










































































































































Ramanujan graphs and complexes - Lecture 14

December 11, 2017

Remainder LetX be aG-set. A (G-equivariant) branching operator onX is a T : X → {finite subsets of X}
such that g.T (x) = T (g.x) for all x ∈ X and g ∈ G.

• If X is transitive, we showed that all branching operators arise as follows: Fix x0 ∈ X. Define
K = StabG(x0). Choose some bi-Kinvariant set M ⊂ G, namely M is a union of double K-
cosets KgK for various g, and decomposeM as a disjoint union (define S) so thatM =

⊎
s∈S sK.

Finally, set T (x0) = {sx0}s∈S . In general T (gx0) = {gsx0}s∈S .

• Those are equivalent to Hecke graphs - Indeed, X with T as adjacency operator is the Hecke graph
of G with respect to K and S. Furthermore S is K-balanced, since KSK = KM =M = SK.

• Eventually, we want to understand double K cosets of G and their decomposition to right K-
cosets.

• When G = PGL2(Z[ 1p ]) and K = PGL2(Z) we already saw that double K cosets are the levels

in G and equal K
(

1
p`

)
K. On Tk the branching operators are union of spheres.

Going to higher dimensions In higher dimensions there are much more ranching operators.
Here are some branching operators on X3

p :

• Recall the p2 + p + 1 outgoing neighbors of the identity. We can define Tx to be the outgoing
neighbors of x. This is a minimal branching operator (it is not the union of smaller branching
operators) which is equivalent to saying that it comes from a single double coset.

• Tx = change triangle (distance 2 with respect to 1 operator ) is not minimal. There are 6 of those
vertices which can be splitted into 3 +3 which are forming two minimal branching operators. (See

Figure 1). Algebraically, this means that K

 1
1

p2

K 6= K

 1
p

p

K although

both of them are of level 2. Actually, level 2 is the disjoint union of the last 2 double cosets (See
Figure 1).

Theorem 0.1. (Cartan decomposition) G =
⊎
K


pn1

pn2

pn3

. . .
pnd

K , where the union

is over 0 = n1 ≤ n2 ≤ . . . ≤ nd. In particular in PGL3, the l-th level is composed of (1+bl/2c)-double
K-cosets. Can decompose Al (the vertices at distance l) is a union of those branching operators.
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Proof. Let g ∈ PGLd(Z[ 1p ]). We need to get to


pn1

pn2

pn3

. . .
pnd

 with n1 = 0 , ni ≤ ni+1

by applying K from the right and from the left. Then, we need to show that there is a unique choice
of n1, . . . , nd to which we can arrive by such action. Scale g to be integer and primitive. There exists
i, j such that p does not divide gij . Apply Euclid to the row of gij and get

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
1 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗


Apply column operations to the first column and get

1 0 0 0 0 0 0
0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗


=

(
1 0
0 B

)
.

Write B = pn2C with C primitive and continue by induction.

Exercise 0.2. Show that this is a disjoint union.

So far we only talked about operators on vertices. One can also talk about operators on cells in general.
For λ = (0 = λ1 ≤ λ2 ≤ . . . ≤ λd) define Tλ to be the branching operator associated with

K


pλ1

pλ2

pλ3

. . .
pλd

K.

Any branching operator on Xd
p is a union of these branching operators.

Theorem 0.3. Surprising fact: all branching operators on Xd
p commute.

For a graph we saw that every branching operator is a (Chebyschev) polynomial in A and all
polynomials in a given operator commute.

Proof. Enough to prove for Tλ and Tµ. The statement is equivalent to showing that

K(pλ)K(pµ)K = K(pµ)K(pλ)K. (0.1)

(This follows from the fact that we have the correspondence X → G/K given by X 7→MK/K, where
M ⊂ G such thatMx0 = S. In this case Tλ(x0) = {sx0}s∈Sλ whereK(pλ)K =

⊎
s∈Sλ sK. TλTµ(x0) =

Tλ({sx0}s∈Sµ = {stx0}t∈Sλ,s∈Sµwhich is mapped to K(pµ)K(pλ)K/K. In the other direction, taking
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a family of cosets R ⊂ G/K observe the subset of X defined by Rx0. Then, K(pλ)K(pµ)Kx0 is a
Tλ-neighbor of a Tµ-neighbor of x0. We used here the fact that (pµ)Kx0 is one Tµ neighbor of x0 and
that K(pµ)Kx0 are all Tµ neighbors of x0. Therefore

TλTµ = K(pλ)K(pµ)K = K(pµ)K(pλ)K = TµTλ.

