem 5.1 gives a generalisation of the result of Rips and Sela.Thus the following result an be seen as a partiular ase of Theorem 5.1 of [Gui08℄.Theorem 5.11: Let G be a �nitely generated torsion-free group whih is freely indeomposablewith respet to one of its subgroups H. Suppose G ats minimally, non-trivially, and superstablyon a real tree T by isometry. Suppose moreover that tripods are trivially stabilised, and that H �xesa point of T . Then T has a deomposition as a graph of ations G = (τ, (Tv)v∈V (S), (pe)e∈E(S))where eah vertex ation is either1. of simpliial type: Tv is a simpliial Gv-tree;2. of surfae type: Tv is dual to an arational measured foliation on a surfae with boundary;3. of axial type: Tv is a line, and the image of Gv in Isom(Tv) is a �nitely generated groupwhih ats on it with dense orbits.Note that the assumption of trivial tripod stabilisers implies in partiular that if T is not aline, the ation is faithful.Fix a generating set ΣG for G. To prove theorem 4.28, we need to �nd for all n large enoughan element σn of ModH(G) suh that the ation λn ◦ σn is shorter than λn. For an element g ofthe generating set, onsider the path [x, g · x] in the limit tree T .Suppose that we managed to �nd an element σ of ModH(G) suh that for all g in ΣG, thepath [x, σ(g) · x] is stritly shorter than the path [x, g · x]. Then this will su�e, sine for n largeenough, there will be an ǫ-approximation between T and Xn, with ǫ smaller than the di�ereneof the lengths of [x, g · x] and [x, σ(g) · x], thus dn(xn, σ(g) · xn) < dn(xn, g · xn).We will see that we an �nd suh a relative modular automorphism for paths [x, g · x] whihinterset a surfae or an axial type omponent (see Theorem 5.12 and Theorem 5.17). However, inthe ase where there are paths of the form [x, g ·x] whih lie ompletely in simpliial omponents,this will not be su�ient. For these, we will have to go to an approximationXn of T (see Theorem5.22), and the shortening modular automorphism we use will depend on n.



5.4. SURFACE CASE 495.4 Surfae aseThe following theorem allows us to shorten paths that interset a surfae type omponent.Theorem 5.12: Let G be a �nitely generated group ating on a real tree T whih admits adeomposition as a graph of ations G = (τ, (Tv)v∈V (τ), (pe)e∈E(τ)). Denote by ∆G the graph ofgroups orresponding to the ation of G on τ . Let U be a �nite subset of G. There exists anelement σ of Mod(∆G) suh that for any element u of U ,
• if the geodesi segment [x, u · x] intersets some surfae type omponents non-trivially, then

d(x, σ(u) · x) < d(x, u · x);

• if not, σ(u) = u.Let us �rst show the following lemma, whih in partiular implies Theorem 5.12 in the speialase where the tree T onsists of exatly one surfae omponent.Lemma 5.13: Suppose that the fundamental group S of a surfae with boundary Σ ats on a realtree T by an ation of surfae type. Then for any �nite subset V of S, for any point z of T andfor η > 0, there exists an automorphism φ of S whih restrits to a onjugation on eah boundarysubgroup, and suh that for any element v of V ,
d(z, φ(v) · z) < η.Before proving this, we de�ne what we mean by a presentation of S as the fundamental groupof a surfae with boundary, and when we onsider two suh presentation to be equivalent.De�nition 5.14: (surfae presentation) Let S be the fundamental group of a surfae with bound-ary Σ. A surfae presentation P of S is given by a tuple (k,R,B, h), where

• k is a positive integer;
• R and B are �nite tuples of elements of Fk = 〈a1, . . . ak〉, the free group of rank k;
• h is a map {a1, . . . ak} → S whose extension to Fk is surjetive, has kernel normally gen-erated by the elements of R, and sends the tuple B on a tuple of pairwise non-onjugatemaximal boundary elements of S.To an element g of S we an assoiate the word length |g|P of g in the presentation P .We say that two surfae presentations (k,R,B, h) and (k′, R′, B′, h′) of S are ombinatoriallyequivalent if k = k′, R = R′ and B = B′. Then, there is a natural automorphism of S given bysending h(ai) to h′(ai) for 1 ≤ i ≤ k. It is lear that this isomorphism restrits to a onjugationon eah boundary subgroup.We an now prove lemma 5.13.Proof. Let X be a struture of band omplex for Σ over an interval I and with underlying unionof bands Y , suh that, as a real G tree, TX is isomorphi to T . Let n be the number of bands in

Y . We want to show that we an modify X to get another band omplex struture X ′ for (Σ,F),also of surfae type, over a very small interval. This will give a presentation for S in whih thegenerators have small translation length by remark 5.7.Step 1: Consider the ombinatorial equivalene lasses of surfae presentations of S forwhih k ≤ n+ 1, |R| ≤ 2(n+ 1), and the words in R and B have length at most 2(n+ 1). Let Pbe a set ontaining exatly one representative for eah of these lasses: P is �nite. Let
A = max

v∈V,P ∈P
{|v|P }



50 CHAPTER 5. PROOF OF THE ACTION SHORTENING THEOREMStep 2: Choose a lift of I into X̃ suh that the indued injetion of I in TX ontains z. Thisis possible sine the foliation on X is arational, so the lifts of I in X̃ interset all the leaves. Let
J be a losed interval [a, b] of I whose interior ontains z, and whose length is smaller than η/2A.Eah point of I is ontained in at least two bands. Let D be the set of points ontained inmore than two bands: a point of D lies in a boundary omponent of Y , and arationality impliesthat it is the orner of exatly two bands. Conversely, if a point is the orner of a band, it is eitherontained in D, or it is one of the boundary p or q of I, whih are also the orners of exatly twobands. Thus D has ardinal at most 2(n− 1).Let d ∈ D. There is a unique point d′ of J̊ ontained in the leaf of d, and suh that the pathjoining d to d′ in that leaf lies entirely in the interior of Y : indeed, if not, there would be a path ina leave between two boundary omponents of Y , whih ontradits arationality. Now let (ra, r′

a)be the longest path in the leaf of a whih ontains a, lies entirely in the interior of Y , and doesnot meet J̊ . The points ra, r′
a are either points of J , or points of D. If ra or r′

a is a point d of D,the leaf path [ra, r′
a] is ontained in the leaf path [d, d′]. We de�ne similarly rb, r′

b.We now modify the band omplex. For eah point d of D, we ut Y along the path [d, d′].This enlarges the boundary omponent whih ontained d: if this omponent was the boundaryof a 2-ell, we enlarge the 2-ell too. If both ra and r′
a lie in J̊ , we also ut along the leaf path

[ra, r′
a], and glue a 2-ell along the boundary omponent thus reated. We proeed similarly for

b. It is straightforward to see that this gives us a new struture of band omplex X ′ for Σ, whoseanonial foliation is still homeomorphi to F . Moreover, the union of bands Y ′ underlying X ′ isbased in J .Step 3: We want to see that the presentation assoiated to X ′ has at most n+ 1 generatorsand 2(n+1) relations of length at most 2(n+1). Suppose Y ′ is omposed of r bands. This impliesthat the number of boundary omponents of Y ′ is at most 2r sine eah side of a band lies inexatly one boundary omponent. For the same reason, eah boundary omponent is omposedby at most 2r sides of bands. Now r is at most n + 1: indeed, eah point of D gives us a point
d′ ontained in more than 2 bands of Y ′, and both a and b might also give us suh a point. Buteah suh point is a orner of exatly two bands, and eah band has at most four suh points asorners. Sine |D| ≤ 2(n−1), we get r ≤ n+1, and Y ′ has at most 2(n+1) boundary omponentswhih are omposed eah of at most 2(n+ 1) sides of bands.Step 4: This new struture of band omplex gives us a presentation P0 for G on at most
n + 1 generators, at most 2(n + 1) relations, and in whih the relations and boundary elementsare represented by words of length at most 2(n+ 1) in the generators. Moreover, by remark 5.7,the generators of P0 translate z by a distane less than the length of J , namely less than η/2A.By Step 1, there is a presentation P of our set of representatives P whih is ombinatoriallyequivalent to P0. This gives us an automorphism φV : S → S whih sends any generator g of Pon a generator of P0. Thus d(z, φV (g) · z) < η/2A, so that if v ∈ V , we have d(z, φV (v) · z) < η.This onludes the proof.Reall that a vertex automorphism of a group G with respet to a splitting Λ is a standardextension of an automorphism of a vertex group of Λ to G.The lemma we just proved is the key for dealing with paths of the form [x, g · x] whihinterset at least one surfae type omponent non-trivially. However, the argument needs to beompleted, and aution is required, sine a path an interset several translates of a same surfaetype omponent.The following result shows that if we know how to shorten simultaneously a �nite number ofpaths that lie entirely in a surfae omponent, then we an shorten paths whih interset non-trivially a translate of this omponent. This will enable us to prove Theorem 5.12 from lemma5.13. In fat, it is more general, sine it applies to any omponent in whih orbits are dense: wewill also use it to deal with axial omponents.



5.4. SURFACE CASE 51Lemma 5.15: Let T be a G-tree whih admits a deomposition as a graph of ations G given by
(τ, (Tv)v∈V (τ), (pe)e∈E(τ)). Denote by ∆G the graph of groups orresponding to the ation of G on
τ . Let G · v be an orbit of verties in τ suh that1. the ation of Gv on Tv has dense orbits ;2. for any �nite set V of elements of Gv, for any point z of Tv and any positive η, there isan automorphism φ of Gv whih restrits to a onjugation on eah adjaent edge group, forwhih d(z, φ(g) · z) < η for any element g in V .Then for any �nite subset U of G, and for any x ∈ T , there exists a vertex automorphism τof G relative to ∆G suh that for u ∈ U , if [x, u · x] intersets a translate of Tv non-trivially, wehave d(x, τ(u) · x) < d(x, u · x), and if not, τ(u) = u.The key to prove lemma 5.15 is to pik the right way of writing elements of G aording tothe splitting ∆G , i.e. to hoose the right isomorphism between G and π1(∆G). This is preiselywhat the following lemma does.Lemma 5.16: Let T be a G-tree pointed by x whih admits a deomposition as a graph of ations
G = (τ, (Tv)v∈V (τ), (pe)e∈E(τ)). Denote by π the quotient map τ → G\τ , and by vx the vertex of
τ suh that x ∈ Tvx .Let v be a vertex in τ suh that the ation of Gv on Tv has dense orbits. Suppose that thepath between v and vx starts with an edge ex, and does not meet any translates of v. Let z be thepoint of Tv losest to x. Let ν > 0.Let φ be an automorphism of Gv whose restrition to any adjaent edge group Ge is theonjugation by an element αe of Gv, and assume that αex = 1.There exists a fundamental domain τ0 in τ ontaining the verties vx and v, and some Bass-Serre elements te in G for eah edge e of τ0, suh that for any e, f in τ0

• if π(e) is adjaent to π(v) then e is adjaent to v;
• if o(e) = o(f) = v, and if pe and pf are in the same orbit, then pe = pf ;
• if o(e) = v, we have d(αe · pe, z) ≤ ν and if π(t(e)) = π(v), we have d(αet−1

e · pe, z) ≤ ν;
• if o(e) = v and pe is in the same orbit as z, then αe · pe = t−1

e · z, and if π(t(e)) = π(v) and
pe is in the same orbit as z, then αet−1

e · pe, z.Proof. We onsider suessively all the orbits of edges e of τ suh that o(e) = v. For suh anedge e, the point pe lies in Tv. Note that if e′ = g · e for g ∈ Gv, we have αe′ = φ(g)αeg−1, and
pe′ = g · pe.If there is an element g of Gv suh that g · pe = pf for pf an edge that we already put in τ0,we hoose the edge e′ = g · e as a representative of the orbit of e in τ0. Then the edge grouporresponding to e′ is the stabiliser of pe′ = pf , so it is the edge group orresponding to f . Thisimplies αe′ = αf , so that the ondition d(αe′ · pe′ , z) ≤ ν is satis�ed.Suppose now pe is not in the orbit of any of the points pf . Sine the ation of Gv on Tv hasdense orbits, and sine φ is an isomorphism, there is an element g ofGv suh that d(φ(g)αe·pe, z) ≤
ν. But d(φ(g)αe · pe, z) = d(αe′ · pe′ , z), so we hoose the edge g · e as a representative of the orbitof e in τ0. If pe is in the orbit of z, we take g suh that φ(g)αe · pe = z so that αe′ · pe′ = z.Denote by τ ′

0 the onneted subset of τ formed by all the edges we hose so far together witha representative w′ for eah orbit G ·w where w is adjaent to v. Note that we have αex · pex = zso we may assume that ex lies in τ0. Thus we an extend τ ′
0 to a fundamental domain τ0 whihontains vx.There remains to hoose Bass-Serre elements for the edges of τ0. If e is an edge in τ0 with

t(e) = g · v, then g−1 · pe lies in Tv, so there is an element a of Gv suh that d(ag−1 · pe, z) ≤ ν,



52 CHAPTER 5. PROOF OF THE ACTION SHORTENING THEOREMand ag−1 · pe = z if g−1 · pe and z are in the same orbit. We hoose te = α−1
e ga−1 as a Bass-Serreelement for e. We extend this arbitrarily to a hoie of Bass-Serre elements for all the edges of

τ0. Let us prove lemma 5.15.Proof. Lemma 5.10 implies in partiular that in our graph of ations, a path of the form [x, g · x]intersets �nitely many omponents. Let thus ǫ be the minimal length, over all u in U , of theintersetion of a path of the form [x, u · x] with a translate of Tv. Denote by vx the vertex of τsuh that x ∈ Tvx . We may assume without loss of generality that the path between vx and vdoes not go trough any translates of v.Given a fundamental domain τ0 whih ontains v, and a hoie of Bass-Serre elements {te}e∈T0for the ation of G on τ , denote by V the set of elements of Gv whih appear in the looprepresentation of the elements u of U based at π(v). The key remark is that this set is in fatindependent of the hoie of fundamental domain and Bass-Serre elements. By hypothesis, thereis an automorphism φ of Gv suh that d(z, φ(g) · z) < ǫ/8 for any non-trivial element g of V .Moreover, the restrition of φ to eah edge group Ge adjaent to Gv is a onjugation by someelement αe of Gv. Note that if ex is the �rst edge of the path between v and vx in τ , we mayassume αex = 1.Let us now hoose a fundamental domain τ0 whih ontains v, and some Bass-Serre elements
{te}e∈T0 for the ation of G on τ whih satis�es the onlusions of 5.16 for ν = ǫ/16. This hoiegives us an isomorphism between G and π1(∆G), so we get a loop representaton based at π(v) forany element u of G as

u = g1te1g2te2 . . . gltelgl+1Reall that the path formed by the edges π(e1), . . . , π(el) forms a loop based at π(vx), and that
gi ∈ Go(π(ei)). We an extend φ to G by taking a standard extension orresponding to the elements
αe and the hoie of fundamental domain and Bass-Serre element we made. Note that then wehave

φ(u) = g′
1te1g

′
2te2 . . . g

′
ltelg

′
l+1,where g′

i = α−1
ei−1

φ(gi)αei if gi ∈ Gv, and g′
i = gi if not.Aording to lemma 5.10, the path [x, u · x] is the onatenation of the path I0 = [x, g1 · pe1 ],of translates I1, . . . , Il−1 of paths of the form [t−1

ei
· pei , gi+1 · pei+1 ], and of a translate Il of thepath [t−1

el
· pel , gl+1 · x]. Eah of these paths lies in a di�erent omponent of the graph of ationsdeomposition, we are interested in those that lie in translates of Tv. We have

d(x, u · x) = Σl
i=0|Ii|. (†)By the triangle inequality we have

d(x, φ(u) · x) ≤ d(x, g′
1 · pe1) + Σl−1

i=1d(t
−1
ei
· pei , g

′
i+1 · pei+1) + d(t−1

el
· pel , g

′
l+1 · x)We now want to ompare this inequality to (†), for this we ompare the summands of the righthand side to the lengths of the ars Ii:

• If Ii is non-trivial and lies in a translate of Tv, we have gi+1 ∈ V , so we have g′
i+1 =

α−1
ei
φ(gi+1)αei+1 and d(z, φ(gi+1) · z) ≤ ǫ/8. We get

d(t−1
ei
· pei , g

′
i+1 · pei+1) = d(αei t

−1
ei
· pei , φ(gi+1)αei+1 · pei+1)

≤ d(αei t
−1
ei
· pei , z) + d(z, φ(gi+1) · z) + d(z, αei+1pei+1) ≤ ǫ/4But the length of Ii is at least ǫ, so we have

d(t−1
ei
· pei , ψ(gi+1) · pei+1) < d(t−1

ei
· pei , gi+1 · pei+1) = |Ii|.
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• If Ii does not lie in a translate of Tv, we have g′

i+1 = gi+1 so
d(t−1

ei
· pei , g

′
i+1 · pei+1) = d(t−1

ei
· pei , gi+1 · pei+1) = |Ii|

• If Ii trivial and lies in a translate of Tv, we have t−1
ei
· pei = gi+1 · pei+1 . But sine π(t(ei)) =

π(v), by the �rst point of lemma 5.16, tei = 1 and in fat pei = gi+1 · pei+1 . We see that peiand pei+1 are in the same orbit, so by the seond point our hoie of fundamental domain,they are equal, so αei = αei+1 and we may assume gi+1 = 1. We get
d(t−1

ei
· pei , g

′
i+1 · pei+1) = d(t−1

ei
· pei , α

−1
ei
φ(gi+1)αei+1 · pei+1)

= d(t−1
ei
· pei , pei+1)

= 0 = |Ii|Thus for 1 ≤ i ≤ l− 1, we see that d(t−1
ei
· pei , g′

i+1 · pei+1) ≤ |Ii| and the inequality is strit if andonly if Ii is non-trivial and lies in a translate of Tv. Similarly, we an show that d(x, g′
1 ·pe1) ≤ |I1|and that d(t−1

el
· pel , g′

l · x) ≤ |Il+1|, and that these inequalities are strit if and only if I1 and Il+1respetively are non-trivial and lie in a translate of Tv. We get
d(x, φ(u) · x) ≤ Σl+1

i=1|Ii| = d(x, u · x)and the inequality is strit if and only if at least one of the ars Ii is non-trivial and lies in atranslate of Tv. Thus if [x, u · x] intersets non-trivially a translate of Tv, it is made shorter by φ.Now if [x, u · x] does not interset any translates of Tv, for 1 ≤ i ≤ l + 1 we have g′
i = gi so

φ(u) = u. This �nishes the proof.We an now prove theorem 5.12.Proof. Pik representatives T1, . . . Tr for the orbits of surfae type omponents. Denote theirstabilisers by S1, . . . , Sr.Lemma 5.13 tells us that the onditions of proposition 5.15 are satis�ed. Thus, for eah i, forany �nite set of elements Ui of G, we an �nd φi suh that if u ∈ Ui and [x, u · x] intersets atranslate of Ti non-trivially, we have d(x, φi(u) ·x) < d(x, u ·x), and if not, φi(u) = u. Apply thissuessively to U1 = U,U2 = φ1(U1), . . . , Ur = φr−1(Ur−1), the automorphism φ = φr ◦ . . .◦φ2◦φ1satis�es the onlusion of the theorem.5.5 Axial CaseThe theorem we need to deal with the axial ase is very similar to that used for the surfae ase.Theorem 5.17: Let G be a �nitely generated group whose solvable subgroups are free abelian.Suppose G ats on a real tree T with abelian pointwise ar stabilisers, and that T admits adeomposition as a graph of ations G = (τ, (Tv)v∈V (τ), (pe)e∈E(τ)). Denote by ∆G the graph ofgroups orresponding to the ation of G on τ . Let U be a �nite subset of G. There exists anelement σ of Mod(∆G) suh that for any element u of U ,
• if the geodesi segment [x, u · x] intersets non-trivially some axial omponents, then

d(x, σ(u) · x) < d(x, u · x);

• if not, σ(u) = u.We start by proving an analogue of 5.13.



