
23/3/20

Teacher: Ori Parzanchevski
             parzan@math.huji.ac.il







24/3/20











30/3/20





31/3/20











20/4/20







21/4/20











27/4/20



★



★

4/5/20



















11/5/20









12/5/20







(page 24)





18/5/20





19/5/20











25/5/20







26/5/20







1/6/20







2/6/20











8/6/20





9/6/20











15/6/20





16+22/6/20













23/6/20







29/6/20





30/6/20









Expander graphs (80571) – Exercise 1

Unless stated otherwise, G = (V,E) is a k-regular graph with n <∞ vertices.

(1) (a) Prove that if Af = kf then f is locally constant, namely: f (v) = f (w) whenever v ∼ w.
(b) Prove that if λ2 = k then G is disconnected.

(c) Optional: Prove that the multiplicity (number of appearances) of k in Spec (A) equals
the number of connected components of G(†).

(2) (a) Prove that if G is connected and −k ∈ Spec (A) then G is bipartite.

(b) Optional: Find what is the multiplicity of −k in Spec (A).

(3) (Infinite graphs!) Let G = Tk be the k-regular tree(‡).

(a) For k = 2 (where you can take V (T2) = Z), show there exists a non-constant function
with Af = 2f . (compare this with question 1(a) and 1(b)).

(b) Show that for every λ ∈ R there exists a non-zero function on the vertices f : V (Tk)→
R with Af = λf .

(4) Assume G is a bipartite ε-expander. Show that SRW on G with a lazy first step satisfies
‖Pt − u‖ ≤

(
ε
k

)t−1.

(†)You can check the definition in https://en.wikipedia.org/wiki/Component_(graph_theory) - in general
wikipedia is a good place to look for definitions you forgot, but you can always email me.

(‡)A tree is a connected graph with no cycles. There is a unique k-regular tree (think about it), and it is infinite.
Do not be confused with computer science “k-regular tree” which can have leaves at the “bottom”, and a “root”
vertex with different degree. Here is a small chunk of the 4-regular tree (it continues in all directions):
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Expander graphs (80571) – Exercise 2

(1) Let G be a finite group and S ⊆ G a symmetric set (S−1 = S).

(a) Show that Cay(G,S) is connected iff 〈S〉 = G.

(b) Assuming 〈S〉 = G, show that Cay(G,S) is bipartite iff there exists a (normal) subgroup
H ≤ G of index two, such that S ⊆ G\H.

(2) For each Γn = Cay
(
Dn,

{
σ, σ−1, τ

})
,(†) construct a (non-constant) eigenfunction with eigen-

value λ n→∞−→ 3, showing that Γn do not form a family of expanders (or bipartite expanders).

(3) AssumeG is a finite non-regular graph, with no vertices of degree zero. DefineD : RV → RV

by (Df) (v) = deg(v)f(v), and M = D−1A. Put on RV the inner product

〈f, g〉 =
∑
v∈V

deg (v) f (v) g (v) .

(a) Show that M is self-adjoint (w.r.t. the inner product above!), and deduce that its spec-
trum is real and that RV has an O.N.B. of M -eigenvectors.

(b) Show that if Pt is the distribution of SRW at time t, then Pt+1 = MTPt.

(c) Recall that M and MT have the same eigenvalues (for general M). For our M , show
that Spec (M) ⊆ [−1, 1] and find an eigenvector with eigenvalue 1 for M , and for MT

(these are not the same eigenvectors!)

(d) Show that 1 appears once in Spec (M) iff G is connected, and that if G is connected
then −1 ∈ Spec (M) iff G is bipartite. What is the limit distribution of SRW on G,
when G is connected and non-bipartite?
Hint: show that M t is self-adjoint w.r.t. the inner product 〈f, g〉 =

∑
v∈V

f(v)g(v)
deg(v) .

(†)The Dihedral group Dn is the symmetry group of a regular n-gon; σ denotes rotation by 2π
n
, and τ a reflection.
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Expander graphs (80571) – Exercise 3

April 21, 2020

As always G is k-regular with n vertices.

(1) (a) Prove the slightly stronger version of the Expander Mixing Lemma: for S, T ⊆ V in a
ε-expander, ∣∣∣∣|E (S, T )| − k |S| |T |

n

∣∣∣∣ ≤ ε

√
|S|
(
1− |S|

n

)
|T |
(
1− |T |

n

)
(b) Taking T = S, conclude that for an ε-expander G

h′ (G) = min
∅ 6=S(V

|∂S|n
|S|
∣∣S∣∣ ≥ k − ε.

