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Abstract

Advanced course in p-adic groups, taught by prof. Ori Parzanchevski. The course should be accessible

even to mature third-year B.Sc. students; some Galois theory may be required, but not much more.

Exercises will be given every three to four weeks, with a large assignment at the end.
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0 Introduction

We start with some motivating questions. Consider the equation x3 + y3 = z3, and we’re looking for

solutions in Q or Z, and not in R. This is an example of a diophantine equation. Another relevant

question, proposed by Fermat, asks when a prime p is a sum of two squares. The solution is that p is a

sum of two squares if and only if p = 2 or p ≡ 1 (mod 4). The easy direction can be proved as follows. If

p ≡ 3 (mod 4) and p = a2 + b2 for a, b ∈ Z, then a2 + b2 ≡ 3 (mod 4); this is impossible, since the square

of every integer is either 0 or 1 (mod 4).

If a diophantine equation has a solution in Z, it has a solution in Fp for any prime p, and also in

Z /mZ for any m ∈ N. Is the converse true?

Question: If a diophantine equation has a solution in Z /mZ for any m ∈ N and in R, does it have

a solution in Z?
Answer: It depends. Examples will be given later.

Theorem (Chinese Remainder Theorem). There exists a solution in Z /mZ for all m if there exists a

solution in Z /pk Z for any prime p and natural k. The following isomorphism of rings holds:

m =
󰁜

pki
i =⇒ Z /mZ ∼=

󰁜󰀓
Z /pki

i Z
󰀔

Goal: Study polynomial equations in Z /pk Z. Consider, for example, x2 ≡ −1 (mod 2); there exists

a solution, x = 1. There is no solution for x2 ≡ −1 (mod 4).

Lemma 1 (Hensel’s Lemma). Let f(x) ∈ Z[x], and p be any prime. If there exists a0 ∈ Fp with

f(a0) ≡ 0 (mod p), and f ′(a0) ∕≡ 0 (mod p), then f is solvable in Z /pk Z for any k. Moreover, there

exist ak ∈ Z /pk+1 Z such that f(ak) ≡ 0 (mod pk+1) and ak ≡ ak−1 (mod pk).

Example 1. Consider f(x) = x2+1, p = 2. Then f(1) = 0 but f ′(1) = 0 so we cannot apply the lemma.

Consider p = 5, a0 = 2. Then f(a0) = 22 + 1 ≡ 0 (mod 5), but f ′(a0) = 2 · 2 = 4 ∕≡ 0 (mod 5). Thus

x2 ≡ −1 (mod 5k) is always solvable: a0 = 2, a1 = 7, a2 = 57 etc. In base 5:

[a0]5 = 2, [a1]5 = 12, [a2]5 = 212, [a3]5 = 1212, [a4] = 31212, ...

Indeed, the lemma tells us that in base p, digits are added on the left for the next ak.

Proof of Hensel’s Lemma. By induction, assume the claim for k − 1, i.e. that ak−1 ∈ Z /pk Z and

f(ak−1) ≡ 0 (mod pk). We are looking for ak such that f(ak) ≡ 0 (mod pk+1), and ak ≡ ak−1 (mod pk),

that is, ak = x · pk + ak−1 and x ∈ {0, 1, . . . , p− 1}. We solve for x.

Recall Taylor’s theorem: for f ∈ R[x], f(a + x) = f(a) + f ′(a)x + 1
2
f ′′(a)x2 + · · · . This is a finite

sum, because f is a polynomial. If we replace R by Z, it can be observed that f(n)(a)
n!

∈ Z. Also notice

n! | (n+k)!
k!

.

The following expansion thus has integral coefficients:

0
pk+1

≡ f(ak) = f(ak−1 + xpk) =

f(ak−1) + f ′(ak−1)xp
k +

1

2
f ′′(ak−1)x

2p2k + · · ·+ f (deg f)(ak−1)

deg f !
xdeg fpk deg f

All terms after p2k vanish because we work modulo pk+1. We thus need to solve:

pkf ′(ak−1)x ≡ −f(ak−1) (mod pk+1)

Notice both sides are divisible by pk, so f ′(ak−1)x ≡ − f(ak−1)

pk
(mod p). By our assumption, we can

divide, x ≡ − f(ak−1)/p
k

f ′(ak−1)
(mod p). The division in the numerator is done in Z. We can also write f ′(a0)

in the denominator by the compatibility of the solutions, and ’division’ by it means finding an inverse in

Z /pZ.
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Consequences: After choosing a0, the sequence of solutions is unique. Furthermore, we found an

algorithm to construct these:

ak = ak−1 − f(ak−1) · f ′(a0)
−1

where the inverse is taken in Z /pZ. Also note this inverse is computed once. This is Newton’s approxi-

mation method! The Z /pk Z can be thought of as ’better and better’ approximations of Z.
Say f ∈ Z[x] and there exists a0 ∈ {0, . . . , 9} with f(a0) ≡ 0 (mod 10) and f ′(a0) ∕≡ 0 (mod 10).

Does Hensel’s Lemma work? We want (ak)
∞
k=0 with f(ak) ≡ 0 (mod 10k+1) and ak ≡ ak−1 (mod 10k).

This fails at the last step of the proof: we can’t divide by the derivative. This works, however, if we

require f ′(a0) ∈ (Z /10Z)×; this is the general form of Hensel’s Lemma - we required the derivative be

invertible in the ring, i.e. coprime to the p in question (10 in our example).

Example 2. Consider x2 + 31 ≡ 0 (mod 10k). It has solutions for all k, and they are compatible:

ak ≡ ak−1 (mod 10k). To show this we need a slightly stronger version of Hensel’s Lemma. In any

case, the solutions are 3, 03, 603, 4603, 74603, . . . . We want to say this sequence ’converges’ in some useful

sense. For this, we need a new metric, under which the sequence converges to an element of the ring we

will study - the 10-adic integers.

1 The p-adic Numbers

Definition 1 (The n-adic Integers). Define Zn = {
󰁓∞

k=0 dk · nk : 0 ≤ dk ≤ n− 1}. This is a ring, with

the usual addition and multiplication (with carrying etc.)

Note N is embedded in Zn as {
󰁓N

k=0 dkn
k : N ∈ N} (infinitely many zeros to the left). Actually,

Z is embedded in Zn; for example, the additive inverse of 3657 is · · · 99996343. The negatives are thus

embedded as the numbers with infinitely many 9’s to the left.

In our earlier example, we had the 10-adic number · · · 74603. Squaring this, we should get −31, or

· · · 999969.

Lemma 2 (Hensel’s Lemma for the n-adic Integers). If f ∈ Z[x], f(a0) ≡ 0 (mod n), f ′(a0) ∈ (Z /nZ)×

then f(x) = 0 is solvable in Zn.

Observe there’s a ring homomorphism Zn → Z /nk Z for any k:

∞󰁛

i=0

din
i µk󰀁→

k−1󰁛

i=0

din
i

This is a homomorphism due to the way we defined addition and multiplication in Zn. We denote the

image of α ∈ Zn under µk by α (mod nk). These maps are compatible in the sense that the following

diagram commutes1 for ℓ < k:

Z /nk Z

Zn

Z /nℓ Z

µk

µℓ

Let f ∈ Z[x] and ak such that f(ak) ≡ 0 (mod 10k+1), ak ≡ ak−1 (mod 10k). Define α =
󰁓∞

k=0

󰀇
ak

10k

󰀈
10k ∈

Z10. Observe α ≡ ak (mod 10k+1). Since µk are homomorphisms, f(α) ≡ f(ak) ≡ 0 (mod 10k+1), and

this is true for every k. Thus f(α) = 0. We thus found a root for f . In fact, the converse also holds: f has

a root in Zn if and only if there exists ak such that f(ak) ≡ 0 (mod 10k+1) and ak ≡ ak−1 (mod 10k).

It is in fact true that the last assumption about the compatibility can be dropped.

Question: What elements of Zn have inverses?

1In fact, this establishes Zn as the inverse limit of Z /nk Z together with the maps µk.
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Certainly, not all elements of Zn are invertible. For example, 10 doesn’t have an inverse in Z10: for

any α ∈ Z10, 10α ∕= 1, since multiplying by 10 shifts to the left.

Claim. If n ∈ Z and (n,N) = 1 then n has an inverse in ZN .

Proof. Consider f(x) = nx−1. Then f ′(x) = n, and Hensel’s Lemma applies, where a0 is a multiplicative

inverse of n in Z /N Z.

Definition 2 (The n-adic Numbers). Qn = {
󰁓∞

k=m dkn
k : m ∈ Z}. Addition and multiplication are

defined the same way.

Observations: Q ⊆ Qn for any n ∈ N. Call an element of Qn rational if its in the image of Q inside

Qn. Furthermore, Qn = Zn[
1
n
]. Also be cautious that the Zn are not countable.

Claim. Z×
n = {α ∈ Zn : α (mod n) ∈ (Z /nZ)×}.

Proof. Check that Hensel’s Lemma works also for f ∈ Zn[x]. Then apply the same proof as before.

Claim. α ∈ Qn is rational if and only if it is periodic.

Proof. Same as for the reals (!).

What about Qn? What are its invertible elements?

Claim. Z10 has zero divisors.

Proof. We’ll find a solution for x2 = x which is not 1 or 0. Then x(x − 1) = 0 and we found zero

divisors. Of course, we employ Hensel’s lemma. Define f(x) = x2 − x, and then f ′(x) = 2x − 1. Note

f(5) = 25 − 5 ≡ 0 (mod 10) and f ′(5) = 9 ∈ (Z /10Z)×. This gives some α ∈ Z10 whose first digit (on

the right) is 5, so it’s not 1 or 0, and we’re done.

This occurs only because 10 is not prime, so we can take non-trivial elements of (Z /10Z)×.

Theorem 1. Let p be prime. Then Qp is a field.

This uses the fact Z×
p = Zp \pZp.

Exercise. Let p be prime, m an integer. Show Qpm
∼= Qp as rings.

Exercise. Show that the ring Rp = {±
󰁓n

i=−∞ dip
i : 0 ≤ di < p, n ∈ Z}, defined ”the other way around”

but with the same addition and multiplication, is isomorphic to R.

Claim. Qm
∼= Qn as rings if and only if m,n have the same prime divisors.

We somewhat waved our hands earlier, when we said addition and multiplication is defined ”as usual”.

We give a more formal definition (practically as an inverse limit).

Definition 3 (Formal Definition of p-adic Integers). Write Zp = {(ai)
∞
i=1 : ∀i, ai+1 ≡ ai (mod pi)} as a

subset of the product
󰁔∞

i=1 Z /pi Z. Then, addition and multiplication are defined pointwise: (󰂓a+󰂓b)i =

ai + bi, where the latter operation is in the appropriate ring in the product; multiplication is the same.

It is now easy to prove, formally, that Zp is a ring, e.g. ((a+b)+c)i = ai+bi+ci = (a+(b+c))i where

the central expression is evaluated in Z /pi Z, wherein addition is associative. We still need to convince

ourselves this ring is indeed the same Zp defined earlier, and this is done by mapping α =
󰁓∞

i=0 dip
i in

the old Zp to (
󰁓i−1

k=0 dkp
k)∞i=1 ∈

󰁔∞
i=1 Z /pi Z.

Example 3. In Zp, we have −1 = (p− 1, p2 − 1, p3 − 1, . . . ). Generally, (−a)i = −ai and
󰀃
1
a

󰀄
i
= 1

ai
(for

a ∈ Z×
p ).

Definition 4 (Formal Definition of p-adic Numbers). For p prime, Qp = F(Zp), where F(R) denotes

the fraction field of R

4



For this definition, we need to show Zp is a domain, i.e. that there are no zero divisors. Indeed, if

dn, d
′
m ∕= 0 then:

󰀣 ∞󰁛

i=1

dip
i

󰀤
·
󰀣 ∞󰁛

i=m

d′ip
i

󰀤
= (did

′
i (mod p))pn+m +

∞󰁛

i=m+n+1

Dip
i

That is to say, the first digit cannot be 0.

Theorem 2. Qp = Zp[
1
p
].

Proof. The inclusion ⊇ is obvious. For the other direction, observe every non-zero α ∈ Zp can be written

(uniquely) as α = pnu where n ∈ N and u ∈ Z×
p . This n is called the p-adic valuation of α; we define it

in Qp:

valp

󰀣 ∞󰁛

i=n

dip
i, dn ∕= 0

󰀤
= n

Now, for α
β
∈ F(Zp), write β = pvalp(β)u, where u = β

pvalp(β) ∈ Zp, and then:

α

β
=

α

pvalp(β)u
=

αu−1

pvalp(β)
∈ Zp

󰀗
1

p

󰀘

Example 4. In Q5, val5(25) = 2, since 25 = 0 · 50 + 0 · 51 + 1 · 52. Similarly, val5(
1
25
) = −2.

Claim. The map valp : Q×
p → Z is a homomorphism. This only works when p is prime.

Note we define valp(0) = ∞.

Claim. For any α,β ∈ Qp, valp(α+ β) ≥ min{valp(α), valp(β)}.

Claim. pZp = {
󰁓∞

i=1 dip
i} = {α : valp(α) ≥ 1}⊳ Zp is a maximal ideal.

Proof. That it is an ideal is easy from the second presentation given. That it is maximal follows from

α /∈ pZp ⇐⇒ α ∈ Z×
p . Another proof is that Zp /pZp

∼= Fp by the first isomorphism theorem with the

map Zp
mod p−−−−−→ Fp.

Claim. The ideal pZp is a unique maximal ideal in Zp. In fact, any ideal in Zp is of the form pn Zp.

Proof. The first statement follows from the fact that in a domain R, the non-units form an ideal if and

only if there is a unique maximal ideal. We show the second statement. Let I⊳Zp and n = min{valp(α) :
α ∈ I}. We claim I = pn Zp. We know there exists α ∈ I with valp(α) = n, so pn Zp = pnuZp = αZp ⊆ I,

where α = pnu. In the other direction, I ⊆ pn Zp for otherwise there exists α ∈ I with valp(α) < n.

Claim. Q×
p
∼= Z×Z×

p via α
ψ−→

󰀓
valp(α),

α

pvalp(α)

󰀔
.

This has some applications, e.g. that α ∈ Q×
p is a square if and only if valp(α) ∈ 2Z and α

pvalp(α)

is a square in Zp. Indeed, β2 = α gives ψ(β)2 = ψ(α), but ψ(β)2 =

󰀕
2 valp(β),

󰀓
β

pvalp(β)

󰀔2
󰀖

=
󰀓
valp(α),

α

pvalp(α)

󰀔
.

Claim. Let r ∈ Q×. Then x2 = r is solvable in Q if and only if it is solvable in R and every Qp.

Proof. One direction is easy. Assume x2 = r is solvable in R and in every Qp. Because it is solvable over

the reals, r > 0. Since it is solvable in Qp, valp(r) ∈ 2Z. Observe that for r ∈ Q×, valp(r) = n such that

r = pn a
b
with p ∤ a, b and n ∈ Z. Write r = ±

󰁔
peii with ei ∈ Z. But from what we just saw, r = +

󰁔
peii

and ei ∈ 2Z. This means
√
r =

󰁔
p
ei/2
i ∈ Q.

Theorem 3 (Hasse-Minkowski). A homogenous, quadratic polynomial (in many variables) has a non-

trivial solution in Q if and only if it has a non-trivial solution in R and in every Qp.
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Exercise. Every real number is a square up to a choice of ±. Show that in the p-adics, in a similar

sense:

[Q×
p : Q×2

p ] =

󰀻
󰀿

󰀽
4 p ∕= 2

8 p = 2

2 Topology on Qp

We want
󰀓󰁓N

i=n dip
i
󰀔∞

N=n
to be Cauchy with limit

󰁓∞
i=n dip

i.

Definition 5 (The p-adic Norm on Q). For r ∈ Q, |r|p = p− valp(r). In other words, |pn · a
b
|p = p−n

where p ∤ a, b.