54 CHAPTER 5. PROOF OF THE ACTION SHORTENING THEOREMLemma 5.18: Suppose that a �nitely generated free abelian group A ats freely on a line L0 byan ation of axial type. Let V be a �nite subset of A, let z be a point of T0 and let η > 0. Thereexists an automorphism φ of A suh that for any non-trivial element v of V ,
d(z, φ(v) · z) < η.Proof. Choose a basis a1, . . . , ak for A. Let K be the maximal length of an element of V withrespet to this basis. Suppose without loss of generality that the elements ai all translate L0 inthe same diretion, and that the translation lengths are ordered as follows

tr(a1) < tr(a2) < . . . < tr(ak)Sine the ation is free, the translation lengths are Z-independent. Thus for i > 1, there exists misuh that 0 < tr(ai)−mitr(a1) < tr(a1). So if φ is the isomorphism whih sends ai to ai −mia1and �xes a1, we get
tr(φ(ai)) < tr(φ(a1)) = tr(a1).We an repeat this until the translation lengths of all the elements ai are smaller than η/K. Thisproves the result.Theorem 5.17 an now be proved.Proof. Pik representatives T1, . . . Tr for the orbits of axial type omponents. Denote G1, . . . Grtheir stabilisers. Eah Gi is solvable, sine it is an extension of a subgroup of Isom(R), whih issolvable, by a group �xing an ar of T , whih is abelian by hypothesis. By hypothesis on G, wesee that Gi is free abelian. We an thus write Gi = Ai

0 ⊕Ai
1 where Ai

0 ats trivially and Ai
1 atsfreely on Ti. By de�nition of an axial omponent, Ai

1 is �nitely generated.Now if V is a �nite subset of elements of Gi, let V i
1 = pAi

1
(Vi), the projetion of Vi on Ai

1. Bylemma 5.18, for any η > 0, and for any z ∈ Ti, there is an automorphism φi of Ai
1 suh that forall non-trivial element a of V i

1 , we have d(z, φi(a) · z) ≤ η. We an extend φi to Gi by letting itbe the identity on Ai
0: we get an automorphism of Gi whih �xes all the edge groups adjaent tothe vertex of τ orresponding to Ti, and for any element v of V whih does not lie in Ai

0, we have
v = aw with a ∈ Ai

1 − {1} so d(z, φi(aw) · z) = d(z, φi(a) · z) ≤ η.Thus, by lemma 5.15, for eah i, for any �nite set of elements Ui of G, we an �nd φi suhfor any element u of Ui for whih [x, u · x] intersets a translate of Ti non-trivially, we have
d(x, φi(u) · x) < d(x, u · x), and if not, φi(u) = u. If we apply this suessively to U1 = U,U2 =
φ1(U1), . . . , Ur = φr−1(Ur−1), the automorphism φ = φr ◦ . . . ◦ φ2 ◦ φ1 satis�es the onlusion ofthe theorem.5.6 Simpliial CaseWe give the following de�nition.De�nition 5.19: (simpliial edge) Suppose T is a real G-tree, denote by T ′ is minimal subtree.We all simpliial edge of T any non-trivial ar [p, q] whih lies in T ′, whose interior ontains nobranhing points in T ′, and whih is �xed pointwise by its stabiliser.Let [p, q] be a simpliial edge in T with stabiliser C.De�nition 5.20: (splitting indued by a simpliial edge) The group G admits a splitting Γ over
C. We all this the splitting indued by [p, q]Denote by A and B the stabilisers of the onneted omponents of T ′ −

⋃
g∈G g · (p, q) whihontain p and q respetively. Then either Γ is an amalgam of the form A ∗C B, or there exists tin G suh that B = tAt−1 and Γ is an HNN extension of the form A∗C , with stable letter t.



5.6. SIMPLICIAL CASE 55Remark 5.21: If [p, q] is a simpliial edge in T , any non-trivial subinterval of [p, q] is also asimpliial edge of T , and it indues the same splitting as [p, q]. Indeed, sine no branhing pointslie on [p, q], the stabiliser of a non-trivial subar is Stab([p, q]).To take are of segments of the form [x, u · x] whih lie entirely in the simpliial part, we willproveTheorem 5.22: Let G be a �nitely generated torsion-free group. Suppose (Xn, xn)n∈N is asequene of δn-hyperboli G-spaes whih onverges to a pointed real G-tree (T, x) whose arstabilisers are abelian. Assume that in the stabiliser of any ar of T , there is an element whih,for all n large enough, ats hyperbolially on Xn with translation length at least 12δn. Denote by
T ′ the minimal subtree of T .Let y be the point in T ′ of T whih lies losest to x, and let U be a �nite subset of elementsof G. For all n large enough, there exists an automorphism φn of G, suh that for any u in U ,

d(x, φn(u) · x) = d(x, u · x);and if the segment [y, u · y] ontains a simpliial edge of T of the form [y, q], we have
dn(xn, φn(u) · xn) ≤ dn(xn, u · xn)with equality if and only if u �xes y.Moreover, φn lies in the subgroup of Mod(G) generated by the subgroups of the form Mod(Γ),where Γ is the splitting indued by a simpliial edge of T .To prove Theorem 5.22, we need to understand distanes d(x, g ·x) in the real G-tree T . Note�rst that d(x, g · x) = 2d(x, y) + d(y, g · y) so we an restrit ourselves to understanding distanes

d(y, g · y) in the minimal tree.Let [y, q] be a simpliial edge in T , denote by Γ the splitting indued by [y, q]. Our aim nowis to �nd a formula whih expresses the distane d(y, g · y) in terms of the expression of g as aword given by the splitting Γ.
• If Γ is an amalgam A ∗C B, we an write any element g of G as

g = a1b1 . . . alblal+1where l ≥ 0 the elements ai lie in A, the elements bi lie in B, and they do not lie in Cexept possibly a1 and al+1.Then it is straightforward to show by indution that
d(y, g · y) =

l+1∑

i=1

d(y, ai · y) +
l∑

i=1

d(y, bi · y). (5.1)Moreover, for any b ∈ B − C, we have d(y, b · y) = 2d(y, q) + d(q, b · q) so
d(y, g · y) =

l+1∑

i=1

d(y, ai · y) + 2ld(y, q) +
l∑

i=1

d(q, bi · q). (5.2)
• If Γ is an HNN extension A∗C , we an write any element g of G as

g = a0tn0a1tn1a2 . . . altnlal+1where the elements ai are in A but not in C, exept possibly a0 and al+1, and ni 6= 0 for
0 ≤ i ≤ l. Let r = t−1 · q.
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a1tn1 · r

q = tn1 · rr

TA

a1tn1 a2 · r
a2tn2 · y

a1tn1 a2tn2 · y

a1 · y

tn2 · y y

a2 · r

Figure 5.1: HNN ase: the path in T between y and (a1tn1a2tn2) · yWe de�ne for 0 ≤ i ≤ l

ρ(i) =
{
y if ni ≥ 0
r if ni < 0 and ρ̄(i) =

{
r if ni ≥ 0
y if ni < 0We also set ρ(l + 1) = y.It is fairly straightforward to see by indution (see �gure 5.1) that the path between TA and

ajtnjaj+1 . . . altnlal+1 · y starts at aj · ρ(j) and that
d(y, g · y) = d(y, a0 · ρ(0)) + d(TA, tn0a1 . . . altnl · y)We dedue

d(y, g · y) = d(y, a0 · ρ(0)) +
l∑

i=0

d(ρ(i), tni · ρ̄(i)) +
l∑

i=0

d(ρ̄(i), ai+1 · ρ(i+ 1)) (5.3)Note also that d(ρ(i), tni · ρ̄(i)) = d(y, t|ni| · r), and that for k > 0 we have
d(y, tk · r) = kd(y, q) + (k − 1)d(r, y)so if we let Ng =

∑l
i=0 |ni|, we have

d(y, g · y) = d(y, a0 · ρ(0)) +Ngd(y, q) + (Ng − (l + 1))d(r, y)

+
l∑

i=0

d(ρ̄(i), ai+1 · ρ(i+ 1)) (5.4)With these result, we an show that the length of [y, g ·y] in T does not hange when we applya Dehn twist of the splitting Γ to g.



5.6. SIMPLICIAL CASE 57Lemma 5.23: Suppose T is a real G-tree with abelian ar stabilisers. Let [y, q] be a simpliialedge in T , denote by Γ the splitting indued by [y, q], and by A the stabiliser of the onnetedomponent of T −
⋃

g∈G g · (y, q) whih ontains y. If φ is a Dehn twist by some element c of
Stab([y, q]), for any element g of G we have

d(y, g · y) = d(y, φ(g) · y)Proof. Suppose �rst that the splitting indued by [y, q] is an amalgam A ∗C B. Let g ∈ G, suhthat g = a1b1 . . . alblal+1 where l ≥ 0, the elements ai lie in A, the elements bi lie in B, and theydo not lie in C exept possibly a1 and al+1.Then we have by equation 5.1
d(y, g · y) = Σl+1

i=1d(y, ai · y) + Σl
i=1d(y, bi · y).With respet to the splitting Γ, the element φ(g) is represented by a1(cb1c−1)a2 . . . al(cblc−1)al+1,so

d(y, φ(g) · y) = Σl+1
i=1d(y, ai · y) + Σl

i=1d(y, cbic−1 · y).But for any b ∈ B, we have d(y, cbc−1 · y) = d(c−1 · y, bc−1 · y) = d(y, b · y) sine c �xes y. Thus
d(y, φ(g) · y) = d(y, g · y).Consider now the ase where the indued splitting is an HNN extension. Let g be an elementof G, and hoose a stable letter t. The element g an be written as g = a0tn0a1tn1a2 . . . altnlal+1where the elements ai are in A but not in C, exept possibly for a0 and al+1, and ni 6= 0 for
0 ≤ i ≤ l. By equation 5.3 we have

d(y, g · y) = d(y, a0 · ρ(0)) +
l∑

i=0

d(ρ(i), tni · ρ̄(i)) +
l∑

i=0

d(ρ̄(i), ai+1 · ρ(i+ 1))Now φ(g) = a0(ct)n0a1(ct)n1a2 . . . al(ct)nlal+1, and this expression gives us a way to represent
φ(g) in A∗C with hoie of stable letter u = ct. Thus equation 5.3 gives

d(y, φ(g) · y) = d(y, a0 · ρ(0)) +
l∑

i=0

d(ρ(i), (ct)ni · ρ̄(i)) +
l∑

i=0

d(ρ̄(i), ai+1 · ρ(i+ 1))Now d(y, (ct) · r) = d(y, t · r) sine c �xes q = t · r, so d(y, φ(g) · y) = d(y, g · y).We are interested in segments of the form [y, u · y] whih lie entirely in simpliial omponents.Suh a segment must start with a simpliial edge of the form [y, q]. The following propositionenables us to shorten all paths of the form [y, u · y] whih start with a given simpliial edge [y, q].To prove Theorem 5.22, we will apply it to all simpliial edges of the form [y, q].Lemma 5.24: Let G be a �nitely generated torsion-free group. Suppose (Xn, xn)n∈N is a sequeneof δn-hyperboli G-spaes whih onverges to a pointed real G-tree (T, x). Denote by T ′ theminimal subtree of T , and by y the point of T ′ losest to T ′.Let [y, q] be a simpliial edge of T whose stabiliser is non-trivial and abelian, and ontainsan element whih, for all n large enough, ats hyperbolially on Xn with translation length atleast 12δn. Denote by Γ the splitting indued by [y, q], and by A the stabiliser of the onnetedomponents of T −⋃
g∈G g · (y, q) whih ontains y. Let V be a �nite set of elements of G.For any n large enough, there is a Dehn twist φn in Mod(Γ) suh that for any g in V ,

• if g ∈ A, we have φn(g) = g;
• if g /∈ A, we have dn(xn, φn(g) · xn) < dn(xn, g · xn);



58 CHAPTER 5. PROOF OF THE ACTION SHORTENING THEOREMTo prove this we will useLemma 5.25: Let G be a �nitely generated torsion-free group. Suppose (Xn, xn)n∈N is a sequeneof δn-hyperboli G-spaes whih onverges to a pointed real G-tree (T, x). Let [y, q] be a simpliialedge of T . Suppose that there exists a non-trivial element c �xing [y, q], suh that for n largeenough, c ats hyperbolially on Xn, with translation length at least 12δn. Denote by Γ thesplitting indued by [y, q].For any ǫ > 0, for n large enough, if qn and yn approximate q and y in an ǫ-approximationbetween T and Xn with respet to y, q and c, there exists an integer kn suh that
dn(yn, ckn · qn) ≤ 5ǫ.Proof. Let ǫ > 0. Fix n large enough so that c ats hyperbolially on Xn with translation lengthat least 12δn, and suh that 12δn < ǫ/3. Suppose that there exists an ǫ-approximation between Tand Xn with respet to y, q and c. Denote by qn and yn the approximations of q and y respetively.Choose a geodesi L ontained in Ax(c) (reall Ax(c) is the set of geodesis joining the pointsof the boundary �xed by c), and a geodesi parametrisation t 7→ w(t) of L.In T , the element c �xes y and q, so dn(yn, c · yn) < ǫ and dn(qn, c · qn) < ǫ. By lemma 3.13,the axis of c is at a distane at most 4δn of the midpoints of [yn, c · yn] and [qn, c · qn]. Thus thesemidpoints are at a distane at most 12δn of L, so that dn(yn, L) < ǫ and dn(qn, L) < ǫ. Withoutloss of generality, we may assume that dn(qn, w(0)) < ǫ, and that there is a positive real u suhthat dn(yn, w(u)) < ǫ.The elements of the form ck also ats hyperbolially on Xn, and their axis oinides with theaxis of c sine they �x the same points on the boundary. Let us onsider their translation lengths

trn(ck). For any point z of Axn(c), we have dn(z, ck · z) ≤ trn(ck) + 16δn by lemma 3.11. Butthe map Z→ X given by k 7→ ck · z is a quasi-isometry, so trn(ck) must tend to ∞ as k tends toin�nity.On the other hand, dn(w(u), c · w(u)) ≤ 2dn(yn, w(u)) + dn(yn, c · yn) ≤ 3ǫ. Thus for k ∈ Z,we have
|trn(ck+1)− trn(ck)| ≤ |dn(w(u), ck+1 · w(u)) − d(w(u), ck · w(u))|+ 32δn

≤ |dn(ck · w(u), ck+1 · w(u))|+ 32δn

< 4ǫ.The sequene (trn(ck))k∈N tends to in�nity, and the distane between two onseutive terms is atmost 4ǫ, so there exists a positive integer kn suh that |u− trn(ckn )| < 2ǫ.The element ckn ats as a 20δn-quasitranslation of length tr(ckn) on the geodesi t 7→ w(t),and we get
dn(w(trn(ckn)), ckn · w(0)) < 20δn < ǫ.But dn(w(u), w(trn(ckn))) = |u− trn(ckn)| < 2ǫ and we dedue

dn(yn, ckn · qn) ≤ dn(yn, w(u)) + dn(w(u), ckn · w(0)) + dn(w(0), qn)
< dn(w(u), ckn · w(0)) + 2ǫ
≤ dn(w(u), w(trn(ckn ))) + dn(w(trn(ckn )), ckn · w(0)) + 2ǫ
≤ 5ǫThis terminates the proof.We an now prove lemma 5.24.Proof. We onsider separately the ase where Γ is an amalgam, and the ase where it is an HNNextension.



5.6. SIMPLICIAL CASE 59Amalgam ase: Write eah element g of V aording to this splitting as g = a1b1 . . . alblal+1,where l ≥ 1, the elements ai lie in A, the elements bi lie in B, and they do not lie in C exeptpossibly a1 and al+1.Let VA and VB be the �nite sets of elements ai and bi respetively that appear in all suhdeompositions. Let ǫ be suh that 0 < ǫ < d(y, q)/100. Let c be the non-trivial element of Cgiven by the hypotheses.Let n be large enough so that there exists an ǫ-approximation R between T and Xn relativeto y, q and V ∪ VA ∪ VB ∪ {c}. By lemma 5.25, if n is large enough, there exists an integer knsuh that dn(yn, ckn · qn) < 5ǫ.Let g be an element of V whih does not lie in A. It admits a deomposition aording to thesplitting Γ given by g = a1b1 . . . alblal+1, and l > 0 sine g /∈ A. By equation 5.2, we have
d(y, g · y) =

l+1∑

i=1

d(y, ai · y) +
l∑

i=1

d(q, bi · q) + 2ld(y, q)so by our ǫ approximation, we get
dn(yn, g · yn) ≥

l+1∑

i=1

dn(yn, ai · yn) +
l∑

i=1

dn(qn, bi · qn) + 2ldn(yn, qn)− (4l + 2)ǫ (5.5)Let φn be the Dehn twist about ckn . The triangle inequality gives
dn(yn, φn(g) · yn) ≤

l+1∑

i=1

dn(yn, ai · yn) +
l∑

i=1

dn(yn, cknbic−kn · yn)But for b ∈ B − C, we have by the triangle inequality
dn(yn, cknbc−kn · yn) ≤ dn(yn, ckn · qn) + dn(ckn · qn, cknb · qn) + dn(cknb · qn, cknbc−kn · yn)

= 10ǫ+ dn(qn, b · qn).We �nally get
dn(yn, φn(g) · yn) ≤

l+1∑

i=1

dn(yn, ai · yn) +
l∑

i=1

dn(qn, bi · qn) + 10lǫ

≤ dn(yn, g · yn)− 2ldn(yn, qn) + (14l+ 2)ǫby equation 5.5. Now d(x, φn(g)·x) = 2d(x, y)+d(y, φn(g)·y), so dn(xn, φ(g)·xn) > 2dn(xn, yn)+
dn(yn, g · yn)− 4ǫ. We get

dn(xn, φn(g) · xn) ≤ 2dn(xn, yn) + dn(yn, φn(g) · yn)
≤ 2dn(xn, yn) + dn(yn, g · yn)− 2ldn(yn, qn) + (14l+ 2)ǫ
≤ dn(xn, g · xn)− 2ldn(yn, qn) + (14l+ 6)ǫ
< dn(xn, g · xn)sine ǫ < d(y, q)/100 < dn(yn, qn)/99 so (14l+ 6)ǫ < 2ldn(yn, qn) (reall that l > 0).HNN ase: Let us now onsider the ase where Γ is an HNN extension. We hoose a stableletter t suh that q ∈ t · TA, and we write write eah element g of V as a0tn0a1tn1a2 . . . altnlal+1,where the elements ai are in A but not in C, exept possibly a0 and al+1, and ni 6= 0 for 0 < i < l.Denote by Ng the integer ∑l

i=0 |ni|. Note that if g is not in A, we must have Ng > 0.



60 CHAPTER 5. PROOF OF THE ACTION SHORTENING THEOREMLet VA be the �nite set of elements ai that appear in all suh deompositions for g /∈ A. Let ǫbe suh that 0 < ǫ < d(y, q)/100. Let n be large enough so that there exists an ǫ-approximation
R between T and Xn relative to y, q, r = t−1 · q and V ∪ VA ∪ {t}. There exists an element c of
C suh that for all n large enough, tr(c) > 12δn. Thus by lemma 5.25, for n large enough thereis an integer kn suh that dn(yn, ckn · qn) < 5ǫ, where qn is a point approximating q with respetto R. Thus we have dn(yn, cknt · rn) < 6ǫ.Let g be an element of V , whose deomposition aording to the splitting Γ is given by
a0tn0a1tn1a2 . . . altnlal+1. By equation 5.4, we have

d(y, g · y) = d(y, a0 · ρ(0)) +
l∑

i=0

d(ρ̄(i), ai+1 · ρ(i+ 1)) + (Ng − l − 1)d(r, y) +Ngd(y, q)so by our ǫ-approximation we get
dn(yn, g · yn) ≥ dn(yn, a0 · ρn(0)) +

l∑

i=0

dn(ρ̄n(i), ai+1 · ρn(i+ 1))

+(Ng − l − 1)dn(rn, yn) +Ngdn(yn, qn)− (2Ng + 2)ǫ (5.6)Let φn be the Dehn twist about ckn . We have by the triangle inequality
dn(yn, φn(g) · yn) ≤ dn(yn, a0 · ρn(0)) +

l∑

i=0

dn(ρ̄n(i), ai+1 · ρn(i+ 1))

+
l∑

i=0

dn(ρn(i), (cknt)ni · ρ̄n(i))Note that dn(ρn(i), (cknt)ni · ρ̄n(i)) = dn(yn, (cknt)|ni| · rn). By the triangle inequality, we havefor j > 0

dn(yn, (cknt)j · rn) ≤ dn(yn, cknt · rn) + dn(ckn t · rn, (ckn t)j · rn)
≤ dn(yn, cknt · rn) + (j − 1)dn(rn, cknt · rn)
≤ jdn(yn, cknt · rn) + (j − 1)dn(rn, yn)
≤ (j − 1)dn(rn, yn) + 6jǫ.Thus we see that

dn(yn, φn(g) · yn) ≤ dn(yn, a0 · ρn(0)) +
l∑

i=0

dn(ρ̄n(i), ai+1 · ρn(i+ 1))

+(Ng − l − 1)dn(rn, yn) + 6Ngǫ
≤ dn(yn, g · yn)−Ngdn(yn, qn) + (8Ng + 2)ǫby equation 5.6. Now d(x, φn(g)·x) = 2d(x, y)+d(y, φn(g)·y), so dn(xn, φ(g)·xn) > 2dn(xn, yn)+

dn(yn, g · yn)− 4ǫ. We get
dn(xn, φn(g) · xn) ≤ 2dn(xn, yn) + dn(yn, φn(g) · yn) (5.7)

≤ 2dn(xn, yn) + dn(yn, g · yn)−Ngdn(yn, qn) + (8Ng + 2)ǫ (5.8)
≤ dn(xn, g · xn)−Ngdn(yn, qn) + (8Ng + 6)ǫ (5.9)
< dn(xn, g · xn) (5.10)sine ǫ < d(y, q)/100 < dn(yn, qn)/99 so (8Ng + 6)ǫ < Ngdn(yn, qn) (reall Ng > 0 sine g /∈ A).



