$2210 / 17$
Ramanujan Graphs and complexes -Parian $G=\left(V_{i} E\right)$ whinitad a graph (finite) $A: \mathbb{R}^{V} \rightarrow \mathbb{R}^{V}$

$$
(A f)(v)=\sum_{w \sim v} f(w)
$$

If G is k-regular, then
$A \mathbb{1}=k \mathbb{1} \rightarrow k$ is an eigenvalue of A.
Exercise: λ is a e.value of $A \rightarrow|\lambda| \leq k$
Detni A bevel grope is an ε-expander if

$$
\operatorname{Spec}(A) \subseteq\{k\} \cup[-\varepsilon, \varepsilon] \rightarrow \text { multiplicity } 1
$$

A (k,l)-regular bipartite graph is an ε-hip
expander if

$$
\operatorname{Sece}(A) \subseteq\{t\} \cup[-\varepsilon, \varepsilon]
$$

Examplei $K_{n}^{\text {(parse) }}$-complete graph $A_{K_{n}}=J=\left(\begin{array}{lll}1 & 1 & \cdots\end{array}\right)$
$\operatorname{Spec}\left(A_{x_{n}}{ }^{(r-}\right)=\{n, 0, \ldots, 0\} \rightarrow$ it is o-expander.

Expander mixing lemma
$G k$-reg graph, n vertices
$S_{1} T \subseteq V$. What is \#edges between S and T ?
Expectancy $\quad k \frac{|s||T|}{n}$
Lemma if G is an ε-expander

$$
\left||E(S, T)|-\frac{k|S||T|}{n}\right| \leqslant \varepsilon \sqrt{|S||T|}
$$

Proof: Take on. basis $\quad v_{i} \quad A_{v_{i}}=\lambda_{i} v_{i} \quad x_{1}=k \quad v_{1}=\frac{11}{\sqrt{n}}$ $v_{i} \perp 1 \quad \forall i>0$
For $f \in \mathbb{R}^{2} \quad f=\sum_{i=1}^{n} f^{i} v_{i}$, where $f=\left\langle f_{1} v_{i}\right\rangle$

$$
\begin{aligned}
& \left\langle A \mathbb{1}_{s,} \mathbb{1}_{T}\right\rangle=\left\langle\sum A \mathbb{1}_{s}^{i} v_{i}, \sum \mathbb{1}_{T}^{j} v_{j}\right\rangle \\
& =\sum_{i} \lambda_{i} \mathbb{1}_{S}^{i}\left\|_{T}^{i}=k \mathbb{H}_{S}^{1} \mathbb{1}_{T}^{1}+\sum_{i=2}^{n} \lambda i\right\|_{S}^{i} \mathbb{1}_{T}^{i} \\
& =\frac{k|s|(\pi)}{n} \\
& \frac{\mid 1}{\left\lvert\, \frac{\mid 1}{|c|}\right.} \frac{11}{\sqrt{n}} \frac{|1|}{\sqrt{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left||E(S, T)|-\frac{\langle S|(T)}{n}\right| \leqslant\left|\sum_{i=2}^{n} \lambda_{i} \mathbb{N}_{S}^{i} \mathbb{1}_{T}^{i}\right| \\
& \leqslant \varepsilon \sum_{i=2}^{n} \sum_{i=2}^{n}\left|1_{S}^{i} 1_{T}^{i}\right| \leqslant \varepsilon \sum_{i=1}^{n}| | \mathbb{1}_{S}^{i} \mathbb{1}_{T}^{i} \mid \leqslant \varepsilon \sqrt{\left(\sum_{i=1}^{n}\left|1_{S}^{i}\right|^{2}\right)\left(\sum_{i=1}^{n}\left(\left.1\right|_{T} ^{i 2}\right)^{2}\right.} \\
& =\sqrt{\mid S \| T}
\end{aligned}
$$

Nw: Prove EML for (k,l)-bipartile graphs.
Cor E才0 unless $G=K_{n}^{\text {parian }}$ or $G=\varnothing$
Proof: if $\varepsilon=0$ Then $|E(s, T)|=\frac{k|s||T|}{n} \Rightarrow \forall v, w \in V$

$$
\left\{0, B,|E(\{v\},\{w\})|=\frac{k}{n} \quad \Rightarrow \quad \begin{array}{l}
k=0 \\
\text { or } k=n .
\end{array}\right.
$$

After fixing $k-\varepsilon$ is not too small either
For which E-can you construct k-regular expanders?
Random walk
Po prob measure on V (state at time 0)
P_{t} prob measure of RW after t steps.

$$
P_{t}=\left(\frac{A}{l}\right)^{t} P_{0}
$$

How Lost does $P_{t} \rightarrow \frac{11}{n}$?
For $K_{n}^{\text {parian }} \quad P_{1}=\frac{1}{n}$
For an. $\varepsilon^{\text {-expander }} \quad P_{t \bar{F}}=\sum_{i}\left(\frac{A}{a}\right)^{t} P_{0}^{i} V_{c}$

$$
\begin{aligned}
& =\underbrace{p_{0}^{1} \frac{1}{\sqrt{n}}}_{\frac{11}{n}}+\underbrace{\sum_{i=2}^{n}\left(\frac{\lambda_{i}}{k}\right)^{t} P_{0}^{i} v_{i}}_{\text {error tern }} \\
& |\cdot| \leqslant\left(\frac{\varepsilon}{k}\right)^{t} \sum_{i=2}^{n}\left|p_{0}^{i}\right|^{2} \leqslant\left(\frac{\varepsilon}{k}\right)^{t}
\end{aligned}
$$

If G is disconnected $\longleftrightarrow k$ has multiplicity ≥ 2

Stronger bound on ε, after fixing k.

$$
\begin{aligned}
& \operatorname{tr}\left(A^{2}\right)=\sum_{i=1}^{n} \lambda_{i}^{2} \leqslant k^{2}+(n-1) \varepsilon^{2} \\
& \operatorname{tr}\left(A^{2}\right)=\sum_{i} A_{i i}^{2}=2 \# \text { edges }=k n \\
& k n \leqslant k^{2}+(n-1) \varepsilon^{2} \leq k^{2}+n \varepsilon^{2} \\
& k-\frac{k^{2}}{n} \leqslant \varepsilon^{2} \Rightarrow \varepsilon \geqslant \sqrt{k-\frac{k^{2}}{n}} \Rightarrow \sqrt{k} \Rightarrow
\end{aligned}
$$

Ab-Boppana the For fixed k and $n \rightarrow \infty \quad \varepsilon \geq 2 \sqrt{k-1}$
Formally; for $H_{\varepsilon}<2 \sqrt{k-1}$ there are no ε-expander with $n>n_{0}(\varepsilon, k)$

Proof: $\quad \operatorname{tr}\left(A^{2 m}\right) \leq k^{2 m}+(n-1) \varepsilon^{2 m}$

$$
\operatorname{tr}\left(A^{-m}\right)=\sum_{i=1}^{n}\left(A^{2 m}\right)_{i i}=\begin{aligned}
& \text { nim of closed potts } \begin{array}{c}
\text { of length } 2 m
\end{array} \geqslant \text { backtracking } \\
& 2 m-c y c l e s
\end{aligned}
$$

$=n$ \#closed paths with origin
(ex.)

$$
\begin{aligned}
& \cdot \varepsilon \geqslant \sqrt[2 m]{\left.\frac{n}{n-1} \frac{1}{m+1} 1^{2 m} \begin{array}{c}
2 m
\end{array}\right) k(k-1)^{m-1}-\frac{k^{2 m}}{n-1}} \approx \sqrt[2 m]{\frac{4^{m}}{\frac{1}{m+1} \sqrt{\pi m}} k(k-1)^{m-1}} \\
& \xrightarrow[m \rightarrow \infty]{ } \quad 2 \sqrt{k-1}
\end{aligned}
$$

Defi A k-reg groph is Ranamujam if it is a $2 \sqrt{k-1}$-expander "A bifiartite' k-reg ghagni- is" spáárite" Kamannjon" it it is a - 2 $\sqrt{k-1}$ bijarte espander

We know:
 other k-unkown $k=7$? Exppict. nem

(2) He \exists int mony bigartfe Ramanyjum gryds

Marcus, Spielnan, Solivastaval based on Bilu-Linial

lines planes

$$
\begin{aligned}
& |V|=\# \text { hines }+\# p^{\text {lane }}
\end{aligned}
$$

 $0 \leq \#$ lines $\leqslant \mathbb{F}_{p}^{2} \quad \longrightarrow \quad \frac{p^{2}-1}{p-1}=1+p$
$\mathbb{P}^{2} \mathbb{F}_{p}$ is a $\left.\varphi+1\right)$-reg bipartite graph on $2\left(p^{2}+p+1\right)$ vertices
\#paths from l_{1} to $l_{2}=\begin{gathered}\text { \#planes containing } \\ \text { Af length } 2\end{gathered}= \begin{cases}P+1 & l_{1}=l_{2} \\ 1 & l_{1} \text { and } l_{2}\end{cases}$
so. $\left.A_{x}^{2}=\left(\begin{array}{c|c}J & 0 \\ \hdashline u & J\end{array}\right)+p I d \Rightarrow S_{p}\left(A_{x}^{2}\right)=\left\{\varphi_{p}+1\right)^{2}, p\right\}$

$$
\bar{J}=\underset{\text { all }}{\text { matrix }}
$$

twice better than Ramainaan!!
The catch is: $n \approx 2 k^{2}$ (fixed for a fixed degree)

Q: Given a grape G is there a generation set S s.t. $\operatorname{Cay}(G, 5)$ is an expander ε-expander

Q: Given a family of groups G_{n} is there a global $\varepsilon>0$ sit. all the family is an ekexpanders (with fixed k) eng., $S_{n} ?$
Example: $S L_{2}\left(F_{p}\right)=\left\langle\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}\left.\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\rangle \text { is an infinite family of }\end{array}\right.\right.$ groups (for all p) with 2 generators. De they form an expander family.

TAm: Abelian grove do not give expenders.
Before that; What is the diam. of ε-expander?

- Discussion: Take $p_{0}=\mathbb{1}_{v_{0}}$, We saw that $\left\|p_{t}-\frac{1}{n}\right\|^{2} \leqslant\left(\frac{\varepsilon}{k}\right)^{2 t}$ on the other Lad $\left\|p t-\frac{11}{n}\right\| \geq \frac{1}{n^{2}} \begin{gathered}\text { vertices not } \\ \text { visited after } t\end{gathered}$ $\underbrace{\substack{\text { visited enter } t \\ \text { steps }}}_{M_{t}}$

Gives $M_{4}<1 \Rightarrow \operatorname{diam}^{1} \log _{\frac{k}{\varepsilon}}(n)$

For an Abelian group, the growth of random walks is polynomial
$s_{1} s_{2} s_{1} s_{3}=s_{1}^{2} s_{2} s_{3}$ in an Abelion gray

$$
\Rightarrow\left|{ }^{B} \operatorname{diam}^{(e)}\right|=n \quad \rightarrow \quad \operatorname{diam} \geqslant \sqrt[k]{n}
$$

Rem
r-Nilpotent groups for tined r are also not expanders.
Marquis: $\forall \underset{\text { finite generating }}{S} \subseteq S L_{3}(\mathbb{Z})$ sit. $\quad \operatorname{Cay}\left(S L_{3}\left(\mathbb{F}_{p}\right), J_{m-d}\right)$ is a family of expainders.
Gabor-Galil computed the ε for a similar family of graphs.
Idea: Kazholan's property (T) for a specific S.

Ramanujan graphs and complexes
Today: Te the k-regular tree and in particular fec $\left(A_{T}\right)$ Tomorrow hyperbolic plane and the spec of its adjacency matrix.

For which λ is there $f: V\left(T_{k}\right) \rightarrow \phi$, s.t. $A f=\lambda f$?
Consider spherical functions: fix "center" v_{0} and book ot t

This is enough: if $A f=\lambda f$, pick vo sit. $f\left(v_{0}\right) \neq 0$ and look on

$$
\begin{aligned}
& * f_{\text {shh }} \text { is not } \\
& *\left\|f_{\text {shh }}\right\|_{2}^{2} \leqslant\|f\|_{2}^{2}
\end{aligned}
$$

* $A f=\lambda f_{s p}$

Assume f is spherical and $A f=\lambda f$. WhOM. $f(0)=1$
Denote $f(n)$ the value of a vertex at dist n from v_{0}

$$
\Rightarrow \lambda=\lambda f(0)=A f(0)=k f(1)
$$

$$
\Rightarrow f(1)=\frac{\lambda}{k}
$$

$$
\begin{aligned}
& f_{\text {ph }}(v)=\frac{1}{\#} \sum_{w \in S_{d s t}\left(v_{0}, v\right)\left(v_{0}\right)} f(w) \equiv \frac{1}{\left|\left\{w: d_{s} t\left(v_{0}, w\right)=d_{i s t}(v, w, v)\right\}\right|} \sum_{\substack{w_{i} \\
d_{i s}(v, w)}} f(w) \\
& =d \cdot \operatorname{sto}(0, v)
\end{aligned}
$$

$$
\lambda f(q)=(A f)(1)=(k-1) f(2)+f(0) \rightarrow \text { get } f(2)
$$

recursion

$$
\begin{aligned}
& f(0)=1, \quad f(1)=\frac{\lambda}{k} \\
& f(n)=\frac{\lambda f(n-1)-f(n-2)}{k-1}
\end{aligned}
$$

Get: $f(n)=c_{1}\left(\frac{2}{\lambda+\sqrt{y^{2}+\rho^{2}}}\right)^{n}+c_{2}\left(\frac{2}{\lambda-\sqrt{\lambda^{2}-\rho^{2}}}\right)^{n}$, were $\rho \equiv 2 \sqrt{k-1}$

There is a spherical function for every . Furthermore it is unique (we used here the fact that $\left.f(0)=1, f(1)=\frac{\lambda}{k}\right)$
When is f in $L^{2} ? \Rightarrow \lambda \in \operatorname{Sec}\left(A_{T_{k}}\right)$

$$
\begin{aligned}
& \|\left.\left. f\right|_{S_{n}\left(v_{0}\right)}\right|_{2} ^{2}=|f(n)|^{2} \cdot\left|S_{n}\left(v_{0}\right)\right|=k(k-1)^{n-1}|f(n)|^{2} \approx(k-1)^{n}|f(n)|^{2} \\
& =\left(C_{1}\left(\frac{2 \sqrt{k-1}}{\lambda+\sqrt{\lambda^{2}-\rho^{2}}}\right)^{n}+C_{2}\left(\frac{2 \sqrt{k-1}}{\lambda-\sqrt{\lambda^{2}-\rho^{2}}}\right)^{n}\right)^{2} \\
& =\left(C_{1}\left(\frac{\rho}{\lambda+\sqrt{\lambda^{2}-\rho^{2}}}\right)^{n}+C_{2}\left(\frac{\rho}{\lambda-\sqrt{\lambda^{2}-\rho^{2}}}\right)^{n}\right)^{2}
\end{aligned}
$$

Case 1:

$$
|\lambda|>\rho \Rightarrow \quad \alpha \equiv \frac{\rho}{\lambda+\sqrt{\lambda^{2} \rho^{2}}} \quad \beta \equiv \frac{\rho}{\lambda-\sqrt{\lambda^{2} \rho^{2}}}
$$

$\alpha \beta=1 \Rightarrow$ Since bath $\alpha_{1} \beta$ are real for $|x|>\rho$ $\Rightarrow \alpha \geqslant 1$ or $\beta \geqslant 1$. Furthermore $|x| y|p|$, so $\alpha>1$ or $\beta>1$.
$\Rightarrow \exp$ growth $\left\|\left.f\right|_{\substack{s_{n}\left(\sigma_{0}\right)}}\right\| \infty$

Case 2:
$|\lambda| \leq \rho \quad \alpha=\frac{\rho}{\lambda+\sqrt{\rho^{2}-\lambda^{2}}} \quad \beta=\bar{\alpha} . A s_{0} \quad c_{2}=\bar{c}_{1}$

Observe: $\left|\frac{p}{\lambda+i \sqrt{p^{2}-\lambda^{2}}}\right|=1$

$$
\Rightarrow \| f\left(\mid S_{n} \sum_{n} \|_{2^{2}}^{2}=\left(2 \operatorname{Re}\left(C_{1} 2^{n}\right)\right)^{2}\right.
$$

for infinity bang n's $\left\|\left.f\right|_{s_{n} b_{0}}\right\|_{2}^{2} \geq \delta>0$.
$\Rightarrow\|f\|_{2}^{2}=\sum_{n=0} \|\left. f\right|_{s_{n}\left(v_{0}\right) \|_{2}^{2}=\infty} \quad$ for nos is at lea, n
$A_{T k}$ has no L^{2}-eigenfunctions

$$
\operatorname{Sec}\left(A_{T k}\right)=\{\lambda \in \Phi: A-\lambda I \text { is not invertible }\} .
$$

Fact. If A is self aloin $\lambda \in \operatorname{Gec}(A)$

$$
\Leftrightarrow \equiv \operatorname{seg} \quad f_{n} \in L^{2} \text { sit. } \frac{\left\|(A-\lambda I) f_{n}\right\|}{\left\|f_{n}\right\|} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Fix k, λ as before. Define for $m \in \mathbb{N}$

$$
f_{m}(v)= \begin{cases}f(v) & \text { dist }\left(v_{0}, v\right) \leq m \longleftrightarrow v . \in B_{m}\left(v_{0}\right) \\ 0 & \text { otherwise }\end{cases}
$$

for the spherical e.function of λ we found betove.

$$
(A-\lambda I) f(n)= \begin{cases}0 & n \leq m-1 \\ & n=m \\ 0 & n=m+1 \\ & n \geq m+2\end{cases}
$$

Tomorrow: We will show that for $|x| \leqslant \rho$ those are approximated eigenfunctions.
a sen of f_{n} as above.

Random yrupts and complexes -Lecture 4

Recap The k-reg tree, $A=A_{T / E}$ its adj, matrix
$\forall x \in \perp \exists!$ spherical λ-eigenfunction of A st. $f_{\pi}\left(v_{0}\right)=1$
We got
$f(n)=$ some explicit formula on the n-th level
$(x)=$
$\left|S_{n}\left(v_{0}\right)\right| \cdot|f(n)|^{2}=\left.\frac{k}{k-1}\right|^{n} C_{1} \alpha^{n}+\left.C_{2} \beta^{n}\right|^{2}$, where

$$
\alpha_{1} \beta=\frac{\rho}{\lambda I \sqrt{\lambda^{2}-\rho^{2}}}, \quad \rho=2 \sqrt{2-1} .
$$

Since $\alpha \beta=1$, if $\mid x>0 \Rightarrow$ either $k 1$ or $1 \beta>$ are strictly binger than $1 \Rightarrow\left||f|_{s_{n}\left(v_{0}\right)} \|^{2} \rightarrow \infty\right.$

If $|\lambda k p \Rightarrow| k\left|=|\beta|=1, \alpha=\bar{\beta} \quad c_{1}=\bar{c}_{2}\right.$

$$
\left\|\left.f\right|_{\left.s_{n} w_{0}\right)}\right\|^{2}=\left(2 \operatorname{Re}\left(C_{1} \alpha^{n}\right)\right)^{2} \quad \text { check that } \alpha= \pm 1
$$

$\Rightarrow\left|\operatorname{Re}\left(C_{1} \alpha^{n}\right)\right|>\delta$ for simp $\delta>0$ and infinity many n's

$$
\Rightarrow \underset{\lambda}{\|f\|^{2}}=\infty .
$$

\Rightarrow A has no L^{2}-eigen functions.
Exercise: If A is a seltadoint Toperator on a Hillest space

$$
\operatorname{Spec}(A)=\left\{\lambda \in \phi: \exists f_{m} L^{2} \text { s.t. } \frac{\left\|A f_{m}-\lambda f_{m}\right\|}{\left\|f_{m}\right\|} \rightarrow 0\right\} \quad \text { approximated }
$$ eigenfurctions/ eigenvalues.

Bock to T_{k} and $A=A_{T / e}$

$$
\begin{aligned}
& f_{m}^{\lambda}= \begin{cases}f_{\lambda} & \text { on } B_{m}\left(v_{0}\right) \\
0 & \text { otherwise }\end{cases} \\
& (A-\lambda I) f_{m}(n)= \begin{cases}0 & n \leqslant m-1 \\
0 & n \geq m+2 \\
f(m) & n=m+1 \\
& (k-1) f^{\prime}(m+1) \\
n=m\end{cases} \\
& (A-\lambda I) f_{m}(m+1)=f_{\lambda}(m) \\
& (A-\lambda I) f_{m}(m)=f(m-1)-\lambda f(m)=f(m-1)-A f(m)=-(k-1) f(m+1) \\
& \frac{\left\|(A-\lambda I) f_{m}\right\|^{2}}{\left\|f_{m}\right\|^{2}}=\frac{\left[\left\|\left.f\right|_{s m)}\right\|^{2}+d e d m\left\|\left.\right|_{s(m+1)}\right\|^{2}\right](k-1)}{\sum_{j=0}^{m}\left\|\left.f\right|_{s j i}\right\|^{2}} \\
& \leqslant \frac{\left.8(4-1) c_{1}\right)^{2}}{\text { goss } \rightarrow 0} \rightarrow 0 \\
& \text { For }|\lambda|<|\rho| \quad \lll \|\left.\left. f\right|_{s(n)}\right|^{2}=\left.\operatorname{Re}\left(c_{1} \alpha^{n}\right)\right|^{2}<4\left|c_{1}\right|^{2} \\
& \text { iof kang } n \text {. }
\end{aligned}
$$

Rumannjun
(3)

$$
\Rightarrow x \in \operatorname{Spec}(A) \text {, ie. }(-\rho, \rho) \subseteq \operatorname{Spec}(A)
$$

The: Spec (A) is a dosed set in C

$$
\Rightarrow \pm p \in \operatorname{spe}(A) \quad \text { or equiv. }[-\rho, p] \subseteq \sec (A) \text {. }
$$

A self adjoint $\Rightarrow \operatorname{Spec}(A) \subseteq \mathbb{R}$.
Goal [- $\rho, \rho]$ is the spectrum.
For each $|\lambda|>p$ wee will try to solve the equation

$$
(A-\lambda I) f=\delta_{i_{0}}
$$

Repeating the same argument you get ar unizue solution g_{λ}. Shaw that if ${ }^{\prime} \lambda \mid>\rho$, then $g_{\lambda} \in L^{2}$.
\Rightarrow This shows that $\delta_{v} \in I_{m}(A-\lambda I)$ vertex v \Rightarrow also all $=\operatorname{Im}(A-\lambda I) \Rightarrow \operatorname{Im}(A-\lambda I)=L^{2}(V)$ of δ_{s}
"aud already showed that $A-\lambda i$ is injective $\rightarrow A-\lambda I$ is invertible.

The cole $\lambda=\rho \quad f_{p}(n)=\frac{n(k-2)+l}{k(k-1)^{n / 2}} \equiv E \quad H_{\square} \quad$ Garish \quad Chunder Ξ function of T_{L}.
$\bar{\sigma}(n)>0$
and it najorizes all f_{λ} for $\lambda \in[-\beta, \beta]\left(\begin{array}{l}\mid f_{n_{\lambda}}(n) \leq \sum_{\dot{L}}(n) \\ \text { assuming } \\ f_{\lambda}(0)=1\end{array}\right)$,
Defn: $f \in \mathbb{Q}^{2}$ is tempered if $f \in L^{2+\varepsilon} \quad \forall \varepsilon>0$.

Claim: For $\lambda \in\left[-\rho_{i} \rho\right], f_{\lambda}$ is tempered, assuming $k \geq 3$.
Proof: ${ }^{62 y^{3}}$ Enough to show that E is tempered.

Graph Laplacian $\Delta=I-\frac{1}{k} A$

$$
A 11=h 1 \Rightarrow \Delta 1=0 \quad \lambda \in \sec (A) \Rightarrow 1-\frac{\lambda}{h} \in \sec (\Delta)
$$

Δ determine how non constant function behave.

$$
f: \mathbb{E}^{2} \rightarrow \phi \quad(A f)(p)=\sum_{p^{\prime} \sim p} f\left(p^{\prime}\right)
$$

Euclidean Space

$$
\Delta f(p)=f(p)-\operatorname{avg}_{p^{\prime} \sim p}^{\prime \operatorname{avg}}\left(f\left(p^{\prime}\right)\right)^{\prime \prime}
$$

$$
\begin{aligned}
\Delta f(p) & =\lim _{r \rightarrow 0}\left(f(p)-\frac{1}{v_{0} l(s(p p))} \int_{s_{r}(p)} f(t) d t\right) \\
& =\lim _{r \rightarrow 0} f(p)-\frac{1}{x_{d x}} \int_{0}^{2 \pi} f\left(p_{x}+r \cos \theta, p^{2} \pi r \sin c\right) r d \theta
\end{aligned}
$$

$$
\begin{aligned}
\text { "Ta flor" }=\lim _{r \rightarrow 0} f(p)-\frac{1}{2 \pi} \int_{0}^{2 \pi} & f(p)+r \cos \theta f_{x}(p)+r \sin \theta f_{y}(p) \\
& +\frac{r^{2} \cos ^{2} \theta}{2} f_{x x}(p)+\frac{r^{2} \sin ^{2} \theta}{2} f_{y y}(p)+r^{2} \cos \theta \sin -\theta f_{r y}(\theta)
\end{aligned}
$$

+ little order

$$
=\frac{r^{2}}{4 \pi} \int_{0}^{2 \pi}\left(f_{x x}\left(p p+f_{y y}(p i)\right) d \theta=\frac{r^{2}}{4}\left(f_{x x}(p)+f_{y y}(p)\right) \xrightarrow[r \rightarrow 0]{\sin ^{2} \theta} 0\right.
$$

We need to rescale by $\frac{1}{r^{2}}$ to get

$$
\Delta f(p) \equiv \lim _{r \rightarrow 0} \frac{1}{r^{2}}\left(f(p)-\frac{1}{V_{0} l\left(S_{r}(p)\right)} \int_{S_{r}(p)} f(t) d t\right)=-\frac{f(x)}{4}(\rho)+f_{y y}(p)
$$

Finally:

$$
\Delta_{\underline{E}^{2}} f_{(p)}=-f_{x x}(p)=f_{y y}(p), \quad \Delta=\underset{\nabla^{*} \circ \nabla_{\text {grad }} \rightarrow \text { adjoint. }}{\text { cadi }}
$$

$$
\begin{array}{lll}
\mathbb{E}^{2} & \longleftrightarrow & H^{-6-} \\
\mathbb{Z}^{2} & \longleftrightarrow ; & T_{k} \\
\operatorname{Spec}\left(\left.A\right|_{\mathbb{Z}^{2}}\right)=[-4,4] & \longleftrightarrow \operatorname{Spec}\left(A_{T i}\right)=[p, \rho]
\end{array}
$$

$$
A 1=411
$$

All eigenfurctions ave not

$$
\mathbb{1} \text { is not in } L^{2}
$$ in L^{2} but ore tempered.

but $\left.\mathbb{N}\right|_{B_{k}(0)}$ are
approximated eigenfunctions
1 is not tempered.
$0 \quad 1 \quad 1 \quad 1$
Ramanujan graphs and complexes - Lecture 5

$$
H=\{x+i y \in \notin: y>0\}
$$

Prescribe geometry on IH by providing the symmetry group (orientation preserving $P S L_{2}(\mathbb{R})$.
$P S L_{2}(\mathbb{R})$ acts on H by $z \longmapsto \frac{c z+b}{c z+d}$ for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in P S L_{2}(\mathbb{R})$
Mübins transformation.

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \quad z \mapsto z+x \quad x \in \mathbb{R}
$$

$$
\left(\begin{array}{cc}
\sqrt{a} & 0 \\
0 & \frac{1}{\sqrt{a}}
\end{array}\right) z \longmapsto a z \quad a \in \mathbb{R}_{>0}
$$

$\Rightarrow \operatorname{dist}\left(i y_{1}, i y_{2}\right)$ only depend on $\frac{y_{1}}{y_{2}}$

In fact $\quad \operatorname{dist}\left(i y_{y}, y_{2}\right)=\left|\ln \left(\frac{y_{1}}{y_{2}}\right)\right|$

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad z \longmapsto-\frac{1}{z} \\
& \operatorname{dis}\left(\frac{i}{n}, i\right)=\operatorname{dist}(n, i)
\end{aligned}
$$

Geodesics
or

(2)

| length
 $d S^{2}=$
 Euclidean | $d x^{2}+d y^{2}$ | $d a^{2}=d x d y$ | $\Delta_{\text {Enc }}=-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}$ |
| :--- | :--- | :--- | :--- |$|$ Euclidean

Euclidean and hyperbolic metrics on $H E \subseteq \subseteq \mathbb{R}^{2}$ are conformal, namely angles are preserved ($\left.\begin{array}{c}\text { Since for a given point dssiz are } \\ \text { the sane up to a scab }\end{array}\right)$

Circles are circles.

Enc $S(y ; r)$

$$
\begin{aligned}
\{p: \operatorname{dit} t,(p)=r\} & \Rightarrow a-y=y-b=r \\
& \Rightarrow a=y+r \quad b=y-r
\end{aligned}
$$

Hyp syr

$$
\begin{aligned}
\left\{p: \operatorname{dist}_{4}(y, p)=r\right\} \quad & \log \left(\frac{a}{y}\right)=\log \left(\frac{y}{b}\right)=r \\
& a=y e^{r} \quad b=y e^{-r}
\end{aligned}
$$

The Euclidean center of this ball is at $y \cosh (r) \equiv \frac{a+b}{2}$
Euclidean center of $S_{r}^{4}(x+i y)$ is $x+y \cosh (r)$
Euclidean radius of $S_{r}^{\text {Hep }}(x+i y)$ is $y \sinh (r)$

$$
k_{t}(z)=\frac{\cos t z+\sin t}{-\sin t z+\cos t}
$$

Since $G=P S L_{2}(\mathbb{R})$ acts transitively on H, and $K=S O(2)$ is the fusilier of i we get bijection $G / K \quad \xrightarrow{1: 1} \mathbb{H} \quad g K=g_{i}$ K maximal compact subgroup of G.

If G is a Lie group and K is a max compact s.group. G / K has a geometry structure with $G \subseteq I_{\text {som. }}$. G/K is then culled the symmetric space for G.

It is the symmetric space for $P S L_{2}(\mathbb{R})$
IE" " " " $\left.{ }^{(1)}{ }^{+}(\mathbb{E})^{2}\right)$

Disc model for IH:

The map $z H \frac{z-i}{z+i}$ tales you from the IH model to the ID model.

Tonporow $\left\{\begin{array}{l}\Delta f=\lambda f \\ f(i)=1 \\ f\left(l_{t} t\right)=f(t) \quad \forall t \in \mathbb{R}\end{array}\right.$

$$
(\Delta f)(x, y)=\lim _{r \rightarrow 0} f(x, y)-\frac{1}{v_{0} l\left(s_{r}^{\prime \prime \prime}(x, y)\right)} \int_{0}^{2 \pi} f(x+\sinh (r) \cos t, y \cosh (r)+y \sinh (r) \sin (t)
$$

$d s=d s(t)=$ arc length at the point $(x+\sinh (r) \cos t, y \cosh (r)+y \sin (r) s i t)$
Taylor expansion gives $-\frac{1}{4 y^{2}}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$
Furthermore Spec $(\Delta) \subset[0, \infty)$ since $\Delta=\operatorname{diragrad}$ so $\Delta \geq 0$.

Spherical functions around i :

$f(z)$ only depends on dist (z, i)
Stabilizer of i in $P S L_{2}(\mathbb{R})=\left\{\frac{a i+b}{a^{i+d}=i}\right\}=50(2) \quad$ rotations
rotations in IH around i and rotation in IE are the same. $\operatorname{Stab}_{I_{S_{0}^{+}}^{+}\left(\mathbb{E}_{2}\right)}(0)=S_{0}(2)$.

Ramanujan grafts and amplexes
Lecture 6

Study spectrum of the Δ.
Start with spherical eigenfunctions.

$$
f: H \rightarrow C \quad \quad f\left(k_{t} z\right)=f(z), \quad k_{t}=\left(\begin{array}{cc}
\cos t & \sin t \\
\sin t & \cos t
\end{array}\right) \forall \in \in \mathbb{R}
$$

and $\Delta f=\lambda f, f(i)=1$.

This is a b-ardury value sygnnetry An ODE with boundary problem of a PDE or Ht values on $[1, \infty)$

Remit Spherical $\rightarrow \nabla f(i)=0 \quad$ an additional boundary condition.

Polar coordinates

$$
(t, r) \mapsto k_{t}\left(e^{r} i\right) \quad \Delta=\frac{1}{\sin (r)} \frac{\partial}{\partial r}\left(\sin \left((r) \frac{\partial}{\partial r}\right)+\frac{1}{\operatorname{Sin}(r)^{2}} \frac{\partial^{2}}{\partial t^{2}}\right.
$$

\Rightarrow For f spherical $\left\{\begin{array}{l}\Delta f=\frac{1}{\sin (r)} \frac{\partial}{\partial r}\left(\sin (r) \frac{\partial f}{\partial r}\right)=\lambda f \\ f(1)=\quad \quad f^{\prime}(1)=0\end{array}\right.$

Change of variable: $x=\cosh (r)$

$$
\left\{\begin{array}{l}
\left(1-x^{2}\right) f^{\prime \prime}(x)-2 x f^{\prime}(x)+\lambda f(x)=0 \\
f^{\prime}(1)=1 \\
f^{\prime}(1)=0
\end{array}\right.
$$

The solution is called Legendres P_{α} function.

Another way. Guess solutions.
$\forall m \in \mathbb{C} \quad y^{m}$ is an elf. of Δ

$$
\Delta y^{n}=-y^{2}\left(m(m-1) y^{n-2}\right)=\operatorname{mom}_{m}(1-m) y^{m}
$$

These are not in L^{p} because the integration over x is giving ∞.
We can splericlize: $\left(y^{m}\right)_{50 h}\left(k_{e} e^{r} i\right)=\int_{0}^{2 \pi}\left(T_{m}\left(k_{0} e^{2}\right)\right.$
$=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{2 e^{r}}{1+e^{2 r}-\left(e^{2 r}-1\right) \cos (2 \theta)}\right)^{m} d \theta=$ elliptic integral of the second kind

When is $\left(y^{m}\right)_{\text {soph }}$ in $2^{2}(1 H)$ or is tempered?
Δ is self adjoint and positive semidefinite. Every e.v. and $\lambda \in \operatorname{Sec}\left(\Delta L_{L^{2}(H)}\right)$ is $\geqslant 0$.