(2) Let G be a bipartite ε-expander, with V = R t L.

(a) Prove that for S ⊆ R and T ⊆ L,∣∣∣∣|E (S, T )| − 2k |S| |T |
n

∣∣∣∣ ≤ ε
√
|S| |T |

(b) Optional: find an improvement as in question 1.
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Expander graphs (80571) – Exercise 4

May 29, 2020

In all questions G = (V,E) has n vertices and no loops/multiple-edges.
It does not have to be regular.
Eigenvalues: λi - Adjacency, µi - Markov (D−1A), γi - Laplacian (∆ = D −A).

(1) Define the Edge Laplacian ∆e
def
= δδ∗ : Ω (G)→ Ω (G) (recall that ∆ = δ∗δ).

(a) Show that f ∈ ker ∆e iff f obeys “Kirchhoff’s law”, namely the total incoming/outgoing
flow at every vertex is zero.

(b) As discussed in class, choosing a direction for each edge in G gives a basis for Ω (G).
Show that the various possible choices all end up in the same matrix representation for
∆ (but not so for δ, δ∗, ∆e).

(c) Show that Spec(∆e) = Spec(∆) t
{

0, . . . , 0︸ ︷︷ ︸
|E|−|V | times

}
.

(2) While different choices of edge directions give different matrices for ∆e, the absolute values
of the entries remain the same (check this). Recall that for a m× n matrix A

‖A‖1 := max
v 6=0

‖Av‖1
‖v‖1

= max
j

{
m∑
i=1

|aij |

}
, ‖A‖∞ := max

v 6=0

‖Av‖∞
‖v‖∞

= max
i


n∑

j=1

|aij |

 ,

and show that
‖∆e‖1 = ‖∆e‖∞ = max

v∼w
{deg (v) + deg (w)} .

Using the inequality ‖A‖ ≤
√
‖A‖1 ‖A‖∞ (which you are welcome to prove if you never did),

conclude that
γn ≤ max

v∼w
{deg (v) + deg (w)} .

Optional: prove this is an equality iff G is bipartite with each side having a constant degree.

(3) Prove as much as you can from the following, or find other bounds:

avg
v∈V

deg(v) ≤ λ1 λ1 ≤ max
v∈V

deg(v)√
max
v∈V

deg(v) ≤ λ1

max
v∈V

deg(v) + 1 ≤ γn γn ≤ n

λ2 < 0⇒ G = Kn

Hints (in white color): Rayleigh quotient, complement graph
Optional: if G has no triangles (loops of length three) then λn ≤ −

√
maxv∈V deg(v).



Expander graphs (80571) – Exercise 5

June 1, 2020

(1) For a word w ∈ Fk/2 we denoted pw = P [w (σ) (1) = 1]− 1
n , where σ =

(
σ1, . . . , σk/2

)
are random

uniform independent permutations in Sn.

(a) Show that pw = P [w (σ) (j) = j]− 1
n for any 1 ≤ j ≤ n.

(b) Show that pw = pw′ when w′ is the cyclic reduction of w.

(c) Show that pxm
1
= d(m)−1

n (for m ≤ n) where d (m) is the number of divisors of m.

(d) Show that pw = pϕ(w) for any ϕ ∈ Aut
(
Fk/2

)
(this gives another proof for (b)).

(2) The De Bruijn graph Gk,s is the k-regular directed graph with

VGk,s
= [k]

s ([k] = {1, . . . , k})
EGk,s

= {(a1, . . . , as)→ (a2, . . . , as, t) | ai, t ∈ [k]} .

Show that SpecAGk,s
= {k, 0, . . . , 0}, and deduce that no analogue of the Alon-Boppana theorem

holds for directed graphs.

(3) (Alon-Boppana) We’ll show that the second Laplacian eigenvalue γ2 of (k-regular) G satisfies

γ2 < k − 2
√
k − 1 +

2
√
k − 1− 1⌊

diam(G)
2

⌋
− 1

. (1)

(a) Show that diam (G) → ∞ as n = |V | → ∞, and deduce that (1) implies the Alon-Boppana
theorem as stated in class(†).

(b) Fix v ∈ V , and denote

Sj = Sj (v) = {w ∈ V |dist (v, w) = j} sj = |Sj |
Ej = E (Sj , Sj+1) ej = |E (Sj , Sj+1)| .