5.7. PROOF OF THE SHORTENING THEOREM 61We an now prove Theorem 5.22.Proof. There is a �nite number of orbits of maximal (for inlusion) simpliial edges of the form
[y, q] in T : we hoose some representatives [y, q1], . . . , [y, qm]. These edges indue splittings
Γ1, . . . ,Γm. Eah splitting Γi is of the form Ai ∗Ci Bi or Ai∗Ci, where Ai stabilises the on-neted omponent of T −⋃

g∈G g · (y, qi) whih ontains y.If g ∈ (A1 ∩ . . . ∩ Am), we see that the path [y, g · y] does not interset any translates of theedges [y, qi]. By lemma 5.24, for all n large enough, we an �nd a Dehn twist φ1
n in Mod(Γ1) suhthat for any g ∈ U ;

• if g ∈ A1, we have φ1
n(g) = g;

• if g /∈ A1, we have dn(xn, φ1
n(g) · xn) < dn(xn, g · xn).We apply lemma 5.24 suessively to the sets V = U ∩ (A1 ∩ . . . ∩ Ai−1), to �nd for any nlarge enough a Dehn twist φi

n in Mod(Γi) suh that for any g ∈ U ;
• if g ∈ (A1 ∩ . . . ∩Ai), we have (φi

n ◦ . . . ◦ φ1
n)(g) = g;

• if g /∈ (A1 ∩ . . . ∩Ai), we have dn(xn, (φi
n ◦ . . . ◦ φ1

n)(g) · xn) < dn(xn, g · xn).Finally we set φn = φm
n ◦ . . . ◦ φ1

n. If g ∈ U is suh that [y, g · y] ontains a simpliial edge ofthe form [y, q], we know that g /∈ (A1 ∩ . . . ∩Am), so dn(xn, φn(g) · xn) < dn(xn, g · xn).Sine all the automorphisms φi are Dehn twists, by lemma 5.23, we see that for any g ∈ G wehave d(y, φn(g) · y) = d(y, g · y) so
d(x, φn(g) · x) = 2d(x, y) + d(y, φn(g) · y) = 2d(x, y) + d(y, g · y) = d(x, g · x).5.7 Proof of the shortening TheoremPutting all of the piees together, we an now prove Theorem 4.28.Proof. Let T ′ be the minimal subtree of the ation of G on T . Let y be the point of T ′ suh that

[x, y] is the shortest path between x and T ′. Note that H �xes a point in T ′.If g is an element of G, we have
d(x, g · x) = 2d(x, y) + d(y, g · y).The ation of g on T is non-trivial, so there is at least one elements g0 in the generating set

ΣG, suh that g0 · y 6= y. Moreover, if an element g of ΣG �xes y, the distane d(x, g · x) isstritly smaller than d(x, g0 · x), so that for n large enough, dn(xn, g · xn) is stritly smaller than
dn(xn, g0 · xn). The maximal displaement of the basepoint is reahed by a generator whih doesnot �x y. Therefore, we an assume that none of the elements of ΣG �x y.The tree (T ′, y) satis�es the hypotheses of Theorem 5.11, so it admits a graph of ations
G = (τ, (Tv)v∈V (τ), (pe)e∈E(τ)) into surfae, axial and simpliial omponents. Denote by ∆Gthe graph of groups orresponding to the ation of G on τ . Denote by ΓG the re�nement of
∆G by the ations of the simpliial type verties on their simpliial vertex trees. Note that
Mod(∆G) < Mod(ΓG).We apply proposition 5.12 to the set U = ΣG, to get an element φs of Mod(∆G) suh that forevery g in ΣG, we have d(y, φs(g) · y) < d(y, g · y), unless [y, g · y] does not interset any surfaetype omponents, in whih ase φs(g) = g.



62 CHAPTER 5. PROOF OF THE ACTION SHORTENING THEOREMWe then apply proposition 5.17 to the set U ′ = φs(ΣG), to get an element φa of Mod(∆G)suh that for every g in ΣG, we have d(y, φa(φs(g)) · y) < d(y, φs(g) · y), unless [y, φs(g) · y] doesnot interset any axial type omponents, in whih ase φa(φs(g)) = φs(g).Thus
d(x, φa(φs(g)) · x) = 2d(x, y) + d(y, φa(φs(g)) · y)

< 2d(x, y) + d(y, g · y)
= d(x, g · x)unless [y, g · y] lies entirely in the simpliial part of T ′, in whih ase φa(φs(g)) = g. Let δ > 0be smaller than d(x, g · x) − d(x, φa(φs(g)) · x) for all the elements g of ΣG suh that [y, g · y]intersets a surfae or an axial omponent.Let n be large enough so that there is a δ/2-approximation between Xn and T relative to

φa(φs(ΣG)), and so that proposition 5.22 applied to the set U ′′ = φa ◦φs(ΣG) gives us an element
φn of Mod(ΓG) for whih
• d(x, φn ◦ φa ◦ φs(g) · x) = d(x, φa ◦ φs(g) · x) for all g in ΣG;
• dn(xn, φn ◦ φa ◦ φs(g) · xn) < dn(xn, φa ◦ φs(g) · xn) for all g suh that [y, φa ◦ φs(g) · y]ontains a simpliial edge of the form [y, q].Let φ = φn ◦ φa ◦ φs. Note that sine H �xes a point in T ′, the modular group Mod(ΓG) is asubgroup of ModH(G). For g in ΣG suh that [y, g · y] intersets a surfae or an axial omponent,we have:

dn(xn, φ(g) · xn) < d(x, φ(g) · x) + δ/2
= d(x, φa ◦ φs(g) · x) + δ/2
≤ d(x, g · x)− δ/2
≤ dn(xn, g · xn).If g is an element of ΣG suh that [y, g · y] lies entirely in the simpliial part of T ′, we have

φa ◦ φs(g) = g, so [y, φa ◦ φs(g) · y] lies entirely in the simpliial part of T ′, hene must start witha simpliial edge of T . Therefore dn(xn, φ(g) · xn) = dn(xn, φn ◦ φa ◦ φs(g) · xn) < dn(xn, g · xn).This �nishes the proof.



Chapter 6Fator setsThe results presented in this setion form an essential step of the onstrution of a Makanin-Razborov diagram, whih analyses the set of morphisms Hom(G,Γ) from a given �nitely generatedgroup G into a free group or into a hyperboli group Γ for example. We prove the existene ofa fator set for suh morphisms, that is, we show that there is a �nite number of morphisms
f1, . . . , fm suh that, up to preomposition by an automorphism, any element of Hom(G,Γ)fators through one of the maps fi.6.1 Case of free groupsReall that a sequene of morphisms hn : G→ G′ is stable if for any element g of G, either hn(g)is trivial for all but �nitely many values of n, or hn(g) is non-trivial for all but �nitely manyvalues of n. Reall also that the set of elements g whose image by hn is almost everywhere trivialis alled the stable kernel of the sequene, and denoted by Ker←−−(hn).De�nition 6.1: (limit of a stable sequene) The limit of a stable sequene hn : G → G′ is thegroup G/Ker←−−(hn).De�nition 6.2: (limit group) A limit group L is the limit of a stable sequene of morphismsfrom a �nitely generated group G into a free group fn : G→ F.The following proposition lists some properties of limit groups that will be of use. All theseare elementary, and proved in lemma 1.4 of [Sel01℄ or proposition 3.1 of [CG05℄.Proposition 6.3: Let L be a limit group.
• L is torsion-free;
• maximal abelian subgroups of L are malnormal;
• a solvable subgroup of L is abelian;
• given two elements a, b in L either a and b ommute, or they generate a free group of rank

2.We will also use the following property, proved in [Sel01℄.Proposition 6.4: Limit groups are �nitely presented.This is a highly non-trivial fat. To show �nite presentability of limit groups, Sela shows thatthe lass of limit groups oinides with that of onstrutible limit groups (see setion 4 of [Sel01℄,63



64 CHAPTER 6. FACTOR SETSalternatively this proof is also written up in [Wil06℄ and [BF03℄). Construtible limit groups areeasily seen to be �nitely presented, hene the result.It is also fairly straightforward to see that onstrutible groups have �nitely generated abeliansubgroups, thus as a orollary we getProposition 6.5: Abelian subgroups of a limit group are �nitely generated.From this we an dedue in partiularLemma 6.6: A virtually solvable subgroup of a limit group is free abelian.Proof. We know by the third point of 6.3 that solvable subgroups of limit groups are in fatabelian. We just saw that abelian subgroups of limit groups are �nitely generated. Thus virtuallysolvable subgroups of a limit group are �nitely generated, and have polynomial growth. Thisimplies in partiular that a virtually solvable subgroup H annot ontain a free group of rank 2,so by the fourth point of 6.3, any two elements of H must ommute. Thus H is �nitely generatedabelian, and sine L is torsion free, it must in fat be free abelian.De�nition 6.7: (shortening quotient) A shortening quotient of a group G is the limit of a stablesequene of morphisms hn : G→ F whih are short in the sense of de�nition 4.22.Theorem 4.25 says that if G satis�es some nie properties, and if the hn are short and non-injetive, the limit group L is a proper quotient. Note that if G is both freely indeomposableand non-yli, it annot injet into a free group, so the non-injetivity of the hn is automatiallysatis�ed. The following an thus be seen as yet another version of the shortening argument.Theorem 6.8: Suppose G is a freely indeomposable, torsion-free and non-yli �nitely gen-erated group. Suppose moreover that its virtually solvable subgroups are free abelian. Then ashortening quotient of G is a proper quotient.We want to show the following result:Proposition 6.9: Let G be a non-yli and freely indeomposable �nitely generated group. Thereexist a �nite set of limit groups whih are proper quotients of G suh that any morphism f from
G to a free group F fators through one of the orresponding quotient maps after preompositionby a modular automorphism.De�nition 6.10: (fator set) Suh a �nite set of quotients is alled a fator set for Hom(G,F).To do this, we introdue a partial order relation on the shortening quotients of G: suppose
L1, L2 are shortening quotients with quotient maps ηi : G→ Li, for i = 1, 2. We say that L1 ≤ L2if the map η1 fators through η2, i.e. if there exists a map ν : L2 → L1 suh that η1 = ν ◦ η2.This amounts to saying that Ker(η2) ⊆ Ker(η1).We now show that every shortening quotient is smaller than a maximal shortening quotientfor this order relation, and that there is only a �nite number of maximal shortening quotient.Proposition 6.11: Let G be a non-yli and freely indeomposable �nitely generated group.Every shortening quotient of G is smaller than a maximal shortening quotient.Proof. We will of ourse apply Zorn's lemma, for this we need to show that every totally orderedset of shortening quotients has an upper bound.Assume without loss of generality that the totally ordered set of shortening quotients is in�nite.It ontains a stritly inreasing sequene Q1 < Q2 < Q3 . . . of shortening quotients of G, withorresponding maps ηn : G→ Qn, suh that ηn minimises the set Ker(η) ∩BG(n). The kernel ofany quotient η : G→ Q in our totally ordered set ontains Ker(η) ∩BG(n). Suppose we an �ndan upper bound η∞ : G→ Q∞ for this sequene. If g is an element of Ker(η∞), then g ∈ Ker(ηn)for all indies n, thus g ∈ Ker(ηl(g)). But for any quotient η : G → Q in our ordered set,



6.2. CASE OF TORSION-FREE HYPERBOLIC GROUPS 65
Ker(ηl(g)) ∩ BG(l(g)) is ontained Ker(η). Thus it is enough to show that any ordered sequeneof shortening quotient has an upper bound.Eah Qn is the limit of a sequene of short morphisms hn

i : G→ F (sine G is �nitely generatedwe an assume the group F is the same for all n). By extrating arefully from eah sequene (hn
i )i,we an moreover assume that for eah i ∈ N, for any word w in G of length at most i, hn

i (w) = 1if and only if ηn(w) = 1. Consider the diagonal sequene of short morphisms hj
j : G→ F. Extrata stable subsequene (whih we still denote hj

j). Denote by Q the limit group whih is the limitof this sequene, and by η the quotient map. It is a shortening quotient sine all the maps hj
j areshort.Now Q, as a limit group, is �nitely presented. Thus for j large enough, all the elements of thekernel of η are mapped to 1 by hj

j , that is, if η(w) = 1, then ηj(w) = hj
j(w) = 1. Thus Qj < Qfor j large enough, so this holds for all j. This terminates the proof.Proposition 6.12: There is only a �nite number of maximal shortening quotient.Proof. Assume (Mn)n∈N is an in�nite sequene of maximal shortening quotients of G. Eah Mnis the limit of a sequene (hn

i )i∈N of short morphisms G → F whih we hoose again to ensurethat the kernels of hn
i and ηn oinide on words of length less than or equal to i. Extrat fromthe diagonal sequene of morphisms hj

j a stable subsequene (still denoted hj
j). Let M be theshortening quotient of G limit of this sequene, η the orresponding quotient map.As M is �nitely presented, and the sequene hj

j is stable, for j large enough hj
j maps all theelements of the kernel of η to 1. As hj

j agrees with ηj on words of length less than or equal to j,for j large enough ηj sends all the elements of the kernel of η to 1, in other wordsMj is a quotientof M . But Mj is maximal, so M is equivalent to Mj. Sine this holds for all j large enough, thequotients Mj annot be all distint.We an now prove proposition 6.9:Proof. By 6.12, G has a �nite set M1, . . .Mr of maximal shortening quotients of G with orre-sponding quotient maps η1, . . . ηr.If G is not a limit group, a shortening quotient of G must be a proper quotient sine ashortening quotient is in partiular a limit group.If G is a limit group, it is torsion-free and its virtually solvable subgroups are free abelian by6.6. Thus by proposition 6.8, its shortening quotients are proper quotientsIn both ases the surjetive maps η1, . . . ηr are not injetive. Let f be a morphism G→ F. Let
σ ∈ Mod(G) be suh that f̄ = f ◦ σ is short. The limit of the sequene f̄ , f̄ , . . . is a shorteningquotient Q of G, with quotient map η. Note that f̄ fators through η. By proposition 6.11, ηfators through one of the ηj . But this implies f̄ fators through ηj , thus proving the laim.6.2 Case of torsion-free hyperboli groupsLet Γ be a torsion-free hyperboli group �nitely generated by a set Σ.De�nition 6.13: (Γ-limit group, strit Γ-limit group) A Γ-limit group L is the limit of a stablesequene of morphisms from a �nitely generated group G into Γ. If moreover the morphisms arepairwise non-onjugate, we say that L is a strit Γ-limit group.Remark 6.14: A Γ-limit group L is either a strit Γ-limit group or a �nitely generated subgroupof Γ. Indeed, from the sequene of morphisms whih de�nes it, we an extrat either a subsequeneof non-onjugate morphisms, or a subsequene of pairwise onjugate morphisms, and L is still



66 CHAPTER 6. FACTOR SETSthe limit of this subsequene. In the �rst ase L is a strit Γ-limit group, in the seond ase L isisomorphi to the subgroup of Γ image of any of the morphisms.At this point, what we did in the free ase was to state the result that limit groups are �nitelypresented. This is not neessarily true in the ase of Γ-limit group, indeed Γ may have �nitelygenerated subgroups that are not �nitely presented.However it is true that a hain of strit epimorphisms between Γ-limit groups stabilises. Notethat this would be obvious if we knew them to be �nitely presented. The proof requires heavyonstrution, in partiular the 'shortening proedure', and an be found in Sela and as Theorem5.2 in [Gro05℄ (here Groves treats relatively hyperboli groups, of whih hyperboli groups are aninstane).Theorem 6.15: Let L1, L2, . . . be a sequene of Γ-limit groups and π1, π2, . . . a sequene ofepimorphisms suh that πi : Li → Li+1. Then all but �nitely many of the πi are isomorphisms.Sela also gets as a by-produt of the proof of this theorem the following proposition:Proposition 6.16: If L is a Γ-limit group obtained as the limit of a sequene of morphisms
hn : G→ Γ, then a subsequene of the hn fators through L.We now proeed as in the free limit group ase to de�ne shortening quotients.De�nition 6.17: (shortening quotient) Let L be a Γ-limit group obtained as the limit of a se-quene of morphisms hn : G→ Γ. If the hn are short and non-injetive we all the limit groupobtained a shortening quotient.Here again, the shortening argument 4.25 givesProposition 6.18: Let G be a torsion-free freely indeomposable �nitely generated non-yligroup in whih every virtually solvable subgroup is free abelian. If L is a shortening quotient of
G it is a proper quotient of G.We want to show the following result:Proposition 6.19: Let G be a torsion-free, freely indeomposable, �nitely generated and non-yli group. Suppose that every virtually solvable subgroup of G is free abelian. There exists a�nite set of Γ-limit groups whih are proper quotients of G suh that any non-injetive morphism
f from G to Γ fators through one of the orresponding quotient maps after preomposition by amodular automorphism.Remark 6.20: Note that in this ase we need to rule out injetive morphisms whih obviously donot fator through proper quotients. In the free group ase, this was not neessary as no injetionan exist from a freely indeomposable non-yli group into a free group.Here again we introdue the same partial order relation on the shortening quotients of G, andproeed to show that every shortening quotient is under a maximal shortening quotient, and thatthese are in �nite number. The proofs di�er slightly from the free ase, beause we do not have�nite presentation of Γ-limit groups. However the result given by proposition 6.16 is enough.Proposition 6.21: Let G be a �nitely generated group. Every shortening quotient of G is smallerthan a maximal shortening quotient.Proof. As in the proof of 6.11, we an see that it is enough to show that an in�nite ountabletotally ordered set of shortening quotients has an upper bound. Let thus (Qn)n∈N be a set ofshortening quotients, with quotient maps ηn. Eah Qn is the limit of a stable sequene (hn

j )j∈N, wemay assume that the kernels of hn
j and ηn oinide on words of length at most j. Let η : G→ Q bethe limit of (a stable subsequene of) the diagonal sequene (hn

n)n∈N: it is a shortening quotient.We may assume after further extration that the kernels of η and hn
n oinide on words of lengthat most n. Thus the kernels of η and ηn oinide on words of length at most n so that η is the



6.3. RELATIVE RESULTS 67limit of the sequene (ηn)n∈N. By proposition 6.16, for n large enough ηn fators through η. Thus
Qn < Q. This terminates the proof.Proposition 6.22: There is only a �nite number of maximal shortening quotient.Proof. Assume (Mn)n∈N is an in�nite sequene of distint maximal shortening quotients of G withquotient map ηn. Eah Mn is the limit of a sequene (hn

j )j∈ N of non-injetive short morphisms
G → F whih we hoose to ensure that the kernels of the maps hn

j and ηn agree on words oflength at most j.As in the proof of 6.21, let η : G→M be the limit of (a stable subsequene of) the diagonalsequene (hn
n)n∈N, and see that we may assume that for n large enough, ηn fators through η.Sine the Mn are maximal, we have M = Mn for all n large enough, whih ontradits theassumption that the maximal quotients Mn are pairwise distint.We an now prove proposition 6.19:Proof. Let M1, . . .Mr be the maximal proper shortening quotients of G with orresponding quo-tient maps η1, . . . ηr (there are �nitely many of them by 6.22). Let f be a non-injetivemorphism

G→ F. Let σ ∈ Mod(G) be suh that f̄ = f ◦ σ is short. The sequene f̄ , f̄ , . . . gives in the limita proper shortening quotient Q of G, with quotient map η. Note that f̄ fators through η. Byproposition 6.21, η fators through one of the ηj . But this implies f̄ fators through the same ηj ,thus proving the laim.6.3 Relative resultsFinally we will show a relative version of proposition 6.19, as well as a 'partial relative version'.We proeed in a similar manner, here the only di�erene is that we will use the relative versionof the shortening argument 4.33.Let Γ be a hyperboli torsion-free group with generating set Σ.De�nition 6.23: (relative Γ-limit group) Let G be a �nitely generated group, let H be a subgroupof G, with a �xed embedding into Γ. A Γ-limit group relative to H is the limit of a stable sequene
(hn)n∈N of homomorphisms G→ Γ whih �xes H in the limit (reall de�nition 4.29). If moreoverthe homomorphisms hn are pairwise non-onjugate, we say that L is a strit Γ-limit group relativeto H.Remark 6.24: As in the non-relative ase, we an see that a Γ-limit group relative to H is eithera strit Γ-limit group relative to H, or a subgroup of Γ whih ontains H.A Γ-limit group relative to H is in partiular a Γ-limit group, thus we know that a dereasingsequene of Γ-limit groups relative to H stabilises.De�nition 6.25: (relative shortening quotient) Let L be a Γ-limit group relative to H obtainedas the limit of a sequene of morphisms hn : G → Γ. If the hn are short relative to H (reallde�nition 4.32) and non-injetive we say that L is a shortening quotient relative to H.The relative shortening argument 4.33 givesProposition 6.26: Let G be a �nitely generated torsion-free group in whih every virtually solv-able subgroup is free abelian. Let H be a non-abelian subgroup of G with respet to whih G isfreely indeomposable. Fix an embedding H → Γ. A shortening quotient of G relative to H is aproper quotient of G.



68 CHAPTER 6. FACTOR SETSAgain, we introdue a partial order relation on the shortening quotients of G, and proeed toshow that every shortening quotient is under a maximal shortening quotient, and that these arein �nite number. The proofs are exatly the same as in the non-relative ase, up to heking thatthe sequenes we get do �x H in the limit. We getProposition 6.27: Every shortening quotient of G relative to H is smaller than a maximalshortening quotient relative to H.Proposition 6.28: There is only a �nite number of maximal shortening quotient of G relativeto H.As in the previous setions, this enables us to proveProposition 6.29: Let G be a �nitely generated group in whih every virtually solvable subgroupis free abelian. Let H be a non-abelian subgroup of G with respet to whih G is freely indeompos-able. Fix an embedding H → Γ. There exists a �nite set of proper Γ-limit quotients of G relativeto H suh that any non-injetive morphism h from G to Γ whih �xes H fators through one ofthe orresponding quotient maps after preomposition by an element of ModH(G).But in fat we an prove a slightly more general resultProposition 6.30: Let G be a �nitely generated group in whih every virtually solvable subgroupis free abelian. Let H be a non-abelian subgroup of G with respet to whih G is freely indeom-posable. Fix an embedding H → Γ. There exists a �nite set of proper Γ-limit quotients of Grelative to H, and a �nite subset H0 of H suh that any non-injetive morphism h from G to Γwhih �xes H0 fators through one of the orresponding quotient maps after preomposition by anelement of ModH(G).Proof. Let L1, . . . Lp be the maximal shortening quotients of G relative to H with orrespondingquotient maps η1, . . . ηp (there are �nitely many of them by 6.28). Suppose there exists no suh
H0. Then we an produe a sequene hn : G → Γ of non-injetive morphisms whih are shortrelative to H , �x H in the limit, and suh that none of the maps hn fators through any of the
ηj . From this sequene extrat a stable sequene, whih onverges to a shortening quotient Q of
G relative to H .This quotient Q is under one of the maximal shortening quotients Lj so that the quotient map
π : G → Q fators through ηj . Now by proposition 6.16, an in�nity of the hn fator through π,and thus through ηj . This is a ontradition, and we have ompleted the proof.Now reall that Theorem 4.38 tells us that if G is a torsion-free hyperboli group freelyindeomposable with respet to a subgroup H , an injetive morphism G→ G whih �xes a largeenough subset of H has to be surjetive. Thus we get as an immediate orollaryCorollary 6.31: Let G be a torsion-free hyperboli group, and let H be a non-abelian subgroupof G with respet to whih G is freely indeomposable. There exist a �nite set of proper quotientsof G, and a �nite subset H0 of H suh that any non-surjetive morphism h : G→ G whih �xes
H0 fators through one of these quotients after preomposition by an element of ModH(G).