Ramanujan

$$
\Rightarrow \text { If }\left(y^{m}\right)_{5 p^{n}} \in L^{2} \text { or } M L^{2 r \varepsilon} \text { then } m(1-m) \geq 0 \quad m \in \notin
$$

Starting from $\lambda=m(1-m) \quad m=\frac{1 \pm \sqrt{1-4 \lambda}}{2}$
Check: for $\lambda=\frac{1}{4} \quad m=\frac{1}{2}$ ass rylogy is an eigenfunction.
Fact: For $m \in \frac{1}{2}+i \mathbb{R} \leftrightarrow x \geq \frac{1}{4} \quad\left(y^{m}\right)_{\text {spp }} \in L^{2+\varepsilon} \quad \forall \varepsilon$

$$
\begin{aligned}
& m \in[0,1]\left\{\frac{1}{2}\right\} \leftrightarrow \lambda<\frac{1}{4} \\
& \Rightarrow \text { Sale }\left(\left.\Delta\right|_{\text {Hi }}\right)=\left[\frac{1}{4}, \infty\right) .
\end{aligned}
$$

At Le critical point
We call (\sqrt{y}) ssh the Harish-Chendra Ξ-function. It dominates all $\left(y^{m}\right)$ sch for $m \in \frac{1}{2}+i \mathbb{R} \quad\left(\lambda \geq \frac{1}{4}\right)$.
$f_{\lambda}=\left(y^{m}\right)_{s_{g h}}=p_{m-1} \quad$ Legendre Poly.
In particular $E\left(k_{t} e^{r}\right)=P_{-\frac{1}{2}}(\cosh (r))$.
Using Taylor we get $E\left(L_{c} e^{r} i\right)=\frac{\sqrt{2}(3 \log (2)+\log (\cos ((n))}{\pi \sqrt{\cos k(r)}}+O\left((\cos k r)^{-3 / 2}\right)$

$$
\begin{aligned}
& \text { as } r \rightarrow \infty \\
& \|E\|_{p}^{p}=C \int_{0}^{\infty} \operatorname{lengh}\left(E_{e^{r}}(i) \cdot\left(\frac{r}{e^{r / 2}}\right)^{p} d r \approx C \int_{0}^{\infty} e^{r}\left(\frac{r}{e^{r / 2}}\right)^{p} d r<\hat{\mathbb{I}}^{p}<\right.
\end{aligned}
$$

Summary
Spectrum $[-2 \sqrt{k-1}, 2 \sqrt{k-1}] \quad\left[\frac{1}{4}, \infty\right)$

Ramanujan Spec $\subseteq\{ \pm k\}_{\cup} \dot{J}_{\text {Pec }}\left(T_{6}\right)$
 for $r \leqslant A_{u} t\left(T_{l}\right)$.

Hyperbolic surface $\Gamma^{11+} \quad \Gamma \leq I_{\text {so }}(N+)=P S L_{2}(\mathbb{K}) \quad d$-discrete We can study $\Delta_{\text {Hyp }}^{\infty}\left(\mu^{\text {H }}\right.$)
$\Gamma^{1 H 2}$ is called Ramanujan $\frac{(5)}{\text { Surfaces }}$

$$
\text { Spec } \subseteq\{0\} \underset{\substack{\rightarrow \text { constant } \\ \text { fac. }}}{ } \cup\left[\frac{1}{4}, \infty\right)
$$

Cheerer - Buses - Mara inequality
If X is a complete Rierannian mumitel \& finite volume and $\lambda 2^{\text {nd }}$ e.v. of A, then

$$
\begin{aligned}
& \frac{h^{2}}{4} \leqslant \lambda \leqslant \underset{b_{\text {curvature }}}{C h+10 h^{2}}
\end{aligned}
$$

Conj (Seltergy): For arithmetic $\Gamma \quad \Gamma^{1 / t}$ is Romanian.
cig. $=P L_{2}(\mathbb{K})$ or $\Gamma(N)=\left\{A \in P S L_{2}(Z) ; A \equiv I \operatorname{lnd} N\right\}$.

The (Selberg): $\lambda\left(r^{(1+)} \geq \frac{3}{16}\right.$.
$\Gamma=\Gamma(N)$ for sore N (mange also true for general)

$$
X(N)=N_{N(N)}^{H H} \quad X(A)=V_{P S_{2}(\sqrt{2})}^{1 H}
$$

fundamental domain for $\Gamma(1) \sim \lambda \approx 80$

Since $\Gamma(N) \leqslant \Gamma(1)$ a fund. domain for $\Gamma(N)$ can be obtained by gluing $P(i)$-translations of Y.

Seller $\rightarrow h>\varepsilon>0$.
W(17) is composed of many

$$
y=L
$$

Y is quite connected due to Muser's inequality.
The dual graph is a 3-regular graph which is a good expander

$$
\begin{aligned}
P S L_{2}(\mathbb{R}) & \rightarrow H+ \\
\vdots & \\
P S L_{2}\left(a_{p}\right) & \rightarrow T_{l} \quad \text { ILara/Serre/Tits/Brulats }
\end{aligned}
$$

Ramanujan grays and complexes
Lecture 7
Goal：For $k=p^{r}+1$ ，The has an＂arithmetic structure＂．
（1）

$$
X_{p}^{d}=P G L_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) / P G L_{d}(\mathbb{Z}),
$$

$P G L_{0}(\mathbb{Z})$ inv．noted matrices with entries in \mathbb{Z} with determinant $\pm 1 /\{I T\}$
Rem：
In general $G L_{d}(R)=\left\{A \in M_{d x d}(R): \operatorname{det}(A) \in R^{x}\right\} \equiv\left\{A \in M_{d d d}(R): A^{-1} \in M_{1}(R)\right\}$ \rightarrow a ring
（2）

$$
\begin{aligned}
& \left(\mathbb{H}\left[\frac{1}{p}\right]=\left\{\begin{array}{ll}
\frac{a}{p^{m}} \in \Omega: & a \in \mathbb{Z} \\
& m \in \mathbb{Z}
\end{array}\right\} \quad \begin{array}{l}
- \text { He minimal } \\
\text { ring containing } ⿻ 上 丨 又 寸
\end{array}\right) \\
& \operatorname{PGLd}\left(\mathbb{K}\left[\frac{1}{p} j\right)=\left\{A \in M_{d r d}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right): \quad \operatorname{det} A \in \mathbb{Z}\left[\frac{1}{p}\right]^{*}=\left\{ \pm p^{m}: m \in \mathbb{Z}\right\}\right\} /\left\{ \pm p^{m}\right\}\right.
\end{aligned}
$$

Example：days $d=2$

$$
\begin{aligned}
& P G L_{2}(\mathbb{Z}) \ni\left(\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right) \\
& P G L_{2}\left(\mathbb{Z}\left[\begin{array}{l}
1 \\
p
\end{array}\right]\right) \Rightarrow\left(\begin{array}{ll}
p & 3 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Clearing denominators

$$
P G L d\left(\mathbb{K}\left[\frac{1}{p}\right]\right)=\left\{A \in M(\mathbb{Z}): \quad \text { et }= \pm p^{m}\right\} /\left\{ \pm p^{m}\right\}
$$

we can alucas mulishly by p^{m} and get a matrix in 做d（Z）
unique by a power of p
Take $A \in P G L_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$ ，There is a scaling $\sqrt[(r e p, ~ o f) ~]{A}$ with entries in \mathbb{K} and caprine entries $\operatorname{gcd}\left\{a_{i j} ; 1 \leq i_{i j} \leq d\right\}=1$ ，
［Why $p^{m} A$ has integral corrine entries for some m ． After clearing denominators $\frac{\operatorname{det}\left(\rho^{m} A\right)}{\rho_{\mathbb{Z}}}=p^{\operatorname{dm}} \operatorname{det}(A)=p^{d m+k} \rightarrow$ ［No prime different than p divides all entries of $p^{m} A$ ． \Rightarrow We can identify $G L_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right] / p\right.$ with $\left\{\begin{array}{l}\text { integral primitive } \\ \text { matrices wit } \\ \text { a pave of } p\end{array}\right\}$－amine
 $\equiv A \cdot \mathbb{Z}^{d}$ for sone $A \in M y(Z), \operatorname{det}(A) \neq 0$

When is $A \mathbb{Z}=B \mathbb{Z}^{d}$ ？If $B=A C$ ，where $C \in G L d(\mathbb{Z})$

So $\left\{\begin{array}{c}\text { indegrad } \\ l_{l+1}+i c e s\end{array}\right\} \longleftrightarrow\left\{A \in M_{l}(Z)^{i}: \operatorname{det} A \neq 0\right\} / G_{d}(Z)$

$$
\left.\left\{\begin{array}{l}
\text { priminive } \\
p \text {-letices }
\end{array}\right\} \longleftrightarrow\left\{A \in M_{d}(\mathbb{Z}): \text { det } A=I \tau^{m}\right\} / G \text { primive }\right\} / G L_{d}(\mathbb{Z})
$$

- Primitive leittice: $L=A \mathbb{z}^{d}$ such that $\frac{m}{m}$ is not a fattice for $m>1 \quad\left(\frac{L}{m} \nsubseteq \mathbb{Z}^{d}\right.$ any move)
$L A z^{\prime}$ is primitue $\underset{\substack{1 \\ \text { nell }}}{\Longleftrightarrow} A$ is primitue.
neffinal \longrightarrow incley of the choice of A gererating the lattice.
- P-latice: Lattice with covolume a power of P

for A s.t. $L=A Z^{d}$.

\triangle explanation

$$
\begin{aligned}
& \operatorname{PGLd}\left(\mathbb{Z}\left[\frac{1 \hat{p}\rfloor}{\underline{1}}\right)=\left\{\begin{array}{l}
\text { integral } \\
\text { primitive } \\
p-\text { natrices }
\end{array}\right\} / \pm 1\right. \\
& \Rightarrow B G L_{d}(\mathbb{Z})=G L d(\mathbb{Z}) / \pm 1 \\
& \left.\left.P G L_{d}\left(\mathbb{Z}\left[\frac{1}{f}\right]\right) / P G L_{d}(\mathbb{Z})=\left\{\begin{array}{c}
\text { inte. prim } \\
\text { p-antries }
\end{array}\right\} / s \pm 1\right) / G L_{d}(\bar{z}) / S \pm 1\right) \\
& =\left\{\begin{array}{c}
\text { inte. prim_. } \\
\text { p-inatrices }
\end{array}\right] / \operatorname{GLd}_{d}(\mathbb{Z})=\left\{\begin{array}{l}
\text { prinitive } \\
p \text {-lotities }
\end{array}\right\}
\end{aligned}
$$

Ramanujan graphs and complexes

Lecture 8
Integral lattice in $\mathbb{k}^{d}-\mathbb{z}$ span A d linearly indef. vectors. \& \mathbb{z}^{d}. $=$ Subgroup of \mathbb{Z}^{d} not contained in any $\sqrt\left[(\text { proper) }]{\text { sisfspace. of }} \mathbb{R}^{d} \text {. }\right.$ $=A \mathbb{Z}^{d}$ for some $A \in M_{d}(\mathbb{Z})$ with $\operatorname{det} A \neq 0$

When is $A z^{d}=B \not Z^{d}$? If $A=B C$ for some $C G C d(z)$.

Fix a prime p.

Biections

Primtiveplaitice

$$
\stackrel{L_{j}}{\longleftrightarrow} G L D\left(\mathbb { Z } \left[\frac{L p}{[p]} / G L_{d}(\mathbb{Z}) \quad\right.\right. \text { for sore meN }
$$

$$
\begin{aligned}
& p \cdot \text { lattice } \\
& \text { cover }(L)=p^{m} \longleftrightarrow|\operatorname{det} A|=p^{m}
\end{aligned}
$$

We are interested in $X_{p}^{d}=\left\{\begin{array}{c}\text { all primitive } p-l_{\text {latices }} \\ \text { in } \mathbb{Z}^{d}\end{array}\right\}$
Claim:

$$
X_{0}^{d} \cong P\left(\mathscr{L}_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) / P G_{d}(\mathbb{K})\right.
$$

$$
\begin{aligned}
& A \mathbb{Z}^{d}<\xrightarrow{b i j}\{A \in M(\mathbb{Z}): \operatorname{det} A * 0+/ G\}
\end{aligned}
$$

Each A in $p t_{d}\left(\mathbb{K}\left[\frac{1}{p}\right]\right)$ has a unique scaling by some p^{m} which is integral and primitive.

Corollary: $P G L_{d}\left(\mathbb{K}\left[\frac{1}{p}\right]\right)$ acts transitively on X_{p}^{d}.

Goal: Find rep. for the cases.
Say A is a primitive, integral p-matrix $r^{\text {bidet } 11=p^{m} \text { for } m \in N}$

Take $d=2$
$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad$ elementry op. over \mathbb{Z} os not change the column spin \leftrightarrow the lattice \longleftrightarrow left $G L_{d}(\mathbb{Z})$ coset.
$\left[\begin{array}{lll}\text { switch columns } & & \\ \text { multi a column by } & \pm 1\end{array}\right]$ Using euclids alg for ged we obtain
$\left(\begin{array}{cc}2 & y \\ 0 & g d(c, d)\end{array}\right)$
$\operatorname{det}(\cdot)=x \cdot \operatorname{gcd}(c, d)= \pm p^{m} \Rightarrow x$ and $\operatorname{gad}(c, d)$ are powers of $\pm p$
\Rightarrow by multiplying column by II we can assume both are positive $A \mathbb{Z}^{d}=\left(\begin{array}{ll}p^{m} & z \\ 0 & p^{n}\end{array}\right) \mathbb{Z}^{d} \quad$ by adding/sustracting column 1 from 2 we can cosine that $0 \leqslant z \leqslant p^{m-1}$. Finally,

Chin: $\left.\quad X_{2}^{p} \longleftrightarrow\left\{\begin{array}{ll}p^{n} & d \\ 0 & p^{m}\end{array}\right): \begin{array}{l}0 \leq a<p^{m} \quad m, n \geq 0 \\ \text { either } n=00 \text {, } m=0 \text { or } n, m>0 \text { and plat }\end{array}\right\}$

Ex: prove < Each such matrix gives a diff lattice.
For general d we can do the same

$$
\begin{aligned}
& \left.\left(\begin{array}{lll}
x & x & x \\
x & x & x \\
0 & x & 0
\end{array}\right) \mathbb{Z}^{d} \longleftrightarrow\left(\begin{array}{ccc}
p^{m} & a & b \\
0 & p^{n} & c \\
0 & 0 & p^{l}
\end{array}\right) \quad \begin{array}{l}
0 \leqslant a, b \leqslant p^{m}-1 \\
0 \leqslant c \leqslant p^{n}-1 \\
\operatorname{gdd}\left(p^{m}, p_{1}^{n}, p^{l}, a, b, c\right)=1
\end{array}\right] \\
& X_{d}^{p} \longleftrightarrow \rightarrow\left\{\left(\begin{array}{lll}
p^{n_{1}} & & a_{i j} \\
& \ddots & \ddots \\
0 & & p^{p_{j}}
\end{array}\right): \quad \operatorname{acd} \quad a_{i j} \leq p^{n_{i}}-1 \quad 1 \leq i \leq d\right\}
\end{aligned}
$$

X_{j}^{P} are the vertices of the Affine Brunat-Tits building of type \tilde{A}_{d-1} over $\mathbb{Z}\left[\frac{1}{p}\right]$.

Claim: X^{p} is a $\varphi+11$-reg tree.

Edges (Fins attempt): We say that $\left(L_{1}, L_{2}\right)$ is an ledge if $L_{2} \stackrel{p}{<} L_{1}$ or $p L_{2} \leqslant L_{1}$, where $x<y$ preens $x<y$ and $[y ; x]=p$. egg. Hillier $\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right) \stackrel{3}{\leqslant}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\left(\begin{array}{ll}1 & 0 \\ 0\end{array}\right) \frac{\left(\begin{array}{ll}3 & 0\end{array}\right)}{\nu\left(\begin{array}{ll}1 & 1 \\ 0 & 3\end{array}\right)}=\left(\begin{array}{ll}3 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}\right)$
$A \pi^{2} \leqslant \mathbb{Z}^{2} \Rightarrow d t A=3$

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \xrightarrow{\operatorname{los}\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)} \\
& \begin{array}{c}
e_{j}^{e_{0}}\left(\begin{array}{ll}
3 & 0 \\
e_{1} & 1
\end{array}\right) \\
e_{c}\left(\begin{array}{ll}
3 & 1 \\
0 & 1
\end{array}\right) \\
V\left(\begin{array}{ll}
3 & 2 \\
0 & 1
\end{array}\right)
\end{array} \\
& d=3
\end{aligned}
$$

$$
\begin{aligned}
& e_{b c} y\left(\begin{array}{cc}
p b y \\
1 & 6 \\
1 & 1 \\
0
\end{array}\right) b, c=0, \ldots p p^{-1}
\end{aligned}
$$

in there are $p^{d-1}+p^{d-2}+\ldots+p+1$ edges lading \mathbb{Z}^{d}

There is no $\mathbb{Z}^{*} \stackrel{p}{<} L$, so when is $p \mathbb{Z}^{2} \stackrel{p}{<} L \quad\left(\begin{array}{l}p \\ 0 \\ 0\end{array}\right) \stackrel{p}{<} L$

$$
\begin{aligned}
& \Rightarrow \operatorname{covor} L=p\left(\begin{array}{ll}
p_{0} \\
0 & 1
\end{array}\right) \\
&\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right) \longrightarrow \\
&\left(\begin{array}{ll}
p & p-1 \\
0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
&\left(\begin{array}{ll}
1 & 0 \\
0 & j
\end{array}\right)
\end{aligned}
$$

The bijection between ptriected edges in $d=2$ clos not exist to in $d \geqslant 3$.

Clair: $\forall A \in X_{p}^{d} \quad A$ has out $\log \frac{p^{d}-1}{p-1}$ with the
 out neighbors of \mathbb{Z}^{d}.

When thinking abut x_{ρ}^{d} as $P C_{d}\left(\mathbb{Z}\left[p_{p}^{p}\right)\right.$
egg. $\quad\left(\begin{array}{cc}1 & \\ & 1\end{array}\right) \longrightarrow\binom{1}{3}$
primitive lattice

$$
\binom{3}{1} \longrightarrow\binom{3}{1}\binom{1}{3}=\binom{3}{3} \stackrel{\downarrow}{=}\binom{1}{1}
$$

Claim; $\Gamma^{2}=\operatorname{FLd}\left[\left(z\left[\frac{1}{p}\right)\right.\right.$ acts on the graph thus obtained. Furthermore, if
 PGLd $\left(\frac{2}{[1}[]_{1}\right)$ action the graph we construct, we will be faced to hove all these edges. (Since Γ has the elements $\binom{1}{1}\binom{1}{1} \ldots\left({ }^{1} p_{1}-1\right)(1)$, these are row operation taking (1.) to itself and $\left(\rho_{1}\right)$ to (11$\left.) \cdots\left({ }_{1}^{p-1}\right)\binom{1}{p}\right)$

$$
\left(\begin{array}{ll}
1 & j \\
0 & 1
\end{array}\right)\binom{1}{1}=\left(\begin{array}{ll}
1 & j \\
0 & 1
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad A \equiv B \text { if } A \in B \cdot G L d(\mathbb{Z}) .
$$

Ramenyan graphs and complexes
Lecture

Building of PGLd
vertices
(1) $P G L_{d}\left(\mathbb{k}\left[\frac{1}{p}\right]\right) / P G L_{d}(\mathbb{K})$
"
(2) Primitive p-lattices
(3) $X_{p}^{d}=\left\{\left(\begin{array}{cc}p^{n_{1}} & a_{i j} \\ 0 & a_{i j} \\ 0 & p_{11}\end{array}\right): \begin{array}{l}0 \leq a_{i j}<p^{n_{i}} \\ \\ \text { a } p^{n i m i t i v e ~ m o t r i x ~}\end{array}\right\}$

Thee ways to think about the vertices
edges
(2) $L_{1} \rightarrow L_{2}$ if $L_{2}{ }^{p} L_{1}$ or $p^{L_{2}} s^{p} L_{1}$
(3) Define $\frac{p^{d}-1}{p-1}$ matrices $N_{j}=\left(\begin{array}{ccc}1 & 0 \\ 1 & 0 \\ 0 & p_{1} \times x \times x\end{array}\right)>0 \leqslant * \leqslant p-1 \quad 1 \leqslant j \leqslant \frac{p^{d}-1}{p-1}$
then the outgoing nieghors of $A \subset X_{p}^{d}$ are $A \cdot N_{j}$ for $1 \leq j \leqslant \frac{p-1}{r-1}$, where if $A N_{j} \notin X_{p}^{d}$ we $f i x$ if by recalling that $A / V_{j} \in P G L_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$ and Leave has a unique rep. in x_{p}^{d}.
example

$$
\left(\begin{array}{ll}
8 & 5 \\
& 4
\end{array}\right)\binom{1}{2}=\left(\begin{array}{cc}
8 & 10 \\
& 8
\end{array}\right) \equiv\left(\begin{array}{cc}
4 & 5 \\
\text { perimeters } & 4 \\
4
\end{array}\right)=\left(\begin{array}{cc}
4 & 1 \\
4
\end{array}\right) \quad \begin{aligned}
& \text { one only reed to divide } \\
& \text { by } p \text { and reduce } \\
& \text { to get the rep in } x_{p}^{4}
\end{aligned} a_{j \text { mod }} p^{n i}
$$

Claim: X_{p}^{2} is a tree.
Instead of writing $N_{1}, \ldots N_{p+1}$ we write $N_{0}=\binom{p}{1} \quad N_{1}=\left(\begin{array}{cc}p & 1 \\ 1\end{array}\right) \ldots N_{p-1}=\binom{p-1}{1}$ and $N_{\infty}=\binom{1}{p}$
(1) X_{p}^{2} is symmetric , ie. $A \mapsto B \Longleftrightarrow B \mapsto A \quad \forall A, B \in X_{p}^{2}$.

Assure $A=\left(\begin{array}{cc}p^{m} & a \\ 0 & p^{n}\end{array}\right)$. Ten $A N_{0}=\left(\begin{array}{cc}p^{m+1} & a \\ & a \\ p^{n}\end{array}\right)$ and $\left(A N_{0}\right) N_{N_{0}}=\left(\begin{array}{c}p^{m+1} \\ p a \\ p^{m-1}\end{array}\right)=\left(\begin{array}{cc}p^{m} & a \\ p^{m}\end{array}\right)=A$

$$
\Rightarrow A \longrightarrow A N_{0} \rightarrow A .
$$

So $A \longmapsto A N_{j} \longmapsto A$. for $j=1, \ldots, A-1$

write $a=j p^{m-1}+t \quad t \in\left\{0, \ldots, p^{m}-1\right\}$, then $p a \bmod p^{m}=p t$, then
example $\left(\begin{array}{ll}4 & 3 \\ 2\end{array}\right) \xrightarrow{\text { con }}\left(\begin{array}{ll}4 & 6 \\ 4\end{array}\right) \rightarrow\left(\begin{array}{ll}4 & 2 \\ 4\end{array}\right)$

$$
\left(\begin{array}{ll}
4 & 1 \\
& 2
\end{array}\right) \rightarrow\left(\begin{array}{cc}
4 & 2 \\
4
\end{array}\right)
$$

Define level structure on $P G L d\left(\mathbb{Z}\left[\begin{array}{l}1 \\ p\end{array}\right]\right)$ on X_{p}^{d} $\operatorname{level}(A)=\log _{p}(\operatorname{det} A)$ for $A \in X_{p}^{d}$
on $P G L D(\mathbb{Z}[p])$ the level of an element is the level ot the PGA (π) - rep in x_{p}^{d}.

$$
\operatorname{level}\left(\begin{array}{cc}
p^{m} & a \\
& p^{n}
\end{array}\right)=m+n
$$

(2) lain: \exists a path of length $=\operatorname{level}(A)$ from I to A.

Proof: Instead we will shaw that there is sech a pith tram A to 1. By (1) (ypmety) the claim will fallow.

$$
\begin{aligned}
& \text { if } \quad A N_{0}=\left(\begin{array}{ll}
1 & 0 \\
\text { and } & p^{n}
\end{array}\right)\left(\begin{array}{ll}
p & \\
& 1
\end{array}\right)=\left(\begin{array}{cc}
p & p^{n}
\end{array}\right)=\left(\begin{array}{cc}
1 & \\
p^{n-1}
\end{array}\right) \rightarrow \text { level }=n-1 \\
& V_{m=n=0} A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

(3)Claim: For $A \neq I d$ in $\left(A N_{i}\right)_{i=0, \ldots, 1-1, \infty}$ there are p vertices ot bud $=\operatorname{level}(A)+1$ and 1 vertex edt level $=$ level $(A)-1$.

Proof
Case $1 \quad\left(\begin{array}{ll}p^{n} & a \\ & 1\end{array}\right) \quad a>0 \quad$ level n

$$
\begin{aligned}
& \left(\begin{array}{cc}
p^{n} & a \\
& 1
\end{array}\right) N_{j}=\left(\begin{array}{cc}
p^{n-1} & j p^{p+f a} \\
1
\end{array}\right) \quad \text { level } n+1 \\
& \left(\begin{array}{cc}
p^{n} & a \\
& 1
\end{array}\right) N_{\infty}=\left(\begin{array}{cc}
p^{n} & p a \\
& p
\end{array}\right)=\left(\begin{array}{cc}
p^{n-1} & a p^{n} \\
1
\end{array}\right) \text { level } n-1
\end{aligned}
$$

Case $2\left(\begin{array}{cc}1 & 0 \\ & p^{m}\end{array}\right) \quad m>0 \quad$ lend m

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & p^{n}
\end{array}\right) N_{j}=\left(\begin{array}{ll}
P & j \\
f^{m}
\end{array}\right) \quad\left\{\begin{array}{lll}
\text { level } & m+1 & j \neq 0 \\
\text { level } & m-1 & j=0
\end{array}\right. \\
& \binom{1}{{ }^{m}} N_{\infty}=\left(\begin{array}{cc}
1 & 0 \\
0 & p^{m+1}
\end{array}\right) \text { level } m+1
\end{aligned}
$$

Case $3 \quad\left(\begin{array}{cc}p^{n} & a \\ p^{m}\end{array}\right) \quad p \nmid a \quad$ level $=n+m a$ Exercise)

Cor: X_{p}^{2} is a tree.

Ramanujan graphs and complexes
Lecture 10
The outgoing edges of I are $\left(N_{c}\right)_{i=1}^{\frac{d_{1}^{-}}{F-1}}$, For general A the oatyong arles are $\left(f_{x \times e d}\left(A N_{i}\right)\right)_{i=1}^{\frac{p^{d}-1}{p-1}}$

$$
\text { (Bringing tach bo } x_{p}^{d} \text {) }
$$

X_{p}^{2} is a symmetric $(p+11$-regular tree.
 $p^{2}+p^{+1}$ outgoing neighbors.

Unlike the case $d=2$, the at-alges here are not the sone as in-adges. Eg,

$$
\left(\begin{array}{ll}
1 & \\
& 1 \\
& 1
\end{array}\right) \longrightarrow\left(\begin{array}{ll}
1 & \\
& 1 \\
& 1
\end{array}\right) \xrightarrow{e_{x y}}\left(\begin{array}{l}
\\
\\
\end{array}\right)
$$

$\underset{\substack{ \\\text { admix } \\ \text { met }}}{ } \rightarrow$ ofterfixing $\operatorname{det}=p^{2-3 i n} \neq 1$
There is no going back.

However

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{lll}
1 & & \\
& 1 & 1
\end{array}\right)}_{e_{0,0}} \xrightarrow{e_{\infty}}\left(\begin{array}{ll}
1 & \\
& 1 \\
& p
\end{array}\right) \xrightarrow{e_{\infty}}\left(\begin{array}{ll}
1 & \\
& p \\
& p
\end{array}\right) \quad \begin{array}{l}
\text { we get paths } \\
\text { of length } \\
3 .
\end{array} \\
& \left(\begin{array}{lll}
1 & & \\
& 1 & 1
\end{array}\right) \xrightarrow{e_{\infty}, \infty}\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & \\
& & p
\end{array}\right) \xrightarrow{e_{\infty}, \infty}\left(\begin{array}{lll}
1 & & \\
& & \\
& & \\
& & \\
& &
\end{array}\right) \\
& \equiv X
\end{aligned}
$$

What are the triangles of $(1,1) \rightarrow(', p)$

In total the eclge is contained in p triangles.
The building of $P G L_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$ is defined as callous:
Vertices X_{p}^{d}
(d-1)-cells $\left\{\cos _{1} v_{1}, \ldots, v_{d}\right\} \quad$ st. path $\quad v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{d} \rightarrow v_{1}$ pure (d-1- dim. complex
$d=4 \quad$ thetruedra
one need to add two of the edges to get the Eletruelira.
$2^{\text {nd }}$ detn: x_{p}^{d} the flag complex of the grope with vertex set X_{p}^{d} and edges

$$
A \longrightarrow \operatorname{fin}(A N) \text { for } N=\left(\begin{array}{l}
1 r_{p}, p_{p} \\
0
\end{array}\right.
$$

Apartments
The picture you get from restricting to diagonal vertices and echoes.

$$
\begin{aligned}
& N=\left\{\left(\begin{array}{llll}
r_{1} & \\
& & \ldots
\end{array}\right)\left(\begin{array}{llll}
r_{1} & & & \\
& & & \\
r_{1} & \ldots
\end{array}\right) \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.X_{1}^{2}\binom{1}{p^{2}} \stackrel{(1}{1} \begin{array}{l}
p
\end{array}\right) \underset{e_{0}}{\stackrel{e_{\infty}}{\leftrightarrows}}\binom{1}{1} \stackrel{e_{0}}{e_{0}}\binom{p}{1} \underset{e_{\infty}}{\stackrel{e_{0}}{\leftrightarrows}}\binom{p^{2}}{1} \cdots \text { line } \\
& X_{1}^{3}
\end{aligned}
$$

Triangular
tesselation of the plane.

Building
leal new - link
section - apartment
global view - entire building.
x_{p}^{2} bal $\lambda i>\underset{\text { star }}{p+1}$ section:

Section: Triangular tesselation
see picture.

Back to the group $G=G L_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$
G acts on the building vertices $\longleftrightarrow G / K \quad K=P G L d(\mathbb{Z})$
$G C G / H$ by $g \circ g H=g g^{\prime} H$.
Facts:
G acts transitively on the vertices.
G acts transiting on 1-edges $\left(\begin{array}{ccc}\text { edges coming from } \\ N_{i} & i=1, \ldots, & \frac{p^{p}-1}{p-1}\end{array}\right)$
G acts transitidy on (d-1)-cells.

For any $g \in G$, the complex spanned by $g .\left\{\begin{array}{l}\text { diagonal } \\ \text { matrices }\end{array}\right\}$ is isomorphic to the diagonal matrices = furclanentad These are all called apartments. These are not all the ".

Proof $6 f$ transitive action on ectyes

It is left to see that

Stab (I) acts transitively on $N_{1}, \ldots, \frac{N_{\rho} d_{-1}}{\rho-1}$ from the exercise.

$$
\operatorname{Stab}(I)=K=\operatorname{PGLd}(\mathbb{Z})
$$

Ramanujan graphs and complexes

Lecture II

Local structure

$$
\begin{aligned}
& S_{\operatorname{tar}(v)=\{\sigma: v \in \sigma\} \cong} \operatorname{Cone}(\operatorname{Cink}(v)) \\
& \operatorname{Cone}(\infty)= \\
& \operatorname{Cone}(X)=X \times I /(x, 0) \sim(x, 0)
\end{aligned}
$$

Recall: d-cells containing $I=\mathbb{Z}^{d}$ correspond to chains

$$
\mathbb{Z}^{d}>p^{p} L<>p^{p_{2}^{\prime 2}} L_{2}>\ldots>p^{n_{d}} L_{d}=p^{n_{d}} \mathbb{Z}^{d}
$$

$\longleftrightarrow d$-cycles of 1 -edges $\left(\begin{array}{lll}i_{1} & \ldots & \\ & \ldots & p_{x} \\ & \ldots & \ldots \\ & & \ldots\end{array}\right)$
Actually, we have $\mathbb{K}^{d}>L_{1}>L_{2}>\ldots \quad>L_{d}=p \mathbb{Z}^{d}$ because if $\left.p L_{i}\right\rangle^{p} L_{i+1}$ he set oval () growth A p^{d} which is impossible as the total change in corval is p^{d}.

$$
\begin{aligned}
& \xrightarrow[\text { containing } I]{f \text {-Al-cells }} \longrightarrow \mathbb{Z}^{d} \stackrel{p}{>} L_{1} \stackrel{p}{>} L_{2}>\ldots \quad L_{d} \succ p \mathbb{Z}^{d} \\
& \uparrow \text { IV iso-thm (comespoordence) } \\
& \mathbb{F}_{p}^{d}=\mathbb{Z}^{d} / \mathbb{Z}_{\mathbb{Z}}{ }^{d}>L_{1} / p_{Z}{ }^{d}>\ldots . \quad>L_{d} / p_{\mathbb{Z}} d>\mathbb{Z}_{\mathbb{Z}_{\mathbb{Z}}}^{d}=0
\end{aligned}
$$

π

$$
W_{p}^{d} \geqslant V_{1} \nLeftarrow V_{2} \cdots \not \geqslant V_{d-1} \mp 0
$$

maximal flays in \mathbb{F}_{p}^{d}
cells containing $\longrightarrow \underset{\mathbb{F}_{p}^{d}}{ }$
dim length -2
In particular $\mathbb{F}_{p}^{d} \neq V \neq 0$ ane in correspaces of $\left.\mathbb{F}_{p}^{d}\right)$ vertices to Id.