Example 5. |1|5 = 1, |5|5 = 1
5
, |100|5 = 1

25
, |500|5 = 1

125
. | 3

25
+ 1

5
|5 = 25.

Definition 6 (p-adic Distance on Q). Define distp(r, r
′) = |r − r′|p.

Theorem 4. Qp is the completion of Q with respect to distp.

Proof. Recall the completion is defined as a quotient space of the set of Cauchy sequences. We map

Qp to the completion of Q with respect to distp, via
󰁓∞

i=n dip
i 󰀁→ (

󰁓N
i=n dip

i)∞N=n. We leave it as an

exercise to verify this is a bijective homomorphism. Alternatively, note that (Qp, distp) is complete, and

Q is dense in it.

This allows us to ’start our story’ with Q and define Qp as in the theorem above. Just to recapitulate,

in Q we define the p-adic norm as |pn · a
b
|p = p−n (where p ∤ a, b) and in Qp we define |

󰁓∞
i=n dip

i| = p−n

(where dn ∕= 0).

We want Qp to be defined by the topology defined by the prebasis {pn Zp : n ∈ Z} = {val−1
p ([n,∞))},

and this is indeed the case; a Cauchy sequence has a tail containing these.

Theorem 5 (Haar Measure). If G is a locally compact topological group, there exists a (unique up to

scaling) regular, Borel, left-invariant measure on G.

We hesitantly explain the terminology used here. A measure on S is a way of assigning a ’volume’

to subsets of S, µ : X → R≥0 where X ⊆ P(S), such that µ is σ-additive; the measure of the union of

countably many disjoint sets is the sum of the measures. Not all subsets of S need be measurable, and

there are constraints on X which we do not mention here. A measure is left-invariant if µ(gA) = µ(A)

for every g ∈ G,A ⊆ G. A measure if regular if when A =
󰁗

An where An ⊇ An+1 and these are all

open, µ(A) = limµ(An); we also require the same is true when A =
󰁖

An, An ⊆ An+1 and these are

compact. Borel means all open sets are measurable.

Example 6. The simple examples are R+ with µ([a, b]) = b− a and R×
>0 with µ([a, b]) = log b

a
.

Recall {pn Zp : n ∈ Z} is a basis for the topology of Qp. We show each of the pn Zp is compact. Start

with Zp. Recall it comprises of ’compatible’ sequences in
󰁔∞

i=1(Z /pi Z). It can be shown that the product

topology is compatible with the topology we have already defined. We need to show the set of compatible

sequences is closed in it, and then it is also compact; this is done by noting each non-compatible sequence

has a neighborhood of non-compatible sequences (we can change anything we want after the ’incompatible

point’). This is a messy argument, a more intuitive explanation that Zp is compact is that it comprises

of sequences of digits on the left of the decimal point; this is essentially the same as taking sequences on

the right of the decimal point, which is the set [0, 1] in R, which is compact - a bit more formally, we

can show it is sequentially compact via a ’diagonal element’. A third argument is that Zp = B0(1) ⊆ Qp

in distp. In any case, we have that Zp is compact, and then pn Zp is compact as Q×
p acts on (Qp,+) by

homeomorphisms (prove this!). Another argument is that pn Zp = B0(p
−n). We conclude Qp is locally

compact (as it has a basis of compact subsets).

The following definition follows from Haar’s theorem.
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Definition 7. Define µp to be the unique Haar measure on (Qp,+) such that µp(Zp) = 1. When p is

clear, we’ll write µ for short.

Example 7. µp(pZp) =
1
p
. µp(Z×

p ) =
p−1
p

.

Proof. This is due to the fact Zp =
󰁉p−1

i=0 (i+ pZp), and then 1 = µ(Zp) =
󰁓p−1

i=0 µ(i+ pZp) = pµ(pZp).

The second claim follows.

Now note that the absolute value of a number tells us ’how much it stretches sets’: |a| = µEucl(aA)
µEucl(A)

.

This is also true of the p-adic measure: |α|p =
µp(αA)

µp(A)
.

We now recap our intuition and reasoning, for our own sanity and clarity.

We want
󰁓N dip

i to converge to
󰁓∞ dip

i. This gives sequential compactness of Zp. Let us pretend

we already know Zp is in fact compact. This implies that Zp has finite volume under a Haar measure on

(Qp,+), so we normalize it to be µp(Zp) = 1. This allows us to alternatively define |α|p by µp(αS) =

|α|pµp(S), with any S ⊆ Qp Borel. Note it needs to be shown that such a number is well-defined for any

α, i.e. that the ratio is independent of S. To show this, one can show any such open or compact S can

be written as a union of translations and scalings of Zp. If |α|p is well-defined, any S with µ(S) ∕= 0 gives

|α|p =
µp(αS)

µp(S)
. Now take S = Zp. If u ∈ Z×

p , we get |u|p =
µ(u Zp)

µp(Zp)
=

µp(Zp)

µp(Zp)
= 1, and |p|p =

µ(p Zp)

1
= 1

p
.

In general, α ∈ Q×
p can be written as α = pmu with u ∈ Z×

p ,m ∈ Z, and then |α|p = 1
pm

= p− valp(α).

We need to show this is indeed an absolute value on Qp, that is, that |α| = 0 if and only if α = 0, that

|αβ| = |α||β| and that |α+ β| ≤ |α|+ |β|.

Claim. If F is a topological field with a Haar measure µ and | · | : F → R≥0 satisfies |α| = µ(αS)
µ(S)

for all

S ⊆ F , then | · | is a norm.

Proof. Indeed, multiplicativity follows from |αβ| = µ(αβS)
µ(S)

= µ(αβS)
µ(βS)

µ(βS)
µ(S)

= |α||β|. Sub-additivity follows

from |α+ β| = µ((α+β)S
µ(S)

= µ(αS+βS)
µ(S)

≤ µ(αS)+µ(βS)
µ(S)

= |α|+ |β|. We leave positivity to the reader.

These properties can also be checked directly for our | · |p. This norm now allows us to define a metric

on Qp by distp(α,β) = |α− β|p.
Now note | · |p|Q is an absolute value on Q given by |pma/b| = p−m when p ∤ a, b.

Theorem 6. Q is dense in Qp with respect to distp and Z is dense in Zp.

Proof. We start with the claim for Z ⊆ Zp. We need to show that if ∅ ∕= U ⊆ Zp is open then there

exists an integer m ∈ Z in U . Let ε > 0 and α ∈ Qp be such that Bε(α) ⊆ U . Let m ∈ Z be such that

p−m < ε, and take n = α (mod pm). Then distp(n,α) ≤ p−m < ε, since they agree on the first m digits.

Thus n ∈ Bε(α) ⊆ U , as desired. For Q ⊆ Qp, the proof is the same, where the modulo maps
󰁓∞

j=N dip
i

to
󰁓m−1

j=N dip
i, which is rational. In fact, this even shows Z[ 1

p
] = { a

pm
: a,m ∈ Z} is dense in Qp.

It follows Qp is the metric completion of Q with respect to | · |p.
Recall two norms are called equivalent if one is a power of the other.

Theorem 7 (Ostrowski). Up to equivalence, every absolute value on Q is either | · |R or | · |p for some

prime p.

We note Ostrowski’s theorem generalizes to number fields, i.e. finite extensions of Q. For example,

the only absolute values on Q(i) are |a+ bi| =
√
a2 + b2 and |α|π = |Z[i]/π|− valπ(α) for π a prime in Z[i],

which are precisely 1 + i, primes p with p ≡ 3 (mod 4) and 2 factors of every p ≡ 1 (mod 4) (which split

over Q(i), e.g. 13 = (3 + 2i)(3− 2i)).
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3 Dual Groups

Definition 8. Let G be a topological, locally compact, abelian group. The dual group Ĝ is defined as the

set of topological group homomorphisms from G to S1 = {z ∈ C : |z| = 1}, i.e. Ĝ = HomTopGrp(G,S1).

Ĝ is a group with respect to pointwise multiplication, and elements of it are called characters. If G ∼= Ĝ,

G is called self-dual.

Example 8. We have 󰁧Z /n = {χi : 1 󰀁→ ζjn : j = 0, . . . , n− 1} with ζn = e
2πi
n . It is isomorphic to Z /n,

as χjχk = χj+k. This isomorphism is ’not canonical’, as we chose a ’special’ root of unity.

Example 9. Ẑ ∼= S1, as in general Hom(Z, G) ∼= G. 󰁦S1 ∼= Z as the characters are χ(α) = αm for integer

m (prove there are no more homomorphisms!).

Theorem 8 (Pontryagin Duality). For any topological, locally compact, abelian group G,
ˆ̂
G ∼= G.

Example 10. Take G = R. We claim it is self-dual. We have the characters χ∞,β(α) = eiβα, and it can

be shown the map β 󰀁→ χ∞,β gives an isomorphism R ∼= R̂. The only non-trivial part is showing this map

is surjective, and this is a standard exercise in calculus and ODE’s.

We give some intuition for defining the dual group. Take the group Z /n, and consider the characters χj

given by χj(1) = ζjn. These {χ0, . . . ,χn−1} form an orthonormal basis of L2(Z /n). Another orthonormal

basis for this space is the trivial {δj : j = 0, . . . , n− 1}. The change of bases between these two is called

the Fourier transform. This can also be done for f : S1 → C, wherein f(x) =
󰁓

n∈Z αnx
n is transformed

to
󰁓

n∈Z αnχn. In general, we’d like Ĝ to be to be a orthonormal basis for L2(G). Is R̂ = {χ∞,β} an

orthonormal basis for L2(R)? Eventually, for nice enough functions - yes; but this is complicated.

For f ∈ CG, denote by f̂ : Ĝ → C the function given by f =
󰁓

χ f̂(χ)χ. Define the convolution of

f, g ∈ CG by (f ∗ g)(x) =
󰁓

y∈G f(y)g(y−1x) =
󰁓

yz=x f(y)g(z) (and replace the sum by an integral if

the group is not discrete). The most useful property of Ĝ is that 󰁥f ∗ g = f̂ · ĝ : χ 󰀁→ f̂(χ) · ĝ(χ).

Claim. Qp is self-dual.

Proof. We begin with constructing a non-trivial character χ : Qp → S1. We have χ(0) = 1, and we start

with the assumption χ(1) = 1. This gives:

1 = χ(1) = χ

󰀕
p · 1

p

󰀖
= χ

󰀕
1

p

󰀖p

Which means χ
󰀓

1
p

󰀔
∈ µp. Now assume χ

󰀓
1
p

󰀔
= e

2πi
p = ζp. The same argument with 1

p
= p · 1

p2
shows

χ
󰀓

1
p2

󰀔
= p

󰁳
ζp, thus χ

󰀓
1
p2

󰀔
∈ ζp2µp. Assume χ

󰀓
1
p2

󰀔
= ζp2 . Continue this way, letting χ

󰀓
1
pn

󰀔
= ζpn =

e
2πi
pn . Since 〈{ 1

pn
: n ∈ N}〉 = Qp, we are almost done in constructing a non-trivial character. It remains

showing it is well-defined. First of all, because 1 generates Z, we have χ(Z) ≡ 1. By continuity, this gives

χ(Zp) ≡ 1. Take α =
󰁓∞

j=m=valp(α) djp
j . Then:

χ(α) = χ

󰀣 −1󰁛

j=m

djp
j

󰀤
·

󰂸
󰂸
󰂸
󰂸
󰂸
󰂸✒

1

χ

󰀣 ∞󰁛

j=0

djp
j

󰀤

󰁿 󰁾󰁽 󰂀
∈Zp

=

|m|󰁜

j=1

χ(p−j)d−j =

|m|󰁜

j=1

e
2πi
pj

d−j = e2πi
󰁓|m|

j=1 d−jp
−j

= e2πi(α mod 1) = e2πiα

Where α mod 1 =
󰁓−1

j=val(α) djp
j . This thus defines an element of 󰁦Qp, which we denote χp,1 : Qp → S1,

given by χp,1(α) = e2πiα. For any other β ∈ Qp, we now define χp,β = e2πiβα ∈ 󰁦Qp. This now makes sense

of exponentiation in Qp, perhaps best interpreted as e2πi(α mod 1), as this is truly a rational exponent.

It remains showing the map Qp → 󰁦Qp given by β 󰀁→ χp,β is an isomorphism. It can be seen this is a
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homomorphism, and it is injective as it has no kernel. We show it is surjective. Let 1 ∕= χ ∈ 󰁦Qp. We

want to show χ = χp,β for some β ∈ Qp. Since χ(0) = 1 and χ is continuous, some neighborhood pm Zp

satisfies χ(pm Zp) ⊆ B 1
4
(1). Since pm Zp is a subgroup of Qp, its image χ(pm Zp) is a subgroup of S1.

But since its also contained in B 1
4
(1)∩S1, it must be trivial: χ(pm Zp) = 1. Take a minimal such m, i.e,

m with χ|pm Zp ≡ 1 and χ|pm−1 Zp
∕≡ 1. But now χ̃(α) = χ(pmα) satisfies χ̃|Zp ≡ 1 and χ̃|p−1 Zp

∕≡ 1, so

that χ̃
󰀓

1
p

󰀔
∕= 1. We know χ̃

󰀓
1
p

󰀔
= ζd0p for 1 ≤ d0 ≤ p − 1. Continuing as we did earlier, it can be seen

that χ̃
󰀓

1
p2

󰀔
must be a p’th root of ζd0p , and these are necessarily of the form ζpd1+d0

p2
with 0 ≤ d1 ≤ p−1.

Continuing this way, we have χ̃
󰀓

1
pn

󰀔
= ζ

pn−1dn−1+pn−2dn−2+···+d0
pn . Consider β =

󰁓∞
i=0 dip

i. Since

d0 ∕= 0, this is an element of Z×
p . Now notice:

χp,β

󰀕
1

p

󰀖
= e

2πiβ 1
p = ζβp = ζd0p

χp,β

󰀕
1

p2

󰀖
= e

2πiβ 1
p2 = ζβ

p2
= ζpd1+d0

p2

And so on. Generally, χp,β

󰀓
1
pn

󰀔
= χ̃

󰀓
1
pn

󰀔
. This means χ̃|Z

󰁫
1
p

󰁬 = χp,β |Z
󰁫
1
p

󰁬 and since this set is dense in

Qp, continuity gives χ̃ = χp,β everywhere. We then get χ = χp,pmβ , as desired.

Exercise. What’s 󰁦Zp?

On a completely unrelated note, notice that R× ∼= R×Z /2 via α 󰀁→ (log |α|, sgnα). In a similar

sense, notice Q×
p

∼= Z×Z×
p via α 󰀁→ (valp(α),α|α|p). A nice exercise is to see that even Z×

p decomposes

similarly as:

Z×
p =

󰀻
󰀿

󰀽
Zp ×Z /(p− 1) p ∕= 2

Z×Z /2 p = 2

This is done via defining the p-adic exponential as eα =
󰁓∞

n=0
αn

n!
, and showing it converges on pZp.

Claim. Qp /Zp
∼= Z[ 1

p
]/Z. This is called the Prüfer Group.

Proof. First isomorphism theorem with α 󰀁→ α+ Zp for α ∈ Z[ 1
p
].

Claim. Let H ≤ G be abelian groups. Then 󰁥G/H =
󰁱
χ ∈ Ĝ : χ|H ≡ 1

󰁲
.

From this we deduce the dual group of the Prüfer group is
󰁱
χ ∈ 󰁦Qp : χ|Zp ≡ 1

󰁲
. But it is easy to see

this is precisely {χp,β : β ∈ Zp}, which is isomorphic to Zp. This gives another place in which the p-adics

naturally occur; notice the Prüfer group is not defined as anything having to do with the p-adic numbers.