Chapter 7Elementary embeddings in ahyperboli group7.1 Hyperboli towers and statement of the main resultThe surfaes we onsider are always ompat and onneted. We de�ne hyperboli towers.De�nition 7.1: (hyperboli �oor) Consider a triple (G,G′, r) where G is a group, G′ is a sub-group of G, and r is a retration from G onto G′. We say that (G,G′, r) is a hyperboli �oor ifthere exists a non-trivial deomposition Λ of G as a graph of groups with surfaes (reall de�nition4.12) suh that:
• the graph of groups Λ has exatly one vertex w whih is not of surfae type, and its vertexgroup is G′;
• every edge of Λ is adjaent to w;
• the endpoints of an edge are distint;
• for eah vertex v distint from w, the image of Gv by the retration r is non-abelian.De�nition 7.2: (hyperboli tower) Let G be a group, let H be a subgroup of G. We say that Gis a hyperboli tower based on H if there exists a �nite sequene G = G0 > G1 > . . . > Gm > Hof subgroups of G where:
• for eah k in [0,m − 1], there exists a retration rk : Gk → Gk+1 suh that the triple

(Gk, Gk+1, rk) is a hyperboli �oor.
• Gm = H ∗ F ∗ S1 ∗ . . . ∗ Sp where F is a (possibly trivial) free group, p ≥ 0, and eah Siis the fundamental group of a losed and onneted surfae of Euler harateristi at most
−2;Remark 7.3: If G is a hyperboli tower over a subgroup H, and G′ is a hyperboli tower overa subgroup H ′, then G ∗G′ is a hyperboli tower over H ∗H ′. If G is a hyperboli tower over asubgroup G′, and G′ is a hyperboli tower over a subgroup H, then G is a hyperboli tower over

H. We an now state our main theorem.Theorem 7.4: Let G be a torsion-free hyperboli group. Let H →֒ G be an elementary embedding.Then G is a hyperboli tower based on H.This implies in partiular that H is �nitely generated, and a retrat of G.69



70 CHAPTER 7. ELEMENTARY EMBEDDINGS IN A HYPERBOLIC GROUP7.2 JSJ-like deompositions and preretrationsTo prove Theorem 7.4, we need to onstrut suessive retrations from subgroups of G to propersubgroups until we get to H . The strategy will be to build, by the mean of �rst-order sentenes,some maps that we will all preretrations: their properties will allow us to build the retrationswe need. These preretrations are assoiated to a spei� type of graphs of groups.7.2.1 JSJ-like deompositionDe�nition 7.5: (JSJ-like deomposition) Let Λ be a graph of groups with surfaes whose edgegroups are in�nite yli. Let A be the fundamental group of Λ. Call Z type verties the vertiesof Λ whih are not of surfae type and have in�nite yli vertex group, and rigid type vertiesthe other non surfae type verties. We say that Λ is a yli JSJ-like deomposition of A if:1. an edge is adjaent to at most one surfae type vertex, and to at most one Z type vertex;2. (strong 2-aylindriity) if a non-trivial element of A stabilises two distint edges of TΛ, theyare adjaent and their ommon endpoint is the lift of a Z type vertex.Remark 7.6: These onditions imply in partiular that two distint verties have distint vertexgroups.Remark 7.7: Let Λ be a yli JSJ-like deomposition of a group A. If C is the edge group ofan edge e whih onnets two verties whih are not of Z type, then C is maximal abelian in A.Indeed if c is a non-trivial element of C, and if γ ommutes with c, then c �xes the edge γ · e. Bystrong 2-aylindriity, c does not �x any edges other than e, so γ · e = e, and thus γ ∈ C.We will also say that a vertex in the tree TΛ is of type Z or rigid aording to the type of itsimage by the quotient map TΛ → Λ.Remark 7.8: Note that a rigid type vertex group in a JSJ-like deomposition might admit somesplittings over Z ompatible with Λ, so is not rigid in the usual sense of the term.De�nition 7.9: (subgroups with disjoint onjugay lasses) We say that two subgroups of A havedisjoint onjugay lasses if no non-trivial element of one of the subgroups has a onjugate in theother.Remark 7.10: Given a strongly 2-aylindrial graph of groups deomposition Λ of a group A,onsider two edge stabilisers G1 and G2 of the tree TΛ. Denote by e1 and e2 the projetion in Λof the edges they stabilise. We laim that G1 and G2 have disjoint onjugay lasses unless either
e1 = e2, or e1 and e2 are adjaent to a ommon Z type vertex. This is an easy onsequene ofstrong 2-aylindriity.7.2.2 JSJ deompositionsA JSJ deomposition Λ of a group G is a deomposition as a graph of groups whih enodes allpossible splittings of the group G over a given lass E of subgroups. The standard referene forthe ase where G is �nitely generated and one ended are Rips and Sela in [RS97℄, see also [DS99℄and [FP06℄.In the sequel, we will use the JSJ deomposition in the ase where G is torsion-free hyperboliand freely indeomposable (respetively freely indeomposable with respet to a subgroup H),and E is the lass of yli groups. We all suh a deomposition a yli JSJ deomposition of
G (respetively a relative yli JSJ deomposition with respet to H).In both these asee, a yli JSJ deomposition Λ of G is a graph of groups with surfaes.Moreover, we an see from Theorem 7.1 in [RS97℄ that for any other deomposition Γ of G as agraph of groups with surfaes and yli edge groups we have:



7.2. JSJ-LIKE DECOMPOSITIONS AND PRERETRACTIONS 71(i) non surfae type vertex groups of Λ are ellipti in Γ;(ii) edge groups of Λ are ellipti in Γ;(iii) surfae type vertex groups of Γ are ontained in a surfae type vertex group of Λ.We will need two properties of suh a yli (relative) JSJ deomposition Λ: the �rst, explainedin the following remark, is that we may assume that it is a JSJ-like deomposition. The seondis that its vertex groups are 'preserved' under modular automorphisms, namely that an elementof Mod(G) (respetively ModH(G)) restrits to a onjugation on non surfae type vertex groupsof Λ, and sends surfae type vertex groups of Λ isomorphially on onjugates of themselves: thiswill be the objet of lemma 7.12.Remark 7.11:
• Let G be a torsion-free hyperboli group. Suppose G is freely indeomposable. Let Λ bethe JSJ deomposition of G given by Theorem 7.1 of [RS97℄. Then we may assume Λ isJSJ-like.Let g be a non-trivial primitive element of G, and denote Tg the subtree whose edges havestabilisers lying in 〈g〉. We laim that the translates of Tg are all disjoint. Indeed, supposethat there is an edge e whih lies both in Tg and in h · Tg for some element h of G. Thisimplies that some power gj of g �xes e, and that e = h · e′ for some edge e′ in Tg. Sine
e′ is �xed by some power gk of g, we get that e is also �xed by hgkh−1. Edge stabilisersare abelian, so [gj, hgkh−1] = 1. Now in torsion-free hyperboli groups, maximal abeliansubgroups are malnormal, so h is also a power of g, and Tg = h · Tg. We now remove in Tthe interior of all the edges of Tg, add a vertex vg and edges from eah vertex of Tg to thenew vertex vg. Sine the translates of Tg are disjoint, we an do this equivariantly. It isthen fairly straightforward to see that the modi�ed deomposition still satis�es the properties(i), (ii) and (iii) above, and is strongly 2-aylindrial.

• Let G be a torsion-free hyperboli group whih is freely indeomposable with respet to asubgroup H. Let Λ be the yli relative JSJ deomposition of G with respet to H given byThéorème 4.1 of [Pau03℄. Similarly, we an assume that Λ is a yli JSJ-like deomposition.The following lemma desribes the other property of yli JSJ and relative yli JSJ of ahyperboli group that we will need. It is a onsequene of the universal properties of the JSJdeomposition, i.e. of the fat that it desribes any yli splitting of the group.Lemma 7.12: Let G be a torsion-free hyperboli group whih is freely indeomposable. Denoteby Λ its yli JSJ deomposition, as given by Theorem 7.1 of [RS97℄. An element of Mod(G)restrits to onjugation on eah non surfae type vertex group of Λ, and sends surfae type vertexgroups isomorphially on onjugates of themselves.Similarly, suppose G is a torsion-free hyperboli group whih is freely indeomposable withrespet to a subgroup H. Let Λ denote its yli relative JSJ deomposition with respet to H.An element of ModH(G) restrits to onjugation on eah non surfae type vertex group of Λ, andsends surfae type vertex groups isomorphially on onjugates of themselves.Proof. Let Γ be a deomposition of G as a graph of groups with surfaes with yli edge sta-bilisers.Let S be a surfae type vertex group of the yli JSJ deomposition Λ. The boundaryelements of S stabilise edges of Λ, thus by property (ii) above, they stabilise verties of Γ. Sine
S ats faithfully on Γ in suh a way that its boundary elements are ellipti, and with yli edgestabilisers, by lemma III.2.6 of [MS84℄ it inherits a deomposition ΓS whih is dual to a set ofnon boundary parallel simple losed urves on the orresponding surfae, suh that there is an



72 CHAPTER 7. ELEMENTARY EMBEDDINGS IN A HYPERBOLIC GROUPequivariant injetive simpliial map t : TΓS → TΓ. In partiular, every vertex group of ΓS isellipti in Γ.Let S0 be a vertex group of ΓS . If S0 lies in a surfae type vertex group S′ of Γ, we laimthat S0 = S′. Indeed, by property (iii) above, S′ lies in a surfae type vertex group of Λ. If thisgroup is not S, this means S0 stabilise an edge of Λ, so that it is a boundary subgroup of S. Butthis ontradits the fat that the simple losed urves are not boundary parallel. Thus S′ is asubgroup of S. On the other hand, the injetivity of the map t shows that S ∩ S′ = S0. Thisproves the laim. If S0 lies in a non surfae type vertex group of Γ, by de�nition of the modulargroup, a modular automorphism restrits to onjugation on S0.Now we see that in both ases, a modular automorphism σ of Γ sends S0 isomorphially on aonjugate of itself. Sine the graph of groups ΓS is onneted, and its edge groups are non-trivial,this implies that σ sends S isomorphially on a onjugate of itself.Consider now the ase of a non surfae type vertex group R of Λ: by property (i) above, it isellipti in Γ. If R lies in a non surfae type vertex group R′ of Γ, the restrition of any elementof Mod(Γ) to R′, and thus to R, is just a onjugation. Suppose on the other hand that R lies ina surfae type vertex group SR of Γ. By part (iii) of Theorem 7.1 of [RS97℄, SR itself lies in asurfae type vertex group S of Λ. But by our argument above, boundary subgroups of S are senton onjugates by modular automorphisms.7.2.3 PreretrationsPreretrations are maps that preserve some of the struture of a JSJ-like deomposition. We needto de�ne them as maps A→ G where A is a subgroup of G.De�nition 7.13: (preretration) Let G be a torsion-free hyperboli group. Let A be a subgroupof G, and Λ a JSJ-like deomposition of A. A map A→ G is a preretration with respet to Λ ifits restrition to eah non surfae type vertex group Av of Λ is just onjugation by some element
gv of G, and if surfae type vertex groups have non-abelian images.Remark 7.14: The de�nition of a JSJ-like deomposition implies that the restrition of a pre-retration to an edge group is just onjugation by an element of G. Indeed by ondition 1 ofde�nition 7.5, every edge group is ontained in at least one non surfae type vertex group.In the next two setions, we will prove Theorem 7.4, using two results about preretrations.The last two hapters of this thesis are devoted to their proofs: they are both intermediate stepsin the proof of proposition 6 of [Sel06℄ but are not expliitly stated there. The �rst is given byProposition 7.15: Let A be a torsion-free hyperboli group. Let Λ be a yli JSJ-like deom-position of A. Assume that there exists a non-injetive preretration A → A with respet to Λ.Then there exists a subgroup A′ of A, and a retration r from A to A′, suh that (A,A′, r) is ahyperboli �oor. Moreover, given a rigid type vertex group R0 of Λ, we an hoose r suh that R0is in the image of r.The seond proposition is needed to omplete the indution step in the onstrution of ourhyperboli tower.Proposition 7.16: Let G be a torsion-free hyperboli group. Let A be a group whih admits aJSJ-like deomposition Λ. Suppose G′ is a subgroup of G ontaining A suh that either G′ is afree fator of G, or G′ is a retrat of G by a retration r : G → G′ whih makes (G,G′, r) ahyperboli �oor. If there exists a non-injetive preretration A→ G with respet to Λ, then thereexists a non-injetive preretration A→ G′ with respet to Λ.



7.3. USING FIRST ORDER TO BUILD PRERETRACTIONS 737.3 Using �rst order to build preretrationsSuppose H is a subgroup elementarily embedded in a torsion-free hyperboli group G. To showthat G admits a struture of hyperboli tower over H , we will start by deomposing G in freefators relatively to H . That is, we will write G = A ∗B1 . . . ∗Bm where the groups Bj are freelyindeomposable (possibly in�nite yli) and A is freely indeomposable with respet to H . Weall suh a deomposition a Grushko deomposition of G relative to H .If we an show that A admits a struture of hyperboli tower over H , and that the groups Biadmit a struture of hyperboli tower over 1, we will be done by remark 7.3. The idea is thusto produe non-injetive preretrations A → A and Bi → Bi, in order to be able to apply thepropositions 7.15 and get the top �oor of a hyperboli tower deomposition. But for this, it isenough by proposition 7.16 to build non-injetive preretrations A → G and Bi → G. This iswhat the following two propositions will enable us to do. In fat they are slightly more general.This greater generality is required for the indution step, when we will build further �oors of ourhyperboli towers.The heart of the proof of Theorem 7.4 is ontained in proposition 7.20 and proposition 7.21.The idea is that by expressing the existene of a fator set in �rst-order logi, we an prove theexistene of a non-injetive preretration.We will use the following de�nitionDe�nition 7.17: (Λ-related morphisms) Let A be a group whih admits a JSJ-like deomposition
Λ. We say two morphisms f and f ′ from A to a group G are Λ-related if
• for eah non surfae type vertex group R of Λ, there exists an element uR suh that f ′restrited to R is Conj (uR) ◦ f ;
• eah surfae type vertex group of Λ that has non-abelian image by f also has non-abelianimage by f ′.Remark 7.18: Note that if A is a subgroup of G, a map f : A→ G is Λ-related to the embedding

A →֒ G if and only if it is a preretration.The following lemma shows that relatedness an be expressed in �rst-order logi.Lemma 7.19: Let A be a group �nitely generated by a tuple a. Suppose A admits a JSJ-likedeomposition Λ. There exists a formula Rel(x,y) suh that for any pair of morphisms f and f ′from A to G, the formula Rel(f(a), f ′(a)) is satis�ed by G if and only if f and f ′ are Λ-related.Proof. We introdue some notation. Denote by R1, . . . Rr the non surfae type vertex groups of
Λ, and by S1, . . . Ss its surfae type vertex groups. For 1 ≤ p ≤ r, hoose a �nite generating set
ρp for Rp, and for 1 ≤ q ≤ s, hoose a �nite generating set σq for Sq. We take the onvention todenote tuples by bold font, and to denote by l(x) the ardinality of the tuple x.The elements of σp and ρq an be represented by words in the elements a, we denote theseby σp = σ̄p(a) and ρq = ρ̄q(a) respetively.Two maps f and f ′ satisfy the ondition on the rigid type vertex groups of Λ if and only if

∃u1 . . . ur

r∧

p=1

{
f ′(ρp) = upf(ρp)u−1

p

}
.To express the abelianity of a subgroup generated by a tuple z = (z1, . . . , zl(z)), we an usethe formula Ab(z) :

∧
i,j

{
[zi, zj] = 1

}. Thus the non-abelianity ondition about the image by fand f ′ of surfae type vertex groups of Λ an also be expressed by
s∧

q=1

{¬Ab(f(σq))→ ¬Ab(f ′(σq))} .



74 CHAPTER 7. ELEMENTARY EMBEDDINGS IN A HYPERBOLIC GROUPBut now, if w is an element of A whih an be represented by a word w̄(a), its image by themorphism extending a 7→ x is represented by w̄(x).Thus if f : a→ x and f ′ : a→ y, the formula Rel(x,y) with free variables x,y given by
∃u1 . . . ur

[
r∧

p=1

{
ρ̄p(y) = upρ̄p(x)u−1

p

}
]

∧

[
s∧

q=1

{¬Ab(σ̄q(x))→ ¬Ab(σ̄q(y))}

]is satis�ed by G if and only if f and f ′ are Λ-related.We an now prove the two key propositions.Proposition 7.20: Suppose that G is a non-yli torsion-free hyperboli group, and let H be asubgroup elementarily embedded in G. Suppose A is a hyperboli subgroup of G whih properlyontains H, and whih is freely indeomposable relative to H. Let Λ be the yli JSJ deompo-sition of A relative to H. Then there exists a non-injetive preretration A → G with respet to
Λ.Proof. Corollary 6.31 applied to A tells us that there exist a �nite subset H0 of H , and a �nitefamily of proper quotients ηj : A → Lj for j ∈ [1,m], suh that any non-surjetive morphism
θ : A → A whih �xes H0 fators through one of the quotients ηj after preomposition by anelement of ModH(A).A morphism θ : A → H an be seen as a non-surjetive morphism A → A sine we assumed
H 6= A. Thus any morphism θ : A → H whih �xes H0 fators through one of the quotients ηjafter preomposition by an element τ of ModH(A).We will give a weaker form of this statement, in order to be able to express it as a �rst ordersentene satis�ed by H . Indeed, sine we annot express the modular group with �rst order logi,we have to lose some information.For eah l in [1,m], we �x an element νj in the kernel of ηj : A→ Ql. Let Λ be the yli JSJdeomposition of A relative to H . By lemma 7.12, elements of ModH(A) restrit to a onjugationon non-surfae type vertex groups of Λ, and send surfae type vertex groups isomorphially ononjugates of themselves.Thus, if θ is a morphism A → H , and if τ ∈ ModH(A), the restrition of the map θ′ = θ ◦ τto eah rigid type vertex group oinides with θ up to onjugation, and if the image by θ of asurfae type vertex group S of Λ is non-abelian, so is the image of S by θ′. This says exatly that
θ and θ′ are Λ-related.This implies that the following statement holds:Statement 1: For any morphism θ : A→ H whih �xes H0, there exists a morphism θ′ : A→ Hsuh that θ and θ′ are Λ-related, and there exists j in [1,m] suh that θ′(νj) = 1.Let us now see that this statement an be expressed by a �rst order sentene in the language
LH whih is satis�ed by H .The group A is hyperboli, we hoose a �nite presentation 〈a | Σ̄A(a)〉. If an l(a)-tuple x in Hsatis�es Σ̄A(x) = 1, the map A→ H whih sends a to x is a morphism. Conversely, any morphism
A→ H omes from a solution to the system of equations Σ̄A(x) = 1 in H . The elements νl anbe represented by words ν̄l(a); and for eah h in H0, the element h an be represented by a word
h̄(a).Reall that the language LH is de�ned as the language of groups to whih we have added aonstant symbol ⌈h⌉ for eah h in H . To express that the morphism orresponding to the tuple
x �xes the �nite subset H0 of H , we an thus write

∧

h∈H0

{
⌈h⌉ = h̄(x)

}
.