Def: The spherical building of $G L_{d}\left(I_{F}\right)$ is:
vertices - non trivial subspaces of \mathbb{T}_{p}^{d}
edge - inclusion - $\left\{V_{1}, V_{2}\right\}$ is an edge if $V_{1} q V_{2}$ or $V_{2} \mp V_{1}$ general cells - fly complex. In particular (d-2)-cells are maximal flogs.
\cong link of I the affine building of $P G d\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$
$X_{p}^{2}=(p+1) \mathrm{kg}$ tree $\rightarrow l k\left(I_{d}\right) \approx: \cdot\left(P_{T 1}\right)$-points
\longleftrightarrow non trivial

$$
\begin{gathered}
\text { subspace }=\varphi+1 \text {-points } \\
\text { of } \mathbb{F}_{p}^{2} \\
\text { no inclusion. } \\
\text { (lines) }
\end{gathered}
$$

lines $p^{2}+p+1$
planes $p^{2}+p+1$
Every line is contained in (p+1)-plowes
\Rightarrow Spherical building
of $G L_{d}\left(\mathbb{E}_{p}\right)$ is a $(p+1)-$ reg bis. graph with $2\left(p^{2}+p+1\right)$ vertices.

This is an excellent expander $\xrightarrow{\text { Gurflatardy }}$ Good expansion for x_{p}^{2}.
$G=P G L_{d}\left(\mathbb{K}\left[\left[_{p}^{1}\right]\right)\right.$ acts transitively on vertices $G / K=G L_{d}(\mathbb{Z})$
1-edges, (d-1)-cell (top), apartments (by defr) saw
(d-1)-cells: Since G acts trans. on vertices, it is left to show that $S t a b(I d) \neq K=G L_{d}(\mathbb{Z})$ acts transitively on (div)

Such (d-1)-cells correspond to maximal flags in \mathbb{N}_{p}^{d}. The action of $G L_{d}(\mathbb{Z})$ is by its mog to $G / d(\mathbb{F})$

A
A mod
$G h_{d}\left(F_{p}\right)$ acts tran i on max flags in F_{p}^{d} (convince yourself) However $G L d(\mathbb{Z}) \rightarrow G L d\left(F_{p}\right)$ is nat onto $(\operatorname{det} A=I 1)$ Nevertheless $S L_{d}(\mathbb{Z}) \rightarrow S L_{d}\left(I_{p}\right)$ and the biter acts transitively on max flags.

Ramanyan graphs and complexes
Lecture 12
Cells in the link of $I=\mathbb{Z}^{d} \longrightarrow \mathbb{Z}^{d}+L_{1}+L_{2}+\ldots F_{j} F_{p} \mathbb{Z}^{d}$

$$
\mathbb{F}_{p}^{d} \ngtr V_{1} \ngtr V_{2} F \ldots \forall V_{j} \not\{\{0\}
$$

$f l a g s$ in \mathbb{F}_{p}^{d}
We defined the spherical building of \mathbb{F}_{p}^{d} cells Flags in \mathbb{F}_{p}^{d}. We got lintel $(v) \cong$ spherical bustling of 在d.

Claim: $G=P G L d\left(\pi\left[\frac{1}{p}\right]\right)$ acts transitively on top $(d-1-c e l l s$.
Prosti We already tamorow that G acts transiting on vertices so it suffices to show the stabilizer If a vertex acts transitively on (d-1)-cells containing. it. For example that $\operatorname{stob}_{G}(I)=K=P G L_{d}(\mathbb{Z})$ acts transitively on $(d-1)$-cells containing I.
$(d-1)$-cells containing $I \longrightarrow$ max thess in \mathbb{F}_{f}^{d}
Claini K acts transitively on max flags of y the mod p mop.
and PGLd $\left(I F_{p}\right)$ acts transitively on maxima fogs in I_{P}^{d}.
This if $\operatorname{GLd}\left(\mathbb{K}_{2}\right) \rightarrow G L_{d}\left(I_{p}\right)$ we are done.
This however is nut the case. Instead bosk at

$$
S_{k}^{ \pm}(R)=\left\{A \in M_{d}(R): \quad \operatorname{det} A= \pm 1\right\}
$$

corm. ring
$S_{L}^{I}\left(I_{p}\right)$ acts transitively on maximal Hays.
Now $S L_{d}^{ \pm}(\mathbb{Z}) \rightarrow S L_{d}^{I}\left(I_{p}\right)$
Claim:
in general, if R is an Euclidean domain, then
then (*) follows
Roof! $A G S^{ \pm} d(\mathbb{R})$ by Undid abyonilher $A=\left(\begin{array}{c|cc}a & 0 & 0 \\ * & *\end{array}\right)$ but $\in R^{*} \Rightarrow$ Euclid on first column
this action can be alone using the

$$
A=\left(\begin{array}{c|cc}
a & \cdots & 0 \\
0 & * \\
\vdots & &
\end{array}\right)
$$

matrices in
$\pi a_{i}=+1$
$\xrightarrow{ }\left(\begin{array}{ccc}a_{1} & & \\ & a_{2} & 0 \\ 0 & \ddots & a_{d}\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{lllll}
a_{1} & & & \\
& a_{2} & & & \\
& & a_{3} & & \\
& & \ddots & \\
& & & a_{l}
\end{array}\right) \\
& \left(\begin{array}{cc}
a & b
\end{array}\right) \xrightarrow{\text { ad }}\left(\begin{array}{cc}
a & b \\
&
\end{array}\right) \xrightarrow{\frac{T_{1-a}^{a}, 1,2}{}}\left(\begin{array}{cc}
1 & a \\
\frac{b-a b}{a} & b
\end{array}\right) \xrightarrow{\text { row }}\left(\begin{array}{cc}
1 & a \\
0 & a b
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & a b
\end{array}\right)
\end{aligned}
$$

move all to the last oftiagomal \rightarrow it mast be 1 囫

Coyly graph

$$
\operatorname{Cay}(G ; S)=(V, E)
$$

$$
V=G \quad E=\{(y, s g): g \in G, s c s\}
$$

This is an 5 -regular graph.
All graphs are directed

Sheer graph
100 restrictive

$$
\begin{aligned}
& \text { o gram } H \leq G \quad S \subseteq G \\
& \underset{\substack{\text { Too general }}}{\operatorname{Sch}(G, H ; S)}=(V, E) \quad V=G / H \quad E=\left\{(g \mid t, s g \|): \begin{array}{ll}
& g \in G \\
s \in S
\end{array}\right\}
\end{aligned}
$$

Heck e graph

$$
\begin{array}{rl}
G & H \leq G \quad \\
H e c \\
H, H ; S)=(V, E) & V=G / H \quad E=\left\{(g H, g s H): \frac{g \in G}{s \in S}\right\}
\end{array}
$$ This has transitive G action.

Catch: $S=\left\{5, \ldots, s_{m}\right\}$

maybe $g s_{1} K=g_{2} s K$
real problem if $\quad g K=g^{\prime} K$ it is rot recessarity true that $g s_{i}=g s_{i}$ so we also reed to go to $g K \rightarrow g^{\prime} \operatorname{si} K$ for 1 ism and $g^{\prime} \in G$ st. $g K=g^{\prime} K$.

Define: S is K balanal if $K S K=S K$
First rote that Heck (G, K, S) wee actually Lone

$$
g+K=y K \xrightarrow{\rightarrow} g l e s K \text { so, if } K S K=5 K=\underset{s e 5^{\prime}}{4} s K
$$

\Rightarrow elves of the graph are $(g K, g s k)$ for $s \in S^{\prime}$
[On tgoing neighbors of $g K$ are $\{g s K\}$ for $\left.s \in S^{\prime}\right]$
If S is K-balanced then $S^{\prime}=S \mid \Rightarrow$ The graph is/Stregular

Bock to the claim:
For $G=P G L_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \quad K=\operatorname{PGL}(\mathbb{K}) \quad S=\{(1, p)\}$ we can take $S^{\prime}=\left\{\binom{1}{p},\left(\begin{array}{l}p \\ j \\ 1\end{array}\right) \quad j=0, \ldots p-1\right\}$
and S^{\prime} is K-balanced and gives the $(p+1)$-resular tree.

First check that $X_{p}^{2}=\operatorname{Hec}\left(G, K_{j} S^{\prime}\right)$
"wed to show $K\binom{1}{i} K=\sum_{j=0}^{p-1}\left(\begin{array}{ll}p & j \\ i & 1\end{array}\right) K \quad \perp\binom{1}{p} K$
Recall: For $A \in P G L d\left(\pi\left[\frac{1}{p}\right]\right)$, the level of A is $\log _{p} \operatorname{det} A$ when A is called to be printive.
In other words, if $A=\binom{p^{m} \dot{a}}{p^{n}} \cdot k$, ten level $=m+n$. $\operatorname{gcd}\left(p^{n}, p^{n}, a\right)=1$
$\operatorname{Clim} K\binom{1}{p} K=\{g \in G:$ level $(g)=1\}$.

Proof:
(N K $\binom{1}{p} K \leq$ level 1 because all the matrices on the left base deft p, and are primitive.
${ }^{(2)}$ level $1=I\binom{P j}{1} K \perp\binom{1}{1} K$ because the genera form is $\left(\begin{array}{cc}p^{m} & a \\ p^{n}\end{array}\right)$ for $\operatorname{gad}(m, n, a)=1$. and the disjointress has left as an exercise
(3) $\Perp\binom{p j}{1} K \Perp\binom{1}{p} K \subseteq K\binom{1}{p} K$

We shoved this. when $\left(i^{1}\right)^{1}\binom{1}{p} K=\binom{p}{1} K$

$$
\underbrace{\left(\begin{array}{ll}
1 & j \\
a & 1
\end{array}\right)(, 1}_{\epsilon k}{ }^{1}) \underbrace{\epsilon k}\binom{1}{1} k=\binom{p j}{1} k
$$

Actually, Hec $(G ; K g)$ if level $g=1$ we get $\begin{aligned} & \text { Hex } \\ & (G, K,(1 p))\end{aligned}$
if level $(y)>1$ we get a disconnected graph union of trees,

Note: In $H_{e c}(G, K, S)$ we lave G-action on edges and vertices.

We will construct Ramanujan graphs as Hecke-Schreier graphs

$$
\begin{array}{r}
H S(G, H, K, S)=\operatorname{Sch}(\operatorname{Hec}(G, K, S), H, S) \\
V=H G / K \quad E=\{(H g K, H g s K)\}
\end{array}
$$

Calla and Schmeer graphs are edge labeled by S Heck graphs are rot.

$$
\begin{aligned}
& \binom{1}{1} K=I K \ldots\left(r_{1}\right) \\
& \binom{1}{1} \text { K }\binom{1}{11} \quad\left(p_{1}\right) \\
& \text { pK }
\end{aligned}
$$

The eqpabels we got are related to the specific representatives we chose the edges are not labeled.

HeW:
Show that in $P G L_{2} \quad,\{g ; \operatorname{lvel}(g)=m\} K\binom{1}{p^{m}} K$. This is not true in higher dim.

Def: A combinatorial branching map on G set X is a map $T: X \rightarrow 2^{x}$ such that $T\left(g_{x}\right)=g T(x)$ $F_{x} \in X \quad g \in G$.

If X is transitive, then pick $x_{0} \in X \Rightarrow T\left(x_{0}\right)$ eternise T

$$
\begin{gathered}
T\left(x_{0}\right)=T\left(g x_{0}\right)=g T_{\left(x_{0}\right)} \\
\downarrow \\
\Rightarrow g
\end{gathered}
$$

Furthermore $T\left(x_{0}\right)$ is K-stabk where $K=s t a b(50)$ because $\forall k \in K \quad k T(x)=T(k, 0)=T\left(x_{0}\right)$

Ramanujan graphs and complexes
Lecture

WW: $G=P G L_{2}\left(\mathbb{Z}\left[\frac{1}{P}\right]\right), K=P G L_{2}(\mathbb{Z})$. Shaw

$$
\{A \in G: \operatorname{level}(A)=m\}=K(1, m) K .
$$

Hecke graphs
Combinatorial operators $V=G / K E=\{(g K, g s K)\}_{s \in S}$
Saws: From s we can create $s \leq S^{1}$ sit.

$$
K S K E S^{\prime} K
$$

and then the out reighors of $g K$ are $\{g s k\}_{s e s}$
$\operatorname{Hecke}\left(G, K,\{((p)\})=x_{p}^{2}\right.$ is $(p+1)$-reg.

$$
S=\{(1 p)\} \quad S^{\prime}=\left\{\left(i_{p}\right),\left(p_{1}^{j}\right) j=0, \ldots, p^{-1}\right\}
$$

Set $X=G / K$ a comb branching op, on X a G-equi map $T: X \rightarrow 2$

$$
\forall x \in \times \quad \forall g \in G \quad T(g x)=g T(x)
$$

Since $G \underset{\text { trans. }}{\Delta x} T\left(x_{0}\right)$ determines $T\binom{x_{0}$ any fixed chic }{ of element in X. en. $K}$

For $x=K$

$$
\text { Tx o must satisfy } \mathbb{K} T\left(x_{0}\right)=T\left(x_{0}\right) \quad \forall k \in K
$$

since $k T\left(x_{0}\right)=T\left(k x_{0}\right)=T\left(x_{0}\right)$.
Actually, any choice of a K-fixed set $s \leq x$ determines a unique combinatorial branching operator with $T_{x_{0}}=S$.
(Check)
Rem:
More generally given $G C X$ transitive action and $n_{0} \in X$ we define $K=\operatorname{stab}_{G}\left(x_{0}\right)$
directed
Heated graph \longrightarrow branching rule (out neighbors)
K balanced set $\longleftrightarrow K$ fixed $\tilde{S_{s e t}}$.
S sit. $K S K=S K$

$$
K \tilde{S}=\tilde{S}
$$

here $S \subseteq G$
here $\tilde{S} c x=G / k$

$$
\begin{array}{ccc}
S=\tilde{S K} & \longmapsto & \tilde{S} \\
S & \longmapsto & \\
& & \\
& \\
\hline
\end{array}
$$

G equivariant branching operator on trans. G-set X
K
sets which are invariant w.r.t. the stabilizer of a fixed vertex x EX
(union of)
 double cosets of K.

Once again

$$
G G^{\text {trans }} X \text {, pick } x_{0} \in X . \quad K=\operatorname{stab}\left(x_{0}\right)
$$

Take some bi-K-inv set $M \subseteq G\left(\begin{array}{c}C M \text { is a } \\ \text { union of double } \\ K \text { corsets }\end{array}\right)$
decompose $M=\frac{11}{s \in S} s K$ (thus defining S)
and then S is a K-balanced set \rightarrow thecke graph

$$
T_{\infty}=\left\{s x_{0}\right\}_{s \in S} \longrightarrow T\left(g x_{0}\right)=\left\{y s x_{0}\right\}_{S \in S}
$$

gives a branching operator.

Look at $G=P G L_{2}\left(\mathbb{K}\left[\frac{1}{p}\right]\right), \quad K=P G L_{2}(\mathbb{Z})$
$X=G / K \quad(p+1)-r y \quad$ tree
What are comb, operators on X.

$$
\begin{aligned}
& T_{x}=B_{r}(x) \\
& T_{x}=S_{r}(x) \\
& T_{x}=\{y ; \quad \operatorname{dist}(x, y) \in\{3,7,100\}\}
\end{aligned}
$$

$T_{x}=$ finite union of spheres

Those are all of them.

$$
\begin{aligned}
& X=T_{k} \\
& G=\operatorname{Sym}(X)=\operatorname{Act}(x)
\end{aligned}
$$

what comb. op. are there? Union of spheres
If $y \in T_{x_{0}}$ and $\operatorname{dist}(x, y)=r$ then $S_{r}\left(x_{0}\right) \subseteq T_{x_{0}}$
since $\forall y^{\prime} \in S_{r}\left(x_{0}\right) \quad \exists k \in K=\operatorname{Sta} G(x)$ sit. $\quad k y=y^{\prime}$
Hence $y^{\prime}=b_{y} \in T\left(x_{0}\right)=T\left(k x_{0}\right)=T\left(x_{0}\right)$

We wont to study the behavior of T by spectral means. Namely, define $A_{T} C_{L^{2}}(x)$ by $\left(A_{T} f\right)(x)=\sum_{y \in T_{x}^{\prime \prime}} f(y)$ Then, egg., if $\operatorname{gec}\left(A_{T}\right)=\left\{\left|T_{x_{0}}\right|\right.$, shall e.v $\}$, then T is "if x is finite"
rapidly mixing.
New, we can pale about polynomids $A_{T}{ }^{2}-A_{T}^{3}$ or, more generally, the ring of G-equir. functions, on $L^{2}(X)$. with finite surprint
For $X=T_{k}$, ether $G=P G L_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$ or $G=\operatorname{sigm}\left(T_{k}\right)$, the regular adj. operator generates all these operators. $\Longleftrightarrow \forall_{r} \in \mathbb{N}$, the operator $A_{r} f(x)=\sum_{y \in S_{r}(x)} f_{(y)}$ is a poly in A_{1}.

Egg. $\quad A_{2}=A_{1}^{2}-k A_{1}^{0}$.

$$
\begin{aligned}
& A_{3}=A_{1}^{3}-\square A_{1} \\
& A_{4}=A_{4}^{4}-\square A_{1}^{2}-\square A_{1}^{0}
\end{aligned}
$$

Clebycher polyomials.

Ramanujan graphs and complexes - Lecture 14

December 11, 2017

Remainder Let X be a G-set. A (G-equivariant) branching operator on X is a $T: X \rightarrow\{$ finite subsets of $X\}$ such that $g \cdot T(x)=T(g \cdot x)$ for all $x \in X$ and $g \in G$.

- If X is transitive, we showed that all branching operators arise as follows: Fix $x_{0} \in X$. Define $K=\operatorname{Stab}_{G}\left(x_{0}\right)$. Choose some bi- K invariant set $M \subset G$, namely M is a union of double K cosets $K g K$ for various g, and decompose M as a disjoint union (define S) so that $M=\biguplus_{s \in S} s K$. Finally, set $T\left(x_{0}\right)=\left\{s x_{0}\right\}_{s \in S}$. In general $T\left(g x_{0}\right)=\left\{g s x_{0}\right\}_{s \in S}$.
- Those are equivalent to Hecke graphs - Indeed, X with T as adjacency operator is the Hecke graph of G with respect to K and S. Furthermore S is K-balanced, since $K S K=K M=M=S K$.
- Eventually, we want to understand double K cosets of G and their decomposition to right K cosets.
- When $G=P G L_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$ and $K=P G L_{2}(\mathbb{Z})$ we already saw that double K cosets are the levels in G and equal $K\left(\begin{array}{ll}1 & \\ & \\ & p^{\ell}\end{array}\right) K$. On T_{k} the branching operators are union of spheres.

Going to higher dimensions In higher dimensions there are much more ranching operators.
Here are some branching operators on X_{p}^{3} :

- Recall the $p^{2}+p+1$ outgoing neighbors of the identity. We can define $T x$ to be the outgoing neighbors of x. This is a minimal branching operator (it is not the union of smaller branching operators) which is equivalent to saying that it comes from a single double coset.
- $T x=$ change triangle (distance 2 with respect to 1 operator) is not minimal. There are 6 of those vertices which can be splitted into $3+3$ which are forming two minimal branching operators. (See Figure 1). Algebraically, this means that $K\left(\begin{array}{lll}1 & & \\ & 1 & \\ & & p^{2}\end{array}\right) K \neq K\left(\begin{array}{lll}1 & & \\ & p & \\ & & p\end{array}\right) K$ although both of them are of level 2. Actually, level 2 is the disjoint union of the last 2 double cosets (See Figure 1).

Theorem 0.1. (Cartan decomposition) $G=\biguplus K\left(\begin{array}{ccccc}p^{n_{1}} & & & & \\ & p^{n_{2}} & & & \\ & & p^{n_{3}} & \\ & & & \ddots & \\ & & & & p^{n_{d}}\end{array}\right) K$, where the union is over $0=n_{1} \leq n_{2} \leq \ldots \leq n_{d}$. In particular in $P G L_{3}$, the l-th level is composed of $(1+\lfloor l / 2\rfloor)$-double K-cosets. Can decompose A_{l} (the vertices at distance l) is a union of those branching operators.

Proof. Let $g \in P G L_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$. We need to get to $\left(\begin{array}{ccccc}p^{n_{1}} & & & & \\ & p^{n_{2}} & & & \\ & & p^{n_{3}} & & \\ & & & \ddots & \\ & & & & p^{n_{d}}\end{array}\right)$ with $n_{1}=0, n_{i} \leq n_{i+1}$
by applying K from the right and from the left. Then, we need to show that there is a unique choice of n_{1}, \ldots, n_{d} to which we can arrive by such action. Scale g to be integer and primitive. There exists i, j such that p does not divide $g_{i j}$. Apply Euclid to the row of $g_{i j}$ and get

$$
\left(\begin{array}{lllllll}
* & * & * & * & * & * & * \\
* & * & * & * & * & * & * \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & * & * & * & * & * \\
* & * & * & * & * & * & *
\end{array}\right)
$$

Apply column operations to the first column and get

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & * & * & * & * & * & * \\
0 & * & * & * & * & * & * \\
0 & * & * & * & * & * & * \\
0 & * & * & * & * & * & * \\
0 & * & * & * & * & * & * \\
0 & * & * & * & * & * & *
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & B
\end{array}\right) .
$$

Write $B=p^{n_{2}} C$ with C primitive and continue by induction.
Exercise 0.2. Show that this is a disjoint union.
So far we only talked about operators on vertices. One can also talk about operators on cells in general. For $\lambda=\left(0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{d}\right)$ define T_{λ} to be the branching operator associated with

$$
K\left(\begin{array}{lllll}
p^{\lambda_{1}} & & & & \\
& p^{\lambda_{2}} & & & \\
& & p^{\lambda_{3}} & & \\
& & & \ddots & \\
& & & & p^{\lambda_{d}}
\end{array}\right) K
$$

Any branching operator on X_{p}^{d} is a union of these branching operators.
Theorem 0.3. Surprising fact: all branching operators on X_{p}^{d} commute.
For a graph we saw that every branching operator is a (Chebyschev) polynomial in A and all polynomials in a given operator commute.
Proof. Enough to prove for T_{λ} and T_{μ}. The statement is equivalent to showing that

$$
\begin{equation*}
K\left(p^{\lambda}\right) K\left(p^{\mu}\right) K=K\left(p^{\mu}\right) K\left(p^{\lambda}\right) K . \tag{0.1}
\end{equation*}
$$

(This follows from the fact that we have the correspondence $X \rightarrow G / K$ given by $X \mapsto M K / K$, where $M \subset G$ such that $M x_{0}=S$. In this case $T_{\lambda}\left(x_{0}\right)=\left\{s x_{0}\right\}_{s \in S_{\lambda}}$ where $K\left(p^{\wedge}\right) K=\biguplus_{s \in S_{\lambda}} s K . T_{\lambda} T_{\mu}\left(x_{0}\right)=$ $T_{\lambda}\left(\left\{s x_{0}\right\}_{s \in S_{\mu}}=\left\{s t x_{0}\right\}_{t \in S_{\lambda}, s \in S_{\mu}}\right.$ which is mapped to $K\left(p^{\mu}\right) K\left(p^{\lambda}\right) K / K$. In the other direction, taking
a family of cosets $R \subset G / K$ observe the subset of X defined by $R x_{0}$. Then, $K\left(p^{\lambda}\right) K\left(p^{\mu}\right) K x_{0}$ is a T_{λ}-neighbor of a T_{μ}-neighbor of x_{0}. We used here the fact that $\left(p^{\mu}\right) K x_{0}$ is one T_{μ} neighbor of x_{0} and that $K\left(p^{\mu}\right) K x_{0}$ are all T_{μ} neighbors of x_{0}. Therefore

$$
T_{\lambda} T_{\mu}=K\left(p^{\lambda}\right) K\left(p^{\mu}\right) K=K\left(p^{\mu}\right) K\left(p^{\lambda}\right) K=T_{\mu} T_{\lambda}
$$

Turning to prove (0.1) we use a trick of Gelfand. First observe that $\left(K\left(p^{\lambda}\right) K\right)^{t}=K^{t}\left(p^{\lambda}\right)^{t} K^{t}=$ $K^{t}\left(p^{\lambda}\right) K^{t}=K\left(p^{\lambda}\right) K$. Here we already used Cartan's result. Similarly,

$$
\left(K\left(p^{\lambda}\right) K\left(p^{\mu}\right) K\right)^{t}=K\left(p^{\mu}\right) K\left(p^{\lambda}\right) K
$$

On the other hand, the left hand $K\left(p^{\lambda}\right) K\left(p^{\mu}\right) K$ is a union of double K-cosets, so it is $\biguplus_{i=1}^{m} K\left(p^{\nu_{i}}\right) K$ and we got that

$$
\left(K\left(p^{\lambda}\right) K\left(p^{\mu}\right) K\right)^{t}=\left(\biguplus_{i=1}^{m} K\left(p^{\nu_{i}}\right) K\right)^{t}=\biguplus_{i=1}^{m}\left(K\left(p^{\nu_{i}}\right) K\right)^{t}=\biguplus_{i=1}^{m} K\left(p^{\nu_{i}}\right) K=K\left(p^{\lambda}\right) K\left(p^{\mu}\right) K
$$

and all together we get (0.1).

From Ramanujan Graphs to Complexes
Reminder:

$$
\begin{aligned}
& G=P G L_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \\
& K=P G L_{d}(\mathbb{Z})
\end{aligned}
$$

There exists a correspondence between:
G-equivariant branching operators on $\quad X=\frac{G}{K}$
and
Unions of dabble K-coset in G
Another correspondence we have

$$
\begin{aligned}
& X \longleftrightarrow \frac{G}{K} \\
& \begin{array}{l}
\text { subsets } \\
\text { of } X
\end{array} \longleftrightarrow \begin{array}{l}
\text { right } K \text {-inv. } \\
\text { subsets of } G
\end{array}
\end{aligned}
$$

So a double coset Kike gives a branching operator $x \rightarrow 2^{x}$

$$
(k g \mu)(\tilde{t} \hat{\tilde{N}}, \underset{\substack{\text { right } k \text { seinv. } \\ \text { set }}}{t k g k} \Rightarrow \text { subset of } x
$$

This is well defined since

$$
(K g k)(\underbrace{\operatorname{th} K}_{G})=\underbrace{=t k}_{=K} K g K=t K g K
$$

For $g \in G$ denote
$H g=$ the branch. op. corresponding to KgK
$H g: X \rightarrow 2^{X}$, or $H g: L^{2}(X) \bigcirc$

Reminder: We saw that for our Gil, all Hg commute.

Also, the double n-cosets are parametrized by

$$
g=\binom{p^{n_{1}} \bigcirc^{O^{n}}}{\bigcirc^{n_{d}}} \quad 0=n_{1} \leq n_{2} \leq \ldots \leq n_{d}
$$

Cor: For every $v, w \in X(0)$ there exists an apartment containing both.

Pf: We know $G \Omega X^{(0)}$ so we can transitively ,
take $W L O G \quad V=V_{0}=[I](=K)$.
Then $子 g$ st $w=g K_{\text {. }}$ write $g=$ tate' where $\quad a=\left(\begin{array}{ll}p^{n} n & O \\ 0 & p^{n d}\end{array}\right) \quad 0=n_{1} \leq \ldots \leq n d$.

The fundumental apt. was

$$
\theta=\left\{\begin{array}{ll}
a v_{0} & \left\lvert\, a=\left(\begin{array}{cc}
p^{n_{1}} & \bigcirc \\
0 & p^{n_{d}}
\end{array}\right)\right.
\end{array}\right\}
$$

Now $k f$ contains v and w since

$$
\begin{aligned}
& v=v_{0} \in \mathcal{l} \Rightarrow v_{0}=k v_{0} \in k \Omega \\
& w=g v_{0}=k a k v_{0}=k a v_{0} \in k \Omega
\end{aligned}
$$

Tit's Axiom: $\forall \sigma, \tau$ chambers (top cells) Japt. containing both
Ex: Prove it is true in our case

Comb. Operators on the Quotients of the building
If $H \leq G$ we can look at $H^{X}=\frac{G}{K}$
E.g. $\quad G=A_{u t}\left(T_{k}\right) \quad b e=\operatorname{stab}_{G}\left(r_{0 o t}\right)$

$$
x=G / k=T_{k}
$$

For every $H \leq G$ is a te-reg graph
Also the other way around is true: every le-reg graph is obtained as $H X$ for some $H \leq \operatorname{Aut}\left(T_{u}\right)$.

Combinatorial ops. are well defined on such quotients.

$$
(k g k)\left(H_{x} k\right)=H_{x} k g k
$$

or, if $T: X \rightarrow 2^{x}$ is g-equiveriant then for $H x \in H^{X}$ we can define $T: H_{H^{x}} \rightarrow 2^{H}$
by $T(H x)=H T(x)$.

This is the same as saying that if Γ is a k-reg graph, take G-equ. cover map
$p: T_{k} \rightarrow \Gamma$ and define a branch. op. on Γ by $T(v)=P\left(H\left(p^{-1}(v)\right)\right)=\left\{\begin{array}{c}\text { Neighbors of } v\} \\ \text { in } \Gamma\end{array}\right\}$

Adjacency Op.
Thus whenever $\left|H^{G} \frac{G}{K}\right|<\infty \quad$ we have a fin. quot. of X with all Heck ops. (Hg) defined on it.

Vote: For sur "usual" Gite, all Hz commute also on quotients. Thus simul. diag. on $L^{2}\left(H^{X}\right)$.

Cor: They are all normal.
reason: for $a=\left(\begin{array}{ccc}p^{n_{1}} & 0 \\ & & 0 \\ 0 & p^{n_{d}}\end{array}\right) \quad H_{a}^{*}=H_{a^{-1}}$ (Exercise)
Ramanujan Complexes
Def: (Li, Lub-Samueles-Vishne)
A quotient $\Gamma^{x_{p}^{d}}$ is ramanyjan if all simul. eigen values $\left(\lambda_{1}, \cdots, d_{d-1}\right)$ of A_{1}, \ldots, A_{d-1} is either trivial or in $S_{p e c}^{\left(A_{1}, \ldots, A_{d x}\right)}$ (x_{p}^{d})

Note: For $d=2$ we get the regular ramanujan def.

Reminder: For some ops. $\quad A_{1, \ldots, 1} t_{m} \Omega V$ the sim. spectrum is

$$
\begin{aligned}
& \left\{\left(\lambda_{1}, \cdots \lambda_{d}\right) \in \mathbb{C}^{d} \mid \exists v \neq 0 \text { set. } A_{i} v=\lambda_{i} v\right\} \subseteq \\
& \quad \text { for all } 1 \leq i \leq m
\end{aligned}
$$

The: The operators $A_{j}=H\left(\begin{array}{c}\text { then } \\ \left(\begin{array}{ll}\text { tip } \\ 0\end{array}\right. \\ 0\end{array}\right)$ generate all Heck ops. on G.
pf: Order all Heck ops. on G/k as follows: Take $H_{\lambda}=k\left(\begin{array}{lll}p^{m_{1}} & 0 \\ 0 & p_{d}\end{array}\right) k$ where $\lambda_{1} \geqslant \lambda_{2} \cdots \geqslant \lambda_{d}=0$. Then the order is by λ_{1} and then by $m_{\lambda}:=\left\{\# j \mid \lambda_{j}=\lambda_{1}\right\}$.
eng.

$$
\left(\begin{array}{lll}
3 & & \\
& 3 & \\
& 2 & 0
\end{array}\right)>\left(\begin{array}{lll}
3 & & \\
& 2 & \\
& & 0
\end{array}\right)>\left(\begin{array}{ll}
2 & \\
& 1 \\
& 1
\end{array}\right)>\left(\begin{array}{ll}
1 & \\
1 & 0
\end{array}\right)
$$

Def: For $v \in \frac{G}{k}$ the distance of \checkmark from I is

$$
\max \left\{\lambda_{j}\right\} \quad \text { with. } g \in K\left(e_{-p_{1}^{\rho_{1}}}^{\rho_{1}}\right) K
$$

where $v=g h$.

Claim: $\forall \vec{\lambda} \exists_{j}$ sit. if we take

$$
\overrightarrow{\lambda^{\prime}}=\left(\lambda_{1}-1, \lambda_{2}-1, \ldots, \lambda_{j}-1, \lambda_{j+1}, \lambda_{j 2}, \ldots, \lambda_{d}\right)
$$

then all vertices $A_{j}\left(P^{p_{1}^{\prime}} \cdot p_{2}^{\lambda_{2}^{\prime}}\right) K$ are either in the K. orbit of $\binom{P^{\lambda}}{\quad " P^{d_{d}}} \notin \mathrm{or}$ in smaller ones w.r.t our ordering

Thus by induction we can write the corresponding doable cosets using A_{1}, \ldots, A_{d-1} and this c̈lean out" $K\left(\begin{array}{lll}p^{\lambda 1} & \\ & \ddots & p^{\lambda d}\end{array}\right) K$
neighbors of I_{d} of level j
the graph sense
Thus $A_{j}(g K)=$ g Site
In particular $A_{j} K=S_{j} K$ are all in she K-orbit.

For $g=\left(\begin{array}{ccc}p^{\lambda_{1}} & 0 \\ \vdots & 0 & 0 \\ 0 & p^{\lambda_{d}}\end{array}\right)$ we get $A_{j}(g K)=$

$$
=g S_{j} K=\left(\begin{array}{cc}
p^{h_{1}} & 0 \\
0 & p_{2}
\end{array}\right) \underbrace{\left(e^{\left(p_{0} p_{i}\right.}\right.}_{\sim}{ }^{*}) K
$$

\star
Since $\lambda_{1} \geqslant \lambda_{2} \ldots$ we can do row operations to "kill" ad l *'s in \circledast.

Therefore, A_{j} takes $\binom{p^{\lambda_{n}}}{\because p^{\lambda_{d}}}$ to double cosets corr. to various $\vec{\lambda}=\left(\lambda_{1}+m_{1} \ldots \lambda_{d}+m_{d}\right)$ where $m_{i}=0 / 1$ and $\quad \sum m_{i}=j$

So if we want to get some
$H\left(\begin{array}{cc}p^{p_{1}} & 0 \\ 0 & 0 \\ 0^{p_{1}}\end{array}\right)$ we look at

$$
\begin{aligned}
& \overrightarrow{\lambda^{\prime}}=\left(\lambda_{1}-1, \lambda_{2}-1 \ldots \lambda_{m_{\lambda}}^{-1}, \lambda_{m_{1}, 1}, \cdots \lambda_{d}\right) \\
& m_{\lambda}=\#\left\{\lambda_{j} \mid \lambda_{j}=\lambda_{1}\right\}
\end{aligned}
$$

and then $A_{m_{\lambda}}\left(p^{p_{1}^{\lambda_{1}}} p^{\lambda_{d}}\right) K$ contains
 smaller double coset.