Fix b ∈ N, denote ρ =
√
k − 1, and define fv : V → R by

fv (w) =


1 w = v

ρ1−j w ∈ Sj , 1 ≤ j ≤ b
0 w ∈ Sj , b < j.

Show that (note both sums include j = b):

‖fv‖2 = 1 +
∑b

j=1
sjρ

2−2j

‖δfv‖2 = (ρ− 1)
2
∑b

j=1
ejρ
−2j + (2ρ− 1) ebρ

−2b.

(c) For j ≥ 1 show that ej ≤ ρ2sj and sj+1 ≤ ρ2sj , and deduce also that sb ≤ 1
b

∑b
j=1 ρ

2(b−j)sj .
(d) Combine (b) and (c) to show that

‖δfv‖2 <
(
(ρ− 1)

2
+

2ρ− 1

b

)
‖fv‖2 =

(
k − 2

√
k − 1 +

2
√
k − 1− 1

b

)
‖fv‖2 .

(e) Now, let v, w ∈ V be vertices with dist(v, w) = diam(G), and fix b =
⌊
diam(G)

2

⌋
−1. Show that

fv⊥fw and δfv⊥δfw. Take f = fv + αfw with α for which f⊥1, and use it to deduce (1).

(†)In fact it is stronger, as it addresses λ2 and not only λ = max (λ2, |λn|).



Expander graphs (80571) – Exercise 6

September 8, 2020

(1) For a (k + 1)-regular Ramanujan graph, let Af = λf with ‖f‖ = 1 and λ /∈
{
±2
√
k,± (k + 1)

}
.

We showed that in some ONB B

[Bλ]B =
[
B|〈f+,f−〉

]
B

=

(
ϑ+ b
0 ϑ−

)
,

with |ϑ+| = |ϑ−| =
√
k and |b| ≤ k.

(a) Show that
∥∥fh∥∥2 = ‖f t‖2 = k + 1, and

〈
fh, f t

〉
= λ.

(b) Define f⊥ = fh − ϑ−

k f
t, and show that f+⊥f⊥,(†) and that [Bλ]{f+,f⊥} =

[
ϑ+ (1−k)

k ϑ−

0 ϑ−

]
.(‡)

(c) Show that ‖f+‖2 = (k + 1)
2 − λ2 and

∥∥f⊥∥∥2 = (k+1)2−λ2

k , and compute [Bλ]B completely.
Verify you got |b| = k − 1, showing that our naive bound |b| ≤ k was almost optimal.

(d) Optional: Verify from your computation that ‖Bλ‖2 = k (we already know this, since we saw
that k appears n times in Sing (B), and (n− 1) of these have to come from the Bλ-blocks).

(e) Optional: Compute ‖Bt‖2 precisely (by computing ‖Btλ‖2), using some software (or if you are
brave, by hand).

(2) (a) We proved that for a k-regular graph/digraph, ‖pv0t − u‖1 ≥ 2−2ε when t = logk n−logk (1/ε).
Prove that distTV (pv0t ,u) ≥ 1− ε directly from the definition of distTV .

(b) Prove that distTV (p, p′) = 1
2 ‖p− p

′‖1 (for distributions p, p′).

(3) Let Xt be a positively-biased walk on N, namely, Xt = 1 when Xt−1 = 0, and when Xt−1 6= 0,

Xt ∼

{
Xt−1 + 1 with probability p
Xt−1 − 1 with probability 1− p

with p > 1
2 .

(a) Show that with probability one, the walk returns to 0 only a finite number of times.

(b) Deduce that with probability one SRW on the k-regular tree (k ≥ 3) returns to the starting
point only a finite number of times.

(c) Optional: for n ≥ 1, compute the probability that Xt+1, Xt+2, . . . ≥ n given that Xt = n.

(†)Where did −ϑ−

k
come from? I solved

〈
f+, fh + xf t

〉
= 0 for you as it is a bit tedious, but you can do it yourself if

you want to see all the details.
(‡)Tip: we computed Bfα = −αfh + (k + αλ) f t in class, and f⊥ = f

−ϑ−
k

.