Turning to prove (0.1) we use a trick of Gelfand. First observe that (K(pλ)K)t = Kt(pλ)tKt =
Kt(pλ)Kt = K(pλ)K. Here we already used Cartan’s result. Similarly,

(K(pλ)K(pµ)K)t = K(pµ)K(pλ)K.

On the other hand, the left handK(pλ)K(pµ)K is a union of doubleK-cosets, so it is
⊎m
i=1K(pνi)K

and we got that

(K(pλ)K(pµ)K)t =

( m⊎
i=1

K(pνi)K

)t
=

m⊎
i=1

(K(pνi)K)t =

m⊎
i=1

K(pνi)K = K(pλ)K(pµ)K

and all together we get (0.1).
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Ramanujan graphs and complexes - Lecture 16 - December 24

December 30, 2017

Remainder - Hecke operators The Hecke operators of Bd = Xd
p is the subalgebra of locally finite

G-equivariants operators on vertices T : B0 → 2B
0

(as a subalgebra of Lin
(
L2

(
B0

))
). We have

H = SpanC

(
G− equivariant branching
operators acting on L2

(
B0

) )
= SpanC{KgK : g ∈ G}.

Using Cartan, we also saw that this is the same as

⊕0=λ1≤λ2≤...λd
C ·K(p

−→
λ )K

and last week we saw that A1 . . . , Ad generate those, i.e.

H = C{A1, . . . , Ad−1}.

By Gelfand we know that
H = C[A1, . . . , Ad−1]

and in fact we have the following result:

Theorem 0.1. (McDonald?, Satake?) C[A1, . . . , Ad−1] ∼= C[x1, . . . , xd−1].

Higher dimensions Change K. Take σ ∈ B(j). Then Gσ ⊂ B(j) . For PGL2,3 the group acts
transitively on each dimension. In higher dimensions, it does not. Take X = Gσ. To study G-
equivariant branching maps on X, we need to understand the action of Kσ-double cosets on Kσ-left
costes (G/Kσ

∼= Gσ = X), where Kσ = StabG(σ). We can take σ to be to be a set (cell), ordered
set, pointed cells (cells with a chosen vertex), etc.... Every choice for the structure of σ gives different
orbits and different stabilizers.

G = PGL2 with Ke = StabG(directed edge from 1
p

to 1
1

) this is the same as oriented,

pointed and ordered edge (but not as set of vertices). In this case B(1) = Ge. Example of G-
equivariant branching operator B(1) = Tp+1 is T (e0) = Ke0e, where e0 is the directed edge above.
(This is in fact the general thing up to union of such things). For example, if we take T (e0) =

Ke0 ·
(
directed edge from 1

1
to p

1

)
and denoting this edge by e

(
p

1

)
e←−

(
1

1

)
e0←−

(
1

p

)
↙(

p 1
1

)
...(

p p− 1
1

)

1



T (e0) =

{((
p j

1

)
,

(
1

1

))
: j = 0. . . . , p− 1

}
= {e : orig(e) = term(e0), e 6= flip(e0)} .

T (e) = . . . = {e′ : orig(e′) = term(e), e′ 6= flip(e)} .

This is a non-backtracking condition.

Note that T is not normal. Indeed T ∗Te0 contains
(
p 1

1

)
→

(
1

p

)
and TT ∗e0 does not.
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Ramanujan graphs and complexes - Lecture 17 - December 25

December 30, 2017

Remainder We were looking on G-equivariant branching operators on X, where G = PGLd(Z[ 1p ]),
K = PGLd(Z) and G/K ∼= B(0).

For different X, change K. For example G = PGL2(Z[ 1p ]), K = PGL2(Z) = StabG(v0 =(
1

1

)
) and G � X2

p = Tp+1 . To study ranching operators on edges, not that G � B(1) transitively,

thus B(1) ∼= G/Ke, where Ke = StabK(e).
Then, equivariant branching operator on B(1) corresponds to double Ke cosets.
E.g. T (v, w) = {(w, u) : u 6= v}. This is known as the non-backtracking walk operator. We saw

that T is not normal and that Hecke operators do not commute any more.
Another example is T (v, w) = {(w, v)} which is the flipping operator.