Ramanujan graphs and complexes - Lecture 16 - December 24

December 30, 2017

Remainder - Hecke operators The Hecke operators of $B^{d}=X_{p}^{d}$ is the subalgebra of locally finite G-equivariants operators on vertices $T: B^{0} \rightarrow 2^{B^{0}}$ (as a subalgebra of $\operatorname{Lin}\left(L^{2}\left(B^{0}\right)\right)$). We have

$$
\mathcal{H}=\operatorname{Span}_{\mathbb{C}}\binom{G-\text { equivariant branching }}{\text { operators acting on } L^{2}\left(B^{0}\right)}=\operatorname{Span}_{\mathbb{C}}\{K g K: g \in G\}
$$

Using Cartan, we also saw that this is the same as

$$
\oplus_{0=\lambda_{1} \leq \lambda_{2} \leq \ldots \lambda_{d}} \mathbb{C} \cdot K\left(p^{\vec{\lambda}}\right) K
$$

and last week we saw that $A_{1} \ldots, A_{d}$ generate those, i.e.

$$
\mathcal{H}=\mathbb{C}\left\{A_{1}, \ldots, A_{d-1}\right\}
$$

By Gelfand we know that

$$
\mathcal{H}=\mathbb{C}\left[A_{1}, \ldots, A_{d-1}\right]
$$

and in fact we have the following result:
Theorem 0.1. (McDonald?, Satake?) $\mathbb{C}\left[A_{1}, \ldots, A_{d-1}\right] \cong \mathbb{C}\left[x_{1}, \ldots, x_{d-1}\right]$.
Higher dimensions Change K. Take $\sigma \in B^{(j)}$. Then $G \sigma \subset B^{(j)}$. For $P G L_{2,3}$ the group acts transitively on each dimension. In higher dimensions, it does not. Take $X=G \sigma$. To study G equivariant branching maps on X, we need to understand the action of K_{σ}-double cosets on K_{σ}-left costes $\left(G / K_{\sigma} \cong G_{\sigma}=X\right)$, where $K_{\sigma}=\operatorname{Stab}_{G}(\sigma)$. We can take σ to be to be a set (cell), ordered set, pointed cells (cells with a chosen vertex), etc.... Every choice for the structure of σ gives different orbits and different stabilizers.
$G=P G L_{2}$ with $K_{e}=\operatorname{Stab}_{G}\left(\right.$ directed edge from $\left.\begin{array}{llllll}1 & & & & & \\ & & & & \\ & & p & & & \end{array}\right)$ this is the same as oriented, pointed and ordered edge (but not as set of vertices). In this case $B^{(1)}=G e$. Example of G equivariant branching operator $B^{(1)}=T_{p+1}$ is $T\left(e_{0}\right)=K_{e_{0}} e$, where e_{0} is the directed edge above. (This is in fact the general thing up to union of such things). For example, if we take $T\left(e_{0}\right)=$ $K_{e_{0}} \cdot\left(\begin{array}{llllll}\text { directed edge from } & 1 & & & & \\ & & 1 & & & \\ & & & & 1\end{array}\right)$ and denoting this edge by e

$$
\begin{aligned}
& \left(\begin{array}{ll}
p & \\
& 1
\end{array}\right) \quad \stackrel{e}{\longleftrightarrow}\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right) \stackrel{e_{0}}{\longleftarrow}\left(\begin{array}{ll}
1 & \\
& p
\end{array}\right) \\
& \left(\begin{array}{ll}
p & 1 \\
& 1
\end{array}\right) \\
& \vdots \\
& \left(\begin{array}{cc}
p & p-1 \\
& 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
T\left(e_{0}\right) & =\left\{\left(\left(\begin{array}{ll}
p & j \\
& 1
\end{array}\right),\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right)\right): j=0 \ldots, p-1\right\} \\
& =\left\{e: \operatorname{orig}(e)=\operatorname{term}\left(e_{0}\right), e \neq \operatorname{flip}\left(e_{0}\right)\right\}
\end{aligned}
$$

$$
T(\bar{e})=\ldots=\left\{e^{\prime}: \operatorname{orig}\left(e^{\prime}\right)=\operatorname{term}(\bar{e}), e^{\prime} \neq \operatorname{flip}(\bar{e})\right\}
$$

This is a non-backtracking condition.
Note that T is not normal. Indeed $T^{*} T e_{0}$ contains $\left(\begin{array}{ll}p & 1 \\ & 1\end{array}\right) \rightarrow\left(\begin{array}{ll}1 & \\ & p\end{array}\right)$ and $T T^{*} e_{0}$ does not.

Ramanujan graphs and complexes - Lecture 17 - December 25

December 30, 2017

Remainder We were looking on G-equivariant branching operators on X, where $G=P G L_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$, $K=P G L_{d}(\mathbb{Z})$ and $G / K \cong B^{(0)}$.

For different X, change K. For example $G=P G L_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right), K=P G L_{2}(\mathbb{Z})=\operatorname{Stab}_{G}\left(v_{0}=\right.$ $\left(\begin{array}{cc}1 & \\ & 1\end{array}\right)$) and $G \circlearrowright X_{p}^{2}=T_{p+1}$. To study ranching operators on edges, not that $G \circlearrowright B^{(1)}$ transitively, thus $B^{(1)} \cong G / K_{e}$, where $K_{e}=\operatorname{Stab}_{K}(e)$.

Then, equivariant branching operator on $B^{(1)}$ corresponds to double K_{e} cosets.
E.g. $T(v, w)=\{(w, u): u \neq v\}$. This is known as the non-backtracking walk operator. We saw that T is not normal and that Hecke operators do not commute any more.

Another example is $T(v, w)=\{(w, v)\}$ which is the flipping operator.
Understanding branching operators algebraically $e_{\infty}:\left(\begin{array}{ll}1 & \\ & p\end{array}\right) \rightarrow\left(\begin{array}{ll}1 & \\ & 1\end{array}\right)$. We know that there exists S such that $K_{e_{\infty}} S K_{e_{\infty}}=\uplus_{s \in S} s K_{e_{\infty}}$ and $T\left(e_{\infty}\right)=\left(s e_{\infty}\right)_{s \in S}$.
Claim 0.1. $K_{e_{\infty}}\left(\begin{array}{ll}1 & \\ & p\end{array}\right) K_{e_{\infty}}=\biguplus_{j=0}^{p-1}\left(\begin{array}{ll}p & j \\ & 1\end{array}\right) K_{e_{\infty}}$
Proof. $\left(\begin{array}{ll}p & j \\ & 1\end{array}\right) K_{e_{\infty}} e_{\infty}=\left(\begin{array}{ll}p & j \\ & 1\end{array}\right) e_{\infty}=\left[\left(\begin{array}{ll}p & j \\ & 1\end{array}\right)\left(\begin{array}{ll}1 & \\ & p\end{array}\right) \rightarrow\left(\begin{array}{ll}p & j \\ & 1\end{array}\right)\left(\begin{array}{ll}1 & \\ & 1\end{array}\right)\right]=\left[\left(\begin{array}{cc}p & j p \\ & p\end{array}\right) \rightarrow\left(\begin{array}{ll}p & j \\ & 1\end{array}\right)\right.$ $\left[\left(\begin{array}{ll}1 & \\ & 1\end{array}\right) \rightarrow\left(\begin{array}{ll}p & j \\ & 1\end{array}\right)\right]=e_{j}$, so $K_{e_{\infty}}\left(\begin{array}{ll}p & \\ & 1\end{array}\right) K_{e_{\infty}} e_{\infty}=K_{e_{\infty}}\left[\left(\begin{array}{ll}1 & 0 \\ & 1\end{array}\right) \rightarrow\left(\begin{array}{ll}p & \\ & 1\end{array}\right)\right] \subset\left\{e_{0}, \ldots, e_{p-1}\right\}$,
where the last inclusion is obtained geometrically.

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & j \\
& 1
\end{array}\right) \in K_{e_{\infty}} \\
& \\
& \quad\left(\begin{array}{ll}
1 & j \\
& 1
\end{array}\right)\left[\left(\begin{array}{ll}
1 & \\
& p
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right)\right]=\left[\left(\begin{array}{cc}
1 & p j \\
& p
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & j \\
& 1
\end{array}\right)\right]=e_{\infty}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & j \\
& 1
\end{array}\right) e_{0}=\left[\left(\begin{array}{ll}
1 & j \\
& 1
\end{array}\right)\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & j \\
& 1
\end{array}\right)\left(\begin{array}{ll}
p & \\
& 1
\end{array}\right)\right]=\left[\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right) \rightarrow\left(\begin{array}{ll}
p & j \\
& 1
\end{array}\right)\right]=e_{j} . \\
& \\
& \\
& \\
& \\
& \\
& K_{e_{\infty}}=K_{v_{0}} \cap K_{v_{\infty}}, \text { where } v_{0}=\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right) \text { and } v_{\infty}=\left(\begin{array}{ll}
1 & \\
& p
\end{array}\right) . \text { Therefore } K_{e_{\infty}}=P G L_{2}(\mathbb{Z}) \cap \\
& \\
& \\
& \\
& \\
&
\end{aligned} \quad \begin{array}{ll}
& \\
& P G L_{2}(\mathbb{Z})\left(\begin{array}{ll}
1 & \\
& p^{-1}
\end{array}\right) . \text { Since } \\
P G L_{2}(\mathbb{Z})=\left\{A \in M_{2}(\mathbb{Z}): \operatorname{det} A= \pm 1\right\}
\end{array}
$$

and

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & \\
& p
\end{array}\right) P G L_{2}(\mathbb{Z})\left(\begin{array}{ll}
1 & \\
& p^{-1}
\end{array}\right) & =\left(\begin{array}{ll}
1 & \\
& p
\end{array}\right)\left(\begin{array}{cc}
n & m \\
k & l
\end{array}\right)\left(\begin{array}{ll}
1 & \\
& p^{-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
n & \frac{m}{p} \\
p k & l
\end{array}\right), \operatorname{det}= \pm 1
\end{aligned}
$$

where $m, n, k, l \in \mathbb{Z}$ satisfy $n l-k m= \pm 1$. Therefore

$$
K_{v_{\infty}}=\left\{A \in\left(\begin{array}{cc}
\mathbb{Z} & \frac{1}{p} \mathbb{Z} \\
p \mathbb{Z} & \mathbb{Z}
\end{array}\right): \operatorname{det} A= \pm 1\right\}
$$

For example $=\left(\begin{array}{cc}2 & \frac{1}{p} \\ p & 1\end{array}\right) \in K_{v_{\infty}}$ and $\left(\begin{array}{cc}2 & \frac{1}{p} \\ p & 1\end{array}\right)\left(\begin{array}{cc}1 & \\ & p\end{array}\right)=\left(\begin{array}{cc}2 & 1 \\ p & p\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ & p\end{array}\right)=\left(\begin{array}{ll}1 & \\ & p\end{array}\right)$ and $\left(\begin{array}{cc}2 & \frac{1}{p} \\ p & 1\end{array}\right)\left(\begin{array}{cc}1 & \\ & 1\end{array}\right)=\left(\begin{array}{cc}p & 1 \\ & p\end{array}\right)$.

$$
\text { Stabe }_{\infty}=K_{v_{0}} \cap K_{v_{\infty}}=\left\{A \in\left(\begin{array}{cc}
\mathbb{Z} & \mathbb{Z} \\
p \mathbb{Z} & \mathbb{Z}
\end{array}\right): \operatorname{det}= \pm 1\right\}
$$

What happens in $P G L_{3}$

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & & \\
& p & \\
& & p
\end{array}\right)=v_{2} \\
& { }_{\nearrow}^{e_{1}} \quad t_{0} \quad \nwarrow \\
& \left(\begin{array}{ccc}
1 & & \\
& 1 & \\
& & 1
\end{array}\right)=v_{0} \quad \xrightarrow{e_{0}} \quad\left(\begin{array}{ccc}
1 & & \\
& 1 & \\
& & p
\end{array}\right)=v_{1} \\
& \operatorname{Sta}\left(e_{0}\right)=\left\{A \in\left(\begin{array}{lll}
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z}
\end{array}\right) \cap\left(\begin{array}{ccc}
\mathbb{Z} & \mathbb{Z} & \frac{1}{p} \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \frac{1}{p} \mathbb{Z} \\
p \mathbb{Z} & p \mathbb{Z} & \mathbb{Z}
\end{array}\right): \operatorname{det}= \pm 1\right\} \\
& =\left\{A \in\left(\begin{array}{ccc}
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
p \mathbb{Z} & p \mathbb{Z} & \mathbb{Z}
\end{array}\right): \operatorname{det}= \pm 1\right\} \\
& \operatorname{Stab}\left(e_{1}\right)=\left\{A \in\left(\begin{array}{lll}
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z}
\end{array}\right) \cap\left(\begin{array}{ccc}
\mathbb{Z} & \frac{1}{p} \mathbb{Z} & \frac{1}{p} \mathbb{Z} \\
p \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
p \mathbb{Z} & \mathbb{Z} & \mathbb{Z}
\end{array}\right): \operatorname{det}= \pm 1\right\} \\
& =\left\{A \in\left(\begin{array}{ccc}
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
p \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
p \mathbb{Z} & \mathbb{Z} & \mathbb{Z}
\end{array}\right): \operatorname{det}= \pm 1\right\}
\end{aligned}
$$

and therefore

$$
\operatorname{Stab}\left(t_{0}\right)=\operatorname{Sta}\left(e_{0}\right) \cap \operatorname{Sta}\left(e_{1}\right)=\left\{A \in\left(\begin{array}{ccc}
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
p \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
p \mathbb{Z} & p \mathbb{Z} & \mathbb{Z}
\end{array}\right): \operatorname{det}= \pm 1\right\}
$$

We saw that $\mathrm{PGL}_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)$ acts transitively on $B^{(d-1)}$ (top cells).

Exercise 0.2. For $\sigma_{0} \in B^{(d-1)}$, show that $\operatorname{Stab}\left(\sigma_{0}\right)=\left\{\left(\begin{array}{ccccc}\mathbb{Z} & \mathbb{Z} & & \cdots & \mathbb{Z} \\ p \mathbb{Z} & \mathbb{Z} & & & \\ \vdots & & \mathbb{Z} & & \vdots \\ & & & \ddots & \\ p \mathbb{Z} & & \cdots & p \mathbb{Z} & \mathbb{Z}\end{array}\right): \operatorname{det}= \pm 1\right\}$.
This is known as the Iwahori group of G.
An example for a branching operators on edges of $B\left(P G L_{3}\right)$. See illustration.
$C^{0} \underset{\partial}{\stackrel{\delta}{\rightleftarrows}} C^{1}$. We saw that if G acts transitively on $X, x_{0} \in X$ and $K=\operatorname{Stab}_{G}\left(x_{0}\right)$. Then $K g K: X \rightarrow 2^{X}$ defined by $(K g K) g^{\prime} x_{0}=g^{\prime} K g K x_{0}=g^{\prime} K g x_{0}$ is well defined. Indeed

$$
(K g K) g^{\prime} k x_{0}=g^{\prime} k K g x_{0}=g^{\prime} K g x_{0} .
$$

Assume $G \circlearrowright X, X=G x_{0} \uplus G x_{1}$ and denote $K_{i}=\operatorname{Stab}_{G} x_{i}$. Now $K_{0} g K_{1}$ defines an equivariant branching operator $G x_{0} \rightarrow 2^{G x_{1}}$ by

$$
\left(K_{0} g K_{1}\right)\left(g^{\prime} x_{0}\right)=g^{\prime} K_{0} g K_{1} x_{1}=g^{\prime} K_{0} g x_{1}
$$

Rumannjan. yraphs and complees
X trunsitive G-set. $x_{0} \in X, K=S t \operatorname{cob}_{G} x_{0}$

Every KSK induces a branching operator T:X $\rightarrow 2^{x}$
Specifically if $K S K=\frac{11}{s \in S} s K$, then $T_{\left(g x_{0}\right)}=\left\{g s x_{0}\right\}_{s \in S}$. We also denote $T C^{s} L^{p}(X) \quad(1 \leqslant p \leqslant \infty)$

By $T f(x)=\sum_{y \in T(x)} f(y)$.

$$
\begin{aligned}
& L^{\infty}(x) \cong L^{\infty}(G / K)=L^{\infty}(G)^{K} \\
& \tilde{f}\left(y x_{0}\right)=f(g x) \longleftarrow f
\end{aligned}
$$

$L^{\infty}(G)$ is a G representation by right trunslation: $(g f)\left(g^{\prime}\right)=f\left(g^{\prime} g^{\prime}\right)$
For any G-rep. V and $H \leqslant G$ we write V^{H} the pointuise invoriant wectors $V^{H}=\left\{v \in V: L_{v}=v \not{ }^{H} L \in H\right\}$

$$
\text { So } \quad L^{\infty}(G)^{k}=\left\{f \in L^{\infty}(G): k f=f \quad \forall k \in K\right\}
$$

liab, = Pan w/er.. I can be thoust of as a

$$
L d \alpha_{s}=\sum_{s \in S} s \in d G
$$

Claini (ff V is any G-rep, then as tales V^{k} to itself, namely $\alpha_{s}\left(V^{k}\right) \subseteq V^{k}$.
(2) For $V=L^{\infty}(G)$, α_{s} corresponds to T in the sense of the commutative diagram above (under

$$
\left.\begin{array}{cc}
V^{K} \simeq K^{\infty}(G)^{K} & L^{\infty}(x) \\
\hat{\alpha}_{S} & T
\end{array}\right) .
$$

Proof:
(1) We need to show for $r \in V^{K}$ and $k \in K$ that karens v.

$$
k x_{s} v=k \sum_{s \in S} s v=\sum_{s e S} k s v
$$

Sine

$$
k \frac{\|}{s e s} s K=\underset{s e s}{\| k} k K=K S K=\frac{11}{s \in s} s K
$$

\Rightarrow Wht blsle $\forall s \in S$ s'es and $k \in K$ s.t.
$k s=s^{\prime} k^{\prime}$. Furtheremere $s \mapsto s$ is a permulation on S

$$
\Rightarrow k \alpha_{\alpha} v=\sum_{s \in S} k s v=\sum_{s \in S} s^{\prime} \underbrace{\prime}_{v} v=\sum_{s \in S} s^{\prime} v=\alpha_{S} v .
$$

2) For $V=L^{\infty}(G)_{\text {right }}$ and $\tilde{f} \in L(x) \longmapsto f(g): \tilde{f}\left(y x_{0}\right)$

$$
\begin{align*}
& \alpha_{S} f(y)=\sum_{s \in S} s f(\lg)=\sum_{s \in S} f(y s) \\
& \widetilde{\alpha_{s} f}(y(0))=\sum_{s \in S} f(y s)=\sum_{s \in S} \widetilde{f(y s s)}=T \tilde{f}\left(\alpha_{0}\right) . \tag{园}
\end{align*}
$$

$$
\begin{aligned}
& L^{\infty}\left(r^{k}\right) \cong L^{\infty}\left(r^{\prime G / K}\right) \cong L^{\Gamma}\left(r^{(G)^{k}}\right. \\
& T \downarrow \\
& L^{\infty}\left(r^{(}\right) \cong L^{\infty}\left(r^{\prime} G_{k}\right) \cong L^{\infty}\left(r^{G}\right)^{k}
\end{aligned}
$$

Claim: For $V=L^{\infty}\left(\Gamma^{\mid G)} \Gamma \leqslant G\right.$ right translation. α_{s} corresponds to T under $\forall^{K} \cong L^{\infty}\left(M^{X}\right)^{*}$

Thee same proof as the one hor (2) works with y replaced by Γ.

Sn the building $\alpha_{s} C^{s} L^{2}(G) \leadsto \alpha_{s} \triangleq L^{2}\left(\Gamma^{(G)} \varliminf_{a}\right.$ Ante grapt/coyplex
Why do we care?
Because we can decompose reps. to irreducible rep.
$L^{2}\left(\Gamma^{G}\right)=\hat{\theta}_{i \in I} V_{i}$, From this we get $L^{2}(\Gamma \mid x)=L^{2}\left(\Gamma^{\mid G)^{K}}\right.$

$$
\begin{aligned}
& =\hat{\bigoplus}_{i \in I} V_{i}^{k} \\
& L^{2}\left(\Gamma^{(x)} \cong L^{2}\left(\Gamma^{(\epsilon)}\right)^{K}=\underset{i \in I}{\underset{f}{f}} V_{i}^{K}\right. \\
& \downarrow / / \quad \begin{array}{ll}
\Delta \\
L^{2}|x| & \downarrow^{i \in I} \\
L^{2}\left(\alpha^{k}\right)^{k} \\
V_{i}^{k}
\end{array} \\
& L^{2}\left(\Gamma^{(x)} \cong L^{2}\left(\Gamma^{G}\right)^{k}=\bigoplus_{i \in I} V_{i}^{k}\right.
\end{aligned}
$$

Sine $\alpha_{S} \in G$. dVr. respects α_{s}.

On the builling

$$
\begin{aligned}
& \alpha_{s} C^{S} L^{2}(G)=\bigoplus_{V \in \hat{G}} V_{G}^{K} \\
& \alpha_{s} Q^{\prime} L^{2}\left(\dot{\mu}^{G}\right)=\Theta V_{i}^{k}
\end{aligned}
$$

TiG/K is Ramanjan \Leftrightarrow overy irreduile rap. $\forall \leqslant L^{2}(\Gamma, G)$ is also in the regalar ry.

Temannegion graphs and complexes

$$
G C_{\text {tron }}^{C} X, x_{0} \in X \quad K=\operatorname{Stog}_{G}\left(x_{0}\right)
$$

$T: X \rightarrow 2^{x}$ Grequi, browsing generator. given by $K S K$, namely

$$
K S K=\frac{11}{s \in S} s K \quad \text { and } \quad T_{\lg \left(x_{0}\right)}=\left\{y s x_{0}\right\}_{s \in S}
$$

For $\Gamma \leqslant G \quad T$ descends to $\Gamma^{X} \cong \Gamma^{G} / K$. To understand the spectrum of $\underbrace{T \text { ing }}_{\text {meaning on } L^{j}\left(\underset{N}{T} \text { in } \Gamma^{X} \text { we use rep. theory. }\right.}$

We saw: $L^{\infty}\left(\mu^{M}\right) \cong L^{\infty}\left(\Gamma^{G}\right)^{K}$ action by right trans.

$$
\begin{aligned}
& T V^{\alpha_{s}} \\
& L^{\infty}\left(\Gamma ^ { (x) } \approx L ^ { \infty } \left(\Gamma^{(G)^{k}}\right.\right.
\end{aligned}
$$

$L^{\infty}\left(\mu^{\prime}(G)\right.$ is a G-rep. by $g f\left(\Gamma_{x}\right)=P\left(\Gamma_{x g}\right)$

$$
\alpha_{s}=\sum_{s \in S} s c \phi G
$$

Decompose $L^{\infty}\left(r^{(G)}\right)=\bigoplus_{\downarrow \in I} V_{i}$
A G-rep $=(L G$ modules $)$
α_{s} desinposes on it

The some Lolls for L^{2}

$$
\begin{aligned}
& L^{2}\left(\Gamma^{x}\right) \cong L^{2}\left(\Gamma^{(G}\right)^{k} \cong \bigoplus_{i \in E} L_{i}{ }^{k}
\end{aligned}
$$

$$
\begin{aligned}
& L^{2}\left(r^{(k)}\right) \cong L^{2}\left(r^{(G)^{k}}=\Theta_{i \in I} v_{i}^{k}\right. \\
& \Rightarrow \operatorname{Secc}\left(T O^{1} L^{2}(x)\right)=\bigcup_{i \in I} \operatorname{Sec}\left(\alpha_{\operatorname{si}}^{V_{i} k}\right) .
\end{aligned}
$$

Note: only the isomorphism type of the v_{i} matter. If $\bigoplus_{i \in I} V_{i}^{k} \cong \bigoplus_{i \in I} w_{i}^{k}$ with $w_{i} \cong V_{i}$ as $G-r e p . \forall i \in I$
Then $\quad \nexists \theta_{i \in i}^{k} \cong \theta W_{i}^{K}$

$$
\begin{aligned}
& \underset{i \in I}{\oplus} v_{i}^{k} \cong \underset{j \in I}{ } \overbrace{i} \omega_{i}^{k} \\
& \sec \left(T C^{2} L^{2}\left(r^{k}\right)\right)=\bigcup_{i \in I} \sec \left(\alpha_{S} C W_{i}^{k}\right)
\end{aligned}
$$

Example: $G=P G L=\left(\mathbb{Z}\left[\frac{1}{\rho}\right]\right)$

$$
\begin{array}{lll}
K=L_{2}(Z) & X=T_{P+1}, T=A_{j} \\
& x_{0}=\overline{T H}, & K\left(P_{P}^{\prime \prime}\right) K
\end{array}
$$

$\Gamma \leqslant G$ a subgray sit. Γ^{K} is a finite grgph^{K} ($(\rho+1)$-regular).

$$
K\binom{1}{p} K=\binom{1}{i} K \uplus \bigcup_{j=0}^{p_{1}}\left(\begin{array}{l}
p_{j} \\
0 \\
j
\end{array}\right) K .
$$

Facts: Let $z_{1}, z_{2} \in \notin$. Define a rep. of G as follows:

$$
\left.X_{\vec{z}}\left(\left(\begin{array}{cc}
p^{m_{1}} & * i \\
\hline & p^{m_{2}}
\end{array}\right)\right)=\left(x_{p} \frac{z_{1}}{\sqrt{p}}\right)^{m_{1}} z_{2}\right)^{m_{2}}
$$

This is the indiction from 3 to G of $X_{\vec{z}}$, dented

$$
\operatorname{Ind}_{1}^{G}\left(x_{\vec{i}}\right)_{a}
$$

$X_{\vec{z}}$ is a $\underbrace{1-d_{m}}_{H_{0-}: G \rightarrow 4^{*}}$ rep of B upper triangaker.
G acts on $V_{\vec{z}}$ by ponctiplication from the right?

$$
(g f)(x)=f(x g)
$$

Fact: For $G_{1} K, \Gamma$ as above if $L^{2}(\Gamma, G)=\hat{\theta_{i} V_{I}} V_{i}$ ten for but firitity many $i \in I \quad V_{i}^{K}=0$.

Proof: Fallows from the diagram since Γ^{x} is tinite.
(2)

Furternme: If $V_{i}^{k} \neq 0$, and V_{i} is irreducible, then $V_{i}=V_{\vec{z}}$ for sore \vec{z} or $V_{i} \cong \phi$ anad therep is either g. $\alpha=\alpha \quad \forall_{\alpha} \in \ell$ or $g \cdot \alpha=(-1)^{\text {level(g) }} \quad \forall x \in \phi$.
(3) If $V_{i}^{k} \neq 0$, than $\operatorname{dim}_{i} V_{i}^{k}=1$, sio α a acts on V_{i}^{k} as a scaute. each V_{i} contriutes ore cigenvaluse to $A d j$.

- If V_{i} is trivial $g, \alpha=\alpha$, then $V_{i}^{K}=V_{i}=\phi \quad \phi_{\text {triv }}$
a If V_{i} is the deternirent $\left.g \alpha=(-1)^{\text {anply }} \cdot \alpha=(-1)^{\text {ord }}()^{(d e t}(y)\right)$, then $d_{\text {det }}$ $V_{i}^{K}=V_{i} \quad$ since $\quad \operatorname{det}\left(g \in P G L_{2}(Z)\right)= \pm 1$
Let's compute α_{s} on those $t_{\text {triv }}$ und $t_{\text {det. }}$ $v \in V=\phi_{\text {efete }}^{\text {sit. } v \neq 0 \text {. What is } \alpha_{s} v=\binom{1}{p} v+\sum_{j=0}^{p-1}\binom{p j}{i} v=(p+1) v} \begin{gathered}\vdots \\ \text { Erivaction }\end{gathered}$ α_{s} acts on $\oplus_{\text {triv }}$ by mutiplication by $(p+1)$, Whenever sone $V_{i} \leq L^{2}\left(\sigma^{(6)}\right)$ is $\left.\cong C_{\text {tris }} \quad(\varphi T) \in \operatorname{Sec}\left(A_{j}\right)_{p} p^{(x)}\right)$

$$
\begin{aligned}
& V=C_{\text {et }}, \quad \neq v \in V . \\
& \quad \alpha_{s} v=\binom{p}{p} v+\sum_{j=0}^{p-1}\binom{p j}{1} v=-(p-1) v
\end{aligned}
$$

if $t_{\text {deft }} \leq L^{2}\left(r^{(G)}\right.$ U en μ^{X} is bipartite.

We got (dat, $d_{\text {trio }}$ are the trivial eigenvalues. In general an eigenvalue is trivial if it comes from a 1-dim representation

Let $f \in V_{\vec{z}}^{K}$. Then $\forall g \in G$ we can write $g=$ b le with $b \in D$ and $k \in K \Rightarrow f(y)=f(b l)=x_{\bar{z}}(l) f(k)=x_{z}(b) f(I)$. $\Rightarrow f_{\frac{1}{z}}^{k}$ is \leqslant ore dim.

It is one dim by clefining $f(b h)=x_{\vec{z}}(b)$ if it is nell defined it is in v_{z}^{k}.

It is well defined
$b k=b / k \Rightarrow b_{k}^{-1} b=k i \in B n K$ bit if $g \in B n K$
then $x_{\bar{z}}(y)=1$ sine $g \tan K \Rightarrow y-\left(\begin{array}{ll}1 & x \\ 0 & x\end{array}\right)$
e.v. $\forall \vec{a} \quad V_{\vec{a}}^{k}=\phi f_{\vec{a}}$, where $f_{\vec{a}}(b l)=X_{\vec{z}}(b)$

Fact if $V_{\bar{z}}$ has a unitary structure, then either $z_{1} \in S^{\prime}$ or $z_{1} \in \pm[1, \bar{p}]$ (We have such a structure from an Hilbert space)

$$
\Rightarrow \quad \text { Case } \quad z_{1} \in \rho^{\prime}
$$

$\Rightarrow+\underbrace{-1}_{-\sqrt{p}} \quad \operatorname{cose} b \quad z_{1} \in I[i, \sqrt{p}]$

$$
\begin{aligned}
& \alpha_{s} \xrightarrow[\vec{z}]{\vec{\theta}}=\binom{1}{p} f_{\vec{z}}+\sum_{j=0}^{p-1}\binom{p j}{j} f_{\bar{z}}=\lambda f_{\bar{z}} \\
& \alpha_{s} f_{\bar{z}}(I)=f_{\bar{z}}\binom{1}{p}+\sum_{j=0}^{p-1} f_{\bar{z}}\binom{P_{j}}{1}=x_{\bar{z}}\binom{1}{p}+\sum_{j=0}^{p-1} x_{\bar{z}}\binom{p_{j}}{1} \\
& =\sqrt{p} z_{2}+p\left(\frac{z_{1}}{\sqrt{p}}\right)=\sqrt{p}\left(z_{1}+z_{2}\right) .
\end{aligned}
$$

Case a $\lambda=2 \operatorname{Re}\left(z_{1}\right) \sqrt{p} \in[-2 \sqrt{p}, 2 \sqrt{p}] \quad$ (Ramarinjon)

Cuse b $\quad{ }^{\text {Cise }}=1 \rightarrow 2 \sqrt{p}$.

$$
\lambda \in[[2 \sqrt{p}, p+1]
$$

\vec{z}-Satake purameter.

Ramanujon grapts and complexes

NBRW on $P G L_{Q}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \equiv G$

$$
B=T_{p+1} \Rightarrow B_{\text {diretel }}^{1}=G / E \quad E=\left\{\left(\begin{array}{ll}
a & 1 \\
j_{c}^{c} & d
\end{array}\right) \in K\right\}
$$

For $\Gamma \leqslant G \quad X=\Gamma^{\beta}$ finite $\quad X_{ \pm}^{1} \ll \Gamma^{(t / E}$

$$
L^{2}\left(\Gamma^{\prime}\right)=\widehat{\bigoplus}_{i \in I} V_{i} \longrightarrow L^{2}\left(X_{I}^{(i)}\right)=L^{2}\left(\Gamma^{\mid G)}=\oplus_{i \in I}^{E} V^{E}\right.
$$

dicomp of $L^{2}\left(r^{(6)}\right.$ us a G.rep.