We now deviate and ask ourselves about the dual group of Q. Firstly, we have the characters r
χ∞,β󰀁→

e2πiβr. These seem to be all, but this is only the case if we restrict ourselves to continuity with respect to

the topology on Q defined by the real metric. Let us now forget about any topology on Q (or equivalently

give it the discrete topology). Now notice all the new characters we have:

Q R S1

Q2

Q3

χ∞,β

χ2,β

χ3,β

Even more so - if we take β∞ ∈ R and β2 ∈ Q2, . . . ,βp ∈ Qp then we get another character:

(χ∞,β∞χ2,β2 · · ·χp,βp)(r) = χ∞,β∞(r)χ2,β2(r) · · ·χp,βp(r) = ”

p󰁜

j=∞

e2πiβjr” = ”e2πi(β∞+β2+···+βp)”
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Where the notation is abysmal albeit understandable. This gives a lot of new characters, but not all of

them. What if we take βp ∈ Qp for all p ≤ ∞? Write β ∈
󰁔

p≤∞ Qp = R×Q2 ×Q3 × · · · . We then define

χQ,β(r) =
󰁔

p≤∞ e2πiβpr = e2πi(
󰁓

p≤∞ βp)r. This is problematic, e.g. for β = (0, 1
2
, 1
3
, 1
5
, . . . ); we don’t

want infinite products. If there exists P such that βp ∈ Zp for all p > P , then all products are finite.

Indeed, if βp ∈ Zp for all p > P then the expression
󰁔

p≤∞ e2πiβpr has βpr ∈ Zp unless p < P , or p divides

the denominator of r. There are only finitely many of these, so this is now well-defined. The collection of

these β, A =
󰁱󰁖

P R×
󰁔

p≤P Qp ×
󰁔

P<p Zp

󰁲
, is called the adeles, and they form a ring. Sometimes we

denote this product by
󰁔′

p≤∞ Qp. Now, it is indeed true that every character of Q is of the form χQ,β .

It is also true that Â ∼= A. An interesting thing to note is that while the map A → Q̂ mapping β to χQ,β

is surjective, it has a kernel; if s ∈ Q and β∞ = −s,βp = s, we have χQ,β ≡ 1. Indeed, if we write α ∈ Qp

as α = ⌊α⌋p + {α}p for ⌊α⌋p ∈ Zp:

χQ,β(r) = e−2πirse2πi(

∈Q2󰁽󰂀󰁿󰁾
sr +

∈Q3󰁽󰂀󰁿󰁾
sr +··· ) = e2πi(−sr+{sr}2+{sr}3+··· )

If we show the expression in the parentheses is an integer, we’ll be done. We show that for any rational

r, r −
󰁓

p<∞{r}p ∈ Z. This is somewhat of an equivalent to a partial fraction decomposition of r. Let

q be prime. Then the expression we want takes the form (r − {r}q) −
󰁓

∞>p ∕=q{r}p. The value in the

parentheses is in Zq by definition, and so is the sum as p ∕= q. Thus r−
󰁓

{r}p is an element of Zq. This

is true for all q, so it must be an integer.

We now get that Q̂ ∼= A /Q via ψ : A → Q̂ given by β 󰀁→ χQ,(−β∞,β2,... ), which has kernel isomorphic

to Q.

Claim. Let r ∈ Q. Then
󰁔

p≤∞ |r|p = 1.

Proof. Set r = ±
󰁔n

i=1 p
ei
i . Then |r|∞ =

󰁔n peii and |r|pi = p−ei
i . For all i > n we get |r|pi = 1. These

give the result.

In the Haar measure of A, we get µ(rA) = µ(A) for any r ∈ Q and A ⊆ A. Thus the action of Q on

A preserves measures; this gives the Tamagawa measure.

4 Bruhat-Tits Building of PGL2

4.1 Introductory Discussion and Definitions

We know GL2(R) acts on C via the Möbius transformations ( a b
c d ) z = az+b

cz+d
. Now notice that for some

r ∈ R:
az + b

cz + d
= r + i

(ad− bc) Im z

|cz + d|2

This means that if detA > 0 then A acts on the upper half plane H = {z : Im z > 0}. This allows us to

define GL+
2 (R) = {A : detA > 0}, and it acts on H. In fact, note how scalar matrices act as the identity;

this means we actually have an action of PGL+
2 (R) on H. This group is in fact isomorphic to PSL2(R)

via rescaling so that the determinant is 1. This group acts on H by isometries. The three interesting

examples are ( 1 b
0 1 ) , (

a 0
0 1 ) , (

0 −1
1 0 ) which give z 󰀁→ z + b, z 󰀁→ az and z 󰀁→ − 1

z
; translations, scalings and

inversions. These also generate the group.

Claim. This action is transitive.

Proof. One can get from i to any z via scaling by Im z and translating by Re z. As an element of PSL2,

this is given by
󰀓√

t s/
√
t

0 1/
√
t

󰀔
when z = t + si. Now we can get from any w ∈ H to i and from i to any

z ∈ H.
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Now recall that when G acts transitively on X, we have X ∼= G/ StabG(x0) as G-sets (i.e. it preserves

the action), for any x0. We compute Stab(i). Assume ai+b
ci+d

= i. We then get ai + b = −c + di, which

gives a = d and b = −c. Since ad− bc = 1, we get a2 + b2 = 1. Thus:

StabPSL2(R)(i) =

󰀫󰀣
cos θ sin θ

− sin θ cos θ

󰀤
: θ ∈ R

󰀬
= PSO(2) := SO(2)/{±I}

So we conclude:

H ∼= PSL2(R)/PSO2(R) ∼= SL2(R)/ SO2(R) ∼= PGL+
2 (R)/ SO2(R)

In general, let G be any matrix/Lie group such as GLn, SLn, On, Un. The general object we should study

is G modulo a maximal compact subgroup in G.

Example 11. Consider O(n) ≤ GLn. It is closed as it is the set of solutions to A∗A = I, and it is

bounded as the rows of such a matrix are unit vectors. Thus it is compact. We claim it is maximal. In

general, the orthogonal group with respect to some inner product 〈, 〉 is given by O(〈, 〉) = {A ∈ GLn(R) :
〈Av,Aw〉 = 〈v, w〉}, and these are all conjugate as if P is a change of matrix basis from the standard basis

to some orthonormal basis of 〈, 〉, we have O(n) = PO(〈, 〉)P−1. Say K ≤ GL+
n (R) is compact. We show

K ≤ PO(n)P−1 for some P (this is called the Weyl trick). Indeed, define the following inner product:

〈v, w〉K :=

󰁝

K

〈kv, kw〉dk

This is defined since integration over a compact group with respect to a Haar measure on it is well-defined.

It can be shown 〈, 〉K is indeed an inner product. It is also K-invariant, so that 〈Av,Aw〉K = 〈v, w〉 for

any A ∈ K. This is the same as saying K ≤ O(〈, 〉K), so we’re done. We conclude that O(n) is maximal,

otherwise we could conjugate it into a proper subset of itself, which is impossible because O(n)\P−1O(n)P

is open, so it must have positive Haar measure. We conclude O(n) is a maximal compact subgroup of

GLn(R), and it is unique up to conjugation.

With similar techniques, one can show SO(n) is a maximal compact subgroup in SLn(R) or PSLn(R).

Definition 9. If G is a Lie group and K ≤ G is a maximal compact subgroup of G, the quotient G/K

is called a symmetric space for G.

Let SO(2, 1) be the group of matrices in SL3(R) which preserve the form diag(1, 1,−1), i.e. {A ∈
SL3(R) : At diag(1, 1,−1)A = diag(1, 1,−1)}. It turns out SO(2, 1) ∼= SL2(R), and we have the following

diagram:

SL2(R) SO(2)

SO(2, 1)

󰀣
SO(2) 0

0 1

󰀤
∼=

Define the Hyperbolic n-space as Hn = SO(n, 1)/ diag(SO(n), 1). This is the ”correct” generalization of

H, and not SL(n)/ SO(n) as one might expect. The case n = 2 gives an ”accidental” isomorphism as

SL(2) ∼= SO(2, 1), but this is not true in general.

It turns out that, in general, PGLn(R)/O(n) is identified with the set of inner products on Rn, up

to scaling. The identification takes AO(n) to the inner product 〈v, w〉A = vtAAtw. This is well-defined

since if B ∈ O(n) then 〈v, w〉AB = vt(AB)(ABt)w = vtABBtAw = vtAAtw = 〈v, w〉A. We leave it as

an exercise to show this map is surjective (use Gram-Schmidt) and injective (use the definition of O(n)).

Our eventual goal will be to understand the symmetric space of PGLn(Qp), but first let us gain some

more motivation for defining real symmetric spaces.

There are many ways SL2(R) acts on a vector space V over C. Actions of a group on a vector space

are called representations of the group. The group SL2(R) is ”very big” and complicated, but it has a
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compact subgroup SO(2) ∼= S1. Representation theory tells us that if SO(2) acts on some vector space

V then the matrix representing the action of some g ∈ SO(2) on V is diagonal with respect to some

basis, and the diagonal is composed of characters χm(θ) = θm, under the identification SO(2) ∼= S1. In

some sense related to our outlook on symmetric spaces, we can view the complicated group SL2(R) as

a sort of sum of SO(2) and H. This is the theory of modular forms, and it allows us to understand the

representation theory of SL2(R) better.
Fix G = GL2(Qp). We will soon show K = GL2(Zp) is a maximal compact subgroup in G. Surpris-

ingly, it will turn out the symmetric space is a regular tree.

Claim. Z×
p = GL1(Zp) ≤ GL1(Qp) = Q×

p is a maximal compact subgroup.

Proof. It is compact since Z×
p =

󰁖p−1
i=1 i+ pZp, and pZp is compact. Let Z×

p ⊂ U ≤ Q×
p . We will show U

is not compact. Let α ∈ Q×
p \Z×

p . Then valp(α) ∕= 0. If its positive, consider α−1, so that valp(α) < 0.

The sequence (valp(α
n)) approaches −∞, so {αn} is not contained in any ball, and we’re done.

Claim. K = GLn(Zp) ≤ GLn(Qp) = G is a maximal compact subgroup.

Proof. The space Mn(Zp) ∼= Zn2

p is compact, and K = det−1(Z×
p ) (a matrix is invertible in a commutative

ring if and only if its determinant is invertible in the ring) is closed in it (since Z×
p is closed), so it is

compact. Set K ⊂ U ≤ GLn(Qp). If there exists some g ∈ U with valp(det g) < 0 then {detu : u ∈ U} is

unbounded as before, so U is not compact. Thus det(u) ∈ Z×
p for all u ∈ U . Take some u ∈ U \Mn(Zp).

There exists some u ∈ U with u /∈ GLn(Zp). We’ll continue later, when we have more tools.

The p-adic case is very different from the real case, as the groups O(2) and PGL2(Zp) are very different:

the latter is open! Indeed, if A ∈ GL2(Zp) then A+M2(pZp) ∈ GL2(Zp), because det(A+ pB) ≡ det(A)

(mod p). A quotient of a topological group by an open subgroup is discrete, so our symmetric space is

discrete. In fact, it is even countable.

Claim. |G/K| =
󰀏󰀏GL2(Qp)/GL2(Zp)

󰀏󰀏 = ℵ0.

Proof. Say ( a b
c d ) ∈ G. First, assume valp(c) ≥ valp(d) by applying ( 0 1

1 0 ) ∈ K if needed. We now multiply

by
󰀓

1 0
− c

d
1

󰀔
∈ K (as d ∕= 0 because valp(c) ≥ valp(d)), attaining ( ∗ b

0 d ). Renaming, let this matrix take

the form ( a b
0 d ). Write a = pnu, d = pmu′ with u, u′ ∈ Z×

p , and apply diag(u−1, u′−1) ∈ K, so that we get

(again, renaming)
󰀓

pn b
0 pm

󰀔
. Multiplying by

󰀓
1

−b+(b (mod pn))
pn

0 1

󰀔
we get

󰀓
pn b (mod pn)

0 pm

󰀔
. This is allowed

as the upper-right element is in Z×
p . But there are ℵ0 options for the matrix we got (notice that the

upper-right element also has ℵ0 options, not finitely many options), and we’re done.

A corollary to our proof is that for any g ∈ G, there’s some element in gK of the form
󰀓

pm b
0 pn

󰀔
, with

b ∈ Z
󰁫
1
p

󰁬
/(pm) (that is, b =

󰁓m−1
j=N djp

j).

Claim. This element is unique.

Proof. Say r, r′ ∈ gK. Then r−1r′ ∈ K. Writing r =
󰀓

pm b
0 pn

󰀔
and r′ =

󰀓
px z
0 py

󰀔
, we get r−1r′ =

󰀓
px−m ∗

0 py−n

󰀔
. Since this is an element of K, it must be invertible, so we get that x = m and y = n.

Thus:

r−1r′ =

󰀣
1 (z − b)p−m

0 1

󰀤

Again, since this is in K, (z− b)p−m ∈ Zp, so that z ≡ b (mod pm). But z and b are reduced modulo pm

by our assumption, so z = b.

We conclude G/K is identified with matrices of the form
󰀓

pm b
0 pn

󰀔
with b reduced modulo pm.

What can we say about PGL2(Qp)? Denote this group by G and let K by the image of the group

GL2(Zp) under GL2(Zp) ↩→ GL2(Qp) ↠ PGL2(Qp) (this image is isomorphic to PGL2(Zp), so we may

denote it this way occasionally). Continuing from the analysis of GL2(Qp), any g ∈ G has a unique r ∈ gK
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which is of the form
󰀓

pm b
0 pn

󰀔
. Multiplying by p−min{m,n,valp(b)} we get

󰀓
pt u
0 ps

󰀔
, with pt, ps, u ∈ Z (which

is Z
󰁫
1
p

󰁬
∩ Zp) and at least one is in Z×

p , and also u ∈ {0, . . . , pt − 1}. Thus we identify the symmetric

space with the following set:

X2 =

󰀫󰀣
pm b

0 pn

󰀤
∈ M2(Z) : b ∈ {0, . . . , pm − 1}, either n = 0,m = 0 or p ∤ b

󰀬

Note that this condition is equivalent to the gcd of the entries being 1.

Definition 10. A lattice in Rn is the Z-span of n linearly independent vectors. Equivalently, it is a

discrete subgroup of Rn not contained in any proper subspace.

Claim. The space of all lattices in Rn is isomorphic to GLn(R)/GLn(Z).

Proof. The result follows from the fact GLn(R) acts transitively on the space of lattices (via change of

basis matrices) and Stab(Zn) = GLn(Z). Now use the orbit-stabilizer theorem.

Let L,L′ be two lattices. Write L ∼ L′ if L = αL′ for some α ∈ R×. Then the space of lattices up

to this equivalence is isomorphic to PGLn(R)/PGLn(Z), which is isomorphic to GLn(R)/(GLn(Z)R×).

Note that if we also want lattices up to isometries, we need to consider O(n)\GLn(R)/GLn(Z).
A rational lattice is the Z-span of a basis of Qn. The space of these is isomorphic GLn(Q)/GLn(Z),

and we’ll get back to it later.

Definition 11. A p-lattice is an element of GLn

󰀓
Z
󰁫
1
p

󰁬󰀔
/GLn(Z).

From now on, we only consider lattices up to scaling. Thus we wish to study PGLn

󰀓
Z
󰁫
1
p

󰁬󰀔
/PGLn(Z),

and in particular find nice representatives for it.

Definition 12. Say v1, . . . , vn are columns of A ∈ GLn

󰀓
Z
󰁫
1
p

󰁬󰀔
and L is the Z-span of the vi. The

covolume is defined as covol(L) = vol(Rn /L) = | det(A)|, which is an element of pZ = {pn : n ∈ Z}.

Claim. The space of p-lattices is identified with the space of Z-spans of vectors in Z
󰁫
1
p

󰁬n
whose covolume

is a power of p.

For any A ∈ GLn(Z[p−1]), there exists a unique B ∈ Z[p−1]×A = pZA such that B ∈ Mn(Z) and
1
p
B /∈ Mn(Z).

Definition 13. A matrix B ∈ Mn(Z) is called p-primitive if | detB| ∈ pN and 1
p
B /∈ Mn(Z).

Definition 14. A lattice L is called p-primitive if L ≤ Zn, covol(L) ∈ pN and 1
p
L ∕≤ Zn.