7.3. USING FIRST ORDER TO BUILD PRERETRACTIONS 75To express that the morphism orresponding to the tuple x sends one of the elements νi to 1,we an write
m∨

i=1

{ν̄i(x) = 1} .Finally onsider the sentene (†) over LH given by
∀x

[

ΣA(x) = 1 ∧
∧

h∈H0

⌈h⌉ = h̄(x)

]

→ ∃y
[
Σ̄A(y) = 1

]
∧ Rel(x,y) ∧

[
m∨

l=1

ν̄l(y) = 1

]

.We laim that the interpretation of the �rst-order formula (†) on H is exatly Statement 1,so it is true on H . To see this, let us interpret (†) on H . The formula in the square brakets onthe �rst line of (†) says that the l(x)-tuple x satis�es Σ̄(x) = 1, so that the map x 7→ a extendsto a morphism θ : A → H . Moreover, for eah h in H0, we have h = h̄(x) = θ(h), so θ �xes H0(reall that the interpretation of the onstant ⌈h⌉ on H is just the element h). The next part ofthe formula says that there exists a l(y)-tuple y satisfying Σ̄(y) = 1, and whose orrespondingmorphism θ′ : A → H is related to θ. Finally the formula in the last square brakets says thatfor at least one value of l, we have ν̄l(y) = θ′(νl) = 1. That is, at least one of the elements νl isin the kernel of θ′. This proves the laim.The formula (†) is therefore satis�ed by G. Reall that it an be interpreted on G: the symbolswe added to the language of groups are onstants ⌈h⌉ for eah element h of H , and H ≤ G sowe just interpret ⌈h⌉ by h. If we take the 'tautologial solution' a to the equation ΣA(x) = 1, itsatis�es the formula in the �rst square brakets: indeed, ΣA(a) = 1, and for eah h ∈ F , we have
h = h̄(a) by de�nition of h̄. Thus we get a tuple y suh that a 7→ y extends to a morphism µ,whih is Λ-related to the morphism a 7→ a. Sine it sends one of the elements νi to 1, it is notinjetive. But the morphism a 7→ a is just the embedding A →֒ G, so by remark 7.18, µ : A→ Gis a non-injetive preretration.We now show the seond key result.Proposition 7.21: Suppose that G is a torsion-free hyperboli group, and that H is a subgroupelementarily embedded in G whih is also a retrat of G. Let B be a freely indeomposable hyper-boli subgroup of G whih is neither yli nor a losed surfae group of Euler harateristi atmost −2. Let Λ be the yli JSJ deomposition of B.Suppose that no non-trivial element of B is onjugate in G to an element of H. Then thereexists a non-injetive preretration B → G with respet to Λ.Proof. Assume �rst that B is not the fundamental group of the losed surfae of Euler harater-isti −1. We hoose a presentation < b | Σ̄B(b) > for B. Let Λ be the yli JSJ deompositionof B.Let η1 : B → L1, . . . , ηm : B → Lm be the proper quotients of B given by proposition 6.19.Again we hoose elements ν1, . . . νm of B suh that νj is in the kernel of ηj .Proposition 6.19 tells us that any non-injetive map from B to G fators through one of thequotients ηj after preomposition by an element of Mod(B). Note that a map θ : B → H an beseen as a map B → G, so the previous statement remains true if we replae B → G by B → H .We want to �nd a su�ient ondition for non-injetivity of a map B → H that is expressiblein �rst-order. Proposition 4.34, applied to B with H = 1, tells us that there exist a �nite set
i1, . . . it of embeddings of B in G suh that for any embedding i : B →֒ G, there exists an element
σ of Mod(B), an integer k in [1, t] and an element g of G suh that

i(x) = gik(σ(x))g−1 for all x ∈ B



76 CHAPTER 7. ELEMENTARY EMBEDDINGS IN A HYPERBOLIC GROUPRemark that if i is an embedding of B in H , we an apply the retration r : G → H givenby the hypotheses to both sides, and note that σ is an isomorphism, to get that there exists anelement τ of Mod(B), an integer k in [1, t] and an element g of G suh that for all x in B,
r(g−1)i(τ(x))r(g) = r(ik(x))By lemma 7.12, the map on the left hand side is Λ-related to i. So if i is an embedding

B →֒ H , there exists a map i′ whih is Λ-related to i, and whih satis�es i′(b) = r(ik(b)) forsome k.Let θ : B → H . Consider the following statement about θ, that we denote S(θ).S(θ): Suppose that θ′ : B → H is a morphism whih is Λ-related to θ. Then for any integer k in
[1, t], we have θ′(b) 6= r(ik(b)).From the previous paragraph, if S(θ) holds, then θ isn't an embedding: it is a su�ientondition for a map not to be an embedding.Again by lemma 7.12, if θ is a morphism B → H , and if τ ∈Mod(B), the maps θ′ = θ ◦ τ and
θ are Λ-related. So the following statement is true.Statement 2: If θ : B → H is a morphism suh that S(θ) holds, then there exists a morphism
θ′′ : B → H and l in [1,m] suh that θ and θ′′ are Λ-related, and θ′′(νl) = 1.This is the statement we want to express by a �rst-order formula. Let us �rst try to see that
S(θ) an be expressed by a �rst order formula on the variables θ(b). Consider the following �rstorder formula ψ(x) with free variable the l(b)-tuple x:

[
Σ̄B(x) = 1

]
∧ ∀z

[
Σ̄B(z) = 1 ∧Rel(z,x)

]
→

[
t∧

k=1

z 6= ⌈r(ik(b))⌉

]

.This is a �rst order formula in the language LH . Thus the onstant ⌈r(ik(b))⌉ is interpretedin both H and G simply by the element r(ik(b)) (whih is indeed an element of H).Let x be a l(b)-tuple in H . It is straightforward to see that the formula ψ(x) is satis�ed by
H if and only if the map θ : b 7→ x is a morphism for whih the statement S(θ) holds. So if ψ(x)is satis�ed by H , the map θ : b 7→ x is a non-injetive morphism B → H .We an now write the �rst order sentene (††)

∀xψ(x) → ∃y [Σ̄B(y) = 1] ∧ Rel(x,y) ∧




l∨

j=1

ν̄j(y) = 1



 .Just as we saw that (†) expressed Statement 1 in 7.20, we an see that the �rst order formula
(††) on H expresses Statement 2, so it is satis�ed by H .As H is elementarily embedded in G, the formula (††) is also satis�ed by G. As in the proofof 7.20, we an apply it to the tautologial solution b of Σ̄B(x) = 1. To see that G |= ψ(b),note �rst that by our hypotheses, the JSJ deomposition of B admits at least one non-surfaetype vertex group. A map µ : B → G whih is Λ-related to the embedding b 7→ b restrits toonjugation on the non-surfae type vertex groups of B, thus it annot have image in H sine noelement of B an be onjugated into H by an element of G. This implies in partiular that forall k, the l(b)-tuple µ(b) is distint from the tuple r(ik(b)).The seond part of the sentene (††) thus gives a morphism B → G whih is Λ-related to theembedding B →֒ G and kills one of the elements νi: it is a non-injetive preretration.In the ase where B is the fundamental group of the non-orientable surfae of Euler hara-teristi −1, we an follow the same proof if we onsider the JSJ of B to onsist of a single rigidvertex, and that Mod(B) is trivial. Indeed, the group of automorphisms of B is �nite, so if we



7.4. PROOF OF THE MAIN RESULT 77replae the �nite list (ηi)i by the �nite list (ηi ◦ τ)i,τ∈Aut(B), the onlusion of 6.19 still hold withour new de�nition of the modular group. Similarly, the existene of a �nite set of embeddings upto onjugation holds.7.4 Proof of the main resultWe an now prove Theorem 7.4.Proof. Let us �rst treat the ase where G is in�nite yli, generated by an element g. Anysubgroup of G is of the form H = 〈gm〉. Now G satis�es the formula ∃x{xm = ⌈gm⌉}, whihexpresses that g admits an m-th root in G. This is a formula over LH whih is true on H ifand only if g has an m-th root in H , that is if and only if H = G. Thus if G is yli, its onlyelementarily embedded subgroup is itself, and the theorem is trivial.So assume that G is a non-yli torsion-free hyperboli group, and let H be a subgroupelementarily embedded in G. Note that H is neessarily non-abelian as it is elementary equivalentto G.We will �rst show that G admits a struture of hyperboli tower over a group G′ whoseGrushko deomposition relative to H is of the form G′ = H ∗B′
1 ∗ . . . ∗B′

r. Set G0 = G. We willde�ne by indution a �nite sequene G = G0 > G1 > . . . > GN of subgroups of G, suh that H isa free fator of GN , and Gm has a struture of hyperboli �oor over Gm+1 for eah m up to N .Assume Gm is de�ned, and write the Grushko deomposition of Gm relative to H as
Gm = Am ∗Bm

1 ∗ . . . ∗B
m
pmwhere Am is the fator ontaining H . If Am = H we are done, so assume Am 6= H .Note that Am is freely indeomposable relative to H . Denote by Λ the yli JSJ of Amrelative to H . Note also that Am is a retrat of G, so it is a quasionvex subgroup of G, and thusit is hyperboli.All the hypotheses of proposition 7.20 for A = Am are satis�ed, so we an apply it to get a non-injetive preretration Am → G with respet to Λ. We now apply proposition 7.16 suessivelyto the �oors of the hyperboli tower formed by G over Am to get a non-injetive preretration

Am → Am with respet to Λ. Finally by proposition 7.15, we get a retration r : Am → Am
0 on aproper subgroup of Am suh that (Am, Am

0 , r) is a �oor of a hyperboli tower and the rigid groupof Λ whih ontains H is in Am
0 . Now de�ne Gm+1 by
Gm+1 = Am

0 ∗B
m
1 ∗ . . . ∗B

m
pm
.Sine Am has a struture of hyperboli �oor over Am

0 , by remark 7.3, the groupGm has a strutureof hyperboli �oor over Gm+1 as required.As eah Gm+1 is a strit retrat of Gm, and sine the groups Gm are all subgroups of G, theyare G-limit groups. Thus by proposition 6.15 the sequene is �nite. At the end of this proess,we get a group GN in whih H is a free fator, and suh that G is built as a hyperboli towerbased on GN .If all the other fators of the Grushko deomposition of GN relative to H are surfae groupsor free groups, we are done. So assume that there is a fator B whih is neither free nor a losedsurfae group. Note that as a retrat of G, the group GN is hyperboli, so as a free fator of GN ,the group B is itself hyperboli. We will now show that B has a struture of hyperboli towerover 1.Any two onjugates of H and B in GN interset trivially, sine they are free fators in GN .But sine GN is a retrat of G, any two onjugates of H and B in G must also interset trivially.Hene the onditions of 7.21 are satis�ed by B: by applying it, we get a non-injetive preretration
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B → G. We apply 7.16 iteratively to get a non-injetive preretration B → B, whih by 7.15gives us a retration r : B → B′, suh that (B,B′, r) is a hyperboli �oor.Note that sine B′ is a retrat of G, the number of fators in its Grushko deompositionis bounded above by the rank of G. If any of the fators of the Grushko deomposition of
B′ are neither free nor surfae, we an repeat the proess above. This terminates, as before,beause the groups involved are G-limit groups and beause the number of fators in the Grushkodeomposition of our groups is bounded. We �nally get that B is a hyperboli tower over 1.Thus all the fators of GN distint from H are hyperboli towers over 1. By remark 7.3, thegroup GN is a hyperboli tower over H . To onlude, apply one more remark 7.3 to see that Gis a hyperboli tower over H .7.5 The speial ase of free groupsIn the speial ase where our hyperboli group is free, Theorem 7.4 together with Theorem 4 in[Sel06℄ givesCorollary 7.22: Let F be a �nitely generated free group, let H be a subgroup of H. The embed-ding of H in F is elementary if and only if H is a free fator of F .Proof. Suppose that H is an elementary subgroup of F . By proposition 7.4, F has a strutureof hyperboli tower over H . If the tower has at least one �oor, there exists a subgroup F ′ of F ,and a retration r : F → F ′ so that H < F ′, and (F, F ′, r) is a hyperboli �oor built by adding a(possibly disonneted) surfae Σ. Let γ1, . . . γr be generators of pairwise non-onjugate maximalboundary subgroups of S = π1(Σ). We know, from the standard presentation of a surfae groupwith boundary, that the produt of the elements γi is equal to a produt of ommutators andsquares. Both F and F ′ being free groups, lemma 4.1 in [BF℄ tells us that there is a deompositionof F ′ as Z ∗ F ′′, where Z is an in�nite yli group, suh that one of these boundary subgroupsgenerators, say γ1, is a generator of Z, and all the other boundary subgroups generators γi are inonjugates of F ′′. Now let α : F ′ → Z/2Z be the map whih kills F ′′ and the squares in Z. Theimage of γ1 by α ◦ r is the generator of Z/2Z, and for i 6= 1, the image of γi is trivial. However,the image of squares and ommutators are sent to 1 by α ◦ r, this is a ontradition. This showsthat the only struture of hyperboli tower that a free group an have over one of its subgroupis a trivial one, where the subgroup is a free fator of the free group. Thus H is a free fator of
F . Conversely, if H is a free fator of F , its embedding into F is elementary by Theorem 4 of[Sel06℄.



Chapter 8A property of JSJ-likedeompositionsTo omplete the proof of 7.4, we now need to prove proposition 7.15 and 7.16. This will be donein the last hapter, using the results that we will expose in this hapter and the next.This setion aims to show that if a preretration G → G relative to some yli JSJ-likedeomposition of G satis�es some strong injetivity onditions on the vertex groups, it must bean isomorphism. Reall that a preretration A → A with respet to a JSJ-like deomposition Λof A is a map whose restrition to eah non surfae type vertex group is a onjugation, and whihsends surfae type vertex groups on non-abelian images.Proposition 8.1: Let G be a torsion-free hyperboli group, and let Λ a yli JSJ-like deompo-sition of G. Let θ : G → G be a preretration with respet to Λ, whih sends surfae type vertexgroups of Λ isomorphially to onjugates of themselves. Then θ is an isomorphism.Proof. First note that if G is yli, the only JSJ-like deomposition it admits is the trivial one,for whih the result is immediate. We may thus assume that G is not yli.Denote by T the Bass-Serre tree TΛ orresponding to Λ. To prove the proposition, we willonstrut a bijetive simpliial map j : T → T , suh that j is equivariant with respet to θ in thefollowing sense:
∀g ∈ G, ∀v ∈ V (T ), j(g · v) = θ(g) · j(v).For an edge e and a vertex v of T , the stabilisers of e and v in the standard ation of G on Tare denoted by Ge and Gv respetively.1. Constrution of the map j on verties. By hypothesis, for eah vertex v of T , thereis an element gv of G suh that θ(Gv) = gvGvg−1

v . We set the image of v by j to be gv · v. Itsstabiliser is exatly θ(Gv), and by remark 7.6, distint verties have distint stabilisers, so thisproperty de�nes j(v) uniquely. Thus the image of g · v by j is the unique vertex whose stabiliseris θ(g)θ(Gv)θ(g−1), namely θ(g) · j(v), and the map v 7→ j(v) is equivariant. Note that j(v) is inthe orbit of v, and thus is of the same type. Note also that Gj(v) = θ(Gv) ≃ Gv.2. The map v 7→ j(v) an be extended to a simpliial map j : T → T . We need tohek that adjaent verties are sent on adjaent verties. Suppose v, w adjaent, without loss ofgenerality Gv is not a surfae type vertex group. The intersetion Gv ∩ Gw is an in�nite yligroup. On Gv, the map θ is just onjugation by the element gv of G, so if we let C := θ(Gv∩Gw),the group C is in�nite yli. Moreover, C is ontained in θ(Gv) ∩ θ(Gw). This means that79
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j(v), j(w) are �xed by C, thus are at a distane at most 2. We will �rst show that it annot be
2, then that it annot be 0.
• Assume the distane is 2. The vertex u between j(v) and j(w) is a Z type vertex, whihimplies in partiular that j(v) and j(w), and thus v and w, are not Z type vertex. Notethat sine Gv ∩ Gw is a subgroup of Gv, and sine θ on Gv is just onjugation by gv, wehave C = θ(Gv ∩ Gw) = gv(Gv ∩ Gw)g−1

v < gvGwg−1
v , so it �xes the vertex gv · w. Thisvertex is at a distane 1 from j(v), thus it is distint from j(v) and from j(w). Its stabiliseris not yli, thus it is distint from u. Hene we get a situation where C stabilises points

j(w) and g · w whih are at a distane 3 of eah other. This is a ontradition.
• Assume now j(v) = j(w). Thus v and w are in the same orbit (in partiular they mustbe of rigid type, sine they are adjaent). Let a ∈ G be suh that w = a · v. We have
Gw = aGva−1. We see that θ(a) ∈ θ(Gv), sine j(v) = j(w) = j(a · v) = θ(a) · j(v) and thestabiliser of j(v) is θ(Gv). Thus there exists a′ ∈ Gv suh that θ(a′) = θ(a).Let C1 := Gv ∩Gw, i.e. C1 is the stabiliser of the edge e between v and w. Let C2 ≤ Gv besuh that C1 = aC2a−1. Let c1 generate C1, and c2 := a−1c1a generate C2. Note that byremark 7.7, C1 is maximal abelian in G sine it is the stabiliser of an edge whih onnetstwo rigid verties. Now θ(c2) = θ(a−1)θ(c1)θ(a) so that θ(c2) = θ(a′−1c1a′). By injetivityof θ on Gv, c2 = a′−1c1a′. Thus a′a−1 ommutes with c1, so it must be in C1 and thus in
Gv. But a′ ∈ Gv so we dedue a ∈ Gv and Gw = aGva−1 = Gv. Sine distint vertieshave distint stabilisers, we get a ontradition.Thus we an extend v 7→ j(v) to a simpliial map j : T → T .3. Injetivity of j. It is enough to show that there are no foldings, i.e. that no two edgesadjaent to a same vertex are sent to the same edge by j. Suppose that two verties w,w′ of Tare adjaent to a vertex v, and that the edges e = [v, w] and e′ = [v, w′] are sent on a same imageby j. Let ge be a generator of the stabiliser Ge of e, and ge′ a generator of the stabiliser Ge′ of e′.First it is lear that Gw and Gw′ must be onjugate sine j(w) = j(w′), so w and w′ are inthe same orbit. Let γ ∈ G suh that w′ = γ · w. Note that γ 6∈ Gw.Let us see that v must be a Z type vertex. We know that the stabiliser of j(e) ontains θ(ge)and θ(ge′ ), so that θ([ge, ge′ ]) = 1. As θ is injetive on Gv, the elements ge and ge′ of Gv ommute.Thus they have a ommon power whih �xes both e and e′: by strong 2-aylindriity, v is a Ztype vertex. This implies that w, w′, and j(w) are not type Z verties.Remark that θ(γ) · j(w) = j(γ · w) = j(w′) = j(w). Thus θ(γ) stabilises j(w), hene it lies in

θ(Gw). We an thus pik an element a of Gw suh that θ(a) = θ(γ).Let g be an element of Gv whih stabilise both e and e′: then g is both in Gw and in γGwγ−1.Let g′ ∈ Gw be suh that g = γg′γ−1. We have
θ(g) = θ(γ)θ(g′)θ(γ−1)

= θ(a)θ(g′)θ(a−1) = θ(ag′a−1).Sine θ is injetive on Gw, we dedue that g = ag′a−1 so g′ = γ−1gγ = a−1ga. This shows
[γa−1, g] = 1, so γa−1 preserves the set Fix(g) of �xed point of g. But Fix(g) has diameter 2and is entred on v, so γa−1 �xes v, and γa−1 ∈ Gv. Now a was hosen so that θ(γ) = θ(a), so
θ(γa−1) = 1. By injetivity of θ on Gv, we get γ = a. This is a ontradition sine γ is not in
Gw, but a is.4. Injetivity of θ. We have proved that j is injetive, and this implies that θ is injetive: if
g is a non-trivial element of G, there exists x ∈ T suh that g · x 6= x. Thus j(g · x) 6= j(x), so
θ(g) · j(x) 6= j(x) and θ(g) is non-trivial.