We know the unitory rep: $t_{\text {triv, }} \phi_{\text {det }} q \alpha=(-1)^{\operatorname{ordp}_{p}\left(d t_{j}\right)}$

$$
V_{\vec{z}}=\left\{f: G \rightarrow q: \begin{array}{c}
\text { Hupper trianguleir } b \\
f(b g)=x_{i} \rightarrow(b) f(g)
\end{array}\right\}
$$

$$
X_{\vec{z}}\left(\left(\begin{array}{cc}
p^{n_{1}} & k \\
& p^{n_{2}}
\end{array}\right)\right)=\left(\frac{z_{1}}{\sqrt{p}}\right)^{n_{1}}\left(z_{2} \sqrt{p}\right)^{r_{2}} \quad \chi_{\vec{z}}: B \rightarrow C^{+} \text {is a }
$$

Charater. $\quad\left(z_{1}^{-1}=z_{2}\right)$
eitler: (a) $\left|z_{1}\right|=1$
(b) $z, \in I[1, v p]$
X is Ramanugas if every L_{0} which occurs in $L^{2}\left(\Gamma^{\prime} G\right)$ is of type @

NBRW:

$$
T(\dot{v} \rightarrow w)=\left\{\dot{w} \longrightarrow_{n}: u+v\right\}
$$

T as double E-cset.

$$
e_{0}=\left\{\binom{1}{p} \rightarrow\binom{1}{1}\right\}
$$

$$
\begin{aligned}
& T\left(\left(i_{1}\right) \rightarrow\left(1_{1}\right)\right)=\left\{\left(l_{1}^{\prime}\right) \longrightarrow\left(\begin{array}{cc}
P & j \\
1
\end{array}\right\}_{j=0, \ldots p-1}=E\binom{P}{1} E\right. \\
& T(\text { geo })=g E\left(P_{1} \mid e_{0}=g E\left(P_{1}\right) e_{0} .\right.
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{s}=\sum_{j=0}^{p-1}\binom{p_{j}}{j} \\
& f \in V_{\vec{z}}^{k} \quad f(g)=f(b k)=x_{\vec{z}}(k) f(1) \\
& \text { sue beskek } \\
& f \in V_{\vec{z}}^{E} \quad f(y)=f\left(b t_{i} e\right)=x_{\bar{z}}(b) f_{1}(1 ;) \quad\left|f=\operatorname{dim} V_{z}^{E} \leq\right| B_{E}^{G} / E \quad \text { trap } \\
& \text { if } G=\prod_{i=1}^{r} B G_{i E} \longrightarrow \text { BF pare. }
\end{aligned}
$$

For our $E: G=B E \longleftrightarrow B$ cots trunsitinely on directed eblis.
\qquad

We sot edger $=B\left((1) \rightarrow\left(1_{1}^{1}\right)\right) \perp B\left(\left(1_{1}\right) \rightarrow\left(P_{1}\right)\right)$
$\longrightarrow G$ is a disjoint union $G=3 E B(1)$
$\Rightarrow \operatorname{dim} V_{\bar{E}}^{E} \leq 2$ and each $f \in V_{\overrightarrow{-} \rightarrow}$ is leternined y $f(I)$ and $\left.f\left(K^{\prime}\right)\right)$

Actually $\operatorname{dn} V_{t}^{E}=2$, The $\quad t_{1}=\binom{1}{1} \quad t_{2}=\binom{1}{1} \quad$ ij=1, 2 $f_{i}\left(t_{j}\right)=\delta_{i j} \quad\left[\right.$ HW: Show f_{i} ore well defined]

Nosh fees

$$
\begin{aligned}
& \left(\alpha_{s} f_{j}\left(f_{1}\right)=\sum\left(\begin{array}{ll}
p & j \\
1
\end{array}\right) f_{1}(I)-\sum f_{1}\binom{p_{j}}{1}=\sum \chi_{\bar{z}}\left(\binom{r}{1}\right.\right. \\
& \quad=\sum_{j=1}^{p-1} \frac{z_{1}}{\sqrt{p}}=\sqrt{p} z_{1}
\end{aligned}
$$

$$
\left.\left.\alpha_{s} f_{1}\left(t_{2}\right)=\sum\binom{p i}{1} f_{1}\left(p_{1}^{\prime}\right)\right)=\sum f\left(p_{i}^{\prime}\right)\right)
$$

Rarconjou graphs and complexes

$$
\begin{aligned}
& G=P G L_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \\
& K=P G L_{2}(\mathbb{Z}) \\
& e_{0}=\left[\binom{1}{1} \rightarrow\binom{1}{1}\right] \\
& E=S u_{G} e_{0}=\left\{\left(\begin{array}{cc}
\mathbb{Z} & \mathbb{Z} \\
P \mathbb{Z} & \mathbb{Z}
\end{array}\right) \in K\right\} \\
& B_{ \pm}^{1}=G e_{0} \Rightarrow L^{\infty}\left(\begin{array}{l}
\left(G_{I}^{\prime}\right.
\end{array}\right) \cong L^{\infty}(G)^{E}
\end{aligned}
$$

$\Gamma \leqslant E$ st. $X=\Gamma^{B}$ is a finite graph. Then

$$
\begin{aligned}
& L^{2}\left(R_{I}^{\prime}\right) \cong L^{2}\left(r^{(6)}\right)^{E}=\bigoplus_{i<I} V_{i}^{E} \\
& \bigcup_{\substack{\text { NBRW} \\
\text { operdor }}} \alpha_{s} \in G G \quad \bigcup_{\alpha_{s}} \\
& \operatorname{Spec}\left(T C X_{ \pm}^{\prime}\right)=\bigcup_{c t I} \operatorname{spec}\left(\alpha_{s}{ }^{\prime} V_{i}^{E}\right)
\end{aligned}
$$

B-triangular matrices $X_{\vec{z}}: B \rightarrow \mathbb{C}^{*}$ him $V_{\vec{z}}=\operatorname{In}_{B}^{b} X_{\vec{z}}$

$$
\begin{aligned}
& V_{\vec{z}}=\left\{f: G \rightarrow \phi: f(s y)=x_{\vec{z}}(b) f(y)\right\} . \\
& V_{\vec{z}}^{E}=\left(I N_{B}^{G} x_{\vec{z}}\right)^{E}=\left\{f: G \rightarrow \phi: \quad f(b g e)=x_{\vec{z}}(b)^{\prime} f(y) \quad \forall\langle\in 3, g \in G, e \in E\} .\right.
\end{aligned}
$$

$\operatorname{dim} \frac{V_{\vec{z}}^{E}}{E} \leq \mid(B / E \mid \quad$ Actually there is equality.

We saw $B_{ \pm}^{\prime}=B e_{0} \| \underbrace{B\left(1^{\prime}\right) e_{0}}_{e_{1}=\left[\left(p_{1}\right) \rightarrow\left({ }^{\prime} 1\right)\right]}$

$$
\Rightarrow G=B \underbrace{\binom{1}{1}}_{t_{1}} E \Perp \underbrace{\binom{1}{1}}_{t_{2}} E .
$$

We took $f_{i} \in V_{\vec{z}}^{E}$ defined by $f_{i}\left(t_{j}\right)-\delta_{i j}$ (HW : well defined) those are indy.

Wee have $G=\frac{\|}{\sigma \in S d} B \sigma K_{\text {top }} \quad \operatorname{dim} V_{\vec{z}}^{\kappa}=d!$
Iwahuri-3rahat otecompsition $f_{\sigma}(\tau)=\sigma_{\sigma_{1}} \quad \sigma, \tau \in S_{d}$ the extension to [a function in $V_{\bar{z}}^{k_{t o p}}$ is well defined
For NARW $F=\sum_{j=0}^{p-1}\left(\begin{array}{l}p \\ j \\ 1\end{array}\right)$
because.

$$
\begin{aligned}
& \left(\begin{array}{ll}
P & j \\
& 1
\end{array}\right) e_{0}=\left(\begin{array}{ll}
P & j \\
& 1
\end{array}\right)\left[\binom{1}{i} \rightarrow\binom{1}{1}\right]=\left[\left(\begin{array}{ll}
p & p j \\
p
\end{array}\right) \rightarrow\left(\begin{array}{ll}
p & j \\
& j
\end{array}\right]\right. \\
& =\left[\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right) \rightarrow\left(\begin{array}{ll}
p & j \\
1
\end{array}\right)\right] \\
& \alpha_{s} f_{i}\left(t_{1}\right)=\sum_{j=0}^{p^{-1}}\left(\begin{array}{c}
p, j \\
1
\end{array} f_{i}\right)\binom{1}{1}=\sum_{j=0}^{n-1} f_{i}\binom{p j}{1}=\sum \chi_{\vec{z}}\left(\binom{p_{j}}{1}\right) f_{i}\left(\begin{array}{c}
t \\
1 \\
1
\end{array}\right) \\
& =z, \sqrt{p} f_{i}\left(t_{1}\right)=z, \sqrt{p} \delta_{i, 1}
\end{aligned}
$$

$$
\left(\alpha_{s} f_{i}\right)\left(t_{2}\right)=\sum_{j=0}^{p-1} f_{i}\left(\left(\begin{array}{ll}
i & j
\end{array}\right)\right)=
$$

$y \in b t_{i} k \quad \longleftrightarrow \quad g e_{0}=b t_{i} e_{0}$

$$
\left(\begin{array}{ll}
& 1 \\
p & j
\end{array}\right) e_{0}=\left[\left(\begin{array}{ll}
p & p \\
p & p
\end{array}\right) \rightarrow\left(\begin{array}{ll}
& 1 \\
p & j
\end{array}\right)\right]=\left[\left(\begin{array}{lll}
1 & \\
1
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & \eta \\
p & j
\end{array}\right]\right.
$$

write $\bar{j}=j^{-1}(-1 p)$
So $j \bar{j}=m p+1$ for soe $m \in \mathbb{Z}$

$$
\left(\begin{array}{c}
11 \\
\binom{p_{j}}{1} e_{0}
\end{array}\right.
$$

$$
\begin{aligned}
& \alpha_{s} f_{i}\left(t_{2}\right)=\sum f_{i}\left(\left(l_{p} j\right)\right)=f_{i}\left(\left(l_{i}\right) t_{2}\right)+\sum_{j=1}^{p-1} f_{i}\left(\left(p_{i}\right) e_{0}\right) \\
& =\sqrt{p} z_{2} \delta_{i, 2}+\text { 需侟 }(p-1) \frac{z_{1}}{\sqrt{p}} \delta_{i, 1} \\
& \delta_{0}\left[\alpha_{s} \vec{\sigma} \quad V_{\vec{z}}^{E}\right]_{\left(f_{1}, f_{2}\right)}=\left(\begin{array}{cc}
\sqrt{p} z_{1} & \frac{p-1}{\sqrt{p}} z_{1} \\
0 & \sqrt{p} z_{2}
\end{array}\right) \rightarrow\left\{\sec \left(\alpha_{s} \vec{\sigma} \overrightarrow{V_{-}}\right)=\left\{\left[\bar{p} z_{1}, \sqrt{p} z_{2}\right\}\right.\right.
\end{aligned}
$$

For Rananjan gropks $\left|z_{1}\right|=\left|z_{2}\right|=1$

$$
L^{2}\left(Y_{ \pm}^{1}\right)=L^{2}\left(\Gamma^{(G)}\right)^{E}=\theta V_{E}^{E}
$$

Teres \$ Lubetzly jot this decorposition by clenerity methods.

Rem: If V is a unitery rep if $G=P G L_{2}$ with $V^{k} \neq 0$ then

$$
\begin{aligned}
V \cong d_{\text {triv }} & \rightarrow k=p+1 \\
V \cong \Phi_{\text {det }} & \rightarrow-k=-p^{-1}
\end{aligned}
$$

or

$$
V \cong V \vec{z} \longrightarrow \operatorname{trivid}_{\text {noo }}
$$

if $V^{E} \neq 0$ then eitler
$V^{k} \neq 0 \Rightarrow$ we know (HW comporte nosow on $t_{\text {triv }}$ and $t_{\text {let }}$) or

Sper 1
feer -1
those two correspond to cyaks in the graph.
\ln ONS $\left[\begin{array}{lll}\alpha_{S} & O & V_{2}\end{array}\right]=\left(\begin{array}{r}\sqrt{N z_{1}}(p-1) z_{1} \\ \\ \bar{p} z_{2}\end{array}\right)=W$
this s the Harist-Clandra funtim

$$
\begin{aligned}
& \left.=\sqrt{\left\lvert\,\left(\begin{array}{cc}
(p-1)^{2}+p & \sqrt{p}(p-1)
\end{array}\right)\right. \|_{(p-1)}} \begin{array}{r}
p
\end{array}\right)=p \\
& \quad \downarrow
\end{aligned}
$$

However

$$
\begin{gathered}
\left\|W_{p}^{l}\right\|_{p}=\sqrt{\lambda_{\max }\left(w^{l} w^{+l}\right)}+\sqrt{\lambda_{\max }\left((\omega w)^{l}\right)}-p^{l} \\
c \\
W^{l}=\left(\begin{array}{c}
p^{i / 2} \\
\pi p^{l / 2} \cdot l \\
p^{l / 2}
\end{array}\right) \Rightarrow\left\|W^{l}\right\|_{p} \sim p^{l_{2}}
\end{gathered}
$$

Non transitive action

$$
G \vec{a}^{2} x \quad X=\prod_{i=1}^{r} G_{x_{i}} \quad K_{i}=\operatorname{stab}_{x_{i}}
$$

$\left[T: X \rightarrow 2^{x}\right.$ finite G eq. branding operator
T is defined in $T_{x_{i}}$

For $i, j \in\{1, \ldots, r\}$ take $S_{i j} \in G$ such that

$$
T_{x_{i}}=\bigcup_{j=1}^{r}\left\{s_{x_{j}}: s \in S_{i, j}\right\}
$$

Claim: $K_{i} S_{i j} K_{j}=\frac{11}{s c s_{i j}} s K_{j}$ a and vie wersh
vice versa:
Any $S_{i j}$ like this defines a G-equir brandling operator

$$
\text { on } X_{i} l_{y} \quad T_{x_{i}}=\bigcup_{j=1}^{r} K_{i} s_{i j} x_{j}
$$

$$
\begin{aligned}
& L^{2}(X)=L^{2}\left(\underset{i=1}{\Gamma} G x_{i}\right)=\widehat{\bigoplus}_{i=1}^{\hat{}} L^{2}\left(G x_{i}\right)=\oint_{i=1}^{r} L^{2}(G)^{K i}=\Theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { T }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { decamp. } \\
\text { us } G \text { rep. }
\end{array}
\end{aligned}
$$

For a rep V of θ define

$$
V^{\left(k_{1}, \ldots, k_{r}\right)}=\bigoplus_{i=1}^{r} V^{k_{i}}
$$

Define $\quad \alpha_{s} \in \mu_{r}(\phi G) \quad\left(\alpha_{s}\right)_{i j}=\sum_{s \in s_{i j}}$

Chain: (1) α_{s} preserves $V^{\left(k_{1}, \ldots, k_{r}\right)}$
(2) For $V=L^{2}\left(r^{x}\right)$ we hove a commutative diagram

$$
\begin{aligned}
& L^{2}\left(r ^ { (x) } \cong L ^ { 2 } \left(\Gamma^{(6)^{\left(k_{1} \ldots k_{r}\right)}} \underset{\mu \in 1}{\bigoplus} V_{\mu}^{\left(k_{1}, \ldots k_{r}\right)}\right.\right.
\end{aligned}
$$

example: $S L_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) C^{\triangle} B\left(P G L_{2}\right)=T_{p+1}$
(1^{1})
Now G doesnit act transitively. There are 2 orbits of vertices. (even and odd spheres).

Adj is now from even to odd and odd to en en

$$
\begin{aligned}
& K_{\text {even }}=S L_{2}(\mathbb{Z}) \\
& K_{\text {odd }}=\left(\begin{array}{ll}
\mathbb{Z} & \mathbb{Z} / p \\
p & \mathbb{Z}
\end{array}\right) \quad \text { in } S L_{2}(\mathbb{Z}) \\
& K_{\text {odd }} S K_{\text {even }} \\
& \binom{p}{j}
\end{aligned}
$$

Ramanujan graphs and complexes
$Q_{10}+, k$
we showed it is a ring

$$
\begin{aligned}
N \subseteq \mathbb{Z} \subseteq \mathbb{R} & \subseteq \mathbb{Q}_{10} \\
& \propto \mathbb{R} \sim \text { not comporible. }
\end{aligned}
$$

Shoved $\sqrt{2} \notin Q_{10}$
Claim: If $\alpha \in D_{10}$ and rand $(0) e\{1,3,7,4\} \in(Z / 10)^{*}$ then α is digit invertille.
Proof: Dy multiplication $\sqrt[b]{10^{k}}$ can assure $\quad \alpha=\ldots .0 a_{1}, 0 \quad a_{0} \neq 0$

also $2,4,5,6,8 \in D_{10}^{*}$

Spoiler: Q_{10} is not a field.
Claims if p is prime, then Bp is a feed.
$P_{r o d:} \quad r n d(\alpha) \in(\mathbb{Z} / p)^{x}=(\mathbb{Z} / p \mathbb{Z} \mid<0)$
p-asdic integers $\quad P \in \mathbb{N}$
$\mathbb{Z}_{p}=\left\{\begin{array}{l}\alpha \in \Omega_{p} \text {; with no dit's to the right of the } \\ \text { decimal point }\end{array}\right.$
\mathbb{Z}_{p} is a ring subring of Q_{10} which is compact and uncountable

V
A seq a numbers in Dip converges it every digit eventually itusidizes. to an oudrisitle limit)

$$
V_{\text {not exactly twa }}
$$

\mathbb{K}_{10} his a butsost of a_{1}

$$
\left\{\frac{a}{\frac{L}{b}}: \quad\left(6,\left.\right|^{(0)}=1\right\} \subseteq \mathbb{Z}\right.
$$

also, every $<\in \mathbb{Z}_{10}$ with $\alpha_{0} \in\left(\mathbb{Z}_{10}\right)^{x}$ is in \mathbb{Z}_{10}^{x}
\rightarrow If p is prime $\mathbb{Z}_{p}^{*}=\left\{\alpha \in \mathbb{Z}_{p} ; \alpha_{0} \neq 0\right\}$

We get a deargusition of \mathbb{D}_{p}^{x} every $\alpha \in \mathbb{Q}_{i}^{x}$ can be written uniquely as $p^{n} u \quad u \in \mathbb{Z}$.
\ln particular $G L_{1}\left(\mathbb{R}_{p}\right) / G L_{1}\left(Z_{p}\right)=\mathbb{Q}_{p}^{*} / \mathbb{Z}_{p}^{*} \triangleq \mathbb{Z}$

$$
Q_{p}^{*}=\langle p\rangle \times \mathbb{Z}_{p}^{*}
$$

Hensel's lima
For $f(x) \in \mathbb{Z}[x]$, when does f have a solution in B_{10} ? \mathbb{Z}_{10} ?

Observe: if f has a sol in \mathbb{Z} (in $B)$ then it has a sol in $\mathbb{Z}_{m}\left(\begin{array}{cc}\left.\text { in } \mathbb{Q}_{m}\right)\end{array}\right.$ for every on $\left(\begin{array}{c}\text { including } \\ m_{0}=\infty \\ s_{s}=\mathbb{R} \\ \dot{H}_{\infty}=\mathbb{Z}\end{array}\right)$

Since $\mathbb{Z} \longrightarrow \mathbb{Z}_{m, n}, \mathbb{Q} \longrightarrow \mathbb{D}_{m}$ as rings.

Deep question: other direction.

Chare: TFAE
(1) $f(x)$ hus a sollation in \mathbb{K}_{10}
(e) $\exists a_{k} \in \mathbb{T} L$ sit. $P\left(a_{1}\right) \equiv 0\left(\bmod 10^{6}\right)$ the
(3) "1 11 and $a_{k} \equiv a_{k, 1}$ mod 10^{k-1}
e.g. $\{a / 4\}=\{7,67,667,667, \ldots\}$
for $f(x)=3 x-1 \quad f\left(a_{a}\right)=0 \quad\left(m \cdot d{ }^{10}\right)$
indeed $f(x)$ Las a root in $\mathbb{Z}_{10} \ldots 667$

Proof:
$3 \Rightarrow 2$ is obvious
$1 \Rightarrow 3$ these is a ring ham $\mathbb{Z}_{10} \xrightarrow{\text { mod bot }} \mathbb{Z} / 10^{t}$
$3 \Rightarrow 1$ define α is the arrows wag as the limit of a_{k}. $\left(\alpha \operatorname{mad} 10^{k}=a_{k}\right)$. Then $f(x) \operatorname{mad} 10^{k}=f\left(a_{a}\right)=0\left(10^{6}\right)$

$$
\Rightarrow f(x)=0 \text {. }
$$

$2 \rightarrow 0$ diagonal argownent.

Hensel's lemma
Ext $f \in \mathbb{Z}[x]$, If $\exists a_{c} \in\{0, \ldots, 9\}$ sit. $f\left(u_{0}\right) \equiv 0 \operatorname{mad} 10$ and $f^{\prime}\left(a_{0}\right) \in(\mathbb{Z} / 10)^{*}$, then f hus a root in \mathbb{Z}_{10}.

$$
\left(\sum_{i=0}^{n} a_{i} x^{i}\right)^{\prime}=\sum_{i=0}^{n} i a_{i} x^{i-1}
$$

examples:

$$
f(x)=m x-1 \quad m \in \mathbb{Z} \quad(m, \infty j-1
$$

tale $o_{0}=$ inv of m in $\mathbb{Z} / 10$

$$
\begin{aligned}
& f\left(a_{0}\right)=m a_{0}-1 \equiv 0 \text { mal } 10 \\
& f\left(a_{0}\right)=m \in(\mathbb{Z} / 10)^{+} \\
& \Rightarrow \exists x, x_{10} \text { s.l. } f\left(x y=0 \quad \text {, This is of course } \frac{1}{m} .\right.
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{2}+x+8 \\
& a_{0}=1 \quad f\left(a_{0}\right)=0 \quad \text { and } 10 \\
& \quad f^{\prime}\left(a_{0}\right)=2 \cdot a_{0}+1=3 \in\left(\mathbb{K}_{(10}\right)^{*}
\end{aligned}
$$

$x^{e^{2}+x+8}$ has a solution in \mathbb{Z}_{10}, but rist in $\mathbb{R} . \Rightarrow$
We cunnot enbed wwo in \mathbb{R}.
sime the s.l of

$$
\begin{aligned}
& x^{2}+x+8 \text { oxe } \frac{-1 \pm \sqrt{-31}}{2} \Rightarrow \sqrt{-31} \in 10 \\
& \left.f_{(x)}=x^{2}+3\right) \\
& f_{i(x)}=2 x \nless(\mathbb{Z} / 10)^{*}
\end{aligned}
$$

\Rightarrow Hensel's kemna is n.t iff.

Prose: We will construct $\{a /\}_{d=1}^{\infty}$ s.t. $f(a d) \equiv 0$ (had $10^{d+1)}$ and $a_{k} \equiv a_{6-1}\left(\bmod 10^{k}\right)$ by induction. The lemenea we proved before, then proves the existence \& a solution.

We have a_{k-1} s.t. $f\left(a_{k-1}\right)=0\left(10^{k}\right)$.

We try to construct $c_{k}=c_{L_{1}}+d \cdot 10^{a}$ sit.

$$
f\left(a_{a}\right) \equiv 0 \quad\left(10^{k+1}\right)
$$

$$
\begin{aligned}
\left.\left(0^{k+1}\right)\right)_{0}^{\exists d ?} f\left(a_{k}\right) & =f\left(a_{k-1}+c k 0^{d}\right) \\
& =\sum_{j=0} f\left(a_{k-1}\right) \cdot\left(d \cdot 10^{k}\right)^{j} \equiv f\left(a_{k-1}\right)+f^{\prime}\left(a_{k-1}\right)\left(d \cdot 10^{k}\right)
\end{aligned}
$$

we reed $\quad f^{\prime}\left(a_{x-1}\right) d_{10^{k}} \equiv-f\left(a_{x-1}\right)\left(x^{l+1}\right)$
by assumption $f\left(a_{y-1}\right) \equiv 0$ mot to \Rightarrow we need

$$
f^{\prime}\left(c_{x_{-1}}\right) d=-\frac{f\left(a_{x_{-1}}\right)}{10^{k}}(10)
$$

since $f^{\prime}(w,.) \in(\mathbb{K} / 10)^{*}$ we can take

$$
\begin{aligned}
d \equiv & =\frac{1}{f^{\prime}(a)} \cdot \frac{f\left(Q_{-1}\right)}{10 k} \\
\left(f^{\prime}\left(c_{k-1}\right)\right. & \left.=f^{\prime}\left(c_{0}\right) \text { ind } 10\right)
\end{aligned}
$$

$\sqrt{m} \in \mathbb{R} \quad m \geqslant 10$

For p prime $p \neq 2 . \quad \sqrt{m} \in \mathbb{Z}_{p} \longleftrightarrow \sqrt{m} \in \mathbb{F}_{p}$. $f(x)=x^{2}-m$ tale $a_{0}=\sqrt{n} \in \mathbb{F}_{p}$ then $f(x)=z a_{0} \neq 0$ nad p use r Henserts Remand.
Q_{10} is net a fred d

$$
\begin{aligned}
& \mathbb{Z}_{10} \text { has } 0 \text {-divisors. } \\
& f(x)=x^{2}-x \\
& a_{0} \in(0,1,5,6) \Rightarrow f\left(a_{0}\right)=0 \operatorname{mad} 10 \\
& f^{\prime}\left(a_{0}\right)=2 a_{0} \quad a_{0}=6 \Rightarrow f^{\prime}\left(a_{0}\right) \text { wad } 10 \\
& \Rightarrow \text { Horsed } \exists \alpha \in \mathbb{Z}_{10} \text { with } \alpha_{0}=6 \text { sit. } \alpha(\alpha-1)=0
\end{aligned}
$$

$\Rightarrow \alpha$ is a non trivial o-divisor.

Ramanujan graphs ard couplers
\mathbb{R} - sequences of the form $a_{n} a_{n-1} a_{n-2} \ldots . a_{0} a_{-1}, a_{-2} \quad a_{i} \in\{0 ;, 9\}$ $n \in \mathbb{N}$ $a_{n} \neq 0$
(1) Sine numbers hove two representatives $7.3=7.29099$
(2) $\operatorname{sign} s+(+0=-0)$

$$
\mathbb{Q}_{10}:\left\{\ldots, a_{1} a_{0}, a_{-1} a_{-2} a_{-3} \ldots a_{n+2} a_{n+1} a_{n+1} ; \begin{array}{l}
n \in \mathbb{Z} \\
a_{i}=0, \ldots a_{1} \\
a_{n} \neq 0
\end{array}\right\} \cup\{0\}
$$

t, x : as before (addition and mutipfliation are easier $\left.\begin{array}{l}\text { since there is a right most mum }\end{array}\right)$

$$
\begin{aligned}
& \mathbb{R}=\{\text { thing the } \pm 723.45107 \ldots\}\} \\
& \mathbb{R}_{10}=\{\text { thing the } 1 \text {.......3is4.327 }\}
\end{aligned}
$$

$$
\left|D_{10}\right|=|\mathbb{R}|=2^{\lambda_{0}}
$$

however mirror (up lo combuble set)

Carry still goes to the left.
Q_{10}, is a group: 0 is + neutrad

$$
+\frac{1}{0}
$$

$$
\ldots 2458.673
$$

t, x are distributive, commutatine, ascociative
x-inverses

$$
3 \in(\mathbb{Z} / 10)^{*} \rightarrow \text { hulti by } 3 \mathrm{mall} 10
$$

\exists Unigue imerse is b_{j} on $\{0, \ldots, a\}$
\exists urigie imerse to $\frac{1}{243}$ in Q_{10}.
If $(n, 10)=1$ then $n \in \mathcal{R}_{0}$ is unigue

Prot: $\forall_{n} \in \mathbb{N}$ write $n=2^{a} 5^{b}$ m where $(m, 10)=1$

$$
\frac{1}{n}=0.5^{a} \cdot 0.2^{b} \cdot \frac{1}{m}
$$

Is Q_{10} a field?

$$
\begin{aligned}
& \text { Is } Q_{10} \cong \mathbb{R} \\
& \text { es } Q_{10} \hookrightarrow \mathbb{R} \text { ?, } \mathbb{R} \hookrightarrow Q_{10} \text { ? } \\
& \text { there is no } \\
& \text { solution to } \\
& x^{2}=2 \bmod 10
\end{aligned}
$$

$$
\rightarrow \text { no: } \sqrt{-3 i} \in \mathbb{R}_{10} \quad \text { (Exercise } \quad \frac{\cdots-2 j x}{y_{n o t} \text { periodic. }} \frac{9999969}{996}=-31 .
$$

$a_{7} \rightarrow \sqrt{2} \quad R_{7}$ is not the sane as $R_{i 0}$.
from $\operatorname{les} 4\left\{G=P G L_{d}\left(Q_{p}\right), k=P G L_{d}\left(Z_{p}\right)\right.$.
$\left[(\nabla) k=(\nabla) k\right.$ if $A \in \in L_{\rho}\left(Z_{\rho}\right)$ is triang. Then the diag. delements are witls $\left(Z_{\rho}^{x}\right)$.
Laflices
$\mathbb{Z}^{d} \leq \mathbb{R}^{d}, \mathbb{Z}_{p}^{d} \leq \mathbb{Q}_{p}^{d}$; submadule over int. ing inside vector speec.

$\mathbb{Z}_{p}^{1} \leq \mathbb{Q}_{\rho}^{1}$ noi discrefle, nol coop $9 . \quad\left[\mathbb{Q}_{p}^{2} / \mathbb{Z}_{p}^{2} \simeq \mathbb{Z}\left[\frac{1}{p}\right] / \mathbb{Z}\right.$, discrile $]$
$\mathbb{Z}_{p}^{x} \leq \mathbb{Q}_{p}^{x} \quad s_{\text {imilar }}$.
$\mathbb{Z} \leq \mathbb{Q}_{p}$ neither. oopl halice!
$\mathbb{Z}\left[\frac{1}{p}\right]=Q_{p}$ nol diserale $\left(p^{l} \rightarrow 0\right)$.

$$
\text { so } P G L_{d}\left(Z_{p}\right) P G L_{d}\left(\Delta\left[\left[\frac{1}{3}\right)\right): P G L_{d}\left(\otimes_{P}\right)\right. \text {. }
$$

nol discrute: $\left(\begin{array}{cc}1 & p_{1}^{l} \\ 1\end{array}\right) \rightarrow\binom{1}{1}$.

Primitive P-mitrics on $M_{1}(z)$

$$
\left.\Gamma(n) \leq P G L_{d}\left(\mathbb{Q}_{\mathrm{p}}\right) \text {. } \text { nol discrale: }^{1} \begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \rightarrow\binom{1}{1} \text {. }
$$

cocpi: finite indux in $\Gamma(1)=P \in L_{s}\left(Z\left[\frac{1}{p}\right)\right]$. This bounds \#orbils in B°.
anoher agument: $\Gamma(n) \cap K=P G L_{d}(Z)(n): \operatorname{ker}\left(P G L_{d}(Z) \rightarrow P G C_{d}(2 / n)\right)$ is finile,
 but discretencyt : Anite.