We have the following identifications:

p-primitive matrices/GLn(Z) ∼= p-primitive lattices ∼= PGLn(Z[p−1])/PGL(Z)

Here are some p-primitive lattices:

󰀭󰀣
1

0

󰀤
,

󰀣
0

1

󰀤󰀮
,

󰀭󰀣
p

0

󰀤
,

󰀣
0

1

󰀤󰀮
,

󰀭󰀣
p

0

󰀤
,

󰀣
1

1

󰀤󰀮
,

Let L = 〈v1, v2〉. This is the same as the product of the matrix A whose columns are v1, v2 with

all vectors in Z2. This is the same as the product of AB with vectors in Z2, where B ∈ GL2(Z) is an

elementary matrix. Thus our freedom in choosing A is up to elementary matrix. Let L = ( a b
c d )Z

2 be

p-primitive. We want a canonical representation for the action of this matrix on GL2(Z). First, use

GL2(Z) to perform Euclid’s gcd algorithm on (c d). This gives
󰀃 ∗ ∗
0 gcd(c,d)

󰀄
∈ M2(Z). This is an integral,

upper-triangular matrix whose determinant is a power of p, so it is of the form
󰀓

pm b
0 pn

󰀔
. Now use ( 1 ±1

0 1 )
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to make b ∈ 0, . . . , pm − 1. By p-primitivity, we get either m = 0, n = 0 or p ∤ b. We proved each p-

primitive lattice has a basis in X2 (i.e. columns of a matrix in X2). This basis is unique; we showed that

even GL2(Zp) doesn’t take an element of X2 to a different one, so GL2(Z) doesn’t as well. To summarize:

PGL2

󰀕
Z
󰀗
1

p

󰀘󰀖
/PGL2(Z) ∼= p-primitive lattices ∼= X2

∼= PGL2(Qp)/PGL2(Zp)

All of these views are useful.

4.2 The Bruhat-Tits Tree of PGL2

We now endow X2 with a directed graph structure. The idea is to connect a lattice L with a sublattice

L′ ≤ L if [L : L′] = p, though this won’t work precisely.

󰀣
1

1

󰀤

󰀣
p

1

󰀤 󰀣
p 1

1

󰀤
· · ·

󰀣
p p− 1

1

󰀤 󰀣
1

p

󰀤

In general, any lattice is isomorphic to Z2, and if L′ <
p

L then also pL ⊆ L′ by abstract nonsense:

0 → L′ → L → L/L′ ∼= Z /pZ → 0. Thus we look for intermediate lattices pL < − < L, and the fourth

isomorphism theorem tells us these correspond to subgroups of L/pL ∼= F2
p, of which there are p+1. The

problem here is that we’ll get ( p
p ) connected to ( p

1 ), which is not primitive.

Definition 15 (Bruhat-Tits Tree of PGL2). Endow X2 with the following graph structure. Connect L

to L′ whenever L′ is the primitive scaling of an index p sublattice of L; that is, L′ <
p
L or pL′ <

p
L. The

neighbors of A ∈ X2 are thus:

A

󰀣
p

1

󰀤
, A

󰀣
p 1

1

󰀤
, . . . , A

󰀣
p p− 1

1

󰀤
, A

󰀣
1

p

󰀤

With the following two corrections:

1. Scale the matrix by p so it is primitive, if needed.

2. Reduce the upper-right element mod the upper-left element.

These edges will be called e0, . . . , ep−1, e∞, and the corresponding matrices N0, . . . , Np−1, N∞. An equiv-

alent definition, in terms of the two quotient space presentations we gave above, is to connect gK for

g ∈ X2 to gN0K, . . . , gNp−1K, gN∞K via the edges e0, . . . , ep−1, e∞. We have to take g ∈ X2 so that the

labelling of our edges is well-defined.

An example of the last correction is e∞ which goes out from
󰀃
p 1

1

󰀄
, which gives ( p p

p ) after multiplica-

tion, which after the first correction gives ( 1 1
1 ), which is then reduced to the identity matrix, since they

give the same lattice.

This choice for the geometric structure of X2 might seem somewhat arbitrary. We later explain why

it is canonical.

We are ready to show the main theorem.

Theorem 9. The following hold:

1. The graph is symmetric (undirected).

2. The graph is connected.

3. The graph is a tree.

14



Ori’s Proof. 1. If A → B is an edge via ej then B → A is an edge via e∞. Indeed:

A
ej−→ A

󰀣
p j

1

󰀤
e∞−−→ A

󰀣
p j

1

󰀤󰀣
1

p

󰀤
= A

󰀣
p pj

p

󰀤
≡ A

󰀣
1 j

1

󰀤
≡ A

󰀣
1

1

󰀤
= A

Similarly, if A → B via e∞ then B → A via some ej :

󰀣
pn b

pm

󰀤
e∞−−→

󰀣
pn bp

pm+1

󰀤
≡

󰀣
pn bp (mod pn)

pm+1

󰀤
etop digit of b−−−−−−−−→

󰀣
pn b

pm

󰀤

We can also see symmetry by pL < L′ < L.

2. It suffices to show that we can connect the identity to any
󰀓

pn b
pm

󰀔
. Since the graph is symmetric,

we can show that any
󰀓

pn b
pm

󰀔
is connected to the identity. We’ll build a path of length n+m =

valp(det g) to I. Notice the following edges:

n > 0

󰀣
pn b

pm

󰀤
e∞−−→

󰀣
pn−1 b

pm

󰀤

n = 0

󰀣
1

pm

󰀤
e0−→

󰀣
1

pm−1

󰀤

It is now clear how to construct the desired path: em0 en∞.

3. We count X ℓ
2 = {g ∈ X2 : ℓ(g) = ℓ}, where ℓ(g) = valp(det g) = m+ n. We have:

X 0
2 = {I}

X 1
2 =

󰀫󰀣
p j

1

󰀤󰀬

j∈Fp

∪
󰀫󰀣

1

p

󰀤󰀬

X 2
2 =

󰀣
p2 j

1

󰀤

j∈0,...,p2−1

∪
󰀣
1

p2

󰀤
∪
󰀣
p j

p

󰀤

j∈F×p

The sizes are 1, p+ 1, p2 + p. In general:

X ℓ
2 =

󰀣
pℓ ∗

1

󰀤
∪
󰀣
pℓ−1 ∗

p

󰀤
∪ · · · ∪

󰀣
p ∗

pℓ−1

󰀤
∪
󰀣
1 0

pℓ

󰀤

The number of options for each of these is pℓ, (p−1)pℓ−2, . . . , (p−1)p0, 1. Overall, we have (p+1)pℓ−1

options. But this is the number of vertices of the ℓ’th level of a (p + 1)-regular tree. But X2 =
󰁉∞

ℓ=0 X
ℓ
2 , and for every g ∈ X ℓ

2 we found a path of length ℓ from I = X 0
2 to g. There are exactly

(p + 1)pℓ−1 non-backtracking paths of length ℓ in any (p + 1)-regular graph. Thus the paths of

length ℓ achieve every g ∈ X ℓ
2 once, so that X2 is a tree, and the ℓ we described is the level function

of it.
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We now generalize to higher dimensions. Set:

Xd = PGLd(Qp)/PGLd(Zp) ∼= PGLd

󰀕
Z
󰀗
1

p

󰀘󰀖
/PGLd(Z)

∼=

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

pn1 b12 · · · b1n

pn2 · · ·
...

. . .
...

pnd

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
: ni, bij ∈ N, bij ∈ Z /pni , gcd = 1

󰀼
󰁁󰁁󰁁󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰁁󰁁󰁁󰀾

∼= {primitive p-lattices in Zd}

Some of these equivalences will be in the exercise, but we now show the last one.

Assume A ∈ Md(Z) generates a primitive p-lattice AZd. We want to show there exists a unique

B ∈ Xd with AZd = B Zd, which is the same as showing B ∈ A · GLd(Z). As before, perform Euclid’s

algorithm on the bottom row of A. We’ll be left with a row of 0’s except for the last entry, which will be

the gcd of the original bottom row. Since we started with a primitive p-lattice, this last entry will be some

power of p. Now perform the same algorithm on the second to last row, ignoring the last entry, above the

non-zero entry of the last row. Again, we’ll get zeros everywhere except on the diagonal element and the

one to the right of it, and the one on the diagonal will be a power of p. Continuing this way, we’ll attain

an upper-triangular matrix with powers of p on the diagonal. We can now reduce all the elements above

the diagonal: use pnd−1 to reduce bd−1,d to 0, . . . , pnd−1 − 1, and continue this way for all non-diagonal

elements. Uniqueness is left as an exercise.

We will define the corresponding Bruhat-Tits Building Bd,p later, but for now we just define the

vertex set of it as Xd. We thus have that G acts on Bd,p, and the action is transitive on vertices,

with the stabilizers being conjugates in G of K = PGLd(Zp). We want to understand the action of

K on the vertices. Start with d = 2. The action of some g′ ∈ G takes an edge gK → gNjK to

g′gK → g′gNjK, which is indeed an edge. It is now clear that G acts on B2 by graph automorphisms.

Since K stabilizes the identity, its action permutes the edges connected to I. Even more so, it preserves

the levels ℓ(v) = dist(I, v), because for k ∈ K, ℓ(kv) = dist(I, kv) = dist(kI, kv) = dist(I, v), where

the last equality is due to the fact G acts by graph automorphisms. Another way to see this is that

ℓ(kg) = valp(det(kg)) = valp(det k) + valp(det g) = 0 + valp(det g) = valp(det g).

4.3 Action on the Tree

Let H,K ≤ G in a general group. The relation g ∼ g′ if and only if HgK = Hg′K is an equivalence

relation. We can thus decompose G =
󰁉

i∈I HgiK. The Cartan decomposition finds these representatives

for PGLd.

Claim (Cartan Decomposition). Let G = PGLd(Qp) and K = PGLd(Zp) or G = PGLd(Z[p−1]) and

K = PGLd(Z). Then:

G =
󰁊

0=n1≤n2≤···≤nd

K diag(pn1 , . . . , pnd)K

Claim. K2 acts transitively on each level in the tree B2.

Proof. Say gK ∈ Xm
2 . We’ll show gK ∈ K diag(1, pm)K. By the Cartan decomposition, g = k diag(1, pn)k′

for some k, k′ ∈ K. But n = valp(det(k diag(1, p
n)k) = valp(det g) = m. Thus gK = k diag(1, pm)k′K =

k diag(1, pm)K.

Drawing this out clearly gives that B2/K is a ray, with the initial point being the root of the tree (the

identity), and each vertex afterwards representing some K-orbit, i.e. a sphere with respect to ℓ.
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Proof of Cartan’s decomposition. Let A ∈ PGLd(Z[p−1]). Scale A to be in Mn(Z) and primitive, and

look at the gcd of each column. Take the column with the minimal gcd, and bring it to be the first

column, via actions of K from the right. Now perform Euclid’s algorithm from the left on the first

column, so that the first column has zeros everywhere except the top entry, which is a power of p as

before. Since we picked the gcd to be minimal and the matrix is primitive, this element must be 1.

Now perform column operations so that the first row also has zeros everywhere, except the top left. The

matrix is now of the form diag(1, B) for some matrix B, which need not be primitive. Let B = prB′

for some r and primitive B′. By actions from the left and the right, we can bring B′ to the form

diag(1, C). This means that we brought the original matrix to the form diag(1, pr, prC). Now continue

this way inductively, and we’ll eventually attain G =
󰁖

K diag(pni)K. We now show uniqueness, and we

redefine K = GLd(Z), G = GLd(Z[p−1]). Assume KgK = KhK for g, h ∈ G with g, h ∈ Md(Z). Then

Zd /g Zd ∼= Zd /hZd. Indeed, write g = k1hk2. Then:

Zd /g Zd = Zd /(k1hk2 Zd) = Zd /(k1hZd) ∼=
x 󰀁→k−1

1 x

Zd /hZd

Observe that if g = diag(pn1 , . . . , pnd) then:

Zd /g Zd = Zd /〈(pn1 , 0, . . . , 0)t, . . . , (0, . . . , 0, pnd)t〉 ∼= Z /pn1 × · · ·× Z /pnd

Uniqueness now follows:
󰁔

Z /pni ∼=
󰁔

Z /pmi if and only if ni = mi.

This might be a good time to define a bit of notation. Let [ a b
c d ] be the vertex in B represented by

( a b
c d )K.

Recall vertices in Bd are identified with cosets gK in G/K, and also with lattices g Zd. What are the

’Cartan spheres’ of vertices in the building? In the language of cosets, they will be K-orbits, i.e. double

cosets K\G/K, and in the language of lattices, they will be isomorphism types of finite abelian groups

of order pn with d− 1 generators; this follows from the proof above.

We now explain why our choice for edges in B2 is canonical. We are given the vertices X2 = G/K,

and we want to add edges so that G acts on the resulting graph. This means that if we put some edge

{v0, v1} as an edge, we must add {gv0, gv1} as an edge for every g ∈ G. In particular, if we connect the

origin K to some gK we also have to connect K to all v ∈ KgK. But this is the sphere Sℓ(g)(K). We

can move an edge {K, gK} around by the action of G. If ℓ(g) = 1 then we get B2, since if we connect K

to any element of the first sphere then it’ll have to connect to every element of the first sphere, and then

by translation we get our tree. If ℓ(g) ≥ 2, the resulting graph will be disconnected, since in this case

we’ll never be able to connect K to the first level, without creating cycles (which will ”cross spheres”).

We saw K acts transitively on each sphere. Consider, for example the action of K on X 1
2 . This

gives a map K → Sp+1, whose image is some transitive subgroup. Which one is it? Is our action 2-

transitive? 3-transitive? (p + 1)-transitive? A nice, relevant fact is that the only 6-transitive groups in

Sn where n ≥ 6 are An, Sn. In our case, consider the map PGL2(Zp) → PGL2(Fp) which takes entries

modulo p. This latter group acts on Fp ∪{∞} via Möbius transformations. The point is that these are

in correspondence with the edges we defined ej for j ∈ Fp ∪{∞}. So, how does PGL2(Fp) → SFp ∪{∞}

look like? As we’ll explain soon, together with the exercise, this action is sharply 3-transitive: there is

a unique element mapping (0, 1,∞) to any (a, b, c). Looking back at our tree, this shows that for any

choice of six neighbors of the p+1 neighbors of the identity, there is a unique element of K mapping the

first to the fourth, the second to the fifth and the third to the sixth.

Definition 16 (Congruence Subgroups). Define Mp
d (Z) = GLd(Z[p−1]) ∩ Md(Z) = {A ∈ Md(Z) :

| detA| ∈ pN}. For ℓ ≥ 0, define K(ℓ) = ker(GLd(Z) → GLd(Z /pℓ)), the map being the modulo map.

Notice these give a filtration · · ·⊳K(2) ⊳K(1) ⊳K(0) = K, with
󰁗

K(ℓ) = I.

Claim. K(ℓ) acts trivially on the ℓ-ball in B2 around v0 = [ 1 1 ] in the building.
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Proof. Let A ∈ K(ℓ). Then A = I + pℓB for some B ∈ Md(Z). Notice that for g =
󰀓

pn b
pm

󰀔
, the

vertex [g] =
󰁫
pn b

pm

󰁬
is equal to gv0. Notice pn+m Z2 ⊆ g Z2: the former is spanned by the vectors

(pn+m, 0)t, (0, pn+m)t, and:

󰀣
pn+m

0

󰀤
= pm

󰀣
pn

0

󰀤
,

󰀣
0

pn+m

󰀤
= −b

󰀣
pn

0

󰀤
+ pn

󰀣
b

pm

󰀤

This also implies that for any ℓ ≥ m + n, pℓ Z2 ⊆ g Z2. Let g be with ℓ(g) ≤ ℓ, i.e. in the ℓ-ball, and

consider the action of A on gv0. We have:

Ag Z2 = (I + pℓB)g Z2 ⊆ g Z2 +pℓBg Z2

We don’t know much about Bg Z2, except that it’s contained in Z2. Thus pℓBg Z2 ⊆ pℓ Z2 ⊆ g Z2, so

that overall Ag Z2 ⊆ g Z2. On the other hand, A−1g Z2 ⊆ g Z2 by the same argument, as A−1 ∈ K(ℓ).