815. Surjetivity of j. We prove this by showing that if a vertex v is in the image of j, all theedges adjaent to v are also in the image. Suppose v is in the image of j, there exists gv in Gsuh that j(gv · v) = v. Pik e1, . . . , er some representatives of the orbits of edges adjaent to v.The image e′
k of gv · ek by j must be adjaent to v.We laim that if ek and el lie in di�erent orbits, so do e′

k and e′
l. Indeed, if e′

k and e′
l are in thesame orbit, there exists α in Gv suh that α · e′

k = e′
l. Sine the ation has no inversions, α must�x v. As v is in the image of j, its stabiliser is in the image of θ so there exists a ∈ G suh that

θ(a) = α. Thus θ(a) · j(gv · ek) = j(gv · el), so by equivariane of j we get j(agv · ek) = j(gv · el).By injetivity of j this means ek and el are in the same orbit: this proves the laim. Thus theedges e′
k form a system of representative of the orbits of edges adjaent to v.Now let e be an edge adjaent to v: there is an edge e′

k whih is in the orbit of e, thusthere is an element β ∈ G suh that β · e′
k = e. Sine the ation has no inversions, β must�x v. We know Gv is in the image of θ so there exists b ∈ G suh that θ(b) = β. Thus

j(b · (gv · ek)) = θ(b) · j(gv · ek) = β · e′
k = e, so e is in the image of j. Hene all the verties whihneighbour v are in the image of j. This loal surjetivity ondition implies global surjetivity of

j.6. Surjetivity of θ. Let g ∈ G and let v be a vertex of T with non-yli stabiliser. Bysurjetivity of j there exists w suh that j(w) = v, and w′ suh that j(w′) = g · v. Clearly w and
w′ are in the same orbit. Thus there exists h ∈ G suh that Gw′ = hGwh−1. We see that

gGvg−1 = Gg·v = θ(Gw′ ) = θ(h)θ(Gw)θ(h−1) = θ(h)Gvθ(h−1).We get Gv = g−1θ(h)Gvθ(h)−1g. Thus Gv stabilises both v and g−1θ(h) · v. Sine Gv is notyli, v = g−1θ(h) · v so g−1θ(h) ∈ Gv. Sine we know that Gv is in the image of θ, we get that
g is in the image of θ.We proved that θ is bijetive, this terminates the proof.
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Chapter 9Non-pinhing maps and the �niteindex propertyIn this hapter, we study morphisms f : A → G, where G admits a deomposition as a graphof groups with surfaes Γ, �rst in the ase where A is the fundamental group of a surfae withboundary Σ, then more generally if A is the fundamental group of a graph of groups with surfaes
Λ, or a free produt of suh groups. One of the aims is to give onditions under whih any surfaetype vertex of Γ intersets the image of the morphism f either in a boundary subgroup, or in asubgroup of �nite index. This is what we all the �nite index property. One of the assumptionswe will need is that the map f is non-pinhing, that is, that its kernel does not ontain elementsorresponding to simple losed urves on Σ or on the surfaes of Λ. We will also see that underthe right hypotheses, if a surfae type vertex group S of Γ intersets f(A) with �nite index, itmust ontain the image of the fundamental group of a subsurfae of a surfae Σ′ of Λ. We willalso show that this implies that the omplexity of the surfae Σ′ is greater than that of the surfae
Σ orresponding to S.9.1 Surfaes with boundaryWe �rst restrit ourselves to the ase where A is the fundamental group of a surfae with boundary.9.1.1 Surfaes ating on simpliial treesLet us �rst give a useful lemma to understand ations of fundamental groups of surfaes withboundary on simpliial trees. For this, we need the following de�nitions.De�nition 9.1: (essential urves, elements orresponding to an essential urve, essential tubularneighbourhood) An essential urve γ on a surfae with boundary Σ is the free homotopy lass ofa non-ontratible, two-sided, and non-boundary parallel simple losed urve γ0.To an essential urve γ orresponds a onjugay lass of in�nite yli subgroups of the fun-damental group of Σ, we all their generators the elements orresponding to γ.The simple losed urve γ0 has an open neighbourhood whih is homeomorphi to an annulus,we all suh a neighbourhood a tubular neighbourhood of γ. Given a set of essential urves C,a tubular neighbourhood Ca of C is the union of disjoint tubular neighbourhoods, one for eahessential urve in C.De�nition 9.2: (graph of groups ∆(Σ, C) dual to a set of urves) Let Σ be a surfae with bound-ary, and let C be a set of essential urves on Σ. By the Van Kampen lemma, S admits a splitting83



84 CHAPTER 9. NON-PINCHING MAPS AND THE FINITE INDEX PROPERTY
∆(Σ, C) whose edge groups are the in�nite yli groups generated by elements orresponding tothe urves of C, and whose vertex groups are the fundamental groups of the onneted omponentsof the omplement in Σ of a tubular neighbourhood Ca of C. An edge orresponding to a urve
γ joins two verties orresponding to onneted omponents Σ1 and Σ2 if there is a path in Σbetween Σ1 and Σ2 whih intersets only one omponent of Ca, the one orresponding to γ. Weall ∆(Σ, C) the graph dual to the set of urves C, and the orresponding tree TC is alled the treedual to C.Finally we de�neDe�nition 9.3: (minimal equivariant map) Let G be a group whih ats on simpliial trees Tand T ′. An equivariant map t : T → T ′ is said to be minimal if it sends verties on verties, ifevery edge is sent on the unique path between the images of its endpoints, and if for any vertex
v of T whose stabiliser also stabilises an edge e adjaent to t(v), no open neighbourhood of v hasimage ontained in e.The following lemma is a partiular ase of theorem III.2.6 in [MS84℄.Lemma 9.4: Suppose that the fundamental group S of a surfae with boundary Σ ats on asimpliial tree T , in suh a way that the boundary subgroups are ellipti. Then there exists asystem C of essential urves on Σ, and a minimal equivariant map t : TC → T .Note that the map t is not neessarily simpliial.Remark 9.5: The yli subgroups of S orresponding to urves in C stabilise edges of T . If Ca isa tubular neighbourhood of C, the fundamental groups of onneted omponents of the omplementof Ca are vertex groups of ∆(Σ, C), thus they are ellipti in T .The proof of this lemma is essentially the �rst part of the proof of theorem III.2.6 in [MS84℄.Sine we do not laim that the equivariant map is injetive, we do not need to assume that thestabilisers in S of the edges of T are yli.The idea of the proof is to onstrut an equivariant simpliial map f from a universal over of
Σ to the tree T , then to look at the lift by f of midpoints of edges of T . The map an be built insuh a way that the lifts by f give by the overing map non-null homotopi simple losed urves.We take for C the homotopy lasses of these simple losed urves. Sine some of the urves mightbe in the same homotopy lass, we lose the simpliiality of the map f .9.1.2 Non-pinhing maps and the �nite index propertyDe�nition 9.6: (non-pinhing) Let Σ be a surfae with boundary, and let S be its fundamentalgroup. A morphism f : S → G is said to be non-pinhing with respet to Σ if its kernel doesnot ontain any element orresponding to an essential urve lying on Σ, and if it is injetive onboundary subgroups.The following lemma is a ruial ingredient of the proof of proposition 7.15.Lemma 9.7: Let S and S′ be the fundamental groups of surfaes with boundary Σ and Σ′. Let
f : S → S′ be a non-pinhing map whih sends boundary subgroups of S into boundary subgroupsof S′. If f(S) is not ontained in a boundary subgroup of S′, then it is a subgroup of �nite indexof S′.To prove it, we will useLemma 9.8: Let Q be the fundamental group of a surfae with boundary Ξ. If Q0 is a �nitelygenerated in�nite index subgroup of Q, it is of the form

C1 ∗ . . . ∗ Cm ∗ F



9.1. SURFACES WITH BOUNDARY 85where F is a (possibly trivial) free group, eah of the groups Cj is a boundary subgroup of Q,and any boundary element of Q ontained in Q0 an be onjugated in one of the groups Cj by anelement of Q0.Proof. By Theorem 2.1 in [So78℄, there exists a �nite overing p : Ξ1 → Ξ, and a subsurfae
Ξ0 of Ξ1, suh that Q0 is the image by the injetion p∗ of the fundamental group of Ξ0. Let
Q1 = π1(Ξ1). The overing is �nite, so Ξ1 is ompat, Q1 is of �nite index in Q, and theboundary elements of Q1 are exatly the boundary elements of Q ontained in Q1. Sine Q0 is ofin�nite index in Q, it must be of in�nite index in Q1. Thus Ξ0 is a proper subsurfae of Ξ1, andthus at least one of its boundary omponents γ is not a boundary omponent of Ξ1. This impliesthe lemma.We an now prove lemma 9.7.Proof. Suppose f(S) has in�nite index in S′. Then it admits a free produt deomposition
C1 ∗ . . . ∗ Cm ∗ F as given by lemma 9.8, in whih m ≥ 1 sine boundary elements of S aresent to boundary elements of S′. Sine f(S) is not ontained in a boundary subgroup of S,this deomposition ontains at least two fators, so the orresponding minimal f(S)-tree T0 withtrivial edge stabilisers is not redued to a point. The group S ats via f on T0, the tree T0 isminimal for this ation, and boundary subgroups of S are sent to boundary subgroups of S′, thusthey lie in onjugates of the fators Ci and they are ellipti in T0. By lemma 9.4, we get a set ofessential simple losed urves on Σ whose orresponding elements stabilise edges of T0 via f , i.e.have trivial image by f . This ontradits the fat that f is non-pinhing on Σ.9.1.3 ComplexitiesWe will denote by rk(F ) the rank of a �nitely generated free group F .De�nition 9.9: (topologial omplexity) Let Σ be a surfae with boundary, denote by S itsfundamental group. The topologial omplexity k(Σ) of Σ is the pair (rk(S),−n), where n isthe number of boundary omponents of Σ. We order topologial omplexities by the lexiographiorder.We will give a lemma whih shows in partiular that if we have a non-pinhing morphism asabove between the fundamental groups of surfaes with boundary Σ and Σ′, then the omplexityof Σ is at least the omplexity of Σ′.Lemma 9.10: Let S and S′ be the fundamental groups of surfaes with boundary Σ and Σ′. If
f : S → S′ is a map whih sends boundary subgroups of S into boundary subgroups of S′, andsuh that f(S) is a subgroup of �nite index of S′, then

k(Σ) ≥ k(Σ′);and if we have equality, f is an isomorphism.Proof. A subgroup of �nite index in a �nitely generated free group of rank n is a free groupof rank at least n, with equality if and only if the index is 1. Thus rk(S′) ≤ rk(f(S)) withequality if and only if f is surjetive. Now rk(f(S)) ≤ rk(S), and sine free groups are Hop�an,we have equality if and only if f is injetive. Thus rk(S′) ≤ rk(S), with equality if and onlyif f is an isomorphism. If this is the ase, f sends non-onjugate boundary subgroups of S tonon-onjugate boundary subgroups of S′, so that Σ′ has at least as many boundary omponentas Σ. Thus k(Σ′) ≤ k(Σ).



86 CHAPTER 9. NON-PINCHING MAPS AND THE FINITE INDEX PROPERTY9.2 Graphs of groups with surfaesWe now want to generalise the previous setions from the ase where A is fundamental group ofa surfae with boundary to the ase where A is the fundamental group of a graph of groups withsurfaes.9.2.1 Ellipti re�nements of graphs of groups with surfaesLet A and G be fundamental groups of graphs of groups with surfaes Λ and Γ respetively. Let
f : A→ G be a morphism whih sends edge groups and non surfae type vertex groups of Λ intonon surfae type vertex groups of Γ.Eah surfae type vertex group S of Λ orresponding to a surfae Σ ats on the tree TΓorresponding to Γ via the map f , and boundary subgroups of S are ellipti in this ation. Bylemma 9.4, we get a set of essential urves C+(Σ) on Σ. We an then re�ne the graph of groups Λby the graph of groups ∆(Σ, C+(Σ)) dual to the set of urves C+(Σ) (reall de�nition 9.2). Everyvertex group of the re�ned graph of groups Λ+ thus obtained is ellipti in the ation of A on TΓvia f . Denote by C+ the union of all the sets C+(Σ).De�nition 9.11: (ellipti re�nement of a graph of group) We all the graph of groups Λ+ builtas above an ellipti re�nement of Λ relative to f and Γ, given by the set of urves C+.Remark 9.12: There is a map t+ : TΛ+ → TΓ whih sends verties on verties, is f -equivariantand minimal. This an easy onsequene of the fat that all the vertex groups of Λ+ have imageby f ellipti in TΓ.9.2.2 Non-pinhing maps on graphs of groups with surfaesDe�nition 9.13: (non-pinhing with respet to a graph of groups with surfaes) Let Λ be a graphof groups with surfaes. We say that a morphism f : π1(Λ)→ G is non-pinhing with respet to
Λ if the restrition of f to eah surfae type vertex group of Λ is non-pinhing.Setting. For the rest of setion 9.2, A1 and A are groups whih admit deompositions Λ1 and
Λ as a graph of groups with surfaes whose edge groups are in�nite yli. Also, f : A1 → A is amorphism whih sends non surfae type vertex groups and edge groups of Λ1 injetively into nonsurfae type vertex groups and edge groups of Λ respetively.By the previous setion, we an de�ne an ellipti re�nement Λ+

1 of Λ1 with respet to f and Λ.We then know that there exists a minimal f -equivariant map t+ : TΛ+
1
→ TΛ. In the ase where

f is non-pinhing with respet to Λ1, the next lemma gives us neessary and su�ient onditionson a surfae type vertex of TΛ for it to lie in the image of t+.Lemma 9.14: Suppose we are in the setting above. If f is non-pinhing with respet to Λ1, forany surfae type vertex v of TΛ with stabiliser S the following are equivalent(i) v lies in the image of TΛ+
1
by t+;(ii) there is a onjugate of a surfae type vertex group S+ of Λ+

1 whose image by f lies in S;(iii) there is a onjugate of a surfae type vertex group S+ of Λ+
1 whose image by f is a subgroupof �nite index of S;(iv) the intersetion of S with the image of A1 by f is not ontained in a boundary subgroup of

S.



9.2. GRAPHS OF GROUPS WITH SURFACES 87Proof. The fat that f is non-pinhing on Λ1, and injetive on its edge groups implies that it isalso non-pinhing on Λ+
1 and injetive on its edge groups.

(i) ⇒ (ii): If w is a non surfae type vertex of TΛ+
1
with non-abelian stabiliser R, then f isinjetive on R so f(R) is non-abelian, thus it stabilises exatly one vertex in TΛ. But f(R) liesin a non surfae type vertex group of Λ, so t+(w) 6= v.Suppose now that w is a non surfae type vertex w of TΛ+

1
with abelian stabiliser Z. Byminimality, either the image of the star of w intersets at least two edges adjaent to t+(w), or

f(Z) properly ontains all the edge group of the unique edge on whih the star of w is sent. Inthe �rst ase, note that the image of the star of w is stabilised by a non-trivial element, so by
1-aylindriity next to surfae type verties, t+(w) is not of surfae type. In the seond ase,note that edge groups adjaent to surfae type verties are maximal yli in the surfae group,so t+(w) an not be of surfae type.Finally, if e is an edge of TΛ+

1
, the image of its interior is stabilised by a non-trivial element,thus it does not ontain any surfae type verties by 1-aylindriity next to surfae type vertiesand by minimality of t+.Thus we see that if a surfae type vertex with stabiliser S is in the image of t+, it means thatit is the image of some surfae type vertex of TΛ+

1
with stabiliser S+. Thus f(S+) ≤ S as laimed.

(ii) ⇒ (iii): The map f sends edge groups of TΛ+
1
to edge groups of TΛ, thus boundarysubgroups of S+ are sent to boundary subgroups of S. Moreover, by minimality of t+ and 1-aylindriity next to surfae type verties, f(S+) is not ontained in a boundary subgroup of S.By lemma 9.7, this means that f(S+) has �nite index in S.

(iii)⇒ (iv): This is lear.
(iv)⇒ (i): If v lies outside of t+(TΛ+

1
), the intersetion between f(A1) and S stabilises both

v and t+(TΛ+
1

), thus it stabilises the non-trivial path between them. Thus it stabilises one of theedges adjaent to v, whih implies that it is ontained in a boundary subgroup of S.9.2.3 Surfae omplexity of graphs of groupsDe�nition 9.15: (omplexity of a set of surfaes, surfae omplexity of a graph of groups withsurfaes) Let S = {Σi | 1 ≤ i ≤ l} be a set of surfaes with boundary, and reall that k(Σi) denotesthe topologial omplexity of Σi. The omplexity K(S) is the �nite sequene (k(Σi))1≤i≤l of theomplexities of surfaes of S arranged in dereasing order.We order the omplexities of sets of surfaes lexiographially, that is
k(Σ1) . . . k(Σl) < k(Σ′

1) . . . k(Σ′
l′ )if {i | k(Σi) 6= k(Σ′

i); 1 ≤ i ≤ min{l, l′}} is non-empty, has minimum j, and k(Σj) < k(Σ′
j); or ifthe set is empty and l < l′.If Λ is a graph of groups with surfaes, its surfae omplexity is the omplexity of its set ofsurfaes.Lemma 9.16: If C+ is not empty, the surfae omplexity of an ellipti re�nement Λ+

1 of a graphof groups Λ1 is stritly smaller than that of Λ1.Proof. Let Σ be a surfae of Λ1 with fundamental group S. The vertex orresponding to Σ in
Λ1 is replaed by the graph of groups ∆(Σ, C+) to build Λ+

1 . Thus, showing that the surfaes of
∆(Σ, C+) have omplexity stritly smaller than that of Σ is enough to prove the lemma.The rank of S is given by 1− χ(Σ), where χ is the Euler harateristi. Suppose C+ ontainsa single urve whih lies on Σ. If it separates Σ into two subsurfaes Σ1 and Σ2, we have

χ(Σ) = χ(Σ1) + χ(Σ2)



88 CHAPTER 9. NON-PINCHING MAPS AND THE FINITE INDEX PROPERTYSine the urves are not boundary parallel, Σ1 and Σ2 have stritly negative Euler harateristi,or one of he subsurfaes, without loss of generality Σ2, is a Möbius band. In the �rst ase, theharateristi of Σ1 and Σ2 are stritly bigger than that of Σ. In the seond ase, Σ1 has thesame Euler harateristi as Σ, but one extra boundary omponent. Thus the omplexities of Σ1and Σ2 are always stritly smaller than that of Σ. If the urve is not separating, ∆(Σ, C+) hasa unique surfae type vertex, whose orresponding surfae has Euler harateristi equal to thatof Σ, but whih has two additional boundary omponents. Its omplexity is therefore stritlysmaller than that of Σ. If more than one urve lies on Σ, we proeed by indution.The following lemma gives us a relation between the surfae omplexities of graphs of groups
Λ1 and Λ when the map f : A1 → A is non-pinhing.Lemma 9.17: If f is non-pinhing with respet to Λ1, and if t+ : TΛ+

1
→ TΛ is surjetive, thesurfae omplexity of Λ1 is greater than or equal to that of Λ.Proof. Eah surfae type vertex lies in the image of t+, so by lemma 9.14, for eah surfae typevertex group S of Λ there is a surfae type vertex group S+ of Λ+

1 suh that f(S+) has �nite indexin a onjugate of S. By lemma 9.10, the omplexity of the surfae orresponding to S+ is thusgreater than that of the surfae orresponding to S. In this way, to eah surfae of Λ orrespondsa surfae of Λ+
1 whose omplexity is greater, and this orrespondene gives an injetion from theset of surfaes of Λ to the set of surfaes of Λ+

1 . This implies that the surfae omplexity of Λ issmaller than that of Λ+
1 , whih in turn is smaller than that of Λ1 by lemma 9.16.9.3 Finite index property for free produtsWe now want to prove a proposition that should be thought of as a generalisation of lemma9.14 in the ase where instead of a morphism from A1 to A, we have a map from a free produt

A1 ∗ . . . ∗Al to A. We will see that up to onjugation on these free fators, we still ontrol whihsurfae type vertex groups of Λ interset the image of a non-pinhing map in a subgroup biggerthan a boundary subgroup.Proposition 9.18: Let A1, . . . , Al be groups whih admit JSJ-like deompositions Λ1, . . . ,Λl andlet Λ be a graph of groups with surfaes with fundamental group A. Assume that K(Λi) < K(Λ).Suppose h : A1 ∗ . . . ∗ Al → A is a map whih sends non surfae type vertex groups and edgegroups of the graphs of groups Λi injetively into non surfae type vertex groups and edge groupsof Λ respetively, and suh that the maps h|Ai are non-pinhing with respet to the graphs Λi. Foreah i with 1 ≤ i ≤ l, let Λ+
i be an ellipti re�nement of Λi with respet to h|Ai and Λ.Then there exists a map h̃ : A1 ∗ . . . ∗ Al → A suh that h̃|Ai oinides with h|Ai up toonjugation, suh that h̃(A1 ∗ . . . ∗ Al) = h̃(A1) ∗ . . . ∗ h̃(Al), and suh that for any surfae typevertex group S of Λ, the following are equivalent:(i) The intersetion of S with h̃(A1 ∗ . . . ∗Al) is not ontained in a boundary subgroup of S.(ii) There is a onjugate of a surfae type vertex group S+ of one of the graphs of groups Λ+

iwhose image by h̃ has �nite index in S.To prove this we will need the following lemmas.Lemma 9.19: Let G be a �nitely generated group, and let T be a minimal irreduible G-tree. If
τ and τ ′ are proper subtrees of T , for any integer D, there is a translate of τ ′ by an element of
G whih lies at a distane at least D of τ .