The Thing: $\mathbb{Z}\left[\frac{1}{p}\right] \leq \mathbb{R} \times \mathbb{Q}_{p}$.

$$
\alpha \longmapsto(\alpha, \alpha)
$$

Proof i discrule: will show 0 is mot an acc. point.

$$
\text { Likewise: } \mathbb{Z}\left[\frac{1}{\mathrm{pq}}\right] \stackrel{\text { disc. }}{\hookrightarrow} \mathbb{R} \times \mathbb{Q}_{p} \times \mathbb{Q}_{q} \text {. }
$$

 Now sub. $\operatorname{lit}_{\hat{\mathbb{Z}}}$ and ge $\left.\right|^{4}(\underbrace{r-[r]}_{[0,1]}, \mathbb{Z}_{p})$.
Likewise: $P G L_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right)\right) \leq \underbrace{P G L_{d}\left(\mathbb{R} \times \mathbb{Q}_{p}\right)}_{\substack{\text { non-cocpi lanilice }}} \underset{P(\mathbb{R}) \times P G\left(Q_{p}\right)}{ }$
Fac) $\exists Y \subseteq P G L_{d}(\mathbb{R})$ s.f. $P G L_{d}(\mathbb{Z}) Y=P G L_{d}(\mathbb{R}) \quad\left[P G L_{d}(Z)\right.$ is a la lire in $\left.\left.P G L_{d} \mathbb{R}\right)\right]$.
of finite

Example: $d=2 . \quad P G L_{d}(\mathbb{R}) \simeq h \times P O(2)$

$$
y=\frac{\mid X A}{1} \times P \circ(2)
$$

Now, take $P G L_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \subseteq \underbrace{\left.{ }^{P}\right)}_{\text {PGL}(\mathbb{R}) \times P G L_{d}\left(Q_{p}\right)}$. It is discrete (by same argument).
Cofinite: $P G L_{d}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \cdot\left(Y \times P G L_{d}\left(\mathbb{Z}_{p}\right)\right)=5$
If $(A, B) \in P G L_{d}(\mathbb{R}) \times P G L_{d}\left(\mathbb{Q}_{p}\right)$, since $P G L_{d}\left(\mathbb{Z}\left[\frac{1}{F}\right]\right)$ els trans, on $P G L_{d}\left(\mathbb{Q}_{p}\right) / P G_{f}\left(Z_{p}\right)$ we can move (A, B) To $\left(C, P A_{d}\left(\mathbb{Z}_{p}\right)\right)$. Now, $\exists D \in P G L_{d}(Z)$ s. \downarrow. DCEY and $D \in P G L_{d}(Z) \subseteq P C L_{j}\left(Z_{p}\right)$ \rightarrow Now In in $Y \times P G L_{d}\left(\mathbb{Z}_{p}\right)$

$$
\begin{aligned}
& \alpha \in \mathbb{Z}\left[\frac{1}{p}\right] \rightarrow \text { if } \underset{\substack{i \\
\text { in } \mathbb{R}}}{ } \text { Then } \alpha_{i}=\frac{m_{i}}{p_{i}}, l_{i} \rightarrow \infty \text { and then } \alpha_{i} \rightarrow 0 \text { in } \mathbb{Q}_{p}
\end{aligned}
$$

(2) $\mu(A g)=\Delta_{C}(g) \mu(A)$. Δ_{G} - The modular function of G.
(3) $G \subset X$. Does x have a Ginv measure?
trans.
$x \cong \Gamma^{G}$ for some sgp $\Gamma \leqslant G$. Is there G-iine moseure on $\Gamma^{\mathbb{G}}$?

$$
\mu(A)=\mu(A), A \subseteq f^{C}
$$

$$
" \operatorname{stan}_{f}\left(x_{0} \in x\right)
$$

Answort if and only if $\Delta_{r} I_{\Gamma} \equiv \Delta_{r}$. R
$\Delta_{G} \equiv 1$ for abdian/cp $/$ discrecte / GL $\left(\mathbb{R}, Q_{p} \ldots\right)$.

$$
\mu(f) \cdot \mu(g a)=\Delta(g) \mu(s)
$$

Finally, if $\Gamma \leqslant G L_{d}\left(\mathbb{R}, Q_{p}, \ldots\right)$, then by Thers is a anilgus Ginive measaure μ on $\Gamma \Gamma^{G}$. sey Γ

$$
\text { is a laltice if } \mu\left(r^{(}\right)<\infty \text {. }
$$

G Top \quad p.
bile \sqrt{e} trip $a / 4$
\times Top space

$$
\begin{aligned}
& \left.G d x \text { ecg. } S C_{2}(d): S L_{2}(\pi) \subset\right\} \\
& k=S_{0}(2) \\
& S l_{d}\left(a^{\prime} C l_{d}\left(Q_{p}\right) \text { व } B_{d}^{p} * \text { take a geometric } \mid K=G_{d}\left(\partial_{p}\right)\right.
\end{aligned}
$$

We are interested in quotients 1
For PiG, be consider o lx
Assume GEt (otherwise, decompose to or bits)
Choose some $x_{0} \in X$ and set

$$
k=\operatorname{sia}_{a}\left(x_{0}\right)
$$

[Assume :All is T_{2} and σ-copt.]

$$
\Rightarrow \quad \underset{\text { homom. }}{ } \cong G / k
$$

And then $r^{x}=r^{G / k}$
One possibility take $x=G$ - So $\Gamma \backslash G$
Haar Thu 11 I A Measure on G. St.

$$
\forall A \subseteq G \quad \forall g \in G
$$

* $\mu\left(A_{S}\right)=\mu(A) \quad$ (the right Haar ineasure) Note that in general $\mu(g A) \neq \mu(A)$
There exists (the modular tune of G) I

$$
\begin{aligned}
& \Delta_{G} G \xrightarrow{h_{0} m} \mathbb{R}>_{0} \\
& \forall A \subseteq G \quad \operatorname{mig}(g)=\Delta_{G}(g) \cdot \mu(A)
\end{aligned}
$$

Note If G is abelin/ pt. (discrete) $G L_{k}$. then $D_{G} \equiv 1$; We say then G is unimodular.
Example For $B=\left[\begin{array}{cc}* & * \\ 0 & *\end{array}\right] \equiv G_{2}\binom{\mathbb{R}}{Q_{p}}$

$$
\Delta_{B} \neq 1
$$

* I.e. $\int_{G} f(g) d p(g)=\int_{G} f\left(g g^{n}\right) d \mu(g)$

Now, given $x \subseteq G$ is there a G-inv measure. on $X 7$

Answer Write $H^{G}, H=\operatorname{stab}{ }_{G}\left(x_{0}\right)$
Then there busts a G-initio iff

$$
\left.\Delta_{G}\right|_{H} \equiv \Delta_{H}
$$

"Counter example" $G=S L_{2}(\mathbb{R})$ Cabins $\mathbb{C} \cup\{\infty\}$
If we had such a we could conduce:

$$
\begin{aligned}
& \mu((0,1))^{x \rightarrow x+1}= \mu((a, a+1))=\mu((1, \infty))= \\
& \sum_{a=1}^{\infty} \sim((a, a+1))=\infty \\
&\text { (Assume } \left.\Delta_{\sin }^{2} \equiv 1\right)
\end{aligned}
$$

We say ρ is a lattice of ρ is discrete. and

(we sots that P is cofinite)
(if $\Gamma \mathcal{L}_{\mathrm{G}}$ is $\left(p^{t} \Rightarrow\right.$ also cofinite)
Examples $\mathbb{Z} E \mathbb{R}$

$$
S L_{d}(\mathbb{R}) ; S C_{d}(\mathbb{R}) \in \text { hot }^{t} \quad c_{0}-c^{t} t_{1}
$$

We sam last time:

$$
S L_{d}\left(\mathbb{Z}\left(\frac{1}{p}\right)\right): S C_{d}(Q p)
$$

is cofinite, but hot discrete
If it were discrete, then $\forall c p t$. $s \subseteq S C d\left(Q_{p}\right)$
we would have IP ste oo, but

Why copt?
Hint If HEG and St. SG E St. HS =G then H is 6 icpt .
But $-S c_{d}\left(\mathbb{C}\left(\frac{1}{p}\right)\right)^{\text {trait }} i^{p} d=f L_{d}\left(Q_{p}\right) / S_{d}\left(Z_{p}\right)$

$$
\Rightarrow S C_{d}\left(e_{p}^{-1}\right) S l_{d}\left(e_{p}\right)=S c_{d}\left(a_{p}\right)
$$

The same is true for $\Gamma(W)=\{A \in P \mid A \equiv I(\bmod d)\} p X_{N}$ Here is a way to "make it discrete":

Since If Yisirt, $P S i\left(\right.$ (e) $Y=\operatorname{PSC}_{d}(\mathbb{R})$,

$$
\begin{aligned}
& \text { then } \Gamma\left(Y \times P S L_{d}\left(\mathbb{Z}_{\rho}\right)\right)=G_{\pi} \times G_{Q_{p}} \\
& \text { ide.: } \forall \quad(A, B) \\
& \text { b } \left.C \in \mathcal{P S} u_{d}\left(2 C_{p}^{2}\right)\right) \\
& \text { StA. } C A \in Y, C B \in G Z_{p}
\end{aligned}
$$

Claim It Γ discrete G_{Q}, then it is a lattice if

$$
\sum_{v \in_{r}\left(\left(s_{d}^{p}\right)^{0}\right)} \frac{1}{s+a b_{\Gamma}(1)} \Gamma_{\text {is a rep. }} \text { for } \text { for }^{-1}(1)
$$

Where $\overbrace{\Gamma^{B}}^{B}$
© Via the diagonal embedding

In particulan if $\left|\mu^{13}\right|<\infty$ then R is a Letticeit this, however, is immediate. The thmm holds for infinite converging sums.

Moste Morgenstern calls thesei "Rawmanujan Diagnams," Exer use: P is a lattice iff $\left|\Gamma^{B^{3}}\right|<\infty$

Pf of thmi for $H: G$ what is prer HIG?

$$
\text { S. . } \Delta G \mid H \Xi \Delta_{H}
$$

Define a map $P \mid C_{i}^{巴}(G) \rightarrow \theta_{i}(H \mid G)$

$$
(p f)\left(H_{g}\right)=\int_{H} f\left(h_{g}\right) d_{M_{H}}(h)
$$

Facti P is surjective (Nact" has a techmical pf)
Define for $f \in C_{C}(H G), \tilde{f} \in C_{C}(G)$ representative
Define $\int_{H^{G}}+d_{m_{H}{ }^{G}}=\int \tilde{f} d_{m_{a}}$
This is well defined if $\Delta_{G / H} \equiv \Delta_{H}$ Exerase

We need $\quad \int_{\Lambda G} 1 d m_{\mu G}=\mu\left(n^{G}\right)<\infty$
let $\left[v_{i}\right]$ be rep. to 1 MBO. Take $\left\{s_{i}\right\rangle \subseteq G_{Q_{p}}$

$$
\begin{aligned}
& s . t_{1} \quad g_{i} v_{2}=v_{i} \\
& \left(\begin{array}{lll}
1 & & \\
& 1_{1} & \\
& & \\
& & 1
\end{array}\right]=G_{p} \\
& \left.\tilde{f}_{g}\right)= \begin{cases}\frac{1}{\left|r_{u_{i}}\right|} & \text { if } g \in g i k \text { @ } g v_{g}=v_{i} \\
0 & \text { elge }\end{cases}
\end{aligned}
$$

Claim! $\int_{\Gamma} f^{n}\left(\mu_{g}\right) d_{\mu p}(v) \equiv 1$
(*) Continuous with cpt. suppert; we calit wirite l^{2} since we dount have a measute a-priory

Since

$$
=\sum_{r \in r} f\left(r_{g}\right)=\sum_{r \in r}\left\{\begin{array}{ll}
\frac{n}{\left|r x_{i}\right|} & r r_{0}=v_{i} \\
0 & e{ }^{\prime} s e
\end{array}=1\right.
$$

We are finished With measures!
Io tar- we considered $\left(G=P G L_{d}\right)$

$$
G_{e(\hat{p})} G_{e_{p}} G_{Q_{p}}
$$

and could hot find co-cpt. lattices.
We move on to study $U_{d}\left(Q_{p}\right) \propto B(u) \equiv U_{d}\left(Q_{p}\right) / U_{d} Q_{p}$ max. at, suse.

$$
\frac{\text { with } 2 \text { invertible }}{r}
$$

For a comm ring $R_{\text {, }}$ define

$$
u_{d}(R)=\left\{A \in \mu_{d}\left(k_{[i D}\right) \mid \quad A^{*} A=I\right\}
$$

(It R has a sq. hoot of -7 , we add another one!)
$\left(\right.$ dotation $\left.u(d) \equiv u_{d}(R)\right)$

$$
\text { for } p=1(\bmod 4)
$$

Fact: If R has $\sqrt{-1}$ (erg. $\mathbb{C}_{1} \mathbb{Q}_{p}^{b}, e_{p}$) then $u_{d}(R) \cong G_{d}(R)$
eff Exercise Genet,
lattice

Claim: $U_{d}\left(\mathbb{e}\{\hat{p} p)\right.$ if $U_{d}\left(a_{p}\right)$... also $P(N)=\{A \in \Gamma \mid A \equiv I(\operatorname{nod} N)\}$
Therefore $A B\left(U_{d}\left(Q_{p}\right)\right)=\Gamma^{B^{p} d}$ is a finite complex!

Bearse
$u_{d}\left(\mathbb{\mathbb { C }}\left[_{p}^{1}\right]\right)$ i $u_{d}\left(Q_{p}\right) \times u_{d}(\mathbb{R})$ is a co-cpt. lattice!
dischetereasy, as seen previously,
Why is it co-cpt.?
Take $S=u_{d}\left(e_{p}\right) \times u_{d}(\mathbb{R})$

$$
\text { cptt cpt }=\text { cpt by Tychonoff }
$$

it is enough(and hecessary) to show that

$$
\left.u_{d}\left(2\left[\frac{1}{\beta}\right]\right)\right)^{\left(\beta_{d}^{p}\right)^{0}} \text { is tinite }
$$

$u_{d}\left(E C_{p}^{2}\right)$ is ascrate (in $\left.U_{d}\left(Q_{p}\right)\right)_{\text {ept }}$ since it is disce in $U_{d}\left(a_{p}\right) \times \overparen{U_{d}(R)}$ \Rightarrow y.n can thow out" the spt. part.
$16 / 4 / 2018$
We sam $\mathbb{Z}\left(\frac{1}{\rho}\right)^{\substack{\text { co-cinp } \\ \text { lat ice }}} \mathbb{R} \times a_{p}$
Since $\frac{c p t}{(0,1)+E_{p}}+2\left(\frac{1}{p}\right)=$ ever $y+$ hing
We wired to $G L_{d}\left(a\left(\frac{1}{p}\right)\right)$ incite $G L_{d}(\mathbb{Q}) \times G\left(d\left(Q_{p}\right)\right.$

$$
\text { cotinite oust, } G L_{d}(Q p)
$$

- not discrete
intersection
with $\rightarrow \cap G\left(d\left(l_{p}\right)\right.$ is infinite in $G l_{d}(\geq)$
We considered then

$$
\begin{aligned}
& u_{d}\left(\mathbb{e}\left(\frac{1}{p}\right)\right){ }_{\text {discrete }} u_{d}(\mathbb{R}) \times u_{d}\left(Q_{p}\right) \\
& u_{d}\left(\mathbb{Z}\left(\frac{1}{p}\right)\right) \sum_{\text {dive }}^{\sum} u_{d}\left(\mathbb{Q}_{p}\right)
\end{aligned}
$$

Recall If R is a com, ring

$$
\begin{aligned}
U_{d}(R) & =\left\{A \in \mu_{d}(R(i)) \mid A^{*} A=I\right\} \quad\left(A^{*}\right)_{i j}=\bar{A}_{j i} \\
e . g . & U(d)=U_{d}(R)
\end{aligned}
$$

Answer They are co-cpt.
As tor the second lattice - this is
a deep result. and tollowes trow
"Sthong Approxim avion in Alg groups" For our purposes, we will "cheat by hand"
cofinite $=$ quotient has finite volumene
discrete \equiv ho aec. point ; hot even outside the gp!

Claimi If $\exists \varepsilon \in \mathbb{R}$ St. $\quad \varepsilon^{2}=-1 \quad$ and 2 is invertible then $\mu_{d}(R) \cong G L_{d}(R)$
eg.: $\mathbb{C}, Q_{p}, \mathbb{E}_{p}, \mathbb{P}_{p}$

$$
\begin{aligned}
& k p=1(\bmod 4) \\
& i \mapsto x \mapsto \ldots . . .
\end{aligned}
$$

Pf: Observe: $R(i)=R(x) /\left(x^{2}+1\right):$

Next, $m_{d}(R[i]) \cong n_{d}(R+R) \cong m_{d}(R) \times m_{d}(R)$
$\left(a_{i j}+b_{i j} i\right) \mapsto\left(a_{i j}+b_{i j} \varepsilon, a_{i j}-b_{-j} \varepsilon\right) \mapsto\left(a_{i j}+b_{i j} \varepsilon\right),\left(a_{i j}-b_{i j} \varepsilon\right)$

$$
A+B i
$$

$$
A, B \in M_{c}(R)
$$

Note: $\left.u_{d}(R) \leq \operatorname{mad}_{d}\left(R_{i}\right)\right)^{x}=G L_{d}(R(i))$

$$
\begin{array}{ll}
A+B i \in U_{c}(R) & \Leftrightarrow \\
(A) & \Leftrightarrow\left(A+B_{i}\right)\left(A+B_{i}\right)^{*}=I \\
& \Leftrightarrow\left(A-B_{i}\right)^{t}=I \\
& \Leftrightarrow A-B_{i}=\left(\left(A-B_{i}\right)^{t}\right)^{-1}
\end{array}
$$

Tale c $(x, 4) \in m_{d}(R) x m_{d}(R)$, When is $(x, Y) \in e\left(U_{d}(R)\right)$?
Ifs: $y=\left(x^{t}\right)^{-1}$

$$
\begin{aligned}
& \text { sc definition } M_{d}(R(i))_{12} \\
& \text { So, } \quad U_{d}(R) \quad \leq m_{d}(R) \times m_{d}(R) \\
& \left\{\left(x,\left(x^{t}\right)^{-1}\right): x \in G L_{d}(R)\right]^{\pi / 2} G_{d}(R) \\
& U_{d}(\mathbb{R}) \\
& \text { Gld(l) } \\
& A+B_{i} \longrightarrow \quad{ }^{*} \longrightarrow B E \\
& \frac{x+(x t)^{-1}}{2}+\frac{x-\left(x^{t}\right)^{-1}}{2 \varepsilon} i \longleftarrow x
\end{aligned}
$$

(3)

A wore convenient ge. The Nimilitudes gp.
$G U_{d}(R)=\left\{A \in m_{d}(R(i)) \mid A^{*} A=\lambda I \quad\right.$ for $\left.\quad \lambda \in R^{*}\right\}$
Home work: $P G U_{0}(\mathbb{R}) \cong \rho u_{d}(\mathbb{R})=P S U_{d}(\mathbb{R})$ (for Reals)
In general, Pau, pu, PSu differ by finite index. over fields

Home vorkfi If $\quad-1, \frac{1}{2} \in R$ then

$$
\begin{array}{ll}
& P G l d(R) \cong P G L d(R) \\
\text { by } & A+B_{i} \mapsto A+B_{E} / \bmod \text { scalars } \\
\text { and } G U_{d}(R) \cong R^{x} \times G L d(R)
\end{array}
$$

more or less"

Since $r=G u_{d}(e(\hat{p})) \underset{\text { discrete }}{ } G u_{d}\left(Q_{p}\right)$, we should have: Ink finite.
(a saint cheek).
Indeed, \quad 价 $=G U_{d}\left(\mathbb{Z} \frac{1}{p} \cap \cap \mathbb{E}_{p}\right)=G U_{d}(\mathbb{Z})$
We, compute $G U_{d}(\bar{a}) 1$... these "permutation matrices" with entries $\pm 1, I_{i}$ - δ_{0}

$$
\left|G u_{d}(e)\right|=d!\cdot 4^{d}
$$

Harder result i If $d=2, p \neq 2$.

$$
P G H_{2}\left(Q_{p}\right)=\tilde{P} G L_{2}\left(Q_{p}\right) \quad \text { even if } p \neq 1(\operatorname{kod} u)
$$

(Snow that they are isomorphic to some quaternion algedva)
(*) Same as requiring $\lambda \in R(i)^{x}$:

$$
\lambda I=A^{*} A=\left(A^{*} A\right)^{*}=(\lambda I)^{*}=\bar{\lambda} I
$$

$$
\text { ire F ore - } 3 d \text { u }
$$

LPS construction: $p \equiv n(\bmod 4) \quad$ exit

$$
\begin{aligned}
& \varepsilon=\sqrt{-1} \text { in } \quad \mathbb{z}_{p} \leq \mathbb{Q}_{p} \\
& U_{d}\left(Q_{p}\right) \xrightarrow{\sim} G L_{d}\left(Q_{p}\right) \subset B_{d}^{p}=B\left(P G L_{d}\left(Q_{p}\right)\right) \\
& \text { Isomorpliom } \quad A+B i \longrightarrow A+B \varepsilon \quad \text { (clenote: } x \mapsto \tilde{x})
\end{aligned}
$$

Lattices: $u_{d}\left(z\left(\frac{1}{p}\right)\right): U_{d}\left(a_{p}\right)$
Recall that the vertices are

$$
\left.\left(B_{d}^{p}\right)^{0}=\left.P G L_{d}\left(a_{p}\right)\right|_{p G L\left(Q_{p}\right)} \cong P G U_{d}\left(Q_{p}\right)\right)_{p \in u_{d}\left(Q_{p}\right)}
$$

induced by the above is.
Also, $\quad P \in l_{d} \frac{\left(Q_{p}\right)}{\left(e_{p}\right)} \begin{array}{r}2 \\ (2, p)\end{array}$

$$
\begin{aligned}
& \text { del } A>0 \quad(\text { and real })
\end{aligned}
$$

Claim: P acts simply on (vertices of)

$$
T_{p+1}^{0}=P G(/ U)_{2}\left(Q_{p}\right) / P G(L / u)_{2}\left(\tau_{p}\right)
$$

Corollary P is a lattice (and thus a to $P G u_{d}\left(\mathbb{E}\left[\frac{1}{1}\right\}\right)$) (we saw: $\operatorname{lo}_{0} \mu\left(r^{G}\right)=\sum_{V \in F D(P C G)} \frac{1}{s+a b_{p}(v)}$ in particular, it $|r i B 0| e \infty$, then P is cofinite)
ort since then we have $\rho K=G$, where

$$
\begin{aligned}
& k=p c(\mathbb{l n} u)_{2}\left(\mathbb{C}_{p}\right) \\
& \Rightarrow M G \simeq p_{n k} k \quad \text { cpA. }
\end{aligned}
$$

nco projection

Proof

$$
\begin{aligned}
S_{+a b_{n}\left(u_{2}\right)} & =\Gamma \cap G U_{2}\left(e_{p}\right) \\
& =G U_{2}^{+} \mathbb{Z}\left(\left(\frac{1}{p}\right)\right)\left(c_{n} \cap G u_{2}\left(e_{p}\right)\right. \\
& =G U_{2}\left(Z\left(\frac{1}{p}\right) \cap e_{p}\right)(2)
\end{aligned}
$$

$$
\frac{d_{\text {ole }}}{\text { what are the } \rightarrow G u_{2}^{+}(e)(2)}
$$

colts of the
intersection?

$$
\begin{aligned}
& =\left\{A \in M_{2}(\mathbb{e}(i)) \mid A^{*} A=I, A \equiv I(\bmod 2)\right\} \\
& =\left\{[1,],\left[-11_{1}\right]\right\}
\end{aligned}
$$

$\left(\begin{array}{l}\text { Since: } C u_{2}(2)=\left\{\begin{array}{cccc} \pm 1 / t_{i} & 0 \\ 0 & \pm 1 t_{i}\end{array}\right],\left[\begin{array}{cc} \pm 1 \pm i & \pm 1 / I_{i}\end{array}\right] \\ \text { and one can eliminate } 30 \text { of the } 32 \text { possibilities. }\end{array}\right]$
\Rightarrow Ir PGU we have $S_{\operatorname{tab}}^{\boldsymbol{r}}\left(\nu_{0}\right)=\{I\}$
Trangiverei (we take $p=5$ egg.)
For $A \in P G U_{d}\left(\mathbb{Z}\left(\frac{1}{p}\right)\right), \quad B \in P G L_{d}\left(\mathbb{Z}\left(\frac{1}{p}\right)\right)$
we detimei level $(B)=\operatorname{ord}_{p} \operatorname{det}(B)-\operatorname{dmin}_{i j}\left\{\operatorname{ord}_{p}(B i j)\right\}$
(invarionti level $(B)=\operatorname{leve}_{p}(p B)$)
And define: level $\pi_{\pi}(A)=$ ord $_{\pi} \operatorname{det}_{(A)}-d_{i m g h}$ ard $\pi_{T}\left(A_{i j}\right)$
where $+\pi=P$ (we chose to coll use such prime π, and the other $\#$)

$$
5=(1+2 i)(1-2 i)
$$

$\operatorname{Claim}^{\oplus} \oplus F_{\text {or }} \quad A \in P G U_{d}\left(e\left(\frac{1}{p}\right)\right)$,

$$
\begin{aligned}
\text { level }_{\pi}(A) & =\operatorname{lecuel}_{p}(A) \quad\left(\text { where } \widetilde{X+Y_{i}}=x+\psi_{E}\right) \\
& =1-\operatorname{dist}\left(v_{0}, A v_{0}\right)
\end{aligned}
$$

1-dist is dist along edges of color 1
position of right-most dugitof p-adic number
(Assume $v_{a l}\left(\frac{\pi}{\pi}\right)=\operatorname{orid} p(\pi)=1 \quad$ (choose $[=-1$ sit. it holds)

Example

$$
\begin{aligned}
& \begin{array}{l}
\sqrt{-1} \equiv 7(25) \\
Q_{5}(i) \quad Q_{5}(\bmod 25)
\end{array} \\
& 5 \longmapsto \tilde{5}=5 \\
& 1+2 i \quad \longrightarrow \text { 15 } \quad \mathrm{val}=1 \\
& \text { 1-2: } \longrightarrow 12 \leadsto \mathrm{val}=0
\end{aligned}
$$

In geseral ap[i]

$$
\begin{aligned}
& \pi \longmapsto, \pi \\
& \pi \longmapsto \frac{2}{\pi} \\
& \text { val's } 0,1 \\
& \downarrow \\
& p=\pi \vec{\pi} \longrightarrow \underset{v_{\text {al }}}{ }=\tilde{p}=\tilde{\pi} \pi=\tilde{\pi} \frac{\tilde{\pi}}{}
\end{aligned}
$$

(1) We shown that hevel $\pi(A)=\operatorname{levelp}\left(A^{2}\right)$:

$$
G u_{d}\left(a_{p}\right) \longrightarrow \quad G\left(d\left(a_{p}\right)\right.
$$

det \downarrow since det resicets wing hom.

Similarlyfor win ard $\frac{i_{j}\left(A_{i j}\right)}{}$
(D) We show that level $_{p}(\tilde{A})=1-\operatorname{digt}\left(l_{0}, A v_{0}\right)$

Talee $B \in P G C_{d}\left(\mathbb{E}\left[\frac{1}{p}\right]\right)$, Want to show:

$$
\text { levelp }(B)=1-d i s t\left(v_{0}, B v_{0}\right)
$$

for $k, k^{\prime} \in K=P G L d\left(\mathbb{C}_{p}\right)$, we observe $\quad \operatorname{level}\left(k B k^{\prime}\right)=\operatorname{level} l_{p}(B)$
b) ultrametric triongle in equality

$$
[v a l(a+b) \geq \min (v a l(a), v a l(b))]
$$

$$
\operatorname{val}\left(\left(k B k^{\prime}\right)_{i j}\right) \geqslant \min _{i, j} \operatorname{val}\left(B_{i j}\right) \quad \text { since } \quad \operatorname{val}\left(k_{i j}\right) \geqslant 0
$$

OTOH, $k^{-1},\left(k^{\prime}\right)^{-1} \in K$, 50 also $\operatorname{val}\left(B_{i j}\right) \geqslant \min _{i, j} \operatorname{val}\left(k B k^{\prime}\right)_{i, j}$

$$
\begin{aligned}
& \Rightarrow \min \operatorname{val} B_{i j}=\min _{i, j} \operatorname{val}\left(k B k^{\prime}\right)_{i j} \\
& \operatorname{Val}\left(\operatorname{det}\left(k B k^{\prime}\right)\right)=\operatorname{val}(\operatorname{det} B) \\
& Z_{j}^{x} \rightarrow \operatorname{det}+k \Rightarrow \text { val }=0
\end{aligned}
$$

\Rightarrow bevel $_{p}$ is k-bi-invarianat. Also, 1 -dist ($\left.v_{0}, B v_{0}\right)$ is:

$$
\begin{aligned}
& 1-\operatorname{dist}(v_{0}, \underbrace{k B k^{\prime} v_{0}}_{v_{0}})=1 d\left(k^{-1} v_{0}, B v_{0}\right)=1 d v_{0}, B v_{0})
\end{aligned}
$$

$\operatorname{lev}_{p}(\vec{p})=\sum_{i=1}^{d} \lambda_{i}$, so ne need to show

$$
1 d\left(v_{0},\left[p^{\vec{\lambda}}\right]\right)=\left[\lambda_{i}\right.
$$

There is a $\left[\lambda_{i}-p_{a t h}\right.$ of color 1 thou $v_{0}=I$ to $[p \vec{\lambda}]$.
There is un shorter one, b_{y} deter milhapt considerations To finish LNS, we wed to show that
$P=P G U_{2}^{+}(\mathbb{R}(\hat{p}))(i)$ has (at least) p+1 elements of $\operatorname{lev}_{\pi}, 1$
(so guv is a neighbor of v_{0})

This suffices,
Since, it $g^{v_{\theta}}=g^{\prime} v_{0}$ for g, g^{\prime} of $\operatorname{lov}_{\pi} 1$
then $g^{-1} g^{\prime} V_{0}=V_{0} \Rightarrow g^{-1} g^{\prime} \in S \tan ,\left(V_{0}\right)=V_{1} \mid$

$$
\Rightarrow \quad g=g^{\prime}
$$

(we didn't use the level at the end). We will use Jacobi

Example $\quad p=5$

$$
\pi=\left[\begin{array}{ll}
1 \pm 2 i & \\
& 1 \mp 2 i
\end{array}\right],\left[\begin{array}{ll}
1 & \mp 2 \\
\pm 2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & \pm 2 i \\
\mp 2 i & 1
\end{array}\right]
$$

If

$$
\begin{aligned}
& \underbrace{a^{2}+b^{2}+c^{2}+d^{2}}_{\in \mathbb{Z}}=\rho \text { then } \\
& {\left[\begin{array}{cc}
a+b i & c+d i \\
-c+d i & a-b i
\end{array}\right] \text { has det>0 and is unitas }} \\
& \text { (in } \mathrm{Gu}^{+} \text {) } \\
& \binom{-v_{1}-}{-v_{2}-}
\end{aligned}
$$

The only thing we can do isl

$$
\left[-v_{1}-\right], \text { for } \quad \alpha \in \mathbb{C}^{x},|\alpha|=1
$$

7.5 .18

Parzanchershi - From Ram. to Cpr.

$$
\begin{aligned}
& P \equiv 1 \bmod 4 \\
\Gamma= & P G v_{2}^{+}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)(2) \\
= & \operatorname{Her} \varphi: P G v_{2}^{+}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right) \rightarrow \mu_{2}(\mathbb{Z} 2 \mathbb{2}) \\
& A \mapsto A(\bmod 2)
\end{aligned}
$$

Claim: Γ acts simply transitively on the vertices of the $(p+1)$-regular tree $P_{G} \sigma_{2}^{+}(R)=\left\{A \in \mu_{2}\left(R_{[i]}\right) \left\lvert\, \begin{array}{l}\left.A^{x} A=\lambda I, d \in A \in R_{0}\right\} \\ \lambda \in R^{x},\end{array}\right.\right\}$

$$
\Gamma \longleftrightarrow P G G_{2}\left(\mathbb{Q}_{p}\right) \cong P G L_{2}\left(\mathbb{Q}_{p}\right) \curvearrowright \underbrace{T_{r}}_{\operatorname{Tred}_{p+1}}
$$

we saw that, say v_{0} is the root of $T_{p+n}, \quad S_{t a b}^{v_{0}} \Gamma=\operatorname{\Gamma \cap PGG}_{2}\left(\mathbb{Z}_{p}\right)=$

$$
=P G V_{2}^{+}(\mathbb{Z})(2)=\left\{I_{1}-I\right\}=\{I\}
$$

Also, we saw $p=\pi \cdot \pi$ where $\pi \in \mathbb{Z}[i]$

$$
\begin{aligned}
& \text { Define } \quad \sim ; \quad \mathbb{Q}_{p}(i) \rightarrow \mathbb{Q}_{p} \\
& \widetilde{a+b i}=\underset{a+b-1}{\sim_{p}^{n}} \\
&
\end{aligned}
$$

Then blog $\operatorname{val}(\tilde{\pi})=1$, val $(\tilde{\pi})=0$
we saw that for $A \in \operatorname{PGG}_{\perp}\left(\mathbb{Z}\left[\frac{1}{\rho}\right]\right)$
we proved:

$$
\operatorname{lev}_{\pi} A=\operatorname{lev}_{p} \tilde{A}=1-\operatorname{dit}_{p}\left(v_{0}, A_{v_{0}}\right)
$$

$\operatorname{ord}_{\pi}^{\prime \prime}(\operatorname{et}(A))$ (gaussian) distance of color 1 with A integral ${ }^{(\text {cousin }}$ primitive
we need to show:

$$
\left|\left\{A \in \Pi \mid \operatorname{lev}_{\pi} A=1\right\}\right|=p+1
$$

\downarrow
Γ acts transitively + simply on the tree.

If $A_{r_{0}}=B_{r_{0}}$ same neighbor, $A^{-1} B_{r_{0}}=v_{0}$

$$
\stackrel{\rightharpoonup}{A}=B
$$

Claim: $P \operatorname{GV}_{\alpha}^{+}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}\alpha & \beta \\ \bar{\alpha} & \beta\end{array}\right) \right\rvert\,(\alpha, \beta) \in \mathbb{C}^{2} \backslash\{(0,0)\}\right\}$
If $\quad A=\binom{-v_{1}-}{-v_{2}-}$
then $\left\|v_{1}\right\|=\left\|v_{2}\right\| \quad \&\left\langle v_{1} v_{2}\right\rangle=0$ and we get the claim.
$\left\langle v_{1}, v_{2}\right\rangle=0 \Rightarrow v_{2} \in v_{1}^{\perp} \cong \mathbb{C} \Rightarrow v_{2}$ det. up to canst. of norm 1

However $\operatorname{det}\binom{-v_{1}-}{-\theta v_{2}-}=\theta \operatorname{det}\binom{-v_{1}-}{-v_{2}-}$
so $\operatorname{det} \in \mathbb{R}_{>0}$ for a unique θ.

Claim: For $A \in \Gamma$, scale by $\pi, \bar{\pi}$ to be integral \& primitive

Then $A^{*} A=P^{l} \cdot I$ with $l=\operatorname{lev}_{\pi}^{A}$.

Reason: $\operatorname{ord}_{\pi}(\operatorname{det} A)=\operatorname{lev}_{\pi} A$ translation by A

$$
\begin{aligned}
& \operatorname{lev}_{\pi} A^{*}=1-\operatorname{dist}\left(v_{0}, A_{v_{0}}^{*}\right) \stackrel{1}{=} \quad \text { the dst }\left(A v_{0}, v_{0}\right) \\
& \quad \text { is in symmetric } \\
& A^{*} A=1-\operatorname{dist}\left(v_{0}, A v_{0}\right) \\
& \Rightarrow P^{l} I \Rightarrow \operatorname{det}\left(A^{*} A\right)=P^{2 l} \Rightarrow \\
& \quad \operatorname{ord}_{\pi}\left(\operatorname{det}\left(A^{*} A\right)\right)=2 l \\
& \quad 2 \operatorname{lev} A
\end{aligned}
$$

Ore needs to show: $\quad\left|\left\{A \in \Gamma \mid A^{*} A=p I\right\}\right|=p+1$

$$
\begin{aligned}
& \mid\{(o, \beta) \in \mathbb{Z}[i]\left.|\alpha|^{2}+|\beta|^{2}=P\right\} \mid \\
& \alpha=\hat{\hat{T}_{\bmod }} \beta=0
\end{aligned}
$$

Jacobi: For $p \equiv 1 \bmod$ u $子 8(p+1)$ sol. to $|\alpha|^{2}+|\beta|^{2}=p$.

Look at

$\alpha \bmod 2$	$\|\alpha\|^{2} \bmod u$
0	0
1	1
i	1
$1+i$	2

$$
\begin{aligned}
|\alpha|^{2}+|\beta|^{2}=p \equiv 1 \operatorname{mad} u & \Rightarrow \begin{array}{c|c}
\alpha & \beta \bmod 2 \\
\hline 0 & 1 \\
0 & i \\
\hline 1 & 0 \\
\hline & 0
\end{array}
\end{aligned}
$$

Thus only $\frac{1}{4}$ of Jacobi's sol sat.
our congurence conditions.

$$
8(p+1) \xrightarrow{\substack{\alpha=1 \\ \beta=0}} 2(p+1) \xrightarrow{\substack{\text { mod } \\ \text { scalars }}} \text { Projectivising }_{\substack{\text { a }}} p+1 \quad \text { sols } \in P_{0}^{\prime}
$$

Let's write $S_{p} \subseteq G v_{i}^{+}\left(\mathbb{\mathbb { C }}\left[\frac{1}{p},\right]\right)$ these $p+1$ matrices.

Claim: $\Gamma=\left\langle S_{p} \mid A=A^{*^{-1}}\right\rangle=\left\langle\right.$ hals of $\left.S_{p} \mid\right\rangle$ meaning Π is free over $\frac{p+1}{2}$ gen.

From Bass-Serre Theory if we show that no edge flipping $\because \curvearrowright \curvearrowright T_{p+1}$ then Π is free.

If rflips e, since r tips an edge at $\quad v_{0} \rightarrow \gamma \in S_{p}$ and $r^{2}=i d$
since \quad stab $_{v_{0}} \Pi=\{i d\}$

$$
\delta^{*} \gamma=p-i d \Rightarrow F=\sigma^{-1}=\frac{\gamma^{*}}{p}=\sigma^{x}
$$

Projective

$$
\begin{aligned}
\Rightarrow \quad \bar{\beta}=\bar{\beta} \Rightarrow \alpha \in \mathbb{R} \\
\alpha=\bar{\alpha} \Rightarrow
\end{aligned} \Rightarrow \delta=\binom{\alpha}{\alpha} \in P G O
$$

$\theta l_{s o}$

$$
\operatorname{Cay}\left(\Pi, S_{p}\right)=T_{p+1}=P G L_{2}\left(\mathbb{Q}_{p}\right)
$$

with the right edges.