Thus g Z2 ⊆ Ag Z2, so that overall Ag Z2 = g Z2.

We note that the other direction is also true, so that elements which act trivially on the entire ball

are in K(ℓ).

If we change our perspective to be p-adic, so that we consider the map GLd(Zp) → GL2(Z /pℓ) instead,

we attain ’approximations’ for elements in GLd(Zp) in some sense. For k ∈ GL2(Zp) take k(ℓ) = k

(mod pℓ) (i.e. take the modulo in every entry), and these approximations get ”better and better” as ℓ

grows: first of all, k(ℓ) ℓ→∞−−−→ k, but we also have k−1k(ℓ) ∈ K(ℓ), so that k−1k(ℓ) acts trivially on Bv0(ℓ).

This means k and k(ℓ) act in the same way on Bv0(ℓ).

We saw K acts transitively on each sphere around v0. Does it act transitively on (infinite) rays

starting from v0? Notice that now we have to take K = PGL2(Zp) and not PGL2(Z), as the latter is

countable and so does not have enough elements to act transitively. But in PGL2(Zp) the answer is yes:

let v0, v1, . . . and v0 = w0, w1, . . . be two rays. Choose kj ∈ PGL2(Z) such that kjvj = wj . Since paths

from the origin are unique, kjvi = wi also for all i < j. By compactness of GL2(Zp), there exists a

convergent subsequence kmj → k∞ ∈ GL2(Zp). It is clear k∞ takes the ray vi to the ray wi: for any

ε > 0 there exists N such that |kmj − k∞| < ε for any j > N , but this means kmj and k∞ agree on the

first f(ε) digits, with f(ε)
ε→0−−−→ ∞. Thus kmj , k∞ act in the same way on the f(ε)-ball, and we’re done.

We want to study the action of the stabilizer K = PGL2(Z) (or Zp) on the first sphere in the building

S = Sv0(1) = {v ∈ B2 : dist(v, v0) = 1}. Elements of this sphere correspond to sublattices of index p in

Z2, i.e. Nj Z2 with Nj defined as before. The action is defined by the product, k.Nj Z2 = kNj Z2. We saw

that K(1) acts trivially on S, so the action factors through K/K(1). Recall K(1) = ker(K → PGL2(Fp)).

But the map GL2(Zp) → GL2(Fp) is surjective (by Fp ↩→ Zp). Thus K/K(1) ∼= PGL2(Fp), by kK(1) 󰀁→ k

(mod p). The neighbors of v0 are sublattices in Z2 of index p, but we saw these must contain pZ2. Hence

these neighbors correspond to strictly intermediate lattices between pZ2 and Z2. By the correspondence

theorem, these correspond to non-trivial subspaces of Z2 /pZ2 ∼= F2
p, i.e. lines in F2

p. Say L = Nj Z2.

It corresponds to {ℓ + pZ2}ℓ∈L = L (mod p). Thus k.L, as a line in F2
p, is kL (mod p), which is the

same as (k mod p)(L mod p). Therefore, under the identifications K/K(1) ∼= PGL2(FP ) and S with

the collection of lines in F2
p, we got the standard action. In the exercise, you’ll see this action is sharply

3-transitive.

Notice StabAut(B2)(v0) acts (p + 1)-transitively on S1(v0), so in particular our group action doesn’t

realize all possible automorphisms of the tree. The generalization of this to higher dimensions turns out

to be false: in Bd, all automorphisms will come from the action of the group.

Let us now consider the action on the edges. Firstly, g.(v, w) = (gv, gw). Is this transitive? This

question depends on whether or not we fix orientation of the edges, but both options give interesting

questions. Does G (which, recall, can be both PGL2(Qp) or PGL2(Z[p−1])) take the edge v0 = [ 1 1 ]
e0→

󰀅
1

p

󰀆
= v1 to any v → w? Since G acts transitively on the vertices, gv = v0 for some g ∈ G. Since K
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acts transitively on neighbors of v0, kgv = kv0 = v0 and kgw = v1 for some k ∈ K. The element kg thus

gives the desired element of G.

We now find the stabilizer of an edge, StabG(e0). It is easy to see it’s the intersection StabG(v0) ∩
StabG(v1), but StabG(v1) = diag(1, p)K diag(1, p)−1, which is the collection of

󰀓
a b/p
pc d

󰀔
for ( a b

c d ) ∈ K.

The intersection is then B :=

󰀕
Z×
p Zp

p Zp Z×
p

󰀖
, as can be computed directly (this just requires writing out the

definition of K). This is the preimage of the upper triangular matrices in PGL2(Fp), and we call it the

Iwahori subgroup.

We denote by X 0
2 the set of vertices of the Bruhat-Tits tree X2 and by X 1

2 the set of undirected edges.

We also let X±1
2 be the set of directed edges in X2. In this notation, we saw G acts transitively on X±1

2

and found its stabilizer. As an exercise, try finding the element which flips e0, i.e. the g ∈ G for which

ge0 is the edge v1 → v0. In any case, one can compute:

StabPGL2(Z[p−1])(e0) =

󰀫
A ∈ PGL2(Z) : A ≡

󰀣
∗ ∗

∗

󰀤
(mod p)

󰀬

In PGL2(Fp), these ( ∗ ∗
∗ ) are the stabilizers of ∞ ∈ Fp ∪{∞}.

It is time to generalize. Define the Iwhaori subgroup in PGLd(Qp) as:

B =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

Z×
p Zp · · · Zp Zp

pZp Z×
p · · · · · · Zp

...
...

. . .
...

...

pZp · · · · · · Z×
p Zp

pZp pZp · · · pZp Z×
p

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

This will be the pointwise stabilizer of a (d− 1)-cell in the Bruhat-Tits building Xd of PGLd(Qp).

Theorem 10 (Cartan Decomposition). Let G = PGLd(Qp),K = PGLd(Zp). Then:

G =
󰁊

a∈A+

KaK,

where:

A+ = {diag (pm1 , . . . , pmd) : 0 = m1 ≤ · · · ≤ md}

This means that K\X 0
d
∼= K\G/K ↔ A+; we’ll elaborate on this later.

Let A = {diag(pm1 , . . . , pmd) : min{mi} = 0}, and let Sd be the set of permutation matrices in Md.

Set W = Sd · A (this is a subset of the generalized permutation matrices). This is actually a semidirect

product. This group is called the Weyl group (show that unlike A+, A and W are actually groups). We

can also write W = SdA
+Sd.

We now have a few decompositions, which we prove later.

Theorem 11 (Iwahori-Bruhat-Tits (?)).

G =
󰁊

w∈W

BwB

This is to be compared to the Bruhat decomposition2:

Theorem 12 (Bruhat). For any field F, let U be the subgroup of upper-triangular matrices in GLn(F).
Then:

GLn(F) =
󰁊

σ∈Sn

UσU

2Both of this follow from the theory of BN-pairs, in which a pair of subgroups of an algebraic group satisfying certain
properties are given. There are two such pairs in GLn(Qp), and each BN-pair gives rise to such a decomposition.
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Theorem 13.

G =
󰁊

a∈A

BaK

This gives the following nice result: B\X 0
d
∼= B\G/K ↔ A. For d = 2, we get A = {diag(1, pm)} ∪

{diag(pm, 1)} and A ∼= Z via diag(pm1 , pm2) 󰀁→ m1 −m2. In PGLd, we’ll get A ∼= Zd−1. The group A is

identified in the building as the two-sided infinite line of diagonal matrices, and is called the fundamental

apartment in the building.

Proof of the union part in the Iwhaori-Bruhat-Tits and BAK decomposition. It is easy to go from the

BWB decomposition to the the BAK decomposition: let g ∈ G and write g = bwb′ for b, b′ ∈ B,w ∈ W .

Let w = aσ with a ∈ A and σ ∈ Sd. Then g = baσb′ and σb′ ∈ K, since B,Sd ≤ K.

Now, let us be given some g ∈ PGLd(Qp). Acting by B from the right and left, we want to get to W .

The action on the left allows us to scale a row by some invertible integral, add a Zp-multiple of a row to a

higher row, and add a pZp-multiple of a row to a lower row. From the right, we can scale columns by some

invertible integrals, add Zp-multiples to ”lefter” columns and pZp-multiples to ”rightier” columns. Find

the minimal p-valuation of an entry of g, and take a left-bottom extremal entry gij with this valuation

(so that there are no other such minimal entries on the left of that entry in the same row or below it in

the same column). Using B we can ensure gij = pm, and nullify the i’th row and the j’th column. Now

’forget’ about this row and column, and repeat. At some point we also need to scale everything so that

the minimal power is 0, and we’ll end up in W .

5 Bruhat-Tits Buildings of PGLd

5.1 Simplicial Complexes

Recall that a graph G is simply a pair of a vertex set V together with a collection of edges E ⊆
󰀃
V
2

󰀄
,

where
󰀃
X
n

󰀄
is the collection of (unordered) subsets of X of size n. Topologically speaking, we could think

of a graph as a collection of points in space, some of which are glued together. We wish to generalize this

notion to higher dimensions. There were two schools regarding this: the simplicial school and the cubic

school. The former generalizes the notion of an interval to n-simplexes (triangles, tetrahedrons and so

on; these are convex hulls of n+ 1 points in general position in Rn). The latter generalizes the notion of

an interval to squares, cubes, tesseracts and so on (In). The simplicial school won the battle of time, but

there are still fields which use the advantages of the cubic school, such as geometric group theory. We

can describe objects simplicialy, by describing its vertices, edges, triangles and so on.

Example 12. Take a square sheet of paper, and split it to smaller squares. Split each of these squares

diagonally (say, all in the same direction). Now glue this sheet to a torus in the standard way. It is clear

now what the vertices n-simplexes are, so this is a simplicial description of the torus. Note that we have

to split the sheet to smaller squares, and not split it to two triangles directly, as in this way we achieve

repeated edges and triangles (there is only one vertex, as we glue all the corners).

Definition 17 (Abstract Simplicial Complex). An abstract simplicial complex is a set of vertices V

together with a set of cells X ⊆ 2V , such that if τ ⊆ σ ∈ X then τ ∈ X. The geometric realization of the

complex is the realization of the set of vertices as points in space, to which we add higher dimensional

cells sequentially: connect vertices with edges, then connect edges with triangles, and so on.

5.2 Defining the Building

Let G = PGLd(Qp) and K = PGLd(Zp) = Stab(Q×
p ·Zd

p). Define X 0
d to be the set of Q×

p -homothety

classes of Zp-lattices in Qd
p. This can be identified with the quotient G/K, but also with any G/K′
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for any other stabilizer K′ of a lattice. Another identification is with the following set of (uniquely-

determined) representatives:

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

pn1 b12 · · · b1n

pn2 · · ·
...

. . .
...

pnd

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
: ni, bij ∈ N, bij ∈ Z /pni , gcd = 1

󰀼
󰁁󰁁󰁁󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰁁󰁁󰁁󰀾

As before, this game can be played with G = PGLd(Z[p−1]) and K = PGL(Z), etc.
The building will be a large simplicial complex. We have the vertices of the building, and now we

need to decide how to construct the higher-dimensional cells. Recall we want G to act transitively on the

building and K stabilizes the origin I, so that if we connect some g to I, we also have to connect kg to I

for any k ∈ K. We start with connecting I to diag(1, . . . , 1, p). This corresponds to connecting the lattice

L0 := Zd
p to L1 := Zd−1

p ×pZp. It is evident that KL1 = {kL1 : k ∈ K} =

󰀝
L <

p
L0

󰀞
, the sublattices of

index p. What are these? We can put the p anywhere in the diagonal (and leave the rest as 1), and we

can put anything we want above the diagonal, but only in the row where the p appears (as the elements

in any other row have to be in Z /1, which is just {0} - it helps to think of Z /(pi) as {0, . . . , pi − 1}).
This is due to the fact we can consider the index as the covolume of the lattice, which is the determinant

of the matrix. In other words, KL1 = {SpanB : ℓ(B) = 1}, where ℓ(B) = valp detB for B ∈ X 0
d . There

are thus 1 + p + · · · + pd−1 = pd−1
p−1

neighbors for the identity. This is the number of hyperplanes in Fd
p,

due to the fourth isomorphism theorem as we already analyzed above. We can now construct the edges

going out of any vertex g, using the G-transitivity of the action on the building.

The same questions now persist: is this graph symmetric? is it connected?

The graph is not symmetric: we cannot, for example, connect [diag(1, . . . , 1, p)] back to [I], as there is

no scaling of the latter in which the former is of index p. However, [diag(1, . . . , 1, p)] will be connected to

[diag(1, . . . , p, p)], and continuing on this way we’ll get a closed loop back to [I]. The graph is connected:

for a lattice L, scale it so that L ⊆ Zd
p. By Jordan-Hölder for the finite p-group Zd

p /L, there exists some

composition series L ≤
p
L(1) ≤

p
L(2) ≤

p
· · · ≤

p
Zd
p, so there is some path from Zd

p to L. Another way is to

use only [diag(p, 1, . . . , 1)], . . . , [diag(1, . . . , 1, p)] to construct a path from L to Zd
p. Any edge L1 → L2

can be completed to a cycle of length d, so we can go back.

We now describe the building of PGL4(Qp). Start with [I], and connect it to [diag(1, 1, 1, p)],

then to [diag(1, 1, p, p)] and eventually to [diag(1, p, p, p)], which is connected back to [I]. We now

have a cycle of length 4, and in the building it will be completed to a tetrahedron, so that we also

add the edge [I] → [diag(1, 1, p, p)], and then the face {[I], [diag(1, 1, 1, p)], [diag(1, p, p, p)]}, the face

{[I], [diag(1, 1, 1, p)], [diag(1, 1, p, p)]}, and so on. We simply complete the entire cycle to a 4-simplex.

This way, we loose the directedness.

Definition 18 (Bruhat-Tits Building of PGLd(Qp)). The Bruhat-Tits building of G = PGLd(Qp) is a

simplicial complex with vertex set G/K, where K = PGLd(Zp). Connect a coset gK with a directed edge

to g diag(1, . . . , 1, p)K. Now complete every d-cycle to a (d − 1)-simplex. The building is written Xd or

B(PGLd(Qp)).

Notice that there are many g′ with gK = g′K, so that the graph is not 1-out-regular: we connect each

gK to g′ diag(1, . . . , 1, p)K with g′K = gK, and some of these may be different in G/K. For example,

[diag(1, 1, 1, p)] is also represented by

󰀗
1

1
1

p

󰀘
, which we connect to [diag(1, p, 1, p)] (which is different

from [diag(1, 1, 1, p2)], to which [diag(1, 1, 1, p)] is also connected).

Definition 19. There are alternative definitions, in the language of lattices:

1. Construct an edge between L and L′ if pL′ < L < L′ or pL < L′ < L, and then ”clique-ify” - take

the clique complex; for any j-clique in the graph, declare its vertices as a (j − 1)-simplex.
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2. The collection of lattices {L1, . . . , Lj} is a cell if and only if, possibly after reordering,

pL1 < Lj < · · · < L2 < L1.

Try convincing yourself these indeed work in the example above of a cell in the building of PGL4, and

that these are indeed equivalent (this is not very easy).

A corollary to these definitions is that the dimension of a maximal cell in the building is at most

d − 1, since L1/pL1
∼= Fd

p doesn’t have longer chains of subgroups. It is exactly d − 1, because

{Zd
p, pZp ×Zd−1

p , . . . ,Zp ×(pZp)
d−1} is a cell, called the Fundamental chamber. A chamber is a cell

of dimension d− 1.

Definition 20 (Edge-Coloring of the Building). Color a directed edge L → L′ in the building with the

color valp[L
′ : L] if pL′ < L < L′ and with the color d − valp[L

′ : L] if pL′ < L < L′. This is a coloring

map to (Z /dZ)×. Equivalently, we can color gK → hK with valp det g
−1h (mod d). Notice that even

though g, h are defined up to scaling, if we scale one of them by, say, α, the determinant is scaled by αd,

so that the valuation varies by some integer multiple of d. But the coloring is in (Z /dZ)×, so this is

well-defined.