Understanding branching operators algebraically e∞ :

(
1

p

)
→
(

1
1

)
. We know

that there exists S such that Ke∞SKe∞ = ]s∈SsKe∞ and T (e∞) = (se∞)s∈S .

Claim 0.1. Ke∞

(
1

p

)
Ke∞ =

⊎p−1
j=0

(
p j

1

)
Ke∞

Proof.
(
p j

1

)
Ke∞e∞ =

(
p j

1

)
e∞ =

[(
p j

1

)(
1

p

)
→
(
p j

1

)(
1

1

)]
=

[(
p jp

p

)
→
(
p j

1

)]
/K
=[(

1
1

)
→
(
p j

1

)]
= ej , soKe∞

(
p

1

)
Ke∞e∞ = Ke∞

[(
1 0

1

)
→
(
p

1

)]
e0

⊂ {e0, . . . , ep−1},

where the last inclusion is obtained geometrically.(
1 j

1

)
∈ Ke∞(

1 j
1

)[(
1

p

)
→
(

1
1

)]
=

[(
1 pj

p

)
→
(

1 j
1

)]
= e∞

and(
1 j

1

)
e0 =

[(
1 j

1

)(
1

1

)
→
(

1 j
1

)(
p

1

)]
=

[(
1

1

)
→
(
p j

1

)]
= ej .

Ke∞ = Kv0 ∩ Kv∞ ,where v0 =

(
1

1

)
and v∞ =

(
1

p

)
. Therefore Ke∞ = PGL2(Z) ∩(

1
p

)
PGL2(Z)

(
1

p−1

)
. Since

PGL2(Z) = {A ∈M2(Z) : detA = ±1}
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and (
1

p

)
PGL2(Z)

(
1

p−1

)
=

(
1

p

)(
n m
k l

)(
1

p−1

)
=

(
n m

p

pk l

)
, det = ±1

where m,n, k, l ∈ Z satisfy nl − km = ±1. Therefore

Kv∞ =

{
A ∈

(
Z 1

pZ
pZ Z

)
: detA = ±1

}
.

For example =

(
2 1

p

p 1

)
∈ Kv∞ and

(
2 1

p

p 1

)(
1

p

)
=

(
2 1
p p

)
=

(
1 1

p

)
=

(
1

p

)
and

(
2 1

p

p 1

)(
1

1

)
=

(
p 1

p

)
.

Stabe∞ = Kv0 ∩Kv∞ =

{
A ∈

(
Z Z
pZ Z

)
: det = ±1

}
.

What happens in PGL3  1
p

p

 = v2

e1
↗ t0 ↖ 1

1
1

 = v0
e0−→

 1
1

p

 = v1

Sta(e0) =

A ∈
 Z Z Z

Z Z Z
Z Z Z

 ∩
 Z Z 1

pZ
Z Z 1

pZ
pZ pZ Z

 : det = ±1


=

A ∈
 Z Z Z

Z Z Z
pZ pZ Z

 : det = ±1


Stab(e1) =

A ∈
 Z Z Z

Z Z Z
Z Z Z

 ∩
 Z 1

pZ
1
pZ

pZ Z Z
pZ Z Z

 : det = ±1


=

A ∈
 Z Z Z

pZ Z Z
pZ Z Z

 : det = ±1


and therefore

Stab(t0) = Sta(e0) ∩ Sta(e1) =

A ∈
 Z Z Z

pZ Z Z
pZ pZ Z

 : det = ±1

 .

We saw that PGLd(Z[ 1p ]) acts transitively on B(d−1) (top cells).
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Exercise 0.2. For σ0 ∈ B(d−1), show that Stab(σ0) =





Z Z · · · Z
pZ Z
... Z

...
. . .

pZ · · · pZ Z

 : det = ±1


.

This is known as the Iwahori group of G.

An example for a branching operators on edges of B(PGL3). See illustration.

C0
δ

�
∂
C1. We saw that if G acts transitively on X , x0 ∈ X and K = StabG(x0). Then

KgK : X → 2X defined by (KgK)g′x0 = g′KgKx0 = g′Kgx0 is well defined. Indeed

(KgK)g′kx0 = g′kKgx0 = g′Kgx0.