Expander graphs (80571) – Final Assigment

September 8, 2020

Two cycles (=closed paths) in a graph are called equivalent if one is obtained from the other by
a cyclic rotation, or in other words, by starting from a different point in it; we denote by [γ] the
equivalence class of γ. A cycle is called cyclically nonbacktracking (CNB) if it is nonbacktracking and
so are also the cycles equivalent to it. A cycle is called primitive if it is CNB, and it is not obtained
by repeating some cycle twice or more times. Finally, a prime in a graph G is an equivalence class of
primitive cycles. The Ihara zeta function of a finite connected graph G is defined by

ζG (u) =
∏
[γ]

1

1− ulen(γ)
,

where the product is over all primes in G. It is not a priori clear that the product converges for any
u ∈ C, but Ihara showed (and you will too) that ζG is actually given by a rational function, for u
small enough.

(1) (a) (5) Show that for n ≥ 3 the n-cycle graph Cn has two primes, and Compute ζCn .
(b) (5) The cycle rank of a connected graph is r (G) = |E| − |V |+1. Show that any (connected)

graph with r (G) ≥ 2 has infinitely many primes (hint: think first on a ∞ shaped graph).
(c) (5) Recall Riemann’s zeta function,

∞∑
n=1

1

ns
= ζ (s) =

∏
p prime

1

1− p−s
,

and sketch the argument why unique factorization in N implies that these two expression are
indeed equal (for s > 1). Allow yourself to ignore all issues of convergence.

(d) (5) Show that in graphs a “product” (namely, concatenation) of primes can be a prime, so in
particular, there is no unique factorization. On the other hand, show that every CNB cycle
can be uniquely written as a power of a primitive cycle.

(e) (10) Let NG (n) be the number of CNB cycles of length n in G. Show that for |u| < 1,

ln ζG (u) =
∞∑
n=1

NG (n)

n
· un.

You may be sloppy about convergence issues, as before. Hint: use Taylor for ln (1− x).
(f) (10) Show that NG (n) = tr (Bn) (where B = BG is the nonbacktracking walk operator on

directed edges), and use this to deduce Hashimoto’s theorem (1989):

ζG (u) =
∏

ϑ∈Spec(B)

1

1− ϑu
=

1

det (I − uB)

for u small enough (every ϑ repeats in Spec (B) according to its algebraic multiplicity).(†)

(†)Note that we now discovered that ζG (u) coincides with a rational function on an open set, so it can be analytically
continued to a meromorphic function.



(g) (5) Assuming that G is (k + 1)-regular, deduce Ihara’s theorem (1966):

ζG (u) =
1

(1− u2)r(G)−1 det (I − uA+ u2kI)
.

(h) (5) Deduce Sunada’s observation (1986) that Ramanujan graphs satisfy a sort of “Riemann
hypothesis”: assuming G is (k + 1)-regular, it is Ramanujan iff every pole of ζG (u) with
0 < < (− logk u) < 1 satisfies < (− logk u) =

1
2 .

(2) For K 
 k ≥ 3, let G = (L tR,E) be a connected bipartite (K + 1, k + 1)-biregular graph.(†)

Namely, deg
∣∣
L
≡ K + 1 and deg

∣∣
R
≡ k + 1. Denote n = |L| (so that |R| = K+1

k+1 n).

(a) (5) Show that p :=
√

(K + 1) (k + 1) and −p are eigenvalues of A := AG, and that every
λ ∈ Spec (A) satisfies |λ| ≤ p.(‡)

(b) (5) Show that the multiplicity of 0 ∈ SpecAG is at least K−k
k+1 n.

(c) (15) Assume Af = λf with f 6= 0 and 0 < λ < p.(§) Construct eigenfunctions f±± of B = BG
with eigenvalues

ϑ±± = ±

√
1

2

(
λ2 −K − k ±

√
λ4 − 2 (K + k)λ2 + (K − k)2

)
(or simpler, ϑ±± are the roots of z4 +

(
K + k − λ2

)
z2 +Kk).

(d) (5) Check what happens if you take λ = p in the last question (How many eigenfunctions do
you get? With which ϑ?)

(e) (10) For 0 ≤ λ ≤ p, show that |ϑ±±| ≤ 4
√
Kk iff λ ∈

[√
K −

√
k,
√
K +

√
k
]
. (Do you see

the significance of 4
√
Kk?)

Remark: This connects to the regular case as follows: the adjacency spectrum of the (k + 1)-
regular tree is Spec

(
ATk+1

)
=
[
−2
√
k, 2
√
k
]
(the “Ramanujan region”), and that of the

(K + 1, k + 1)-biregular tree is

Spec
(
ATK+1,k+1

)
=
[
−
√
K −

√
k,−
√
K +

√
k
]
∪ {0} ∪

[√
K −

√
k,
√
K +

√
k
]
.