The coloring just measures how many factors of p we added in the determinant, e.g. the edge from

[diag(1, 1, 1, p)] to [diag(p, p, 1, p)] will be colored 2. It is easy to see the color of v → w is the additive

inverse of the color of w → v.

The edges of the form gK → g diag(1, . . . , 1, p)K are precisely the edges of color 1, (sometimes called

1-edges). As in the definition, these give rise to the entire building.

How does the ’area around a vertex’ look like? We want to describe all cells containing v0 = Zd
p (we

can then move to gv0 for any g ∈ G). Indeed, {v0, v1, . . . , vj} is a cell if and only if the corresponding

lattices L0, . . . , Lj satisfy that, up to reordering, pL0 < Lj < · · · < L1 < L0. We want to use the

correspondence theorem, but how do we deal with this reordering? Well, {L0, . . . , Lj} is a cell if and only

if there exists some π ∈ Sj+1 so that pLπ(0) < Lπ(j) < · · · < Lπ(0). But this chain can be continued in

both directions:

· · · < pLπ(1) < pLπ(0) < Lπ(j) < · · · < Lπ(0) < p−1Lπ(j) < p−1Lπ(j−1) < · · ·

But now L0 = Lπ(π−1(0)), so it is somewhere in the middle of that chain. Taking the elements to its

left, we find that each cell containing v0 = Zd
p does correspond to a chain between pL0 and L0 (i.e.

pZd
p and Zd

p). But these correspond to flags in Zd
p /pZd

p
∼= Fd

p (a flag in Fd
p is a sequence of subspaces

0 < V1 < · · · < Vj < Fd
p).

It is evident that the neighbors of Zd
p which form an edge of color 1 are those which have 1’s on the

diagonal, except for one place in which it has p and on its left there are elements in Z /pZ. The neighbors
which form an edge of color 2 have two p’s on the diagonal and elements on their left (which satisfy some

additional conditions), and so on. We now see that 1-edges correspond to (d− 1)-dimensional subspaces

of Fd
p, 2-edges correspond to (d − 2)-dimensional subspaces of Fd

p, and so on, and that such a collection

forms a triangle if and only if they form a flag. For example, if Zd
p is connected via a 1-edge to V and via

a 2-edge to W , {Zd
p, V,W} forms a triangle if and only if W < V (here we abuse notation and assume

that a vertex is a subspace of Fd
p). More concretely:

Example 13. The vertices [I], [diag(1, 1, p)], [diag(p, 1, p)] form a triangle in the building of PGL3, but

the vertices [I], [diag(1, 1, p)], [diag(p, p, 1)] do not. The latter two are, however, connected to the first.

To sum up: Neighbors of Zd
p are in correspondence with non-trivial subspaces of Fd

p, and cells containing

Zd
p are in correspondence with flags in Fd

p.

The number of j-dimensional subspaces of Fd
p is written

󰀃
d
j

󰀄
p
, and is sometimes called a Gaussian

binomial coefficient. It can be shown
󰀃
d
1

󰀄
p
= pd−1

p−1
,
󰀃
d
2

󰀄
p
=

(pd−1)(pd−1−1)
(p2−1)(p−1)

, and so on. The degree of any

vertex in the building is thus
󰁓d−1

j=1

󰀃
d
j

󰀄
p
.
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How many chambers (maximal cells) are there containing v0? These are in correspondence with

maximal flags (JH sequences) in Fd
p. It is easy to count and see that this number is equal to:

pd − 1

p− 1
· p

d−1 − 1

p− 1
· · · p− 1

p− 1
= p

d(d−1)
2 (1 + o(1/p))

Claim. K = PGLd(Zp) = StabG(v0) acts transitively on chambers containing v0. G acts transitively

on chambers, and even on pointed chambers (i.e. on the collection (σ, v) with σ a chamber and v ∈ σ a

vertex).

Proof. K acts on the neighbors of v0 by K ↠ PGLd(Fp) acting on subspaces of Fd
p (as we saw for

d = 2). The map here is the modulo p map. But PGLd(Fp) acts transitively on maximal flags in Fd
p,

which correspond to chambers. Indeed, for any flag V0 < · · · < Vd there exists a basis b1, . . . , bd with

Vj = Span{b1, . . . , bj}; the claim is now clear. The claim on the action of G is now clear.

Claim. Let σ0 be the fundamental chamber. The pointwise stabilizer of σ0 under the action of G is the

Iwahori subgroup B, which is the preimage of the subgroup of GLd(Fp) of upper-triangular matrices under

the modulo p map.

Proof. One way to see this is to show:

B =

d−1󰁟

j=1

diag(1, . . . , 1, p, . . . , p󰁿 󰁾󰁽 󰂀
×j

)K diag(1, . . . , 1, p, . . . , p󰁿 󰁾󰁽 󰂀
×j

)−1

Another way is to note σ0 corresponds to the standard maximal flag in Fd
p. The GLd(Fp)-stabilizer of

this flag in Fd
p is the subgroup of upper-triangular matrices. Thus StabG(σ0) = StabK(σ0) is the desired

preimage through K → GLd(Fp).

The action of G on the chambers is transitive and the pointwise stabilizer of a chamber is B. Thus

G/B is in correspondence with pointed chambers. Check that B is also the G-stabilizer of a pointed

chamber (σ0, v0) (here, the stabilizer is not pointwise on σ0).

Recall that for d = 2 we had B as a stabilizer of a pointed edge, and B\X 0
2 = B\G/K was in a

one-to-one correspondence with A = {diag(pmi) : minmi = 0}. This follows, from example, from the

decomposition G =
󰁉

a∈A BaK.

LetA be the subcomplex spanned by Av0, i.e. the subcomplex consisting of diagonal matrices, rescaled

so that the minimal power is 0. The case d = 3 is partially drawn below.

󰀗
p2

p2

1

󰀘 󰁫 p
p

1

󰁬 󰁫
1

1
1

󰁬 󰁫
1

1
p

󰁬 󰁫 1
1

p2

󰁬
· · ·

󰁫 p

p2

1

󰁬 󰁫
1

p
1

󰁬 󰁫
1

p
p

󰁬 󰀗
1

p

p2

󰀘

󰁫
p2

p
1

󰁬 󰁫 p
1

1

󰁬 󰁫 p
1

p

󰁬 󰁫 p
1

p2

󰁬

· · ·

...
...

...

...
...

...
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We call A the fundamental apartment, and for d = 3 it is a triangulation of the plane R2. This is one

of several possible triangulations of the plane with congruent triangles, and theoretically we could have

picked any other one. However, it can be shown this specific choice makes G act by Euclidean isometries

(translations and reflections of the plane). This has to do with the structure of the corresponding Weyl

group as a Coxeter group.

In general, A ⊆ Xd is a triangulation of Rd−1 by (d−1)-simplices. In the apartment, every (d−2)-cell

is a susbet of 2 (d− 1)-cells.

Claim. A ∼= B\Xd.

Proof. For vertices, B\X 0
d
∼= B\G/K ↔ A ↔ A0. For chambers, B\X d−1

d
∼= B\G/B ↔ W . Indeed, if

σ is a chamber and σ = gσ0, we can write g = bwb′ so σ = bwb′σ0 = bwσ0, so b−1σ = wσ0 for some

w ∈ W . Now b−1σ = wσ0 ∈ A. In words, we can use B to move from any chamber to a chamber in

the fundamental apartment. As an exercise, show that W = NG(A) = Stab(A0). The first equality is

group-theoretic, and the latter is set-theoretic.

This shows that the apartment is a flattening of the building, in some sense.

We now give a few observations.

1. W acts simply transitively on pointed chambers in A. This uses the fact W = Sd⋉A. Take (σ0, v0)

and (σ, v). We then show there exists a unique a ∈ A with av = v0, and a unique π ∈ Sd with

πaσ = σ0. The ’simply’ part follows from StabW ((σ0, v0)) = StabG((σ0, v0)) ∩W = B ∩W = 1.

2. The following matrix acts simply transitively on {(σ0, v) : v ∈ σ0}, and generates the cyclic group

Z /dZ: 󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1

0 1

0 1

. . .
. . .

. . . 1

p 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

3. Sd acts by permuting the entries, π.aK = πaπ−1K.

4. Sd acts simply transitively on {(σ, v0) : σ ∈ A}. This is because neighbors of v0 are in correspondence

with subspaces of Fd
p, chambers containing v0 are in correspondence with maximal flags in Fd

p and

neighbors of v0 in A correspond to subspaces generated by subsets of the standard basis. This

means chambers containing v0 in A are in correspondence with maximal flags generated using the

standard basis, and these correspond to permutations.

We saw that PGL2(Qp) acts transitively on the set of infinite half-lines through the tree.

Definition 21 (Apartment). An apartment in Xd is a G-translation of A, i.e. the subcomplex gA
generated by gAv0 for some g ∈ G.

Vertices of A correspond to lattices of the form SpanZp
({pmiei}). Vertices of gA correspond to lattices

of the form SpanZp
({pmigei}), which corresponds to SpanZp

({pmivi}) for {vi} a basis of Qd
p.

From now on we denote the fundamental apartment by A0 and any apartment by A.

Definition 22 (Simplicial Affine Building). A d-dimensional simplicial affine building is a simplicial

complex B equipped with a set of subcomplexes called apartments, such that:

1. Each apartment is a simplicial tesselation of Rd, i.e. a triangulation attained by starting with one

d-simplex and reflecting on its faces,

2. For any σ,σ′ ∈ B there exists an apartment A with σ,σ′ ∈ A,
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3. If σ,σ′ ∈ A,A′ then there exists an automorphism ϕ of B such that ϕ(A) = A′ and ϕ(σ) =

σ,ϕ(σ′) = σ′.

We can erase the word ’simplicial’ in the definition (and perhaps replace it with ’polyhedral’), and we

get a more general definition of a building. We can also replace Rd with Sd or Hd, and attain a definition

for a spherical or hyperbolic building.

Theorem 14. The complex Xd is a building with system of apartments {gA0 : g ∈ G}.

Proof. Let σ,σ′ ∈ X d−1
d . We want to find g ∈ G with σ,σ′ ∈ gA0. We can assume σ = σ0. Write

σ′ = g′σ0 with g′ ∈ G. As usual, write g′ = bwb′, so that σ′ = bwσ0. Since wσ0 is in A0, the apartment

bA0 contains both σ0 and σ′. This also works for G = PGLd(Z[p−1]), since the decomposition G = BWB

still holds.

Now assume σ0,σ
′ ∈ A′,A′′. We want to find a g ∈ G fixing σ0,σ

′ with gA′ = A′′. Write σ′ = bwσ0.

Now, bA0 contains σ0 and σ′. Assume σ0,σ
′ ∈ gA0, some other apartment. In particular, σ0 = gw′σ0 for

some w ∈ W , which means gw′ ∈ B. Since gA0 = gw′A0 we can assume g = b′ ∈ B to begin with. This

means σ0,σ
′ = bwσ0 ∈ bA0, b

′A0. Because bwσ0 ∈ b′A0, there exists some w′′ with bwσ0 = b′w′′σ0. This

is equivalent to saying bwB = b′w′′B, but uniqueness tells us w = w′′, so that b′b−1 : bA0 → b′A0 = gA0

and it also fixes σ0 and σ since b′b−1bwσ0 = b′w′′σ0 = bwσ0.

Try to decode this proof and gain an intuition for it. Another proof is given in the course’s website.

Consider the fundamental apartment of the tree; it has two sides: the ”left” side consisting of diagonal

matrices of the form diag(pn, 1) for n ≥ 1, and the ”right” side consisting of diagonal matrices of the

form diag(1, pn) for n ≥ 1. The fibers of the ”left” side under the projection are nice: for diag(p, 1) its

( p x
1 ) for x ∈ Z /p, for diag(p2, 1) it’s the same but with p2 and x ∈ Z /p2 and so on.

The analog of this for the two-dimensional apartment in PGL3 is the sector consisting of diagonal

matrices with decreasing powers; that is to say, if π : B → A0 is the projection under the action of B,

then for a = diag(pm1 , . . . , pmd) with m1 ≥ · · · ≥ md = 0 we have π−1(a) as the matrix with pmi along

the diagonal and bij above them with pmj | bij ∈ Z /pmi .

6 Buildings for Other Groups

6.1 Buildings for Classical Groups

Consider the orthogonal group On(Qp) = {g ∈ GLn(Qp) : ggt = I}. The key observation here is that

this is the collection of the fixed points of the involution # : G → G with g# = (gt)−1, where G = GLn

(this is the unique outer automorphism of G up to conjugation). In general, let H ∈ GLn(Qp) be

symmetric, and define O(H) = On(Qp, H) = {g ∈ G : gHgt = H}. The corresponding involution is now

g# = H(gt)−1H−1. We write O(H) = G#, the subgroup of fixed elements under the involution. We

want to define a corresponding involution on B(G). Begin with vertices. Write v = gv0. Can we try to

define v# = g#v0? This turns out not to work; this is not well-defined. For us to define v# appropriately,

first note that (gK)# = g#K#. This means that we have a map # : G/K → G/K#. Now, G/K

corresponds to B0 (under gK 󰀁→ gv0), but so does G/K#! Indeed, notice that K# = HKH−1, so that

K# = StabG(Hv0). This means the map gK# 󰀁→ gHv0 gives a correspondence with B0. Composing

these maps together, we get the involution B0 → B0 given by gv0 󰀁→ g#Hv0. This is now well-defined.

In the same way we have O(H) = G#, we want to have B(O(H)) = B#. Except for a few special cases,

this is true. A more accurate way of writing this would be B(PO(H)) = B(PGLn)
#.

We now deviate and note that if H is anti-symmetric, the group G# = Sp(H) is called a symplectic

group. If E/Qp is a quadratic Galois extension and H ∈ GLn(E) is Hermitian (i.e. H∗
ij = τ(Hji)

where τ is non-trivial element in the Galois group), we obtain the unitary group U(H) (which fixes

g# = H(g∗)−1H−1). These allow us to define the buildings of Sp and U , where in the last case B(U(H)) =

B(PGLn(E))# (and not PGLn(Qp)).
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Back to the orthogonal case.

Claim. The involution # acts simplicially on B = B(PGL), i.e. takes simplices to simplices.

Proof. It is enough to show # takes edges to edges, since B is a clique complex. Thus we want to show

that if gv0 ∼ hv0 then g#Hv0 ∼ h#Hv0. Note that (gv0)
# = g#Hv0 = H(gt)−1v0, so that the last

statement is equivalent to H(gt)−1v0 ∼ H(ht)−1v0, which is in turn equivalent to (gt)−1v0 ∼ (ht)−1v0

or v0 ∼ ((g−1h)t)−1v0. Write s = g−1h. Our assumption can now be restated as sv0 ∼ v0. This implies

KsK = K diag(1, 1, . . . , 1, p, . . . , p)K; this follows from the G = KA+K decomposition: if s = kak′ then

KsK = Kkak′K = KaK, but also av0 ∼ v0 because kak′v0 ∼ v0. Denote sj = diag(1, . . . , 1, p, . . . , p)

with the 1 taken ×j times. We want (st)−1v0 ∼ v0. But K(st)−1K = ((KsK)t)−1 = ((KsjK)t)−1, and

K(stj)
−1K = Ksd−jK which implies (st)−1v0 ∼ v0. We conclude (gv0)

# ∼ (hv0)
#.

The proof above shows that # flips colors!

Claim. We have (gv)# = g#v#. In particular, O(H) is given by the action of G# on B#.

Proof. If v = hv0 we get (ghv0)
# = (gh)#Hv0 = g#(h#Hv0) = g#(hv0)

#. The corollary now follows

because if g# = g and v# = v then (gv)# = gv.