LPS Lattice
Furthermore, for a ln

$$
p \not p n
$$

$$
\prod_{n=T(n)}(n) \prod_{\text {xii }}(2)
$$

$$
A \equiv I(n)
$$

we get

$$
\Gamma_{(n)}^{B_{p}^{2}=T_{p+1}}=\underset{\substack{\text { finite } \\ \text { graph }}}{\Gamma_{n+1} \text { reg a lasso }}
$$

AND THESE ARE
Ramanujan Graphs ! ono
Actually, $\quad \Gamma_{(2 q)}^{(2)}=P S V_{2}\left(\mathbb{F}_{q}\right)$

$$
q \text { a prime or } P G V_{2}\left(\mathbb{F}_{q}\right)
$$

And we get the $x^{\text {pig }}$ LBS graphs.

$$
p \equiv 1(\bmod 4)
$$

$7 / 5 / 2018$, 10 fe vire
A Review of Recent $A \equiv I(\operatorname{lod} 2)$
lectures

$$
\Gamma=P G U_{2}^{1}(\mathbb{E}[p]) \stackrel{\downarrow}{(2)} \underset{\text { discrete }}{\longrightarrow} P G U_{2}\left(\Omega_{p}\right) \cong P G L_{2}\left(Q_{p}\right) \subset T_{p+1}
$$

Claim ip acts singly trans on the (vertices of)
the $(\varphi+n)$-reg tree.

 " " i

$$
\begin{aligned}
& p=\pi \cdot \pi, \pi \in \mathbb{Q}[i] \\
& \mathbb{Q}_{p}[i] \xrightarrow{x+\rightarrow \tilde{x}} \mathbb{a}_{p} \\
& \underset{a+b_{i}}{ }=a+b \sqrt{-1}
\end{aligned}
$$

Lot, $\operatorname{val}(\pi)=1, v a l^{(\pi}\left(\frac{\tilde{\pi}}{\pi}\right)=0$
(recall: $\tilde{\pi}, \tilde{\pi} \in e_{p}, \quad \tilde{\pi}=p$)
($p=5$) example $\pi=1+2 i \quad \bar{\pi}=1-2 i \quad 1 \pm \sqrt{-1} \in Q_{5}$
We san for $A \in P \in U_{d}\left(\mathbb{R}\left[\frac{1}{p}\right)\right) \leq M_{d}\left(\mathbb{C}\left[\frac{1}{p}, j\right)\right.$
(level) $\quad \operatorname{lev}_{\pi} A=\operatorname{lev}_{p} \tilde{A}=1-\operatorname{dist}\left(l_{0}, A v_{0}\right)$
(distance along edges of color 1)
$\operatorname{ord}_{\pi}\left(d_{e t}(A)\right)$, where A is integral, primitive
Gaussian integer
Need to Show: $\#\left\{A \in \Gamma: \operatorname{lev}_{\pi}(A)=1\right\}=p+1$
$\Rightarrow I$ acts simply trans on the tree
[If $A v_{0}=B v_{0}$ is the same neighbor, $A^{-1} B v_{0} \Rightarrow A^{-1} B=I$.]

Claim $\quad \operatorname{PGU}_{2}^{+}(\Omega)=\left\{\left(\begin{array}{cc}\alpha & \beta \\ -\bar{\beta} & \bar{\alpha}\end{array}\right): \quad(\alpha, \beta) \in \mathbb{C}^{2}(\omega, 0)\right\}$

PHi In one direction:

$$
A^{*} A=\left(\begin{array}{ll}
\left|\alpha^{12}+|\beta|^{2}\right. & \\
& |\alpha|^{2}+|\beta|^{2}
\end{array}\right)=\lambda I
$$

$\operatorname{det} A=|\alpha|^{2}+\left.|p|\right|^{2}>0$
OTOH It $A=\binom{-v_{1}-}{-v_{2}-}$, then $\left\|v_{2}\right\|=\left\|v_{n}\right\|=0$

$$
\left\langle V_{1}, V_{2}\right\rangle=0 \Rightarrow V_{2} \in V_{1}^{\perp} \cong \mathbb{C}
$$

$\Rightarrow v_{2}$ is determined up to a constant of nome 1 .

However, $\operatorname{det}\binom{-v_{1}-}{-\operatorname{-LL}_{2}-}=\theta \cdot \operatorname{det}\left(\begin{array}{l}-v_{1}-v_{2}-\end{array}\right)$,
So $\operatorname{det} A \in \mathbb{R}, 0$ fer a unique θ.
(Lp used the language of quaternions.)
Claims For $A \in \Gamma$, scale A to be integral and prim, (scale by $\pi, \pi)$), and then:

$$
A^{*} A=p^{l} I \quad \text { with } \quad l=\operatorname{lev}_{\pi} A
$$

phi $\operatorname{dev} \pi(A)=\operatorname{ord}_{\pi}(\operatorname{det}(A))$

$$
\begin{aligned}
& \operatorname{lev}\left(A^{*}\right)=\operatorname{ord}(\sqrt{\operatorname{let}(A)})=\operatorname{ard}=(\operatorname{det}(A)) \\
& \text { and } A^{*} A=p^{l} I \quad \Rightarrow \quad \operatorname{det}\left(A^{*} A\right)=p^{2 l} \\
& \Rightarrow \operatorname{ord}_{11}\left(\operatorname{let}\left(A^{*} A\right)\right)=2 l \\
& \operatorname{ord}_{\pi}^{\prime \prime}(\operatorname{det}(A))+\operatorname{ord}_{\pi}\left(\operatorname{Let}\left(A^{*}\right)\right)=2 \operatorname{ord} \operatorname{Ar}_{\pi} \operatorname{det}(A) \\
& \text { twauslation by } A \\
& \text { In difueporsoon 2, all edges have } \\
& \downarrow \text { color } 1 \\
& =2-d_{i} s+\left(v_{0}, A^{*} v_{0}\right)=1-d_{i s}+\left(A v_{0}, v_{0}\right)=1-d_{i s}+\left(v_{0}, A v_{0}\right)=\operatorname{ard} \pi(d e t(A))
\end{aligned}
$$

(3)
[In dimension 3, the following has different orders] for $\pi, \#:\left[\begin{array}{lll}1+2 i & & \\ & 1-2 i & \\ & & 1-2 i\end{array}\right] \quad i p=5$

Recall We meed to sha: $\mathbb{A}\{A \in \Gamma: A * A=p I\}=p+1$

$$
\#\left\{(\alpha, \beta) \in \mathbb{Z}(i):|\alpha|^{2}+\left.1 \beta\right|^{2}=p, \alpha \equiv 1, \beta \equiv 0(\bmod 2)\right\}
$$

Home work (cher kt ho common factors; 50 no 40n-primitive possibilities.) (It α, β have common factor. its square inst divide p)
u-squares Jacobins Theorem for sot prime, then exist $B(p+1)$ solutions to $|\alpha|^{2}+|p|^{2}=p$
we will prove a generalization for higher dimensions,., eventually
for $\alpha \in\left(\cdot[) \left\lvert\, \begin{array}{cc|c}\text { Consider }) & \alpha(\bmod 2) & \left.k^{2} \operatorname{Cnod} U\right) \\ 0 \\ 0 & 1 & 1 \\ 1 & 1 & 2\end{array}\right.\right.$

But $\left.|\alpha|^{2}+\mid \beta\right)^{2} \equiv p \equiv 1(\bmod 4) \Rightarrow$ The possibilities ane

α	β	$(\bmod$	$4)$
0	1		
0	i		
1	0		
i	0		

\Rightarrow only $\frac{1}{4}$ of Jacosis: solutions satisfy the congruence condition.
[The $8(\varphi+1)$ solutions are distributed evenly, by symmetry.]

$$
\Rightarrow 2(p+1)
$$

I.1 but we forgot to mod by scalars $\overrightarrow{\text { mod }\{ \pm I\}}$ p+1 solutions in PGGL,

We unite $S_{p} \leqslant G u_{2}^{\dagger}\left(Z\left(\frac{p}{p}\right)\right)$ for these p+1 matrices.
Claim $\Gamma=\left\langle S_{p} \mid A=\left(A^{*}\right)^{-1}\right\rangle$
(ori "Half of Sp, wi conjugates" and no relations)
So, P is a thee gp. On $\frac{p+1}{2}$ elements,
This follows for Bass-Serre Thu, if we show:
no edge flipping:
If r^{\prime} tips e, them some r flips an edge at v_{0} (so $\left.r \in S_{p}\right)$ and $r^{2}=i d$ (since Stob $\left.\left(v_{0}\right)=I\right)$

do heed to compute, she ce:

$$
\begin{aligned}
& r^{*} r=p I \Rightarrow r^{-1}=\frac{r^{*}}{p} \\
& q u^{\prime}
\end{aligned}
$$

In our gp, $r=r * \Rightarrow \bar{\beta}=-\bar{\beta} \Rightarrow \beta=0 \Rightarrow r=\left[\begin{array}{ll}\alpha & \\ & \bar{\alpha}\end{array}\right]$

Exanyle for $p=5$. $5_{5}=\{(1 \pm 2 i$

$$
1 \div 2 i)^{\prime} \text { - }
$$

$$
\left.\left(\begin{array}{cc}
1 & \pm 2 i \\
\overline{+2 i} & 1
\end{array}\right),\left(\begin{array}{ll}
1 & \pm 2 \\
\pm 2 & 1
\end{array}\right)\right\}
$$

$$
\Rightarrow \alpha=\bar{\alpha} \Rightarrow\left(\begin{array}{ll}
\alpha & \\
\alpha
\end{array}\right) \text { with } \alpha \in \mathbb{Z} \Rightarrow \alpha^{2}=p \Rightarrow \gamma=I
$$

since S_{p} is tree, we have that the following Cayley graph is a twee
subgp.
$\operatorname{PIPGL} L_{2}\left(Q_{p}\right) \quad \operatorname{Cay}(P, S p)=P G L_{2}\left(Q_{p}\right) / P G L_{2}\left(Z_{p}\right)$ (With the right edges)

Furthermore, for air n sit. $2 / \mathrm{h} 1$ pto, consider
A normal subgp. $\rightarrow \quad f(n) \notin P(2) \&$ LPS lattice

$$
\{A \equiv I(m \operatorname{od}(n)),
$$

we get: $r(W)^{1_{p}^{2}}=T_{p+1}$
so $P(w)$ is a lattice in $P G 4_{2}\left(Q_{p}\right)$
$\Rightarrow r_{n} \backslash B_{2}^{P}$ is a thule $\left(t_{1}\right)$-reg graph
$\left.\left.y=r_{(n)} \backslash \operatorname{car}\left(\Gamma(v), S_{p}\right)=a_{a}\right\rangle\left(r_{(n}\right)^{\Gamma(v)}, S_{p}\right) \&$ finite p-reg gera, ph easy to see.

Point these are Ramanujan!

There are the LAS $X^{\text {Prs graphs }}$
Bass-hene If Γ G harts of thee, then sit.

$$
p=2 \times \ldots \times 2 \times \mathbb{2} / 2 \times \cdots+2 / 2
$$

, 2/k le , 晿 - 21/5/18

We saw LPS Lattices, Clmed as $e^{\text {B1 }}$, the building

$$
P G U_{2}^{+}\left(D\left[\frac{p}{p}\right]\right)(N) \delta \sqrt{P G U_{2}\left(Q_{p}\right) \stackrel{n}{n} P G L_{2}\left(Q_{p}\right)}
$$

even N

if $p \equiv 1(m o d u)$
lattice; hormal subgp of $\Gamma(2)$
$\Gamma(2)$ acts sinply thansitively on $(v e r t s)$ of B

$$
\begin{aligned}
& \Rightarrow N=C_{a}(P(2), S) \quad(|s|=p+1) \\
& \Rightarrow N(N)^{P B}=a_{a y}\left(P(N)^{N(2)}, S\right) \equiv X^{P, N} \in \text { the LPS construction }
\end{aligned}
$$

we still heed to showi for $N=2$,

$$
\Gamma(N) \backslash r(2)=\left\{\begin{array}{l}
P G L_{2}\left(F_{q}\right) \\
\text { or } P S L_{2}\left(F_{q}\right)
\end{array}\right.
$$

$x^{P, N}$ is Ramanujan - This follons thom deep vesults b, Delighe... we will not see the details.

Where does Jacosi's thm cowe from? We waht a phoot that seneralizes to higher din. What happess in $K(3)$?
For u_{2}

$$
\left\{\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{h}
\end{array}\right) \left\lvert\, \begin{array}{c}
\alpha, \beta \in \mathbb{R}(i) \\
p\left|\alpha^{2}+1 \beta\right|^{2}=p
\end{array}\right.\right\}
$$

Finst we asked forl $A \in h_{2}\left(2[D)\right.$ st. $A^{*} A=I$ We sawitor any α, β S.t, holds, $J \| A \in P \in U_{2}^{+} S_{1} t_{1}$

$$
A=\left[\begin{array}{cc}
\alpha & \beta \\
-3 & \pi
\end{array}\right]
$$

As for $h(z)$:

$$
\begin{aligned}
& A \in \mu_{3}(\pi(i)) \quad A^{\prime} A=p I \\
& A=\left(\begin{array}{lll}
\alpha & p & r
\end{array}\right) \quad|\alpha|^{2}+|\beta|^{2}+\mid r / 2=p
\end{aligned}
$$

Jacobis's 6-iquare thm., $\exists 2\left(p^{2}+1\right)$ E.lutious Oni searched for a puttern/aule for such motalces. U. will See: Siegel, Mass, Formula

Finst 1 Godden Gates (LPS)
We saw' $S=\left\{A \in P G u_{2}^{+}(2(2 ;))(2) \mid A^{*} A=p I\right\}$

$$
\begin{aligned}
& \text { (s): } p+1 \quad \beta=\text { cay }^{(p(2), 5)} \\
& \text { e.g. } \left.p=5, s=\left\{\begin{array}{ll}
1+2 i & 1-2 i i
\end{array}\right\}^{ \pm 1},\left(\begin{array}{ll}
1 & 2 \\
-2 & 1
\end{array}\right)^{ \pm 1},\left(\begin{array}{ll}
1 & 2 i \\
2: & 1
\end{array}\right)^{ \pm 1}\right)
\end{aligned}
$$

$$
\frac{A}{\lambda} \in U
$$

e.g. $\frac{1}{\sqrt{5}}\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right] \in l(2)$

E
Let $S \leq \sqrt[P G(2)]{ }$ s.t. S is timite, Szmmetvic.
Detime (a Lie $S p)!T_{s}: L^{2}(p u 0,) \Phi$ $\binom{p u(q)$ is }{ uncountable }

$$
\begin{array}{r}
b_{y}\left(T_{s} f\right)(x)=\sum_{s \in s} f(s x) \\
k=|s| \in S_{\text {pec }}\left(T_{s}\right) \text { sinee } T_{s} \mathbb{1}=k \mathbb{1}
\end{array}
$$

Claimi It $<\bar{s}>=G$ then $k \notin e_{1} v_{1}\left(T_{s} L_{L_{0}^{2}(G)}\right)$
(where $L_{0}^{2}(G)=\mathbb{1}^{+} \leftarrow$ orth. complenent)
Pf If $T_{s} f=k f$, assume f is contilunous
(else, appoximate by cont. tunctions...)
Say compacthess, choose $x_{0} E^{G}$ s.t. $\left|f\left(x_{0}\right)\right|$ maximal.

$$
\begin{aligned}
& \Rightarrow \text { all } f\left(s x_{0}\right)=f\left(x_{0}\right) \quad \theta_{s} \\
& \Rightarrow f\left(c s>x_{0}\right)=\text { const } \\
& \Rightarrow f=\text { const. }
\end{aligned}
$$

Note It's possible that $k \in \operatorname{spec}\left(T_{s} \mid \mathbb{1}^{1}\right)$
s.t. $\quad \lambda_{i} \rightarrow k \quad(k$ is an ace. point $)$

We call this "Amenable s"

$$
\begin{aligned}
& \text { So } \quad k \in e V 1^{+} \Rightarrow \text { discothe cted } \\
& k \in S P 1^{-1} \Rightarrow \text { Amenable } \\
& k \in S 1^{+} \Rightarrow \text { connected }
\end{aligned}
$$

expander: sp $1^{\perp} \ll k$
Rami: $\gg 1^{\perp} \quad$ ec $2 \sqrt{e-1}$
 (Similat to Aloh-Boppana)

For

$$
\begin{aligned}
& s=\left\{A \in \operatorname{PGU} U_{2}^{+}\left(\mathbb{Z}\left(\frac{1}{p}\right)(2)\right) A^{*} A=p I\right] \\
& \max ^{2}\left\{|\lambda|: \quad t \in \sec ^{2}\left(\left.T_{s}\right|_{1^{+}}\right)\right\}=2 / k-1
\end{aligned}
$$

"Ramanujan geherators tor Pl(2)"

Write $\lambda_{s}=\max _{\infty}\left\{|\lambda| i \operatorname{sppec}\left(T_{s} \mid \mathbb{I}_{t}\right)\right\}$
rormalize taar measurel $\mu(G)=1$
We aski for What $\varepsilon \cdot 0$ is $G=\bigcup_{S \in S} B_{c}(v)$
or 1 for what E is $\mu\left(G \cup \cup \cup \mathcal{S} B_{2}(D)=O(1)\right.$
$a(1)$ as a tunce of $k=(s)$
Thm $\mu\left(G-U_{s \in s} B_{\varepsilon(S)}\right) \leqslant \frac{\lambda_{s}^{2}}{k^{2} \mu^{2}\left(B_{\varepsilon}\right)}$
(recalli $\left.\mu_{\varepsilon} \equiv \mu\left(B_{\varepsilon}\right) \not \approx \varepsilon^{3}\right)$
Pfi Take $f=\mathbb{1}_{B_{\varepsilon}(t)-\mu_{1} \mathbb{1}^{\epsilon} \mathbb{1}^{+}}$

$$
\begin{aligned}
& \|f\|^{2} \int F^{2} d_{\mu}=\int_{\sigma}\left(1_{B_{\varepsilon(1)}}-2 \mu_{\varepsilon} 1_{B_{\varepsilon}(1)}+\mu_{\varepsilon}{ }^{2} \mathcal{L}\right) d \mu \\
& =\mu_{\varepsilon}-2 \mu_{\varepsilon}^{2}=\mu_{\varepsilon}\left(1-\mu_{\varepsilon}\right) \\
& \lambda_{S}^{2} \mu_{C}\left(1-\mu_{C}\right) \geqslant 1 \int_{G}\left(T_{S} f\right)^{2}=\int_{G} \sum_{S \in S}+\left(G B_{i}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \forall_{s} \not \bigcup_{s \in s} B_{\varepsilon}(s) \\
& =k^{2} \mu_{\varepsilon}^{2} \mu\left(G \backslash \cup R_{\varepsilon}(s)\right) \\
& \Rightarrow \lambda_{s}^{2}\left(1-\mu_{q}\right) \geqslant k^{2} m_{\varepsilon} \mu\left(G, \cup B_{q}(s)\right) \\
& \Rightarrow m\left(G \cup \cup B_{\varepsilon}(v)\right)=\frac{\lambda^{2}\left(1+A_{G}\right)}{k^{2} m_{\varepsilon}}>\frac{\lambda^{2}}{k^{2} m_{\varepsilon}}
\end{aligned}
$$

tor shall 5 , similar size

What we really wont to $d b$!
Take $S_{1}=5, S_{2}=5 \cdot 5, S_{3}=5.5 .5$
Given $\varepsilon>0$, for which l is $U B_{l}\left(S_{l}\right)=G$
It we were dealing with walti-sets, $\left|S_{e}\right|=k^{e}$
6 that $\lambda_{s_{l}}=\lambda_{s}{ }^{l}, T_{s_{l}}=T_{s}^{l}$
But 5 is symmetry, 50 we have Lepittions (and obtain the identity often in S.S.s.)

Co we can use Chebpshev poly. for $T_{s}=T_{s}{ }^{2}-k I_{\ldots}$... Calculate the backtracking...
$C_{\text {aim }}$ If $v_{\varepsilon}^{m} \geqslant \frac{\lambda_{s}}{k}$ then $G=\bigcup_{s \in S} B_{2 \varepsilon}(s)$
Home work I Prove
he e previous than "twice".
Why is Ram pi optimal?
$\lambda_{s}=2 \sqrt{k-1}$ (for the LPS generators)
take $S^{(l)}=$ words of length l in s
E $T_{g}(e) \leftrightarrow A^{(l)}$ in Ran. staph correspond spectrally
$\Rightarrow \lambda_{\rho}(x) \approx(l+1) k^{1 / 2} \quad$ (OUi doesh't heal the exact tor nut la) this can be obtained S; wonbacktracking analysis For Ran. generators. $\left.\mid s_{\text {el }}\right) \mid=k(k-1)^{l-1} \approx(k-1)^{l}$

* Like saying: $\varepsilon \approx \sqrt[3]{\frac{\lambda_{s}}{k}}$

$$
\Rightarrow \mu\left(G \backslash B_{\varepsilon} S^{(0)}\right)=\frac{\hat{G}^{2} k^{e}}{(k-1)^{2 e} \mu_{\varepsilon}} \approx \frac{e^{2}}{(k-1)^{2} \varepsilon^{3}}
$$

 we heed:

$$
\mu_{\mathcal{L}} \gg \frac{e^{2}}{(k-1)^{e}} \cong \frac{\operatorname{los}_{\left(k_{k}-2\right.}{ }^{2}\left(s^{a}\right)}{\left|s^{(x)}\right|}
$$

It $\bigcup_{s \in S}(e) B_{\varepsilon}(s)=G$, by solume Gasiderations,

$$
m_{\varepsilon} \geqslant \frac{1}{|s u s|}
$$

1 e
elk Ce vie 28/5/2018
$P=$ Lattice in $G=P G U_{d}\left(Q_{p}\right) \approx P G L_{d}\left(Q_{p}\right) \subset B_{p}^{d}$

$$
\left(e ; p: \quad \Gamma=\operatorname{pq} u_{d}\left(e\left(\frac{1}{p}\right)\right)(\lambda)\right)
$$

$x=\Gamma^{\} \mathbb{B}_{\rho}^{d}$ is a finite complex
An, G.invariant sramerhing apaenatnk, T, on B_{p}^{d},
(1) induces $T I_{x}$
(2) given as a lin gab. of couple greets of stabilizers.

Ramantion: $S_{p e c}\left(\left.T\right|_{x}\right) \subseteq S_{\text {pee }}\left(\left.T\right|_{\text {Bid }} ^{d}\right)$ U\{frivial speed
For pinplicíy, fix a cell $\sigma ; T$ acts on $G \sigma \subseteq B{ }_{p}^{d}$

$$
k_{\alpha}=S_{\text {tab }}^{G}(\sigma)
$$

Then $L^{2}(G \sigma) \approx L^{2}\left(G / k_{\sigma}\right)=\underbrace{L_{\sigma}}_{G-L_{e f}, b_{y}(G)} \quad(g f)(x)=f(x \rho)$
and $\left.T\right|_{x} C L^{2}(\Gamma \backslash G \sigma)=L^{2}\left(\Gamma^{G} / K_{\sigma \sigma}\right)=L^{2}\left(\Gamma^{G}\right)^{K_{\sigma}}$
(eng $\sigma=v_{0}$

$$
k=k_{v_{0}}=\max _{c_{p} t}=P G_{c}^{u}\left(e_{d}\right)
$$

$L^{2}\left(\right.$ vertices $\left.\left.\left(r^{(3)}\right)\right) \cong L^{2}\left(\Gamma^{G}\right)^{k}\right)$

$$
\operatorname{Spec}\left(\left.T\right|_{x}\right)=\bigcup_{V_{i} \in L^{2}(p \mid G)} \operatorname{Spe}\left(\left.T\right|_{V_{i}} k_{a}\right)
$$

Corr: If evengirn $V E L^{2}\left(r^{G}\right)$ is either trivial
on (weakly) contained in $L^{2}(G)$
then!] x is Ramanujan
Trivial means for uss of the form
(in support of Planchavel meas use of rep.)

$$
\begin{aligned}
P G L_{d}\left(Q_{p}\right) & \longrightarrow \mathbb{C}^{x} \\
& g H-e^{\frac{2 \pi i j}{d} \cdot \operatorname{ral}(d e t(g))} \quad j=0,-1, d-1
\end{aligned}
$$

Take $G=P G L_{d}\left(Q_{P}\right)$

$$
\begin{aligned}
& k=P G L_{d}\left(E_{p}\right) \\
& L^{2}\left(\mu(G)=巴 V_{i}^{k}\right.
\end{aligned}
$$

How does a G-nep. V sit, vkfo look loke?
An exaniple (principal revies): Take $z_{n}, z_{d} \in \mathbb{C}^{*}$

$$
\begin{aligned}
& x_{\vec{z}}: B \rightarrow \mathbb{C}^{x} \\
& x_{\vec{z}}(B)=\prod_{i=1}^{d} z_{i} V_{a}\left(b_{i i}\right)
\end{aligned}
$$

Exerese $\operatorname{dim} I(\overrightarrow{2})^{k}=1$ (he saw this)
Thim Every irr. V S.t, $V^{k} \neq 0$ is of that torm,

$$
\text { where } * \in \mathbb{E}_{1 /}
$$

s.t. $f_{\vec{z}}(1)=1$

Since $\operatorname{din} I(\vec{z})^{t}=1$, wne know that $A_{i} f_{\vec{z}}=\lambda_{i} f_{\vec{z}}$

$$
\begin{aligned}
& \left.I(\vec{z}):={ }^{7} I_{n d}^{G} x_{\vec{z}}=\left\{f: G \rightarrow c \mid \quad f(b g)=\delta^{-1 / 2}(b) x_{\vec{z}} \rightarrow(b) \operatorname{tcg}\right)\right\} \\
& \begin{array}{l}
\text { Since } B k=G, \quad(B=B \text { ovelgp: Uprev } \\
\text { triongulaal })
\end{array} \\
& \text { dim } I(\vec{z})^{k} \times 1: \quad t(g)=t(s k)=(\delta x)(s) t(1)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum p^{d-i} p^{i-\frac{d+1}{2}} z_{i}=p^{\frac{d-1}{2}}\left(z_{1}+2+z_{d}\right) \lambda_{1} \\
& \left(A_{2} f_{z}\right)(\imath)=\sum_{i<j} f\left(1\left(\begin{array}{ccc}
1_{1} & p * \Delta * * \\
& 1 & \Delta * * \\
& & p_{*} \\
& & 1
\end{array}\right)\right)= \\
& \text { ingolj now } \\
& =\sum_{i<j}^{p^{d * i-1+d+j} p^{i-\frac{d+1}{2}+j-\frac{d+1}{2}} z_{i=} z_{i j}} \\
& =p^{d-2} \sum_{i<j} z_{i} z_{j} \\
& \lambda_{k}\left(A_{k} f \vec{z}\right)(1)=p \frac{k(d-k)}{2} \sigma_{k}(\vec{z})
\end{aligned}
$$

symmetric polynomial
Definition The Heck algebra $\stackrel{1}{\sim}$ \&f G (w.r.t. K) is

$$
\begin{aligned}
& C_{c}\left(k^{G} / k\right) \\
& \text { with }\left(f^{\prime} f^{\prime}\right)(g)=\int_{G} f_{(x)} f^{\prime}\left(x^{-1} g\right) d x
\end{aligned}
$$

If V is a rep, of G, then V^{k} is a rep, of it (Analog of gp-algebra)
If $l \in H, v \in V^{k}$ the action is $\quad \ell=\int_{G} \ell(g) g v d s$
1_{k} is identity; assuming $\mu_{k}(k)=1$
Haar measure on G

We actually studied 1-1:
We studied G-equivariont opes on G/k compoifion,

Nope $\mathrm{kgk} \quad \mathrm{C} v \in V^{k}$ was defined by dexomporing i

$$
\begin{aligned}
& k_{g} k=H s_{i} k \\
s_{0}, & k_{g} k v
\end{aligned}=\varepsilon_{s i v} .
$$

Nou, $1_{\text {kgk } v}=\int_{G} 1_{\text {kgkc }}(x) x v d x$

$$
=\int_{\operatorname{kgk}} x v d x=\sum \int_{\text {sik }} x r d x
$$

$$
=\sum \int_{k} s_{i} \ddot{k}_{v i} d x=\sum \int_{k} s_{i} d k=
$$

Cartan

$$
\sum_{\mu}^{\bar{m}(k)} s_{i} v=\sum s_{i} v
$$

We saw $H_{0}=\mathbb{O} K\left(p^{\lambda}\right)_{k}=\mathbb{C}\left[A_{1}, \ldots, A_{d-1}\right]$

$$
\text { where } A_{j}=k\left[\begin{array}{c}
1_{1}{ }_{1} p_{p \rho} \\
L_{j}
\end{array}\right) k
$$

Now, the atron of $l \in 1 t$ on $I\left(2^{3}\right)^{k}$ is determined.
We saw (Geltand trick) 1t is commutative, so, every irr, © H-rep is 1-dim (use schar's lemmal) so $I(\vec{z})^{k}$ are irn. 1 t-rees
(®) Unitaly - this is easier, and sufflees

From principal series, we got for evens $\vec{z} \in\left(C^{x}\right)^{d}$ a 1 -dim hep $I(\vec{z})^{k}$ with str. hon.

$$
\begin{gathered}
P_{z}: N \rightarrow \operatorname{End}_{\mathbb{C}}\left(I(\vec{z})^{k}\right)=\mathbb{c} \\
A_{j} H p^{\frac{j(d-j)}{2} \cdot \sigma_{j}(\vec{z})}
\end{gathered}
$$

keeping the \vec{z} ar parameters, we get

$$
\begin{aligned}
& \operatorname{siH} \rightarrow \mathbb{C}\left(\mathbb{C}^{* d}\right) \\
& a_{c}+u a l l y, A: H \rightarrow \mathbb{C}\left[z_{1}, \rightarrow z_{d}\right]
\end{aligned}
$$

Take $\tilde{G}=G l_{d}(Q p)$

$$
\begin{aligned}
& k^{2}=\operatorname{GL}(\theta) \\
& \tilde{i}^{*}=C_{c}\left(\tilde{k}^{*} \mid \sigma_{k}{ }_{k}\right) \\
& I(\vec{z})=I_{\text {nd }}^{\vec{B}} \vec{G}^{2} x_{z} \rightarrow d_{i}=A_{i} t_{\vec{z}(\vec{j})} \frac{i(d-i)}{2} \cdot \sigma_{i}(\vec{z}) \\
& 1=\mathbb{C}\left[A_{1}, A_{d-1}, A_{d}, A_{d}^{-1}\right] \\
& p^{I} \quad \hat{p}^{-1} I
\end{aligned}
$$

hate: $\left.\quad k^{\left(p_{p_{p}}\right.}\right)_{k}=p k$

$$
\begin{aligned}
& A_{d} f_{\vec{z}}=z_{1} z_{2}-z_{d}=\sigma d\left(\overrightarrow{z^{\prime}} \text { a up to sone tador } p^{l}\right. \\
& A_{d}^{-1} f_{\vec{z}}=\left(p^{2} z_{1}-z_{d}\right)^{-1}
\end{aligned}
$$

It is still commutative; the new lems. ane ike the center, we got pint $\rightarrow \mathbb{C}\left(z_{1}, z_{d}\right) \quad$ (rational tundions)

Clam $14 \rho i \tilde{n}_{-1} \rightarrow \mathbb{C}\left[z_{1}, z_{d}, \frac{1}{z_{1}-z_{d}}\right]^{\text {sym }(d)}$
(fundamental sym polynomials generate all symmen polys)

$$
=\mathbb{C}\left[z_{1}^{ \pm 1}, z_{d}^{ \pm 1}\right]^{5,2 m(d)}
$$

Claim(2) : That is an fomorphish.

$$
\tilde{H}_{1}=\mathbb{C}\left[A_{1}, A_{d}, A_{d}^{-1}\right] \longrightarrow \mathbb{C}\left(z_{1}, \ldots z_{d}, \sigma_{1}\left(\overrightarrow{z^{3}}\right)^{-1}\right]^{5 y_{4}(d)}
$$

$\hat{x_{i} t \rightarrow A_{i} ; \text { into - Since they generate a tree algesta }}$ $\mathbb{C}\left[x_{1} \rightarrow x_{d}, x_{d}-1\right]$

Compose the maps $x_{i} H p^{m} \sigma_{i}(\vec{z})$
B, the Fund. then, ot symun polynomials.

It an iso decomposes through two epinorplisms they are iso. the selves
$\operatorname{corri} 1 \sim_{n}^{n} \mathbb{C}\left[z_{1}^{ \pm 1} \rightarrow z_{d}^{ \pm 1}\right] 54 \mathrm{~m}$
Satalce isomorphism Sym. Laurent polynomials

Next week: we show that every k-spherical hep $\left(v^{k} \neq 0\right)$ is priv. series

FROM EXPANDER GRAPHS TO RAMANUJAN COMPLEXES - JUNE $4^{\text {th }}, 2018$

We had

$$
G=G L_{d}\left(\mathbb{Q}_{p}\right) ; K=G L_{d}\left(\mathbb{Z}_{p}\right)
$$

For every $z_{1}, \ldots, z_{d} \in\left(\mathbb{C}^{*}\right)^{d}$ we defined $I(\vec{z})=\tilde{\sim} \tilde{I n d}_{B}^{G}(\chi \vec{z})$ where B is the upper triangular in G. We also saw that $\operatorname{dim} I(\vec{z})^{K}=1$, denote $\langle v\rangle=I(\vec{z})^{K}$ and then

$$
A_{j} v=p^{\frac{j(d-j)}{2}} \sigma_{j}(\vec{z}) v
$$

We denoted by \mathcal{H} the Hecke Algebra defined as

$$
\mathcal{H}=H_{G}^{K}=C_{c}(K \backslash G / K)=G-\text { inv branching ops. on } G / K
$$

Whenever $G \curvearrowright V$ then $\mathcal{H} \curvearrowright V^{K}$ and $\varphi v=\int_{G} \varphi(g) g v d g$ and 1_{K} is the identity in H. We saw that $\mathcal{H}=$ $\mathbb{C}\left[A_{1}, \ldots, A_{d}, A_{d}^{-1}\right]$.