9.3. FINITE INDEX PROPERTY FOR FREE PRODUCTS 89Proof. By lemme 4.3 in [Pau89℄, the hypotheses allow us, for any two distint verties v and w of
T , to �nd an element of G whih is hyperboli in the ation of G on T , and whose axis ontainsthe path between v and w.Suppose �rst that the smallest tree τ0 ontaining τ ∪ τ ′ is a proper subtree of T . Let K bea onneted omponent of the omplement of τ0 in T , and let u be the vertex of T suh that
K ∩ τ0 = {u}. By minimality and irreduibility of the ation, K is not a line, so we an �ndpoints v and w in suh a omponent suh that the tripod formed by v, w, and u is non-trivial.We pik a hyperboli element g whose axis ontains the path between v and w. The projetionof τ and τ ′ on the axis of g is redued to a point. Thus gD · τ ′ is at distane greater than D of τ .If on the other hand, τ0 = T , we pik verties v, w of the tree whih are in τ ′ but not in τ , andin τ but not in τ ′ respetively. Now τ lies in the onneted omponent of T − {v} ontaining wand τ ′ lies in the onneted omponent of T −{w} ontaining v. Thus the intersetion τ ∩ τ ′ liesin the onneted omponent of T −{v, w} ontaining the ar between v and w. Pik a hyperbolielement whose axis ontains the path between v and w. By applying a suitable power of thiselement we an translate τ ′ away from τ .Lemma 9.20: Let G be a �nitely generated group, and let τ be a k-aylindrial minimal G-tree.Suppose G1 and G2 are subgroups of G whih generate G, and whose minimal subtrees T1 and T2in τ lie at a distane at least 2k + 3 from eah other. If v is a vertex whih lies in τ
• either Stab(v) stabilises an edge adjaent to v;
• or v lies in a translate of Ti by an element of G, and in this ase Stab(v) stabilises thistranslate.Remark 9.21: If the hypotheses hold, we have G = G1 ∗G2. Indeed, the minimal tree τ of G isthe union of translates of T1, translates of T2, and translates of the path between them. Sine thepath between them has length greater than k + 1, it is trivially stabilised.Proof. Denote by D the path joining T1 to T2. The tree τ is the union of translates of T1, T2 and

D by elements of G. Let T̂i for i = 1, 2 be the set of points whose distane to Ti is at most k+ 1:note that T̂1 and T̂2 are disjoint. Denote by D̂ the subsegment of D whih joins T̂1 and T̂2. Let
B1 be the omplement in τ − T̂1 of the onneted omponent ontaining the interior of D̂, andlet B2 be the omplement in τ − T̂2 of the onneted omponent ontaining the interior of D̂.By k-aylindriity, an element of G1 sends points of D̂, of T̂2 and of B2 into B1, and anelement of G2 sends points of D̂, of T̂1 and of B1 into B2.If v ∈ D̂, its image by a non-trivial element of G lies in B1 ∪ B2, thus Stab(v) ∩ G is trivial.If v ∈ T̂1 and g · v = v then g ∈ G1: indeed, otherwise we an see that g · v ∈ B2. Thus if v ∈ T1,the stabiliser of v also stabilises T1, and if v ∈ T̂1 − T1, the stabiliser of v also stabilises the pathbetween v and T1, so it stabilises an edge adjaent to v. We get a similar result if v ∈ T̂2. If vlies in a translate g · D̂ of D̂, or in a translate g · T̂i of T̂i, we apply the results above to g−1 · v.This is enough to onlude.We an now prove proposition 9.18.Proof. We prove by indution on the number of fators l that the result holds, and that moreoverwe an require that the map h̃ is suh that the minimal subtree of h̃(A1 ∗ . . . ∗ Al) in TΛ is aproper subtree.For l = 1, if we take h̃ = h the result holds by 9.14. Sine we assumed that K(Λ1) < K(Λ),the minimal subtree of h(A1) does not over TΛ by lemma 9.17.Suppose by indution that for l = n − 1, the indution hypothesis holds. Let h be a map
A1 ∗ . . . ∗ An → A whih satis�es all the hypotheses. The indution hypothesis gives us a map
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h̃ from A1 ∗ . . . ∗ An−1 to A suh that h̃|Ai oinides with h|Ai up to onjugation for i < n, andsuh that the minimal subtree T1 of G1 = h̃(A1 ∗ . . . ∗An−1) is a proper subtree of TΛ.Consider the minimal tree of h(An): sine we assumed K(Λn) < K(Λ), by lemma 9.17, it isalso a proper subtree of TΛ. Thus by lemma 9.19, it has a translate T2 by an element α of Awhih lies at a distane at least 7 of T1. Extend h̃ to An by setting h̃|An = Conj (α) ◦ h|An . Then
T2 is the minimal subtree of G2 = h̃(An).Note that the group G generated by G1 = h̃(A1 ∗ . . . ∗ An−1) and G2 = h̃(An) is preisely
h̃(A1 ∗ . . . ∗An), we denote its minimal subtree by τ and we apply lemma 9.20. By remark 9.21,
h̃(A1 ∗ . . . ∗An) = h̃(A1 ∗ . . . ∗An−1) ∗ h̃(An) so by indution hypothesis we get

h̃(A1 ∗ . . . ∗An) = h̃(A1) ∗ . . . ∗ h̃(Al).Moreover, τ is properly ontained in TΛ, sine the points whih lie on the path between T1 and
T2 are branhing points in TΛ, but not in τ .Now let v be a surfae type vertex of TΛ, and denote by S its stabiliser. If v lies outside of τ ,the intersetion S ∩ h̃(A1 ∗ . . . ∗ An) stabilises both v and τ , thus it is ontained in a boundarysubgroup of S. We may thus assume that v lies in τ . By lemma 9.20, either S ∩ h̃(A1 ∗ . . . ∗An)is ontained in the stabiliser of an edge adjaent to v, in whih ase we are done, or v lies in atranslate of T1 or T2.If v lies in T1 itself, lemma 9.20 also tells us that the stabiliser of v by G, i.e. the intersetion
S ∩ h̃(A1 ∗ . . . ∗ An), is ontained in the stabiliser G1 of T1, namely h̃(A1 ∗ . . . ∗ An−1). Byindution hypothesis we have two possibilities: either the intersetion S ∩ h̃(A1 ∗ . . . ∗An−1) liesin a boundary subgroup of S, but then so does the intersetion S ∩ h̃(A1 ∗ . . . ∗An); or there is aonjugate of a surfae type vertex group S+ of one of the graphs Λ+

i for i < n − 1 whose imageby h̃ lies in the stabiliser of v.If v lies in T2 itself, lemma 9.20 also tells us that the intersetion S ∩ h̃(A1 ∗ . . . ∗ An) isontained in h̃(An). Then, by lemma 9.14, there is a onjugate of surfae type vertex group S+of Λ+
n whose image by h̃ lies in the stabiliser of v.Finally, if v lies in a translate of T1 or T2 by an element α of h̃(A1 ∗ . . . ∗ An), we apply theresults above to the vertex α−1 · v. This is enough to prove the result.



Chapter 10From preretrations to hyperboli�oorsIn this hapter, we prove proposition 7.15 and proposition 7.16. From the existene of a non-injetive preretration f : A→ A, proposition 7.15 dedues the existene of a retration r whihmakes (A, r(A), r) a hyperboli �oor, and from the existene of a non-injetive preretration
A → G, proposition 7.16 dedues the existene of a preretration from A to a retrat of G. Inboth proofs, the idea is to modify f into the retration r.The previous hapter showed that for a non-pinhing map, we ontrol what happens to surfaetype verties: it will thus be useful to work with non-pinhing maps. The �rst setion of thishapter explains how to fator a preretration f : A→ G as f ′ ◦ ρ, where f ′ is non-pinhing withrespet to some free fators of ρ(A). This will be done by letting ρ kill elements orrespondingto simple losed urves whih lie in the kernel of f .In the seond setion, we worry about the non-abelianity of the image of surfae groups, andgive a riterion whih will enable us later to guarantee that it is still satis�ed despite all thetransformations we will make f undergo.In the third setion, we de�ne a omplexity on the set of non-injetive preretrations A→ A.Note that this set ontains f , so is non-empty by hypothesis. We then proeed to study a maximalelement, and we will see how we an build from it a retration A→ A′ whih makes (A,A′, r) ahyperboli �oor, thus proving proposition 7.15.The fourth setion �nally gives a proof of proposition 7.16. It should be noted that the thirdand the fourth setion are independent.10.1 Pinhing a set of urvesLet A be the fundamental group of a graph of group with surfaes Λ whih has in�nite yliedge groups. Let C be a set of essential urves on the surfaes of Λ. Let N(C) be the subgroup of
A normally generated by the elements orresponding to the urves of C.De�nition 10.1: (pinhing map) We denote by ρC the quotient map A→ A/N(C), and we allit the pinhing map of A by C.Denote by ρC of Λ the quotient deomposition, namely the deomposition obtained from Λ byreplaing eah vertex group by its image by ρC (not that ρC is injetive on edge groups of Λ).Let us now build a deomposition as a graph of groups with surfaes for ρC(A). For this, wewill re�ne ρC(Λ) by deompositions of the groups ρC(S). For eah surfae type vertex group S of
Λ with orresponding surfae Σ, onsider the graph of groups dual to the set of essential urves91
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Λ

Σ

Λ1

AC ∗ RC

A

ρC

ΛC

Γ(Σ, C)

Λ2
Λ3Figure 10.1: The pinhing of Λ by C.of C whih lie on Σ. We denote it by ∆(Σ, C). We get a graph of group deomposition Γ(Σ, C)for ρC(S) by replaing eah vertex and edge group of ∆(Σ, C) by its image by ρC .A vertex group S0 of ∆(Σ, C) is the fundamental group of a subsurfae Σ0 of Σ. The imageof S0 by ρC is the fundamental group of the surfae obtained by gluing diss to the boundaryomponents of Σ0 orresponding to urves of C. Note thus that if all the boundary omponents of

Σ0 orrespond to urves of C, the image of S0 by ρC is the fundamental group of a losed surfae.Then, we all the orresponding vertex of Γ(Σ, C) an interior vertex.Re�ne the graph of groups ρC(Λ) by replaing eah surfae type vertex with orrespondingsurfae Σ by the graph of groups Γ(Σ, C) (see �gure 10.1).De�nition 10.2: (pinhing of a graph of groups) We all the graph of groups ΛC thus obtainedthe pinhing of Λ by C.Let us see that this graph of groups deomposition gives us a deomposition of ρC(A) as a freeprodut. Remove from ΛC all the interior of edges of the graphs Γ(Σ, C) as well as the interiorverties: denote by Λ1, . . . ,Λl the various onneted omponents. They are subgraphs of groupsof ΛC , and they admit a natural struture of graph of groups with surfaes whose surfae typeverties are exatly the verties whih belong to one of the subgraphs Γ(Σ, C). Call A1, . . . , Altheir fundamental groups.Remark 10.3: The graphs of groups Λi are JSJ-like deompositions.Lemma 10.4: If C is not empty, the omplexity of the set ontaining all the surfaes of the graphsof groups Λi is stritly smaller than the omplexity of the set of surfaes of Λ.Proof. As in the proof of lemma 9.16, it is enough to see that in the graph of groups Γ(Σ, C) whihreplaes the vertex orresponding to Σ, all the surfaes have omplexity smaller than that of Σ.But the surfaes of Γ(Σ, C) are obtained from surfaes of ∆(Σ, C) by gluing diss to boundaryomponents, whih stritly dereases the Euler harateristi, and thus the omplexity. We saw inthe proof of 9.16 that if at least one urve of C lies on Σ, the surfaes of ∆(Σ, C) have omplexitystritly smaller than that of Σ. This terminates the proof.



10.2. NON-ABELIANITY OF SURFACES 93Remark that if we ollapse the edges of the subgraphs Λi in Λ, the graph of groups we gethas trivial edges stabilisers. Piking a maximal subtree in it, and hoosing a lift in the ρC(A)-treeorresponding to this graph of group gives us an identi�ation of the groups Ai to subgroups of
ρC(A), and a free produt deomposition of ρC(A) of the form

ρC(A) = (A1 ∗ . . . ∗Al) ∗ (S1 ∗ . . . ∗ Sp) ∗ (Z1 ∗ . . . ∗ Zq) (†)where the groups Sj are fundamental groups of losed surfaes whih are not spheres, orrespond-ing to interior verties of the graphs of groups Γ(Σ, C), and eah group Zk is the in�nite ylisubgroup of ρC(A) orresponding to an edge lying outside the maximal subtree.De�nition 10.5: (pinhing deomposition of ρC(A)) We all the free produt deomposition (†)a pinhing deomposition of ρC(A) with respet to C.Note that di�erent hoies of maximal subtree and di�erent lifts in the ρC(A)-tree give usdi�erent pinhing deompositions of ρC(A).Finally, we will use the following notations
AC := A1 ∗ . . . ∗Al

RC := (S1 ∗ . . . ∗ Sp) ∗ (Z1 ∗ . . . ∗ Zq).Some of the vertex groups of the graphs of groups Λi whih have been sarely modi�ed bythe map ρC will play a partiular role in the third setion. They are given byDe�nition 10.6: (intat surfae type vertex of Λi) Let Σ be a surfae of Λ, and let S be theorresponding vertex group. Suppose that the graph of groups Γ(Σ, C) is a tree of groups, all ofwhose vertex groups exept one are trivial or isomorphi to Z/2Z. The exeptional vertex group
S0 is onjugate to a surfae type vertex group of one of the graphs of groups Λi. We all suh asurfae type vertex of Λi an intat surfae type vertex, and the orresponding surfae is alled anintat surfae of Λi.We said that our strategy was to fator the non-injetive preretration f as f = f ′ ◦ ρ, wherethe map f ′ is non-pinhing with respet to a suitable graph of groups. The map ρ should thusbe the quotient of A by a maximal set of elements oming from simple losed urves killed by
f . Note that if f is injetive on edge groups, no element orresponding to a boundary parallelsimple losed urve lies in the kernel of f . To make this preise, we giveDe�nition 10.7: (essential urves killed by f) Let A be the fundamental group of a graph ofgroups with surfaes Λ, whose edge groups are in�nite yli. Let f : A → G be a map whih isinjetive on edge groups.Consider systems of two-sided non-homotopi non boundary parallel simple losed urves onthe surfaes of Λ whose orresponding elements in A are in the kernel of f . For eah urve insuh a set, we say that the orresponding essential urve is killed by f .If the system of simple losed urves we hose is maximal for inlusion among all suh systems,the assoiated set of free homotopy lasses is alled a maximal set of essential urves of Λ killedby f .Remark 10.8: In the setting of de�nition 10.7, if C is a maximal set of essential urves killedby f , the map f fators as f ′ ◦ ρC, and f ′|Ai is non-pinhing with respet to Λi.10.2 Non-abelianity of surfaesThis riterion will prove very useful in the proofs of propositions 7.15 and 7.16. It will imply thatif we have a map g from AC to a torsion-free hyperboli group G, as long as intat surfae type



94 CHAPTER 10. FROM PRERETRACTIONS TO HYPERBOLIC FLOORSvertex groups are not sent to abelian images, we an extend g to a map from ρC(A) = AC ∗RC to
G whose omposition with ρC sends all the surfae type vertex groups of Λ to non-abelian images.Lemma 10.9: Let A be a group whih admits a JSJ-like deomposition Λ. Let C be a set ofessential urves on the surfaes of Λ. Choose a pinhing deomposition of ρC(A). Suppose g is amap from A1 ∗ . . . ∗Al to a torsion-free hyperboli group G suh that
• g is injetive on edge groups of the graphs Λi,
• if two edge groups of some of the graphs Λi have disjoint onjugay lasses in AC , theirimages by g have disjoint onjugay lasses in G;
• the images by g of intat surfae type vertex groups are non-abelian.Then there exists a �nite union Ug of in�nite yli subgroups of G suh that for any map τ :

(S1 ∗ . . .∗Sp)∗ (Z1 ∗ . . .∗Zq)→ G, if for all k, and for all j suh that Sj is not a projetive plane,the images τ(Sj) and τ(Zk) are not ontained in Ug, then the map (g ∗ τ) ◦ ρC : A → G sendssurfae type vertex groups of Λ on non-abelian images.Proof. Let Σ be a surfae of Λ, denote by S the orresponding surfae type vertex group, and by
vS the orresponding vertex of Λ.If Γ(Σ, C) is a tree of groups, all of whose vertex groups exept one are fundamental groups ofspheres and projetive planes, then ρC(S) ontains an intat surfae type vertex group Qi. Theimage of Qi by g is non-abelian, so the image of S by (g ∗ τ) ◦ ρC is non-abelian regardless of thehoie of τ . We may now assume that Γ(Σ, C) is not a tree all of whose vertex groups exept oneare trivial or Z/2Z.Suppose that S has two maximal boundary subgroups B1 and B2 whose onjugay lasses aredisjoint in A. The edges adjaent to vS orresponding to B1 and B2 are not adjaent to a same
Z type vertex. Thus the groups ρC(B1) and ρC(B2) stabilise two edges whih are not adjaentto a same Z type vertex. If these two edges lie in the same Λi, by remark 7.10 they have edgegroups whose onjugay lasses are disjoint in ρC(A) sine Λi is a JSJ-like deomposition. If theylie in distint graphs Λi, the orresponding edge groups lie in onjugates of distint free fatorsof ρC(A), so they also have disjoint onjugay lasses. By our seond assumption on g, regardlesson the hoie of the map τ , the image of S by (g ∗ τ) ◦ ρC ontains two yli subgroups whoseonjugay lasses are disjoint. In partiular it is not yli, and thus it is non-abelian sine it liesin G whih is torsion-free hyperboli.We may thus assume by remark 7.10 that all the edges adjaent to vS in Λ are adjaent to aommon Z-type vertex. This implies that all the edges in ΛC adjaent to the subgraph Γ(Σ, C)are adjaent to a same vertex wZ , whose group is in�nite yli. Let z be a generator of the grouporresponding to wZ .Suppose �rst that Σ has at least two boundary omponents, with orresponding boundarysubgroups B1 and B2. Reall that in the graph of groups ∆(Σ, C), the groups B1 and B2 areellipti, thus their images ρC(B1) and ρC(B2) stabilise verties w1 and w2 of Γ(Σ, C). There is a(possibly trivial) path in Γ(Σ, C) joining the two verties w1 and w2. This path, together withthe two edges joining w1 and w2 to wZ gives a loop in the graph of groups ΛC , that an be hosento ontain exatly one edge whih is not in the maximal subtree we hose to de�ne our pinhingdeomposition. Thus, up to replaing S by a onjugate, ρC(S) ontains z and tzt−1, where t is agenerator of one of the fators Zj of the pinhing deomposition of ρC . If τ(t) does not lie in themaximal yli subgroup Cg(z) ontaining g(z), then (g ∗ τ)(z) and (g ∗ τ)(tzt−1) do not ommutein G, so (g ∗ τ) ◦ ρC(S) is not abelian.Suppose now Σ has only one boundary omponent. Then either Γ(Σ, C) is not a tree ofgroups, or it ontains an interior vertex whose group is the fundamental group of a losed surfaeof positive genus. Up to replaing S by a onjugate, we see that ρC(S) ontains both z and either



10.3. MAXIMAL PRERETRACTIONS 95one of the fators Zj , or one of the fators Sj of the pinhing deomposition. If the image of thisfator by τ lies outside of the maximal yli subgroup Cg(z) ontaining g(z), the image of S by
(g ∗ τ) ◦ ρC is not abelian.Note that we haveLemma 10.10: If G is a torsion-free hyperboli group, a non-yli subgroup G′ of G is notontained in a �nite union of yli groups.Proof. Cyli subgroups of G are quasionvex, so suh a reunion U has growth in G at mostlinear (that is, the size of the set BG(n) ∩ U grows linearly with n). Sine G′ is torsion-free andnon-abelian, its growth is non-linear, thus the size of the set BG(n) ∩ G′ grows faster than anylinear funtion.Remark 10.11: If G is torsion-free hyperboli, if g : AC → G sends intat surfae type vertexgroups on non-abelian images, is injetive on edge groups of Λi, and preserves disjointness ofonjugay lasses of edge groups, and if g(A1 ∗ . . . ∗ Al) is not yli, we an always �nd a map
τ : (S1∗. . .∗Sp)∗(Z1∗. . .∗Zq)→ g(A1∗. . .∗Al) suh that the map (g∗τ)◦ρC : AC → g(A1∗. . .∗Al)sends surfae type vertex groups on non-abelian images.The following lemma shows in partiular that if a preretration f : A → G fators as f ′ ◦ ρCwhere C is a maximal set of essential urves killed by f , and G is torsion-free hyperboli, thenintat surfae type vertex groups have non-abelian images by f ′, so f ′ satis�es the onditions oflemma 10.9.Lemma 10.12: Let f : A→ G be a morphism whih sends surfae type vertex groups of Λ ontonon-abelian images, and is injetive on edge groups. Let C be a maximal set of essential urveskilled by f , so that f fators as f ′ ◦ ρC. Suppose G is torsion-free hyperboli.If S is a surfae type vertex group orresponding to an intat surfae Σ of Λi, and if ∆(Σ, C+)is a graph of group deomposition dual to a set of essential urves C+ on Σ, there is at least onevertex group of ∆(Σ, C+) whose image by f ′ is non-abelian.Proof. We show �rst that f ′(S) is non-abelian. The group S is the unique in�nite vertex groupof one of the graph of groups of the form Γ(Σ0, C) for some surfae Σ0 of Λ, and we know that thegraph underlying Γ(Σ0, C) is a tree of groups. Sine G is torsion-free, the image by f ′ of the other�nite vertex groups of Γ(Σ0, C) are trivial, so that the image of the fundamental group ρC(S0) of
Γ(Σ, C) by f ′ is exatly the image of S by f ′: we have f(S0) = f ′(ρC(S0)) = f ′(S). Now sine S0is a surfae type vertex group of Λ, its image by f is non-abelian, whih proves the laim.Suppose now all the vertex groups of ∆(Σ, C+) have abelian image by f ′ (thus in�nite ylisine G is hyperboli). Sine f ′ is non-pinhing with respet to Λi, the edge groups of ∆(Σ, C+)are sent injetively into G by f ′. This gives a graph of group deomposition of f ′(S) all of whosevertex and edge groups are in�nite yli, so f ′(S) is a generalised Baumslag-Solitar group. In ageneralised Baumslag-Solitar group, the ommensurator of an ellipti element is the whole group(see for example [For02℄). But in a torsion-free hyperboli group, ommensurators of elementsare yli groups. This ontradits the non-abelianity of f ′(S), thus at least one of the vertexgroups of ∆(Σ, C+) has non-abelian image by f ′.10.3 Maximal preretrationsFor the rest of this setion, we let A be a torsion-free hyperboli group whih admits a yliJSJ-like deomposition Λ, and we assume that there exists at least one non-injetive preretration
A→ A with respet to Λ.