We want an H which gives nice results which are comfortable to work with. In particular, we’d like

v#0 = v0, which is equivalent to H ∈ K. We also want # to take the fundamental apartment to itself (or

equivalently A# = A). This is equivalent to H being monomial, once we chose H ∈ K. The last thing

we require is that B# = B. This turns out to be equivalent to H having non-zero elements only on the

secondary diagonal, which have to be invertible elements in Zp. We arrive at the canonical choice of H

having 1’s along the secondary diagonal and 0’s elsewhere.

Now, using the BAK decomposition, we arrive at the projection B0 → A0
0. Since # fixes B,A,K, we

get the following commutative diagram:

B0 B0

A0
0 A0

0

#

π π

#

In terms of actual elements, start with some vertex gv0 = bav0, and then using uniqueness of the A in

the BAK decomposition:

bav0 b#a#v0

av0 a#v0

#

π π

#

We arrive at the following corollary:

Claim. If v ∈ B# then π(v) ∈ A#
0

We emphasize that G#,B#,A#
0 mean the collection of fixed points of the corresponding object under

#, and any other # on an object means the collection of the # of all elements in the collection.

Proof. If v = v# then π(v)# = π(v#) = π(v).

This means B# ⊆ π−1(A#
0 ).

6.2 The case n = 3

Let us find the building of O(3) and its fundamental apartment. Define J =
󰀓

1
1

1

󰀔
. Now notice that

if a = diag(pm, pn, pℓ) with min(m,n, ℓ) = 0, then a# = diag(p−ℓ, p−n, p−m). Now we ask when a = a#

in the group PGL, i.e. up to a constant. Looking at the middle element we see we must scale by 2n, so

that a = a# if and only if m+ ℓ = 2n. This means that a = diag(p2n, pn, 1) or a = diag(1, pn, p2n). The

involution is thus represented by a reflection along the dashed line in the following drawing.

26



󰀗
p2

p2

1

󰀘 󰁫 p
p

1

󰁬 󰁫
1

1
1

󰁬 󰁫
1

1
p
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󰁬
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󰁬 󰁫
1

p
1

󰁬 󰁫
1

p
p

󰁬 󰀗
1

p

p2

󰀘

󰁫
p2

p
1

󰁬 󰁫 p
1

1

󰁬 󰁫 p
1

p

󰁬 󰁫 p
1

p2

󰁬

· · ·

...
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...
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We now compute that:

π−1

󰀳

󰁅󰁃
p2n

pn

1

󰀴

󰁆󰁄 =

󰀻
󰁁󰀿

󰁁󰀽

󰀳

󰁅󰁃
p2n apn b

pn c

1

󰀴

󰁆󰁄 : a, c ∈ Z /pn, b ∈ Z /p2n

󰀼
󰁁󰁀

󰁁󰀾

Denote this matrix by gn,a,b,c. For which a, b, c do we get g#n,a,b,cK = gn,a,b,cK, i.e. they represent the

same vertex? A simple computation gives, up to scaling:

g#n,a,b,c =

󰀳

󰁅󰁃
p2n −cpn ac− b

pn −a

1

󰀴

󰁆󰁄

We want to have g#n,a,b,cK = gn,a,b,cK (equivalently g#n,a,b,cv0 = gn,a,b,cv0), and this implies c = −a (recall

these are elements of Z /pn), and ac − b = b (in Z /p2n). Thus 2b ≡ −a2 (mod p2n). This condition,

together with a = −c, are sufficient and necessary for us to have g#n,a,b,cK = gn,a,b,cK. We now have to

split to cases.

Assume p ∕= 2. Then b ≡ −a2

2
(mod p2n). We obtain:

B# =

󰀻
󰁁󰀿

󰁁󰀽

󰀳

󰁅󰁃
p2n apn −a2

2

pn −a

1

󰀴

󰁆󰁄 : a ∈ Z /pn, n ∈ N

󰀼
󰁁󰁀

󰁁󰀾
∪

󰀻
󰁁󰀿

󰁁󰀽

󰀳

󰁅󰁃
1

pn

p2n

󰀴

󰁆󰁄

󰀼
󰁁󰁀

󰁁󰀾

These give us the matrices which lie ”above” a given orthogonal diagonal matrix in the ”principal sector”

(defined as the lower-left sixth-sector) in the building. In any case, with some more handwaving, we can

see this is in fact a (p+ 1)-regular tree. In fact, for p ∕= 2, SO(Qp, J) ∼= SL2(Qp) where J is our form. In

particular, the building is as expected.

Now let’s take p = 2. The condition becomes 2b ≡ −a2 (mod 22n), so a has to be even and b ≡ −a2

2

(mod 22n−1) (where the division happens in the integers). This means that once we choose some even a,

our choice of b is not unique: we can take such b and also b+22n−1. We have less freedom in our choice of

a and more freedom in our choice of b. For example, ”above” diag(4, 2, 1) in the fundamental apartment,

we have
󰀓

4 2
2

1

󰀔
. This matrix is connected to both diag(2, 2, 1) and diag(2, 1, 1), which are both connected

also to diag(4, 2, 1). Thus we have ”two triangles above each other”. v0 is also a vertex of the triangle

with two other vertices
󰀓

2 1
2

1

󰀔
,
󰀓

2 1
1

1

󰀔
. These matrices are flipped under the involution. This goes
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one: each orthogonal matrix lies on two triangles, one of which is ’wrong’ and ’continues nowhere’, and

the other one is connected to two other triangles, closing the rhombus. The construction thus begins

with a vertex, connects it to an edge which goes nowhere and an edge whose endpoint splits again to

two edges, and so on. In some definitions, this is what we call the building of O(Q2), but in some other

constructions/definitions of the building, we ignore the ’wrong directions’, and then we are left with a

3-regular tree. The ’wrong directions’ are called barbs.

We took a nice H for our use, but what happens if we choose a different one? Taking P tHP

gives the same result for any P . In Q3, define P = 1
2

󰀕
1

√
−2 1

1 −
√
−2 1√

−2 0 −
√
−2

󰀖
, with the square roots aris-

ing from Hensel’s lemma. It can be checked that P tP =
󰀓

1
−1

1

󰀔
. This means that O3(Q3, I) ∼=

O3

󰀓
Q3,

󰀓
1

−1
1

󰀔󰀔
. The latter is of the form we like (recall the conditions we imposed on H), so analysis

on it would be nice.

For U3(Qp, I) we get O3

󰀓
Q3,

󰀓
1

±1
1

󰀔󰀔
if p ∕= 2 and some compact group if p = 2. The building of

U3(Q2) would be a single point, but if we consider it the way we did with involutions, we actually get a

point with barbs: a star with 4 vertices.

A moment on pedagogy: most literature does not describe the buildings this way (they usually talk

about BN-pairs, root structure theory etc.). There are only a few papers regarding this approach, but it

is very nice and gives good intuition.

7 Finite Quotients - Crash Course

We know that when we quotient the plane R2 by the discrete subgroup Z2 we get a torus. In the hyperbolic

case, if we quotient H2 = PGL2(R)/O(2) by PGL2(Z) (which is a subgroup of the automorphism group

of H2), we obtain the modular surface, which is the fundamental domain for the action, Y1 = {−1/2 ≤
Re z ≤ 1/2} \ {|z| ≤ 1}, glued at specific points. If we define Γ(N) = {γ ∈ PGL2(Z) : γ ≡ I mod N}
we obtain a normal subgroup of PGL2(Z), and the quotients YN of the hyperbolic plane by these give us

Riemann surfaces. We now consider the p-adic analogue.

Recall B2,p = Tp+1 = PGL2(Qp)/PGL2(Zp). Since Z is not discrete in Qp, it is not a good choice for

our quotient. Also, PGL2(Z) fixes v0, and the quotient PGL2(Z)\Tp+1 will be an infinite line, so it also

doesn’t behave how we want. We want to switch to PGL2(Z[p−1]), which acts interestingly (transitively

etc.), but this subgroup is still not discrete. It turns out Z[p−1] is not discrete in Qp nor in R, but it is

discrete in the product R×Qp. Indeed, if anp
mn →R 0 with p ∤ an ∈ Z, then mn → −∞, which implies

anp
mn ∕→Qp

0. Let G = PGL2. We get that G(Z[p−1]) ≤ G(R×Qp) = G(R) × G(Qp) discretely. But

this latter group acts on H2 × Tp+1. Thus, for p ∤ N , we can define Γ(N) = {γ ∈ G(Z[p−1]) : Γ ≡ I (N)}
and then study Γ(N)\H2 × Tp+1. The object H2 × Tp+1 can be thought of as the tree with a copy of the

hyperbolic point at every vertex, and the quotient can be thought of as a finite graph with a Riemann

surface at every point. What if we don’t want to study Riemann surfaces and the like? After all, we only

added the hyperbolic plane to get Z[p−1] as a discrete subgroup. The idea is to recall Tp+1 is also the

building of O3(Qp) for p ∕= 2 (with respect to the standard form).

Notice O3(Z[p−1]) ≤ O3(R) × O3(Qp) discretely. But O3(R) is compact (notice that O3(R, J) is not

compact, this is why we work with the standard form), which implies O3(Z[p−1]) is a discrete subgroup

of O3(Qp)! There are a few ways to see this point-topological argument, try thinking about this. Thus

we can take Γ(N) = {γ ∈ O3(Z[p−1]) : γ ≡ I (N)}, and Xp,N = Γ(N)\Tp+1 = Γ(N)\O3(Qp)/O3(Zp) is

a finite graph, because O3(Z[p−1])\O3(Qp) is compact (not trivial!).

Fact (Lubotzky, Phillips, Sarnak): These are Ramanujan graphs, i.e. have optimal expansion. This

requires heavy number theory (Deligne). To this day, these are the only explicit constructions of Ra-

manujan graphs. LPS also showed that if p ≡ 1 (4), Xp,4q can be described as a Cayley graph of the

finite group O3(Fq), where q is a prime. This is due to the fact Γ(4) acts simply transitively on vertices.
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8 Strong Approximation - Crash Course

Recall we defined the Adele ring A =
󰁔′

p≤∞ Qp = {(α∞,α2,α3,α5, . . . ) : αp ∈ Zp in some tail}, and
Q∞ = R. This ring was useful when thinking about characters of Q. We consider the finite Adele ring,

Af =
󰁔′

p<∞ Qp, i.e. we just forget about the real element in the sequence. This ring has two important

subrings: Q ↩→ Af diagonally, i.e. r 󰀁→ (r, r, r, . . . ), and the integral Adele ring Ẑ :=
󰁔

p<∞ Zp ≤ Af .

The latter is in fact a maximal compact subring of Af . What are the invertible elements in that ring?

Ẑ
×
=

󰁔
Z×
p = {(αp) : val(αp) = 0 ∀p}.

What happens when we play the standard game of dividing out by a maximal compact subgroup?

Take G = GL1. We then have:

G(Af )/G(Ẑ) = A×
f /Ẑ

×
=

󰁜′
Q×

p /
󰁜

Z×
p =

󰁜′
Q×

p /Z×
p =

󰁜′
Z =

󰁐

p

Z

The penultimate equality comes from the valuation map.

Claim. Q× Ẑ
×
= A×

f .

Using this claim, using the second isomorphism theorem:

G(Af )/G(Ẑ) = A×
f /Ẑ

×
= Q× Ẑ

×
/Ẑ

× ∼= Q× /
󰀓
Q× ∩ Ẑ

×󰀔
= Q× /{±1}

Convince yourself that the intersection is indeed {±1}. We now conclude that a rational, up to a sign,

is described by a choice of an integer at every prime, i.e. its valuation at that prime. This makes sense,

and it is in fact just a very fancy way of saying Q has unique factorization (though we will use it in the

proof of the claim, so we didn’t even prove it). When we do this for GL2, we will learn new things.

Proof of the claim (sketch). Given α ∈ A×
f = {(αp) : αp ∕= 0, val(αp) = 0 in some tail}, there exists some

r ∈ Q× with rα ∈ Ẑ
×
, and the claim follows.

Our goal is to do the same for G = PGLn, i.e. to see that G(Q)G(Ẑ) = G(Af ). This is what’s called

strong approximation, and we will prove it later. It is also easy to see that G(Q) ∩G(Ẑ) = G(Z).
What do we learn from strong approximation? Again, using the second isomorphism theorem:

G(Af )/G(Ẑ) = G(Q)/G(Z) = {rational lattices up to Q-scaling}

Thus we’ll learn about the space of rational lattices. But:

G(Af )/G(Ẑ) = G
󰀓󰁜′

Qp

󰀔
/G

󰀓󰁜
Zp

󰀔
=

󰁜′
G(Qp)/G(Zp) =

󰁜′
B0

n,p = {(v2, v3, v5, . . . ) : vp ∈ Bn,p, vp is the root in some tail}

Which is an extremely interesting and useful result.

What happens if we add R, i.e. consider A instead? We need to consider a slightly different object,

similar to what we studied earlier, in the sense that Q is indeed discrete in A. Let I∞ be the identity at

infinity and 0 elsewhere. Using strong approximation, we obtain:

G(Q)\G(A)/
󰀓
I∞ ×G(Ẑ)

󰀔
= G(Q)\

󰀓
G(Af )/G(Ẑ)×G(R)

󰀔
= G(Q)\

󰀓󰁜′
B0

n,p ×G(R)
󰀔
=

G(Q)\ (G(Q)/G(Z)×G(R)) ∼= G(Z)\G(R)

This is the collection of real lattices up to homotethy! We thus get structure on this collection, through

what’s called the Hecke neighbors, i.e. starting with a lattice, going to neighbors of it in the restricted

product representation above, and going back.
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Lastly, we note that these results are most useful when talking about function spaces:

L2
󰀓
G(Q)\

󰀓󰁜′
B0

p,n ×G(R)
󰀔󰀔

∼= L2 (G(Z)\G(R))

Proof of strong approximation. Recall Q× Ẑ
×

= A×
f . It is similar to prove Q+Ẑ = Af . However, Q is

dense in Af while Q× is not dense in A×
f (e.g. for U = 5Ẑ + 1 ≤ Ẑ

×
we have Q× U < A×

f strictly; this

is left as an exercise). We show Q is dense in Af . Let 0 ∕= α ∈ Af . Then there exists 0 ∕= m ∈ N
such that mα ∈ Ẑ. We soon show Z is dense in Ẑ, so there exists some an ∈ Z such that an → mα,

so that an/m → α. Indeed, let α = (α2,α3,α5, . . . ) ∈ Ẑ. Write these one above each other and draw a

northwest-southeast diagonal. Then by the CRT there exists some a ∈ N which is compatible with these

in every Zp. This shows Z is dense in Ẑ.
We now show SLn(Q) is dense in SLn(Af ). Start with n = 2. It is easy to see that, for any p,

SLn(Q) ≥
󰀣
1 Q

1

󰀤
=

󰀣
1 Q

1

󰀤
=

󰀣
1 Af

1

󰀤
⊇

󰀣
1 Qp

1

󰀤

The same argument shows SL2(Q) contains the transpose of that. Now, for any field F ,

󰀭󰀣
1 F

1

󰀤
,

󰀣
1

F 1

󰀤󰀮
= SL2(F )

This means that for any p, SL2(Q) ⊇ SL2(Qp) (as the product I× · · ·× I×SL2(Qp)× I× · · · ), so that for

any P , SL2(Q) ⊇
󰁔

p≤P SL2(Qp). Taking closures, we get precisely the topology on SL2(Af ). This will

work whenever G is generated by copies of the additive group. The proof for SLn is thus the same (putting

copies of F wherever we need). We can also do it for Sp2n, O2n. In all these cases, G(Q) = G(Af ). The

general strong approximation theorem states that for G semi-simple/reductive, this is actually equivalent

to G(R) being non-compact and G being simply connected.