(f) (10) Show that for λ 6=
√
K ±

√
k the four eigenfunctions f±± are independent.

(g) (25) Study what happens for λ = 0, and show that

Spec (B) ⊆
{
z
∣∣∣ |z| ≤ 4

√
Kk
}
∪
{
±
√
Kk
}

iff Spec (A) ⊆ Spec
(
ATK+1,k+1

)
∪{±p} and the multiplicity of 0 ∈ SpecAG is exactly K−k

k+1 n.
(¶)

(†)Recommendation: reread what we did in class for bipartite graphs at page 10 of the course notes.
(‡)This is called the “Perron-Frobenius” eigenvalue of a graph, if you want to read more about it.
(§)If you followed my recommendation, you know that there is also f ′ with Af ′ = −λf ′.
(¶)You may assume that

√
K ±

√
k /∈ Spec (A) - these are a headache.



A (Linear) Error-Correcting Code is a subspace C of Fn2 . The distance of C is

distC := min
{
distHam

(
v, v′

) ∣∣∣ v,v′∈Cv 6=v′
}
= min

{∥∥v − v′∥∥
Ham

∣∣∣ v,v′∈Cv 6=v′
}
= min {‖v‖Ham | 0 6= v ∈ C}

(where Ham stands for Hamming distance). The idea is that if v ∈ C was transmitted via a noisy
medium, as long as less than distC bits were changed, the distorted message is not in C, and thus the
receiver can deduce that an error occurred(†). Some common terminology:

• n is called the block length of the code

• dim C is the message length (think why)

• rC =
dim C
n is the rate

• δC =
distC
n is the relative distance

A family of codes is called good if the rates, and the relative distances of the codes in the family are
bounded away from zero(‡).

(3) Fix a code B (the “Base code”) of block length k. Given a k-regular graph G on m vertices, for
each vertex v choose an arbitrary order ev1, . . . , e

v
k on the edges touching v. Define a code with

block length n = km/2, by identifying Fn2 = FE(G)
2 and taking

C = CG =
{
f ∈ FE(G)

2

∣∣∣ ∀v ∈ V (G) : (f (ev1) , . . . , f (e
v
k)) ∈ B

}
.

Namely, f is in C if every vertex “sees” a word in B. The idea (due to Sipser and Spielman), is
that taking a family of very good expanders {G} one gets a good family of codes {CG} (which are
also LDPC, if you want to read about it).

(a) (5) Show that rC ≥ 2rB − 1, so that if rB > 1
2 then rC are bounded away from zero(§).

(b) (10) Assume that G = (L tR,E) is a bipartite ε-expander, and let 0 6= f ∈ C. Define
S =

{
v ∈ L

∣∣∣ (f (ev1) , . . . , f (evk)) 6= ~0
}
, and similarly T = {v ∈ R | . . .}. Show that

δBk
√
|S||T | ≤ ‖f‖Ham ≤

2k|S||T |
m

+ ε
√
|S||T |.

(c) (5) Deduce that for 0 6= f ∈ C

‖f‖Ham ≥ δB
(
δB −

ε

k

) mk
2
,

and thus δC ≥ δB
(
δB − ε

k

)
.

(d) (10) Fix m ≥ 1, and let F be a finite field of size 2m. Recall that the elements of F
correspond to m-tuples of bits: F↔ Fm2 , and that this is also an isomorphism of the additive
structure(¶). We shall thus identify F2m (2m-tuples of elements from F) with (F2)m2m . Fix
1 ≤ t ≤ 2m, and define the (Reed-Solomon) code

R = Rm,t =
{
(p (0) , p (1) , . . . , p (2m − 1))

∣∣∣∣ p ∈ F[X]

deg p < t

}
≤ F2m = Fm2m

2 .

(so R has block length m2m). Show that R has rate t
2m and distance ≥ 2m−t+1.

(e) (5) Find the smallest m for which the code R (with an appropriate t) can be used as a base
code, so that the Sipser-Spielman construction with Ramanujan graphs {G} will ensure a
good family of codes {CG}.

(†)He can also find the correct message, as long as less than distC
2

bits were changed - think why.
(‡)It is common to talk about a “good code”, but like in “expander graph”, the definition requires a family.
(§)For example, the oldest code in the book, H=Hamming(7,4) (see Wikipedia) has rH = 4

7
.

(¶)Multiplication in F is done modulo a fixed irreducible polynomial of degree m, but we don’t need this.