96 CHAPTER 10. FROM PRERETRACTIONS TO HYPERBOLIC FLOORSDe�nition 10.13: (set L(f)) If f : A → A is a preretration, we denote by L(f) the set ofsurfaes of Λ suh that for at least one of the orresponding vertex groups S, the intersetion
f(A) ∩ S is not ontained in a boundary subgroup of S.Consider the set of tuples (f, C, C+) for whih
• f is a non-injetive preretration A→ A;
• C is a maximal set of urves on the surfaes of Λ killed by f , so that there exists f ′ : ρC(A)→
A with f = f ′ ◦ ρC ;
• C+ is a set of essential urves on the surfaes of the graph of groups Λi obtained in thepinhing of Λ by C, suh that C+ gives ellipti re�nements Λ+

i of eah Λi relatively to f ′and Λ.We say that an element (f, C, C+) is greater than another element (g,D,D+) if C stritlyontains D, or if they are equal and C+ stritly ontains D+, or if they too are equal, and L(f)is ontained in L(g) (note the inversion).A preretration f for whih there exists C and C+ suh that (f, C, C+) is a maximal elementin our set is alled a maximal non-injetive preretration. Suh an element must exist, indeed,the set of non-injetive preretrations is not empty, the ardinal of a set of essential urves on a�nite set of surfaes is bounded, and the set L(f) is a subset of the �nite set of surfaes of Λ.For the rest of this setion, we let f : A→ A be a maximal non-injetive preretration for thesets of urves C and C+. Build the pinhing of Λ by C, a pinhing deomposition of ρC(A), andellipti re�nements Λ+
i of the graphs of groups Λi given by C+. By remark 9.12, we have minimalequivariant maps t+i : TΛ+

i
→ TΛ.A very important property of suh a maximal element is given byLemma 10.14: For any surfae Σ of Λ, the following are equivalent:(i) Σ ∈ L(f);(ii) one of the surfae type vertex v of TΛ orresponding to Σ lies in the image of one of themaps t+i : TΛ+

i
→ TΛ;(iii) for one of the surfae type vertex group S orresponding to Σ, there is a surfae type vertexgroup S+ of one of the ellipti re�nements Λ+

i suh that f ′(S+) is a subgroup of �nite index
S.Proof. The equivalene between (ii) and (iii) is given by lemma 9.14. It is lear that (iii) implies

(i). Let us show that the onverse is true.If m = 1, there is only one omponent Λ1, the result is given by lemma 9.14.If m ≥ 2, C is not empty, and by lemma 10.4, the surfae omplexity of eah of the graph ofgroups Λi is smaller than the surfae omplexity of Λ. Consider the map h = f ′|AC : A1∗. . .∗Am →
A. The hypotheses of lemma 9.18 are satis�ed, so we an �nd a map h̃ : A1 ∗ . . . ∗Am → A suhthat h̃|Ai oinides with f ′|Ai up to onjugation, and if S is a surfae type vertex group of Λwhose intersetion with h̃(A1 ∗ . . . ∗ Al) is not ontained in a boundary subgroup of S, then aonjugate of S ontains with �nite index the image of a surfae type vertex group S+ of one ofthe graphs of groups Λ+

i . We also know that h̃(A1 ∗ . . . ∗Am) is the free produt of the h̃(Ai), soin partiular it is not abelian sine we assumed m ≥ 2.By lemma 10.12, the map f ′ sends intat surfae type vertex groups of the graph of groups
Λi to non-abelian images. The image by h̃ of an intat surfae type vertex group S of one ofthe graphs Λi is just a onjugate of f ′(S), so it is also non-abelian. Thus by remark 10.11, thereexists a map τ : RC → h̃(A1 ∗ . . .∗Al) suh that the map F = (h̃∗τ)◦ρC sends surfae type vertex



10.3. MAXIMAL PRERETRACTIONS 97groups of Λ to non-abelian images. We now want to see that (F, C, C+) is a maximal non-injetivepreretration.It is easy to hek that F restrits to a onjugation on eah non surfae type vertex group of
Λ, so that F is a preretration. The map F fators through ρC , so F is in fat a non-injetivepreretration, and the urves of C are killed by F . By maximality of f , we see that C is a maximalset of urves killed by F . The map f ′ sends elements orresponding to urves of C+ to edge groupsof Λ, thus so does the map h̃. Similarly, by maximality of f , the urves C+ must give elliptire�nements of the graph of groups Λi with respet to (h̃ ∗ τ) and Λ.Now, let S be a surfae type vertex group of Λ whose orresponding surfae is in L(F ). Itsintersetion with F (A) = h̃(A1 ∗ . . . ∗ Al) is not ontained in a boundary subgroup, so by ourhoie of h̃, there is a surfae type vertex group S+ of one of the graphs of groups Λ+

i suh that
h̃(S+) is a subgroup of �nite index of S. But on Ai, the maps h̃ and f ′ oinide up to onjugation:thus f ′(S+) is a subgroup of �nite index of some onjugate of S. We have shown that to anysurfae Σ whih lies in L(F ) orresponds a group S whih admits as a subgroup of �nite indexthe image by f ′ of a surfae type vertex group S+ of Λ+

i .This implies �rst that L(F ) ⊆ L(f). By maximality of f , we see that this must in fat be anequality. But then if Σ is in L(f), it is also in L(F ), so there is a group S with orrespondingsurfae Σ whih admits as a subgroup of �nite index the image by f ′ of a surfae type vertexgroup S+ of Λ+
i : we see that (iii) must hold.From this we dedue in partiularLemma 10.15: The set L(f) does not ontain all the surfaes of Λ.Proof. Suppose that L(f) ontains all the surfaes of Λ. By lemma 10.14, for every surfae Σof Λ, there exists a surfae type vertex group S+ of one of the graphs of groups Λ+

i suh that
f(S+) is a subgroup of �nite index of one a surfae type vertex group S orresponding to Σ.Moreover, f ′ sends boundary subgroups of S+ to boundary subgroups of S. By lemma 9.10, theomplexity of the surfae Σ+ orresponding to S+ is greater than or equal to that of Σ, and ifwe have equality, f ′|S+ is an isomorphism onto S. This implies that the omplexity of the setof all the surfaes of the Λ+

i is greater than the surfae omplexity of Λ. But lemma 9.16 showsthat the set of all the surfaes of the Λ+
i has omplexity smaller than the set of surfaes of the

Λi, whih in turn has omplexity smaller than the surfae omplexity of Λ by lemma 10.4. Thusthese omplexities are all equal, whih implies that the sets C and C+ are empty, and that eahsurfae type vertex group of Λ is sent isomorphially onto a surfae type vertex group of Λ by f ,non-onjugate surfae type vertex groups being sent to non-onjugate surfae type vertex group.Thus some power of f sends eah surfae type vertex group of Λ isomorphially on a onjugateof itself, and restrits to onjugation on eah non surfae type vertex group. By proposition 8.1,it is an isomorphism. This ontradits the non-injetivity of f .We now want to de�ne appliations P (f, k) : A→ A whih we all pseudo-powers of f . Indeed,we need to iterate f , but we want the result to still be a preretration, this is why we annot takesimply the powers of f sine they might send surfae type vertex groups onto abelian images.We de�ne P (f, k) by indution as follows. Let P (f, 1) = f . If P (f, k − 1) is de�ned, and is amaximal preretration A→ A we onsider the map P (f, k − 1) ◦ (f ′|AC ) : AC → A.Lemma 10.16: The map P (f, k−1)◦(f ′|AC ) sends intat surfae type vertex groups of the graphsof groups Λi to non-abelian images.Proof. If S is an intat surfae type vertex of one of the graphs of groups Λi with orrespondingsurfae Σ, it inherits a deomposition ∆(Σ, C+) from the ellipti re�nement Λ+
i . We know bylemma 10.12 that there is at least one of the vertex groups S0 of ∆(Σ, C+) whose image by f ′ isnon-abelian. If f ′(S0) lies in a non-surfae type vertex group of Λ, the preretration P (f, k − 1)



98 CHAPTER 10. FROM PRERETRACTIONS TO HYPERBOLIC FLOORSis injetive on f ′(S0), so P (f, k − 1) ◦ f ′(S) is non-abelian. If f ′(S0) lies in a surfae type vertexgroup S1 of Λ, it must be with �nite index by lemma 9.7 sine f ′ is non-pinhing on Σ and sendsboundary elements on edge groups of Λ. Now P (f, k− 1) ◦ f ′(S0) is a subgroup of �nite index of
P (f, k− 1)(S1), whih is non-abelian sine P (f, k− 1) is a preretration. Thus P (f, k− 1) ◦ f ′(S)is non-abelian.We will now build P (f, k). Sine A is non-abelian and torsion-free hyperboli, Λ admits atleast one non-abelian vertex group: if it is a non surfae type vertex group, P (f, k − 1) sendsit injetively into A so its image is non-abelian, and if it is a surfae vertex group its image by
P (f, k − 1) is non-abelian by de�nition of a preretration. This shows that P (f, k − 1)(A) is notyli. We an thus apply remark 10.11 to P (f, k − 1) ◦ f ′|AC , this tells us we an �nd a map
τ : RC → P (f, k − 1)(A) suh that the map

P (f, k) = [(P (f, k − 1) ◦ f ′|AC ) ∗ τ ] ◦ ρCsends surfae type vertex groups on non-abelian images. Let us now see that P (f, k) is a maximalnon-injetive preretration. It is easy to see that P (f, k) sends non surfae type vertex groupson onjugates of themselves, so is in fat a preretration. If C is empty, f ′ = f so P (f, k) is notinjetive sine f is not injetive.Sine P (f, k) fators through ρC , it kills the urves in C, so by maximality of P (f, k − 1) theset C is a maximal set of essential urves killed by P (f, k). Similarly sine P (f, k− 1) onjugatesedge groups, P (f, k − 1) ◦ f ′|AC sends elements orresponding to urves of C+ to edge groups of
Λ, so by maximality of P (f, k − 1), the set C+ is a maximal set of essential urves that give anellipti re�nement of the graphs of groups Λi with respet to P (f, k − 1) ◦ f ′|AC and Λ. Finally,the image of P (f, k) is ontained in the image of P (f, k− 1), so L(P (f, k)) ⊆ L(P (f, k− 1)), andby maximality of P (f, k − 1) this is in fat an equality. Thus P (f, k) is a maximal non-injetivepreretration.Using pseudo-powers, we an now showLemma 10.17: If f is a non-injetive preretration, it sends eah surfae type vertex grouporresponding to a surfae of L(f) isomorphially onto another surfae group orresponding to asurfae of L(f).Proof. We have just seen that P (f, 2) is also a maximal preretration, for the same sets C and
C+. Thus P (f, 2) fators through ρC , we write P (f, 2) = [P (f, 2)]′ ◦ ρC . Reall that P (f, 2) =
[(f ◦ f ′) ∗ τ ] ◦ ρC so that [P (f, 2)]′|AC = f ◦ f ′. Let Σ be a surfae of L(f).Sine L(f) = L(P (f, 2)), and using lemma 10.14, we see that there is a group S with orre-sponding surfae Σ, and a surfae type vertex group S+ of Λ+

i for some i, suh that f ◦ f ′(S+)is a subgroup of �nite index of S. Consider f ′(S+): it is ellipti in Λ sine the Λ+
i are elliptire�nements relative to both f ′ and [P (f, 2)]′.It annot lie in a non surfae type vertex group of Λ, sine these are sent to onjugates ofthemselves by f . Thus it lies in a surfae type vertex group S1 of Λ, and by lemma 9.7, it is asubgroup of �nite index of S1. This implies in partiular that the surfae orresponding to S1 isin L(f).Now f(S1) ontains a subgroup of �nite index, namely f(f ′(S+)), whih is ellipti in TΛ: thus

f(S1) itself is ellipti. Thus it lies in a vertex stabiliser of TΛ, whih must in fat be S. Sine
f(f ′(S+)) has �nite index in S, so does f(S1). By lemma 9.10, the omplexity of the surfae
Σ1 orresponding to S1 is greater than that of the surfae Σ orresponding to S, and if we haveequality, f |S1 is an isomorphism onto S.Thus to eah surfae Σ in L(f) orresponds a surfae Σ1 in L(f) whose omplexity is greater,and suh that any group S1 orresponding to Σ1 has image by f lying in a group S orrespondingto Σ. In partiular, the map Σ 7→ Σ1 is injetive. Sine it is a map L(f)→ L(f), it is a bijetion,



10.4. PROOF OF PROPOSITION 7.15 99thus for any surfae Σ of L(f), we must have k(Σ) = k(Σ1). This implies that f sends eah surfaetype vertex group whose surfae is in L(f) isomorphially onto a surfae type vertex group whosesurfae is in L(f).Remark 10.18: The previous lemma implies that some pseudo-power P (f, k) of the map f sendssurfae type vertex groups whose orresponding surfae is in L(f) isomorphially onto onjugatesof themselves. Thus, there exists a maximal non-injetive preretration f whih sends surfae typevertex groups orresponding to surfaes of L(f) isomorphially onto onjugates of themselves.10.4 Proof of Proposition 7.15Again, A is a torsion-free hyperboli group whih admits a yli JSJ-like deomposition Λ, andwe assume that there exists at least one non-injetive preretration A → A with respet to Λ.We let f be a maximal non-injetive preretration whih sends surfae type vertex groups whoseorresponding surfae are in L(f) isomorphially onto onjugates of themselves, as is given byremark 10.18.Consider the omplement in Λ of the set ontaining surfae type verties orresponding tosurfaes whih do not lie in L(f), as well as the open edges adjaent to these verties. Itsonneted omponents Γ1, . . . ,Γm are subgraphs of groups of Λ, we denote their fundamentalgroups by H1, . . . , Hm.Call Γ the graph of groups with surfaes obtained by ollapsing in Λ all the edges of thesubgraphs Γi. If we hoose a maximal subtree in Γ, as well as a lift to the orresponding tree TΓ,we identify the groups Hi to subgroups of A. Given a preferred non-surfae type vertex R0, wean do this in suh a way that R0 lies in one of the subgroups Hi. The subgroup of A generatedby H1, . . . , Hm will be our retrat A′.Note that TΓ is bipartite, in the sense that any edge has one end whose vertex group is aonjugate of one of the subgroups Hi, and one end whose stabiliser is a surfae type vertex groupof Λ whose orresponding surfae is not in L(f).Lemma 10.19: The map f sends eah Hi isomorphially onto a onjugate of itself.Proof. A vertex group of Γi is either a non-surfae type vertex group, or a surfae type vertexgroup whose onjugay lass is in L(f): in both ases, it is sent isomorphially on a onjugate ofitself in A by f . Now any two adjaent vertex groups Gv and Gw of Γi interset in a non-trivialedge group, and sine f is injetive on edge groups, the intersetion f(Gv) ∩ f(Gw) ontains anon-trivial element. If f(Gv) = gvGvg−1
v and f(Gw) = gwGwg−1

w , the intersetion gvHig−1
v ∩

gwHig−1
w ontains f(Gv) ∩ f(Gw), so in partiular it is non-trivial: again by bipartism of Γ and

1-aylindriity near surfae type verties, we dedue that gvHig−1
v = gwHig−1

w so that g−1
w gvis in Hi, and f(Gw) and f(Gv) lie in the same onjugate of Hi. Thus, f |Hi omposed by theonjugation by g−1

v restrits to a onjugation by an element of Hi on non-surfae type vertexgroups of Γi, and sends surfae type vertex groups isomorphially on onjugates of themselves byan element of Hi.As fundamental groups of subgraphs of groups of Λ, the groups Hi are quasionvex in A, thusthey are hyperboli. Note also that the deomposition Γi is a JSJ-like deomposition for Hi. Wean now apply proposition 8.1 to onlude that f |Hi omposed with the onjugation by g−1
v is anisomorphism Hi → Hi. Thus f itself sends eah Hi isomorphially onto a onjugate of itself: thelaim is proved.Reall we hose a pinhing deomposition of ρC(A), and we let f ′ be suh that f = f ′ ◦ ρC .Reall also that the set C+ gave us ellipti re�nements Λ+

i for eah Λi with respet to f ′ and Λ.Lemma 10.20: For eah j, the image f ′(Aj) lies in a onjugate of one of the subgroups Hi.



100 CHAPTER 10. FROM PRERETRACTIONS TO HYPERBOLIC FLOORSProof. For eah Λ+
j , we have a minimal equivariant map t+j : TΛ+

j
→ TΛ. By lemma 10.14, theimage of t+j ontains none of the verties orresponding to surfaes whih are not in L(f). Sine

t+j (TΛ+
j

) is onneted, this implies that the image of Aj by f lies in a onjugate of one of thesubgroups Hi.Fix an index i. It is straightforward to see that ρC(Hi) lies in a onjugate of one of thesubgroups Aji . We just saw that Hi is sent isomorphially onto a onjugate of itself by f , thus
Aji must be sent to a onjugate of Hi by f ′. In partiular, the appliation i 7→ ji is injetive.Conversely, eah Aj ontains a onjugate of one of the ρC(Hi). Up to renumbering, we may thusassume that ρC(Hi) is ontained in a onjugate of Ai.Lemma 10.21: The group A′ generated by H1, . . . , Hm is the free produt H1 ∗ . . . ∗Hm.Proof. Reall that the group AC generated by the groups Ai is in fat the free produt of thegroupsAi. Sine the Ai form a free produt in ρC(A), the group ρC(A′) generated by the subgroups
ρHi is in fat the free produt of the subgroups ρC(Hi). Sine ρC is injetive on Hi, this meansthat the Hi themselves form a free produt.Note that sine the list L(f) does not ontain all the surfaes of Λ, the group A′ is a propersubgroup of A.We now want to understand the image of f ′|AC . For eah i, we have f ′(Ai) = giHig−1

i . Theimage of AC by f ′ is generated by these onjugates of the subgroups Hi. It ats on the tree TΓorresponding to Γ. A surfae type vertex group S of Γ orresponds to a surfae whih does notlie in L(f), so it intersets f ′(AC) at most in a boundary subgroup. Thus, in the ation of f ′(AC),the orresponding vertex has yli stabiliser, and if it is not trivial, it stabilises an adjaent edge.This edge is unique by 1-aylindriity of surfae type verties, so by ollapsing all suh edges, wesee that
f ′(AC) = g1H1g−1

1 ∗ g2H2g−1
2 ∗ . . . ∗ glHlg−1

l .Let β be the map whih restrits on giHig−1
i to onjugation by g−1

i . The map f ′ sends intatsurfae type vertex groups to non-abelian images by remark 10.12, hene so does β ◦ f ′ sine β isan isomorphism between g1H1g−1
1 ∗ . . . ∗ glHlg−1

l and H1 ∗ . . . ∗Hl.If l ≥ 1, then H1 ∗ . . . ∗Hl is learly non-yli. But if l = 1, the image of A by f is ontainedin H1, so H1 is not abelian. Thus, by lemma 10.11, we an �nd a map τ : RC → β(f ′(AC)) =
H1∗. . .∗Hl suh that the map F = [(β◦f ′)∗τ ]◦ρC sends surfae type vertex groups to non-abelianimages. Moreover, it is easy to see that the map F sends eah subgroup Hi isomorphially onitself.Thus the restrition η of F to A′ = H1 ∗ . . . ∗ Hm is an isomorphism A′ → A′. Finally, themap η−1 ◦ F is a retration r from A to A′, whih sends surfae type vertex groups of Γ tonon-abelian images. Now A admits a graph of groups deomposition with one non-surfae typevertex v stabilised by A′, the other verties being stabilised by surfae type vertex groups of Γ,and edges joining these to v. Thus (A,A′, r) is a hyperboli �oor. This terminates the proof ofproposition 7.15.10.5 Proof of Proposition 7.16Let A be a group whih admits a JSJ-like deomposition Λ. Suppose G′ is a subgroup of Gontaining A suh that either G′ is a free fator of G, or G′ is a retrat of G by a retration
r : G→ G′ whih makes (G,G′, r) a hyperboli �oor.Denote by r : G → G′ the retration whih is the trivial map on R if G = G′ ∗ R, andthe retration of the hyperboli �oor struture in the seond ase. Let Γ be the graph of group



10.5. PROOF OF PROPOSITION 7.16 101orresponding to the free produt G′ ∗R in the �rst ase, and the graph of groups deompositionassoiated to the hyperboli �oor struture in the seond ase.Let f : A → G be the preretration given by the hypotheses. Choose a maximal system Cof essential urves killed by f on the surfaes of Λ. Let f ′ be suh that f = f ′ ◦ ρC . Build thepinhing of Λ by C, and hoose a pinhing deomposition of ρC(A). Choose also a maximal systemof essential urves C+ whih gives an ellipti re�nement Λ+
i for eah Λi, with respet to f ′ and Γ.Lemma 10.22: The map r◦f ′|AC sends intat surfae type vertex groups of the Λi to non-abelianimages.Proof. Let S be an intat surfae type vertex group of Λi. It inherits a deomposition ∆(Σ, C+)from the re�nement Λ+

i .If we are in the ase where G = G′ ∗ R, the set of urves of C+ lying on the surfae Σorresponding to S is empty. Indeed, elements orresponding to urves of C+ are sent to edgegroups of Γ by f ′, but edge groups of Γ are trivial and f ′ is non-pinhing with respet to Λi sothere an be no urves of C+ on Σ. Thus f ′(S) is ellipti in Γ. Sine boundary subgroups of S aresent to non-trivial subgroups of a onjugate of A, f ′(S) lies in a onjugate of G′, and by lemma10.12, it is non-abelian. Thus its image by r is non-abelian.Let us now assume we are in the ase where (G, r(G), r) is a hyperboli �oor. By lemma 10.12,the image of at least one of the vertex groups S+ of ∆(Σ, C+) has non-abelian image by f ′. If
f ′(S+) lies in a onjugate of G′, its image by r is learly non-abelian. If f ′(S+) lies in one of thesurfae type vertex groups S1 of TΓ, it is a subgroup of �nite index of S1 by lemma 9.7. Nowthis means r(f ′(S+)) is a �nite index subgroup of r(S1), whih is not abelian by de�nition of ahyperboli �oor. Hene it is itself non-abelian.Note that G′ ontains A, so that it isn't yli. Now we an apply remark 10.11 to r ◦ f ′|AC ,to get a map τ : RC → G′ suh that the map [(r ◦ f ′|C) ∗ τ ] ◦ ρC sends surfae type vertex groupsof Λ on non-abelian images. It is easy to see that this map restrits to onjugation on eah nonsurfae type vertex group of Λ. This shows preisely that it is a preretration A→ G′. If C is notempty, ρC is not injetive, thus so is [(r ◦ f ′|C) ∗ τ ] ◦ ρC . If C is empty, [(r ◦ f ′|C) ∗ τ ] ◦ ρC is just
r ◦ f so it is also non-injetive. This terminates the proof of proposition 7.16.
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