Recall we want to see that for G = GLn we have G(Q)G(Ẑ) = G(Af ). It is not true that G(Q) is dense

in G(Af ). Note that G(Q)G(Ẑ) ⊇ SLn(Q) SLn(Ẑ) = SLn(Af ), since SLn(Ẑ) is open and we saw SLn(Q) is

dense. Thus SLn(Af ) ≤ G(Q)G(Ẑ) ≤ GLn(Af ). We claim that the latter containment is an equality. By

the correspondence theorem, G(Q)G(Ẑ) corresponds to a subgroup of the quotient GLn(Af )/ SLn(Af ),

which is precisely A×
f via the determinant map. Thus we wish to find the image of G(Q)G(Ẑ) under the

determinant map. All that is left to show is thus that det
󰀓
G(Q)G(Ẑ)

󰀔
= A×

f . But indeed this is precisely

det(G(Q)) det
󰀓
G(Ẑ)

󰀔
= Q× Ẑ

×
= A×

f , so we’re done.

This concludes our course.
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p-adic groups - Exercise 1

This is a long exercise - I think doing 2
3 of the questions is more than enough.

1. (a) Prove that Q9
∼= Q3 (write an explicit isomorphism).

(b) Prove that Z10
∼= Z2 ×Z5, and Q10

∼= Q2 ×Q5. Can you write an explicit isomorphisms?

2. Let p be a prime. Let α ∈ Qp, and write α = pmu with m ∈ Z and u ∈ Z×
p .

(a) For p ̸= 2, prove that α has a square root in Qp iff m ∈ 2Z, and (umod p) has a square
root in Fp.

(b) For p = 2, prove that α has a square root in Q2 iff m ∈ 2Z, and u ≡ 1 (mod 8).
Hint: Hensel’s Lemma does not work directly, so you need to make some variation. You
can work out the specific case given here, and you can look for a stronger version of
Hensel’s Lemma in literature/online and use it (and you are encouraged to prove it).

3. Prove that α ∈ Qp is in Q iff it is periodic. Tip: recall first how you proved this in R.

4. Recall that the polynomial xn − 1 is separable over every field F of characteristic zero, so F
always has n nth-roots of unity, which are denoted µn. Let p ̸= 2, and show that:

(a) Qp has all the (p− 1)-roots of unity.
(b) (1 + pZp) ≤ Z×

p , and Z×
p = (1 + pZp)×µp−1 as a group (where µp−1 are the (p− 1) roots

of unity in Qp).
(c) exp and log give an isomorphism (pZp,+) ∼= (1 + pZp,×). (They are defined by their

power series, expα =
∑∞

k=0
αk

k! and log (1 + α) = −
∑∞

k=1
(−x)k

k . The main issue is to
show convergence, the fact that they are inverse to one another follows from formal power
series wizardry).

(d) Combine everything to show that Q×
p
∼= Z × Z+

p × Z/(p−1)Z. (namely, the multiplicative
group of Qp can be described by the additive group. In the real case you have R× ∼=
R+ × Z/2Z similarly).

(e) Do everything for p = 2 - there are differences in every step, and you should get Q×
2
∼=

Z× Z+
2 × Z/2Z at the end.

5. Let q be a prime. Recall that for every ℓ ∈ N there is a unique field Fqℓ of size qℓ, and Fqℓ

embeds in Fqk iff ℓ | k. Recall also that F
qℓ/Fq is a cyclic Galois extension, whose Galois group

is generated by the “Frobenius automorphism” ϕ (x) = xq.

(a) Let p be any prime (possibly p = q), and observe the ascending chain of fields

Fq ⊂ Fqp ⊂ F
qp2

⊂ F
qp3

⊂ . . .

Convince yourself that the union F =
⋃∞

m=1 Fq(p
m) is a field, and show that Aut (F/Fq) ∼=

Zp (write an explicit isomorphism).
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(b) Convince yourself that every m ∈ N has a unique representation as m =
∑n

j=1 djj! with
n ∈ N and 0 ≤ dj ≤ j!. It is useful to think about this as writing m in a basis where every
decimal place has a different “value” (This is a real thing - see Wikipedia article “factorial
number system”, and https://www.dcode.fr/factorial-base). Define the factoradic
integers Z! to be the left-infinite version of these numbers:

Z! =


∞∑
j=1

djj!

∣∣∣∣∣∣∀j : 0 ≤ dj ≤ j!


with addition and multiplication extending that of N.1 Show that if

F =
∞⋃

m=1

Fqn!

then Aut (F/Fq) ∼= Z!

(c) Show that F =
⋃∞

n=1 Fqn! is an algebraic closure of Fq (so we got Aut
(
Fq/Fq

) ∼= Z!. Can
you find a nice description for Aut

(
Q/Q

)
?)

6. (a) Show that x2 + 1 is irreducible in Q3 [x], so that Q3 [i] := Q3[x]/(x2+1) is a quadratic field
extension of Q3.

(b) Show that 3 · Z3 [i] is a maximal ideal in Z3 [i], with Z3[i]/3Z3[i]
∼= F9. Tip: consider also

(Z/3Z) [i].

(c) Show that every 0 ̸= α ∈ Q3 [i] can be written uniquely as α = 3mu with m ∈ Z and
u ∈ Z3 [i]

×.

1If you prefer, you can think of an inverse limit, Z! = lim←−
Z/(n!) =

{
a⃗ ∈

∏∞
n=1

Z/n!

∣∣ ∀i : ai+1 ≡ ai (mod i!)
}
.
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p-adic groups - Exercise 2

1. Fourier 101: Let G be a finite cyclic group (or finite abelian, if you dare), and Ĝ =
Hom(G,C×). We regard CG as an inner-product space with the normalized inner-
product 〈

f, f ′〉 :=
1

|G|
∑
g∈G

f (g) f ′ (g).

For f : G → C, we define its Fourier transform f̂ : Ĝ → C by f̂ (χ) := ⟨f, χ⟩.

(a) Show that Ĝ is an orthonormal basis for CG, and deduce that f =
∑

χ f̂ (χ)χ.

(b) Show that f̂ ∗ g (χ) = f̂ (χ) ĝ (χ), where ∗ is the normalized convolution operator(
f ∗ f ′) (g) = 1

|G|
∑
h∈G

f
(
gh−1

)
f ′ (h) .

(if you know what C [G] is, this shows that C [G] ∼= C|G| as rings).
(c) For g ∈ G, we define evg : Ĝ → C× by evg (χ) := χ (g) (“evaluation at g”). Show

that g 7→ evg gives an isomorphism G ∼= ̂̂
G .

(d) Prove the Fourier Inversion Theorem: ̂̂
f(evg) =

1
|G|f

(
g−1

)
.

2. (a) Show that Ẑp
∼= Z[1/p]/Z (we showed in class that Ẑ[1/p]/Z ∼= Zp, but please do not

resort to Pontryagin duality, we are not animals).

(b) Show that Ẑ [1/p] ∼= (Qp×R)/{(r,r) | r∈Z[1/p]}, when we consider Z [1/p] with discrete
topology.

3. Let G =
(

Q×
p Qp

0 1

)
≤ GL2 (Qp) and let µ be the left Haar measure of G, normalized

so that µ (K) = 1 for K =
(

Z×
p Zp

0 1

)
. Show that µ

(
K

(
p 0
0 1

))
̸= 1 and conclude that µ

is not a right Haar measure (namely, G is not unimodular). Hint: there is no need to
describe µ – you only need it being left-invariant (so that µ (gK) = 1 for any g ∈ G),
and additive on disjoint unions.

4. This is another analogy between the symmetric spaces of real and p-adics GLn:

(a) Recall that
O(n) = {g ∈ GLn (R) | ∀v ∈ Rn : ∥gv∥ = ∥v∥}

was a maximal compact subgroup of GLn (R), while GLn (Zp) was a max. cpt. of
GLn (Qp). Prove that if we define ∥v∥p = maxni=1 |vi|p for v ∈ Qn

p , then

GLn (Zp) =
{
g ∈ GLn (Qp)

∣∣∣ ∀v ∈ Qn
p : ∥gv∥p = ∥v∥p

}
.
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(b) More generally, say that N : Qn
p → pZ ∪ {0} is a norm if

i. N (v) = 0 ⇒ v = 0.
ii. N (αv) = |α|pN (v) for any α ∈ Qp.
iii. N (v + w) ≤ max (N (v) , N (w)).

Show that GLn (Qp) acts transitively on the set of all norms (by (gN) (v) = N (gv)).
A possible direction (there are other ways to prove this!): show that the unit ball
(w.r.t. N) is an open Zp-submodule of Qn

p ,1 and that a bounded open Zp-submodule
of Qn

p is a Zp-lattice.

Combining (a) and (b), we find that GLn (Qp) /GLn (Zp) can be identified with the
space of all norms on Qn

p (over R we have that GLn (R) /O (n) is the space of all inner
products on Rn – you are encouraged to finish the proof we started in class).

5. Show every coset in PGLd(Qp)/PGLd(Zp) has a unique representative of the form

A =


pm1 b12 b13 · · · b1d

pm2 b23 · · · b2d
. . .

...
0 pmd−1 bd−1,d

pmd

 ∈ Md (Z)

with each 0 ≤ bij < pmi , and A
p /∈ Md (Z).

6. Prove the Cartan decomposition over Qp:

PGLd (Qp) =
⊔

0=m1≤m2≤...≤md

PGLd (Zp) diag (p
m1 , . . . , pmd)PGLd (Zp) .

7. In this question B2 is the Bruhat-Tits tree of G = PGL2 (Qp), and v0 is the vertex with
stabilizer K = PGL2 (Zp).

(a) For g ∈ GL2 (Qp), show that

distB2 (v0, gv0) = valp (det g)− 2min
i,j

valp (gi,j) .

(b) Show that the stabilizer of the path from v0 to
[
1
pℓ

]
is

(
Z×
p Zp

pℓZp Z×
p

)
.

(c) Show that K does not act 2-transitively on any sphere in the tree except for the
first one.

(d) Show that PGL2 (Fp) acts sharply 3-transitively on P1Fp, the projective line over
Fp. You can think of P1Fp either as Fp ∪ {∞} with PGL2 (Fp) acting by Möbius
transformations, or as the lines in F2

p, with PGL2 (Fp) acting as linear transforma-
tions.

1in case you never saw modules: a Zp-submodule of Qn
p is simply a subset of Qn

p which is closed under
addition, and under multiplication by scalars from Zp.

2



p-adic groups - Exercise 3

1. (Bruhat decomposition) Let F be any field, G = GLd (F) and P ≤ G the upper triangular
matrices.

(a) Prove that G =
⋃

π∈Sd
PπP . (Hint: use P for column and row operations)

(b) Prove that this is a disjoint union, i.e. Sd is a transversal for P\G/P . Hint: show first
that if πpπ′ ∈ P for π, π′ ∈ Sd then π′ = π−1.

From here G = PGLd(Qp), v0,K, σ0, B,A+, A,A0,W are as defined in class.

2. Show that G =
⊔

w∈W BwB (we proved G =
⋃

w∈W BwB in class).

3. Denote by M the monomial matrices in G (matrices with entries on a generalized diagonal)

(a) Prove that Stabpw (A0) =

Z×
p

. . .
Z×
p

.

(b) Prove that M = NG (A) = Stabsw (A0), and that W ∼= Stabsw(A0)/Stabpw(A0).

4. For v, w ∈ X0
d we define dist (v, w) as the length of the shortest path in Xd between v and

w (by path we mean a path through edges, and the length is the number of edges). We also
define dist1 (v, w) as the length of the shortest path in Xd from v to w made of edges of
color one.

(c) Prove that if v ∈ A0 then there is a path of length dist(v0, v) from v0 to v which is
contained in A0. Do the same for dist1(v0, v).

(d) Check that dist1

(
v0,

[
1
1
p

])
= 1 while dist1

([
1
1
p

]
, v0

)
= 2, so dist1 is not sym-

metric.
(e) Let g ∈ KaK with a ∈ A+. Show that dist (v0, gv0) = dist (v0, av0) and dist1 (v0, gv0) =

dist1 (v0, av0).
(f) Show that if a = diag (pm1 , pm2 , . . . , pmd) (with 0 = m1 ≤ m2 ≤ . . .) then

dist1 (v0, av0) =
∑d

j=1
mj and dist (v0, av0) = md.

(g) For g ∈ GLd (Qp) define

ℓ (g) = valp (det g)− dmin
i,j

valp (gi,j)

(and observe that ℓ is well defined on PGLd(Qp)). Show that dist1 (v0, gv0) = ℓ (g).
Tip: prove that ℓ is K-bi-invariant (i.e. ℓ (kg) = ℓ (g) = ℓ (gk) for k ∈ K), and note
that so is g 7→ dist1 (v0, gv0).

(h) Show that dist (v0, gv0) =
ℓ(g)+ℓ(g−1)

d .
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p-adic groups - Final exercise

The work on this exercise should be individual. If you are stuck you can consult with me.
Each sub-question is worth 10 points, up to a maximum of 100.

1. Let p ̸= 2. In this question we will show that O3

(
Qp,

(
1
1
1

))
∼= O3

(
Qp,

(
1

1
1

))
. We denote by

⟨ , ⟩ the standard bilinear form on Q3
p.

(a) Show there exist a, b ∈ Fp with a2 + b2 = −1.

(b) Show there exists 0 ̸= v ∈ Z3
p with ⟨v, v⟩ = 0. Hint: start with a, b ∈ Zp such that a2 + b2 =

−1 (mod p), and find c such that a2 + b2 + c2 = 0.

(c) Show there exists w ∈ Q3
p such that ⟨v, w⟩ = 1 and ⟨w,w⟩ = 0.1

(d) Show there exists u ∈ Q3
p such that ⟨u, v⟩ = ⟨u,w⟩ = 0, and ⟨u, u⟩ ≠ 0. Denoting ε = ⟨u, u⟩, show

that ⟨ , ⟩ is represented in the basis {v, u, w} by the matrix
(

1
ε

1

)
.

(e) Show there is a basis in which ⟨ , ⟩ is represented by
(

ε
ε

ε

)
, and conclude that O3

(
Qp,

(
1
1
1

))
∼=

O3

(
Qp,

(
1

1
1

))
.

2. Let K ≤ GLn (Qp) be a compact subgroup.

(a) For L0 = Zn
p the standard Zp-lattice, show that {kL0 | k ∈ K} is a finite set (of Zp-lattices).

(b) Show that a finite sum of Zp-lattices is a Zp-lattice, and that K stabilizes the Zp-lattice
∑

k∈K kL0.

(c) Show that every maximal compact subgroup of GLn (Qp) is a conjugate of GLn (Zp).

(d) Find a compact subgroup of PGL2 (Qp) which is not contained in any conjugate of PGL2 (Zp).

3. Let G = PGLd (Qp), K = PGLd (Zp), and B the building of G (so that B0 = G/K via gv0 7→ gK).
A Hecke operator on B is a map T : B0 →

{
finite subsets

of B0

}
which commutes with G. Namely, for every

vertex v ∈ B0, T (v) is a finite set of vertices, and T (gv) = gT (v) for any g ∈ G. For example, the
adjacency operator (sending v to its neighbors in the tree/building) is a Hecke operator.

(a) Show that a Hecke operator T is determined by T (v0), and that T (v0) is a K-stable set of vertices.
On the other hand, show that any finite K-stable set S of vertices determines a (unique) Hecke
operator T such that T (v0) = S.

(b) For a double coset KxK (x ∈ G), show that Tx (gv0) := gKxv0 (for g ∈ G) is a well defined Hecke
operator (and does not depend on the representative x for the double coset).

(c) Show that every Hecke operator can be written as a union of operators of the form Tx (x ∈ G).

(d) Show that for x, y ∈ G the operators Tx, Ty commute, and conclude that all Hecke operators on B
commute with each other. Hint: show that KxKyK = KyKxK.

(e) (challenge) Let xi = diag

(
1, . . . , 1, p, . . . , p︸ ︷︷ ︸

i times

)
. Show that the Hecke operators Tx0 , . . . , Txd−1

gen-

erate together all the Hecke operators on B (via composition, union and subtraction).

1A pair of vectors v, w satisfying ⟨v, v⟩ = ⟨w,w⟩ = 0 and ⟨v, w⟩ = 1 are called a hyperbolic pair.
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