Assume G � X, X = Gx0 ] Gx1 and denote Ki = StabGxi. Now K0gK1 defines an equivariant
branching operator Gx0 → 2Gx1 by

(K0gK1)(g
′x0) = g′K0gK1x1 = g′K0gx1.
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FROM EXPANDER GRAPHS TO RAMANUJAN COMPLEXES – JUNE 4th , 2018

We had
G = GLd(Qp) ; K = GLd(Zp)

For every z1, ..., zd ∈ (C∗)d we defined I(−→z ) =
∼
Ind

G

B(χ−→z ) where B is the upper triangular in G . We also saw
that dim I(−→z )K = 1 , denote 〈v〉 = I(−→z )K and then

Ajv = p
j(d−j)

2 σj(
−→z )v

We denoted by H the Hecke Algebra defined as

H = HK
G = Cc(K\G/K) = G− inv branching ops. on G/K

Whenever G y V then H y V K and ϕv =
∫
G
ϕ(g)gvdg and 1K is the identity in H . We saw that H =

C
[
A1, ..., Ad, A

−1
d

]
.

Theorem 1. (Satake) H ∼= C
[
x±11 , ..., x±1d

]sym
.

Claim 2. If V is a - G irreducible representation, then V K 6= 0 (V is K -spherical).

Thus V ∼= I(−→z ). If X = Γ\B , then X0 ∼= Γ\G/K and L2(X0) ∼= L2(Γ\G)K = ⊕V Ki .

Small interlude:

Claim 3. For K ≤compact G and open , If V is K spherical, irreducible of G , then V K is irreducible (As H-
representation). Also V K determines V .

Proof. V irr. rep. Let W ≤H V K . Take 0 6= w ∈W ,

∀v ∈ V : v =
∑

αigiw

if v ∈ V K , then

v = 1Kv = 1K
∑

αigiw =
∑

αi1Kgiw

=
∑

αi1Kgi1Kw =
∑

αi1KgiKw ∈W

Thus W = V K .
Let V1, V2 irreducible , T : V K1

∼=−→
H

V K2 . Define W = {(v, Tv) | c ∈ V K1 } ⊆ V K1 × V K2 = (V1 × V2)K . Also

define U = 〈W 〉G. Claim: UK = W (This is an exercise similar to the first part). But from here we get
U 6= V1 × 0, 0× V2, 0, V1 × V2, and thus V1 ∼= V2 (Schur up to semi-simplicity).

�

Back to K = GLd(Zp). We have a correspondencre

{K − spherical G− irr. rep.} ⇐⇒ {H − characters, χ : H → C} ⇐⇒ Homring(H,C)

Let us understand the homomorphisms of the form C
[
x±1 , ..., x

±
d

]sym → C : they depend only on a set
{z1, ..., zd} ∈ (C∗)d by the choice xi 7→ zi. Now for all such homomorphisms, I(−→z ) gives V K , H-rep with this
hom. By Claim 3, the irr. rep. we started with is ∼= I(−→z ).

Corollary 4. L2(X0) = ⊕I(−→z )K . We call z1, ..., zd the Satake parameters if the irr. rep.
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FROM EXPANDER GRAPHS TO RAMANUJAN COMPLEXES – JUNE 4th , 2018 2

Aj = 1

K


p

. . .
1

K
and specAj |X0 =

{
p

j(d−j)
2 σj(

−→z )
}
. If Adj is the adjacency matrix, then Adj =

∑d−1
j=1 Aj .

Theorem 5. (Satake) When G = PGL, we have I(−→z ) ≤weakly L2(G) iff |zi| ≤ 1.

Remark 6. In this case I(−→z ) ≤weakly L2(G) ⇐⇒ I(−→z ) ∈
⋂
ε>0 L

2+ε(G).

So X is Ramanujan on vertexes when |zi| = 1 for all −→z in the sum L2(X0) = ⊕I(−→z )K .

Adele’s

Ĝ = unitary dual = {cont. hom : G→ S1}. E.g.

R̂ = {ξt : x 7→ e2πitx | t ∈ R} ∼= R

Ẑ = {ξα : n→ αn | α ∈ S1} ∼= S1

Ŝ1 = {α 7→ αn | n ∈ Z} ∼= Z
ˆZ/n ∼= Z/n

the main question is Q̂ =? where Q is with the discrete topology. We can take all characters through Qp, meaning
Q→ Q2 → S1.


