Theorem 1. (Satake) $\mathcal{H} \cong \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right]^{\text {sym }}$.
Claim 2. If V is a - G irreducible representation, then $V^{K} \neq 0$ (V is K-spherical).
Thus $V \cong I(\vec{z})$. If $X=\Gamma \backslash \mathcal{B}$, then $X^{0} \cong \Gamma \backslash G / K$ and $L^{2}\left(X^{0}\right) \cong L^{2}(\Gamma \backslash G)^{K}=\oplus V_{i}^{K}$.

Small interlude:

Claim 3. For $K \leq \leq_{\text {compact }} G$ and open, If V is K spherical, irreducible of G, then V^{K} is irreducible (As \mathcal{H} representation). Also V^{K} determines V.

Proof. V irr. rep. Let $W \leq_{\mathcal{H}} V^{K}$. Take $0 \neq w \in W$,

$$
\forall v \in V: v=\sum \alpha_{i} g_{i} w
$$

if $v \in V^{K}$, then

$$
\begin{aligned}
v & =1_{K} v=1_{K} \sum \alpha_{i} g_{i} w=\sum \alpha_{i} 1_{K} g_{i} w \\
& =\sum \alpha_{i} 1_{K} g_{i} 1_{K} w=\sum \alpha_{i} 1_{K g_{i} K} w \in W
\end{aligned}
$$

Thus $W=V^{K}$.
Let V_{1}, V_{2} irreducible $, T: V_{1}^{K} \xrightarrow[\mathcal{H}]{\cong} V_{2}^{K}$. Define $W=\left\{(v, T v) \mid c \in V_{1}^{K}\right\} \subseteq V_{1}^{K} \times V_{2}^{K}=\left(V_{1} \times V_{2}\right)^{K}$. Also define $U=\langle W\rangle_{G}$. Claim: $U^{K}=W$ (This is an exercise similar to the first part). But from here we get $U \neq V_{1} \times 0,0 \times V_{2}, 0, V_{1} \times V_{2}$, and thus $V_{1} \cong V_{2}$ (Schur up to semi-simplicity).

Back to $K=G L_{d}\left(\mathbb{Z}_{p}\right)$. We have a correspondencre

$$
\{K-\text { spherical } G-\text { irr. rep. }\} \Longleftrightarrow\{\mathcal{H}-\text { characters, } \chi: \mathcal{H} \rightarrow \mathbb{C}\} \Longleftrightarrow \operatorname{Hom}_{\text {ring }}(\mathcal{H}, \mathbb{C})
$$

Let us understand the homomorphisms of the form $\mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{d}^{ \pm}\right]^{\text {sym }} \rightarrow \mathbb{C}:$ they depend only on a set $\left\{z_{1}, \ldots, z_{d}\right\} \in\left(\mathbb{C}^{*}\right)^{d}$ by the choice $x_{i} \mapsto z_{i}$. Now for all such homomorphisms, $I(\vec{z})$ gives V^{K}, \mathcal{H}-rep with this hom. By Claim 3, the irr. rep. we started with is $\cong I(\vec{z})$.

Corollary 4. $L_{2}\left(X^{0}\right)=\oplus I(\vec{z})^{K}$. We call z_{1}, \ldots, z_{d} the Satake parameters if the irr. rep.
$A_{j}=1\left(\begin{array}{ccc}p & & \\ & \ddots & \\ & & 1\end{array}\right){ }_{K}$ and $\left.\operatorname{spec} A_{j}\right|_{X^{0}}=\left\{p^{\frac{j(d-j)}{2}} \sigma_{j}(\vec{z})\right\}$. If $A d j$ is the adjacency matrix, then $A d j=$
$\sum_{j=1}^{d-1} A_{j}$.
Theorem 5. (Satake) When $G=P G L$, we have $I(\vec{z}) \leq_{\text {weakly }} L^{2}(G)$ iff $\left|z_{i}\right| \leq 1$.
Remark 6. In this case $I(\vec{z}) \leq_{\text {weakly }} L^{2}(G) \Longleftrightarrow I(\vec{z}) \in \bigcap_{\epsilon>0} L^{2+\epsilon}(G)$.
So X is Ramanujan on vertexes when $\left|z_{i}\right|=1$ for all \vec{z} in the sum $L_{2}\left(X^{0}\right)=\oplus I(\vec{z})^{K}$.

AdElE'S

$\hat{G}=$ unitary dual $=\left\{\right.$ cont. hom $\left.: G \rightarrow S^{1}\right\}$. E.g.

$$
\begin{aligned}
\hat{\mathbb{R}} & =\left\{\xi_{t}: x \mapsto e^{2 \pi i t x} \mid t \in \mathbb{R}\right\} \cong \mathbb{R} \\
\hat{\mathbb{Z}} & =\left\{\xi_{\alpha}: n \rightarrow \alpha^{n} \mid \alpha \in S^{1}\right\} \cong S^{1} \\
\hat{S^{1}} & =\left\{\alpha \mapsto \alpha^{n} \mid n \in \mathbb{Z}\right\} \cong \mathbb{Z} \\
\hat{\mathbb{Z} / n} & \cong \mathbb{Z} / n
\end{aligned}
$$

the main question is $\hat{\mathbb{Q}}=$? where \mathbb{Q} is with the discrete topology. We can take all characters through \mathbb{Q}_{p}, meaning $\mathbb{Q} \rightarrow \mathbb{Q}_{2} \rightarrow S^{1}$.

Addles

$$
\begin{aligned}
& \hat{G}=\left\{x: G \rightarrow 5^{1} \text { cont. }\right\} \\
& \mathbb{R} \cong \mathbb{R} \quad x_{(x)}=e^{2 \pi i x} \quad \in x_{\infty} \\
& x_{y}(x)=x_{(y)}=e^{2 \pi i y} \quad \in x_{\infty}, y \text { ènaines }
\end{aligned}
$$

for a top-ring, $\vec{R}^{R^{R t}}$ is an $k-406 b y$

$$
(r x)\left(r^{\prime}\right)=x\left(r-r^{\prime}\right)
$$

A top-ring is sett dual
it \hat{R} is a free R-hod of rank 1

$$
\text { ie, } \exists x \in \hat{R} \text { st. } \hat{R}=\{x ; x+x(y x) \mid y \in R\}
$$

We san $\hat{e}=51$

$$
\begin{aligned}
& \hat{s^{n}}=\mathbb{z} \\
& \hat{e_{h}} \cong e_{1 h} \quad \text { Eth } \cdot \text { dual }
\end{aligned}
$$

Take the discrete topoleg, on $\mathbb{Q}: \hat{Q}=$? we can oftain Characters is

$$
\begin{aligned}
& a \longrightarrow a^{\longrightarrow} \xrightarrow{x_{\infty}} a_{1} \xrightarrow{x_{n}} \\
& \qquad a_{3} x_{1}
\end{aligned}
$$

For examples a char. i

$$
\begin{gathered}
\exists!x: Q \rightarrow 5^{n} \text { sit } \\
x\left(\frac{a}{2^{h}}+\frac{c}{d}\right)=e^{2 \pi i\left(\frac{a}{2 h}\right)} \\
(2 x a, c, d)
\end{gathered}
$$

This x Gesn't bone tron \hat{A}

Clang Q_{p} is set dual!
Take $x_{p}\left(\sum_{h=N_{0}}^{\infty} a_{n} p^{n}\right)=e^{2 \pi i \alpha "}:=$

$$
e^{2 \pi i}\left(\sum_{n=r_{0}}^{-1} a_{n} p^{n}\right) \quad\left(s_{0}: x_{p}\left(\mathbb{Z}_{p}\right) \equiv 1\right)
$$

note x_{p}, as defined, factors through

$$
Q_{p} / a_{p} \equiv e\left(\frac{1}{p}\right) / e^{e^{2 \pi i}} s^{1}
$$

(Continues - Clearly)
Claim

$$
\begin{aligned}
\hat{\theta}_{p}= & \left\{x_{p-\alpha} \mid \alpha \in Q p\right) \\
& x_{p, \alpha}(\beta)=x p(\alpha \beta)
\end{aligned}
$$

R1 Sony $x \in \hat{Q}_{p} . B_{y}$ continuity, for large,

$$
\begin{aligned}
& x\left(p^{k} e_{p}\right) \subseteq B_{1,10}(1) \\
& \text { but } p^{k} Z_{p} \text { is a } g p \Rightarrow x\left(p^{k} e_{p}\right) \text { is a gp. } \\
\Rightarrow & x\left(p^{k} Z_{p}\right) \equiv 1
\end{aligned}
$$

Take minimal such k.

$$
\text { dow, } x^{\prime}=x_{0} p_{1}^{k}, x^{\prime} / e_{p}=1, x^{\prime}\left(\frac{1}{p}\right) \neq 1
$$

$\left(\left(w_{p}\right)^{p}=1\right) \quad \Rightarrow x^{\prime}\left(\frac{1}{p}\right)=w_{p}^{a_{1}}$ for sone $a_{q}=1>p-1$

$$
x_{1}^{\prime}\left(\frac{1}{p_{2}}\right)=w_{p^{2}} a_{2} \quad a_{2} \cdot \operatorname{nod} p=a_{1}
$$

$X^{\prime}\left(\frac{1}{p^{n}}\right)=w_{p^{n}} a_{2} \quad a_{n} n_{n o d} p^{n-1}=a_{n-1}$
So that $\alpha=\operatorname{lin} a_{4} \in \mathbb{Z}_{p}^{x}$
Check: $x_{p, p^{\prime k} u}=x$
(hate $Q_{p}^{*}=p^{2} \cdot \mathbb{Z p}^{x}$)

$$
Q \longleftrightarrow Q_{p: \infty} \xrightarrow{x_{p}} 5^{1}
$$

We can atso multip's chaves

$$
\begin{gathered}
a \xrightarrow[x_{2} \cdot x_{\infty}]{\longrightarrow} s^{1} \\
\left(x_{2} x_{\infty}\right)\left(\frac{a}{2^{n}}+\frac{b}{c}\right)=e^{2 \pi i\left(\frac{a}{2^{n}}+\frac{a}{2^{n}}+\frac{b}{c}\right)}
\end{gathered}
$$

Dewote1 $P=\{\infty, 2,3,5 ; 7, \ldots\}$
So we havel

$$
\hat{Q} \geq \bigcup_{\substack{s \in 1 \\ 1 s 1<\infty}} \prod_{p i s} \hat{Q}_{p}
$$

Howeven, $x^{*}:=\prod_{p=\infty} x_{p} ; x \in \hat{Q}$
Welt definedi $x(r)=x\left(\frac{a_{2}}{2^{m_{2}}}+\frac{a_{3}}{3^{m_{3}}}+\cdots+\frac{a_{p_{0}}}{p_{0}^{m} p_{0}}\right)=$
Decomposer

$$
\left.\begin{array}{l}
\left(e^{2 \pi i}\right) \frac{\pi}{p_{i} p_{0}} e^{2 \pi i}\left(\frac{a_{p}}{p_{p}}\right)
\end{array}=-\frac{a_{p_{0}}}{p_{0} m p_{0}}\right) .
$$

So Le Were klong: Turns out $x=x_{\infty, 2}$
Howeven $x_{\infty, 7} \cdot \prod_{p<\infty} x_{p, p}$ doepn't some thom finite products.

For any eequence $\left(a_{\infty}, a_{2}, a_{3}, \ldots\right) \in \Pi_{p \leqslant \infty} a_{p}$ we try to deline

$$
X_{Q, \alpha}=\prod_{p i \infty} X_{p,} a_{p}
$$

Take $x_{Q, \alpha}(1)=\prod_{p ; \infty} x_{p, a_{p}(1)}$
We went to construct an example Where，evaluating for every rational，we get a finite product，but of unbounded bung th．

Point If ape \mathbb{Z}_{p} tor almaty all，then

$$
t_{Q, \alpha} \text { is well-defined: }
$$

$$
\begin{aligned}
& \partial_{p o} \forall_{p} p_{p} \\
& a_{p} \in \mathbb{Z}_{p} \wedge r \in Z_{p} x_{a, \alpha}(r)
\end{aligned}=\pi x_{p, a_{p}(r)}=\pi x_{p}\left(a_{p} r\right)=
$$

\Rightarrow for any $\alpha \in \prod_{p: \infty} Q_{p}$ I．t，$\alpha \in Z_{p}$ almost always We got $\quad x_{a, 2} a \rightarrow 5^{\circ}$

These are the aretes：

$$
A=\prod_{p: \infty} \hat{Q_{p}}
$$

$\left[\begin{array}{c}\text { Exevilse for amy other } \alpha, \exists q \in a \text { sit，the } \\ \text { infinite prod does not corronge } \Rightarrow \\ \text { kos welt defined．}\end{array}\right]$

$$
\begin{aligned}
x_{\alpha}(r) & =x_{\infty, a_{\infty}}(-r) \prod_{p_{\infty}} x_{p, \alpha_{p}}(r) \\
& =x_{\infty}\left(-\alpha_{\infty} r\right) \cdot \prod_{p_{\infty}} x_{p}\left(\alpha_{p} r\right)
\end{aligned}
$$

Claim the following seq，is exact．

$$
\Lambda \longrightarrow Q \longrightarrow A \longrightarrow \hat{Q} \rightarrow 1
$$

（embedded diagonally in TQ⿰⿱⿰㇒一大口阝 $)\left(\alpha_{\infty}=\alpha_{2}=-\mathcal{Q}\right)$

If $\alpha \in a$ then

$$
X_{\alpha}(r)=x_{1}(\alpha) \text {, and }\left.z_{1}\right|_{a} \equiv 1
$$

notes If $r \in Q$ then

$$
\left.x_{1}(\leftrightarrow)=e^{2 \pi i\left(-r+\sqrt{a_{2}} \frac{2^{m}}{m_{2}}++\frac{a_{p_{0}}}{p_{0} m_{p_{0}}}\right.}\right)=1
$$

$\left[\right.$ Home work If $\alpha \notin Q$ flag then $X_{\alpha} \mid a \neq 1$]
What about A? A is selt-dual!
For $\alpha \in A$, define $x_{\alpha} \in \hat{A}$ by " $\left.\alpha \beta\right)_{p}$

$$
x_{k}(\beta)=\prod_{p s_{\infty}} x_{p}\left(\overrightarrow{\alpha_{p} \beta_{p}}\right)
$$

this is a thine prod, since $\alpha, \beta \in \mathbb{A}$.
(We claim that all chars ave of this type.)
It's dear thant A A A
This mapping is also infective If $x \in \hat{A}$,
consider $N / a_{p} \leftrightarrow A \in Q_{p}$
$\Rightarrow X Q_{Q_{p}}=x p, t p$ (ike alreadyluow they ane it A Lis bon in)
(4) Almost all ap are integral (by continuity)
(2) $x=x_{2}$
we got $\tilde{A} \approx A$,
What about $\widehat{Q 1 / A}$?

$$
\begin{aligned}
Q^{A^{A}} & =\left\{x_{\in} \hat{A} \mid x_{a} \equiv 1\right\} \\
& =\left\{x_{k} \in A\left|x_{2}\right|_{a} \equiv 1\right\}
\end{aligned}
$$

"Generalized Functions" Vol 6 - Geltand ex. al

$$
\Rightarrow\left\{x_{2} \in A \mid \alpha \in Q\right\}=\hat{Q}
$$

check!
$\Rightarrow B_{y}$ Pontryagin duality!

$$
\hat{Q}=\hat{Q}{ }^{A}
$$

1) (4)
disinter
co -compact

If $[0,1] \times \pi_{p<\infty} 2$, is a fund. doinain tor a in A since $\alpha=\left(\alpha_{\phi}, \alpha_{2}, \alpha_{3}, \alpha_{p m}, \frac{\alpha_{p L_{n}+n}-\infty}{}\right)$
$+\left(-\alpha_{p m}\left(\bmod p_{n}\right)\right)$

$$
\begin{aligned}
& +\left(-\alpha_{p_{m}}\left(\bmod p_{m}\right)\right) \\
& + \\
& +\left(-\left(\alpha_{\infty},\right)\right.
\end{aligned}
$$

Normalize the Haar measure

$$
\mu\left((0,1) \times \pi e_{p}\right)=1
$$

Topology on A| Aeighbortoods of 0 :
$(-\varepsilon, \varepsilon) \times \pi_{p=0} p^{m p} \cdot \mathbb{E}_{p}$ siti almost all $m_{p}=0$
NTSI If $q_{n} \rightarrow 0($ in this top $)$, then $q_{n} \equiv 0$ for large n.

Since's

$$
\left.(ब) \cap\left(-\frac{1}{2}, \frac{1}{2}\right)\right) \times \mathbb{Z}_{p}=0
$$

(1)

$$
\text { bilk } \text { p ire - 18/06/2018 }
$$

$A=\left\{\left(\alpha_{p}\right)_{p=\infty} \mid \quad \alpha_{p} \in Q_{p}\right.$, for almost all $\left.p \alpha_{p} \in Z_{p}\right\}$

- the Adeler.

Notation' $=\prod_{p i \infty}^{\prime} Q_{p} \quad$ - The prime' denotes a Topology on $A: \mathbb{R}^{\mathbb{R}} \prod_{p s \infty} \mathbb{Z}_{p}^{u} \quad$ "hestricted product"
has product top. and is dedared open.
For $\alpha \in \mathbb{A} \alpha h$ is also declared open.
abd op x (a point) α_{2} ! ***!!!!!!!

$$
\alpha_{3}!\not * *!!!
$$

from sone point $\rightarrow \mathbb{Z}_{p}$
$2 p$
Q $\xrightarrow{\text { dias. }} \mathbb{A}$ co-cpt lattice
since $\left((-1 / 2,1 / 2) \times \pi e_{p}\right) \cap Q=\{0\}$ it is disc.

$$
\left.a l_{50,}(0,1) \times \pi \mathbb{Z}_{p}\right)+a=1 A
$$

mi Normalized Haar measure on IA Sit.

$$
m\left((0,1) \times \pi 2_{p}\right)=\mu\left(Q^{\mathbb{A}}\right)=1
$$

Weak Approximation: \forall finite $S \subseteq p^{e^{\text {primes }+\infty}}$
Q is dense in $\mathbb{T}_{p \in S} Q_{p}$
$(=) \quad a+\pi^{\prime}, a_{p}$ is cense in A)
 we are trying to simultaneously solve

$$
\begin{aligned}
& x \equiv \alpha_{2}\left(2^{n_{2}}\right) \\
& x \equiv \alpha_{p}\left(p^{n} p\right)
\end{aligned}
$$

Multiply by appropriate integers to obtain
integral equations; Use CRT; Divide by denominators to solve original equations.

If $\infty \in S$, or generally, there are norms $1 \cdot 1 p, p \in S$ we bout $x \in Q$ sit. $\forall p \in S\left|x-\alpha_{p}\right| p<\varepsilon$

Find $t_{p} \in a, p \in s$, st. $1<1 t_{p} l p$.

$$
H_{p} l_{q}<1 \quad \text { 埌 } q \neq ?
$$

take $x=\prod_{p \in s} \frac{t_{p}^{n} \alpha_{p}}{1+t_{p}{ }^{n}}$ for r large enough
[exercise! fill in ${ }^{1+t_{p}^{2}}$ the details]

Strong Approximation: Q is dense in

$$
\mathbb{A}^{p}=\prod_{p \neq l i p o}^{=} a_{p}\left(\Leftrightarrow+a_{p} \text { dense in } A\right)
$$

pt for $p=\infty$ (otherwise- somewhat move technical phot)
we show that a is deveein π^{\prime} comp $\stackrel{x}{x}$ must satisfy $\quad x \equiv \alpha_{2}\left(2^{n}\right)$

$$
\begin{array}{ll}
\forall l>p & x \equiv<\rho\left(p^{4 p}\right) \\
x \in \mathbb{Z}
\end{array}
$$

Solve using CRT.
for $p \not f_{\infty}$, read a bout it !
This is wis approx, for A^{+}.
What about A^{x} ? $S L_{d}(\mathbb{A})$? $G L_{d}(A)$?
namely: Given G (a gp. over a) ask!
is $G(Q)$ dense in $G\left(\operatorname{Ti}_{p \in S} Q_{p}\right)=\operatorname{Tis}_{p \in S} G\left(a_{p}\right)$
weal
egg. Is $1 u_{d}(a)$ cense in $S u_{d}(a)$?

$$
\text { or in } \quad \operatorname{sud}_{d}\left(k \times a_{2} \times a_{3}\right) \text { ? }
$$

Strong' Is $G(Q)$ dense in $G\left(\mid A^{p}\right)$?

$$
\begin{aligned}
(\Leftrightarrow & \left.\frac{G(a) \cdot G(a p)}{A} \text { dense in } G(A)\right) \\
& G\left(a \cdot a_{p}\right)
\end{aligned}
$$

In terms of equations: we are bating ton a matrix

$$
\begin{aligned}
& A \equiv A_{2}\left(\bmod \left(2^{n_{2}}\right)\right. \\
& A \equiv A_{p}\left(\bmod p^{n} p\right) \\
& {\left[A \in G\left(\prod_{l \geq p}(l)\right] \in\right. \text { Strong }}
\end{aligned}
$$

$\left(\begin{array}{l}\text { bee }\end{array} \quad G\left(\pi_{l>p} z_{l}\right) \neq G\left(\pi_{l^{\prime} p}^{\prime} a_{p}\right) \cap+z_{l}\right)$
Pf of s approx. for $s \alpha_{1}: S L_{2}$:

$$
\begin{aligned}
& G_{i}=\overline{S C_{2}(Q) \cdot S L_{2}\left(Q_{p}\right)} \stackrel{?}{=} S L_{2}\left(A_{A}\right) \\
& \left.G \geq\left\{\begin{array}{lll}
1 & a \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & a_{p} \\
0 & 1
\end{array}\right]\right\}=\overline{\left[\begin{array}{ll}
1 & \widehat{a}+a_{p} \\
0 & 1
\end{array}\right]}=\left\{\left(\begin{array}{ll}
1 & A \\
0 & 1
\end{array}\right)\right\} \\
& ?\left\{\left[\begin{array}{ll}
1 & 0 \\
A & 1
\end{array}\right]\right\} \\
& \forall l \quad G \geq\left\{\left[\begin{array}{ll}
1 & 0 \\
Q_{2} & 1
\end{array}\right],\left[\begin{array}{ll}
1 & Q_{2} \\
0 & 1
\end{array}\right]\right\} \\
& \Rightarrow G \geq S L_{2}\left(Q_{l}\right)
\end{aligned}
$$

As for $G L_{d}\left(A_{1}\right)-N_{0}$ strong approx!
even $G C_{1} \equiv A^{x}$ has no s.a.

This open abd is big enough
Pf! $\quad G \geq \operatorname{sLa}(S / A)$
S3 S.A. for $S C_{d}$
$A\left(\right.$ so, $\forall \alpha \in \mathbb{A}^{*} \quad \exists A \in G \quad \operatorname{det}(A)=\alpha$
since: $[{ }^{1} 1_{1} \underbrace{e^{x} a_{p}^{x} \cdot R^{x} \pi z_{l}^{x}}_{\rightarrow i A^{x}}]$
we sam a simitar argument
Cote $\overline{s u_{d}(Q) s u_{d}(\pi)} \neq \Omega_{d}(/ A)$

 then $\overline{G(Q) G(Q, \beta)}=G(X)$
S. A.
easy: linear: A, SLd
hard: quad: SU, So, Spin Ekneser, Platainor
false: cubic: ell curves

$$
Q_{>0}^{x}=z^{x}=Q^{\pi}=e_{<\infty}^{x} e^{x} A^{\infty}=2 \operatorname{di} \text { iso.thm }
$$

Since $Q_{i=\infty}^{x} 2 e^{x}=\left(\mathbb{A}^{\infty}\right)^{x}, \quad Q^{x} \cap \pi \mathbb{C}^{x}=\mathbb{Z}^{x}$
(take $d=1, p=\infty$, in
(We raw: $Q^{x} \mathbb{R}^{x} T \mathbb{R}^{x}=A^{x}$))

$$
\begin{aligned}
& \mathbb{Q}_{p^{x}} \stackrel{\mathbb{C}_{p}^{x}}{=} \times(p) \\
& \pi e_{l}^{\pi^{\prime} Q_{p}^{x}}=\pi^{\prime}\left(\mathbb{R}_{p}^{x} Q_{p}^{x}\right)=\pi_{p<\infty}^{\prime} \mathbb{Z}
\end{aligned}
$$

T' means: trivial after some po
This is in a sense trivial $l(F D)$.

$$
\underbrace{P G L_{d}(Z)^{V P G L_{d}(Q)}}=\quad P G L_{d}\left(\pi Z_{p}\right)=\pi^{P}\left(P G G L_{d}\right)(Q \rho)
$$

rational lattices
homostety classes of

$$
=\pi T^{P G l_{d}\left(Z_{p}\right)^{P G_{d}\left(G_{p}\right)}}=\pi^{\prime} \cdot\left(B_{p}^{d}\right)^{0}
$$

trivial cosets alter $\rightarrow p{ }^{\infty}$
some pop
restriction $=$ from some polit, take the root $\left[1_{1}\right]$, of the thee

Recall：
1，1k ae गl＇e－25／06／2018

$$
\begin{aligned}
& G=P G L_{d} \\
& \hat{Z}^{\|(\otimes)} \quad \mathbb{Z}^{G(Q)}=\text { Rational lattices up to scaling } \\
& \left(A^{\infty}=\prod_{p<\infty} Q_{p}\right)
\end{aligned}
$$

＊Follows from the 2hd iso．the．：
$G(Q) G(\hat{E})=G\left(A^{\infty}\right)$－Due to strong approx．

$$
\cong \pi^{\prime} \frac{G\left(e_{p}\right)^{G\left(a_{p}\right)}}{\cdots\left(B_{d}^{p}\right)^{(0)}}
$$ and deft．computation．

Now．$G(Q) G(\mathbb{R}) G(\hat{己}) \subseteq G(A) \quad$（By strong approx） Equivalently，$\quad G(Q) G(\vec{e})=G\left(A^{\infty}\right)$

$$
\begin{aligned}
& \left.G(\mathbb{Q}) V^{G(\nmid \mathbb{A})}, G(\hat{\mathbb{E}})=G(\mathbb{Q})^{\left(G\left(A^{\infty}\right)\right.} \mathcal{G}^{(\hat{C}}\right)^{\times F(\mathbb{R}))} \\
& =G(Q) \backslash\left[G(Q) / G(Z)^{\times G(\mathbb{R})] \stackrel{\text { Claim }}{=} G(巴) \backslash G(\mathbb{R}) .}\right.
\end{aligned}
$$

diagonal action Greet
Generally $\quad \underset{G}{\text { G }}\left[G / H^{x} \dot{X}\right] \cong H^{X}$

$$
E . G . \quad G=G L_{2}(\mathbb{R})
$$

A Hecke operatorg $(\tau$ is a lattice)

$$
\left(T_{p} f\right)(\tau)=f(p \tau)+\sum_{j=0}^{p-1} f\left(\frac{\tau+i}{p}\right)
$$

for $\left.\quad f: \mathrm{sc}_{2}(\mathrm{a})^{1}\right\} \rightarrow \mathbb{C}$

$$
\begin{aligned}
& 1 H_{G C_{2}(A)}^{G L_{2}(\hat{c})} \stackrel{A C+5}{C} L^{2}\left(S L_{2}(a)^{S L_{2}(A)} / S L_{2}(\hat{e})\right)
\end{aligned}
$$

$$
\begin{aligned}
& T_{p} \rightarrow \mathbb{1}_{\left.\hat{k}(1,1,\rangle_{\rightarrow}^{1},\left[_{0}^{0} p\right], n, 1, \ldots\right) \hat{k}} \\
& G_{2}(Q p) \\
& =-\mathbb{1}(1, \rightarrow 1,(1 p), 1,1) \hat{k}+\sum_{j=0}^{p-1} \mathbb{1}(1,(p j), 1, \tau) \hat{k}
\end{aligned}
$$

$$
\text { Note that } T p \in H G_{G_{2}(X)}(\mathbb{C}) \quad G_{2}(A) \quad G_{2}(A)
$$

In plevious: $\left.\left(T_{p} f\right)\binom{u}{g}=\left(T_{p} f\right)((g, 1,1,)),\right)$
qotation.

$$
\left.=f\left((g)_{1}, 1[10 j]_{1,1},\right)+\sum_{j} f\left(C g, \rightarrow\left({ }^{p} j_{1}\right)_{1,},\right)\right)
$$

$\left[\begin{array}{l}\text { We wast t, use } G_{2}(Q) G_{2}(\hat{e}) \text { to get back to } \\ \left(s_{2}(\pi) \times 1,1, \ldots\right)\end{array}\right]$

$$
=f((1, p))(1,1, p), \cdots, I,(11, p),-)
$$

Gsing $\overrightarrow{G L}(a)$
ustong Gla(l)

$$
=t\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)_{s}\right)+\sum_{j} 4\left(\begin{array}{ll}
(1 / p & -j / p \\
0 & 1
\end{array}\right),
$$

And this is (cheek) $=T_{p}$, the classical ip. defined by Heck.

Toke $G=P S L_{d}$ or $G=P S U_{d}$

$$
\begin{aligned}
& 1=G(a))^{G(A)} / G(\hat{e} R)= \\
& B(G(Q, p))^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { We want © } 1 \text { © } G(Q) G\left(\pi_{\text {emp }} z_{l}\right)=G\left(A^{\infty}, p\right) \\
& \text { and this holds, } b_{y} \text { said. } G\left(Q_{p)}\right. \text { is hon-cpt } \\
& e_{G}(a) G\left(\sum_{i \neq p} \sum_{e}\right)=G\left(2\left(\frac{1}{p}\right)\right)-c \text { early }
\end{aligned}
$$

Jacobi Then

$$
\begin{aligned}
& a^{2}+b^{2}+c^{2}+b^{2} \equiv p \quad \Leftrightarrow P G u_{2}^{+}\left(e c_{p}^{p}\right)((2) \in \text { we Saw } \\
& a^{2}+b^{2}=1 \quad \Leftrightarrow\left|u_{1}(z)\right|=?=4
\end{aligned}
$$

easy to shan x but how to generalize the method?

Siegell Solve in 1 and for all \mathbb{E}_{p}
"p-adic density": Density of $U_{1}\left(z_{p}\right)$ in $M_{1}\left(z_{p}(i)\right)$
(ton $p=0$, take $\left.Z_{p}=\lambda\right)$
How to sonplute density $\lim _{h \rightarrow \infty} \frac{\left|u_{1}\left(\pi / p^{2}\right)\right|}{p^{r}}:=\mu_{p}$
for $p \equiv 1(\bmod 4)$ i

$$
\begin{aligned}
& p=1\left(n_{0 d} 4\right) \sum_{e_{p}^{x}} \quad e_{p} \\
& u_{1}\left(e_{p}\right) \cong G l_{1}^{\prime\left(e_{p}\right) \subseteq \mu_{1}\left(e_{p}\right) \quad u_{p}={ }^{\prime \prime} p}
\end{aligned}
$$

for $p=3(\bmod 4)$, in \mathbb{F}_{p}, take $r=1$: the only, quad. extension
 for $P=\infty:$ Definition: $\left.\lim _{\{\rightarrow 0} \frac{\left.\left\langle A \in m_{1}(C):\right| A^{*} A-1 \mid<\varepsilon\right\} \mid}{2 \varepsilon} \right\rvert\,=$ $\lim _{\varepsilon \rightarrow 0} \frac{\pi(1+\varepsilon)-\pi(1-\varepsilon)}{2 \varepsilon}=\pi$

$$
\begin{aligned}
& p_{\infty} \prod_{p \neq 2} m_{p}=\pi \cdot \prod_{p \equiv 1(4)}\left(1-\frac{1}{p}\right) \prod_{p \equiv 3(4)}\left(1+\frac{1}{p}\right) \\
& \quad=\pi \cdot \prod_{p \neq 2}\left(1-\frac{i^{p-1}}{p}\right)=\pi \cdot \prod_{p \neq 2}\left(\frac{1}{1-\frac{i p^{-1}}{p}}\right)^{-1}
\end{aligned}
$$

Euler sum/ product ${ }^{\text {Pt }}$

$$
v=\prod_{\text {odd } n}\left[\sum_{n} \frac{i^{n-1}}{n}\right]^{-1}=4
$$

we omitted $\mu_{z}=2$

$$
\text { e.0. } G=u_{c}
$$

Idea By Tamagawal $\quad G(A)$ has a unique national Haar measure.

$$
[\text { Rational }=\text { Expessible in } Q(\text { entries })]
$$

Take Some Haar measure or $G(Q)$, pr by tensoring with Q_{p} or R , get mp on G(a,p) $\forall p$ and $r_{\infty} \operatorname{on}^{G} G(\mathbb{K})$
Take $\mu_{A}=\prod_{p: \infty 0} m_{p}$
If we change m to gm for $q \in \mathbb{Q}$, M/A does not change:

$$
\text { (kuimedular) } \prod_{p i \infty}|g|_{p}=1
$$

$$
\pi \mid q_{p} \Leftarrow=1<\text { padic harms }
$$

This is galled the Tannegaina hreashbe: T Consider $\tau(G(a) \quad$ GCA) $)$
The Tamagama number of G (Trap for $d=1 \Omega, 3,4$)
b, if we knew the Tain. um for u_{d} l

$$
\tau\left(u_{d}\right)=2 \ldots
$$

and: $\left|u_{d}(\mathbb{e})\right|=d!\cdot u^{d}$

$$
\left|\left\{A^{*} A=I: A \in \mu_{d} a[i]\right\}\right|
$$

$$
\begin{aligned}
& \tau\left(u_{1}(\mathbb{Q}) \backslash u_{1}(\mathbb{A})\right)=\tau\left(u_{1}\left(\mathbb{C} \backslash^{\backslash u_{1}(\hat{e} \mathbb{R})}\right)\right. \\
& \text { - } \operatorname{Tiprim}_{1} U_{1}\left(Z_{p}\right) \\
& =\frac{\tau\left(\sqrt{u_{1}(\hat{z}) \Omega}\right)}{\left|u_{1}(己)\right|}=\frac{\pi_{(x)} \mu_{p}}{\left|u_{1}(e)\right|}=\frac{8}{\left|u_{1}(2)\right|}=2
\end{aligned}
$$

