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1 The Exponential

• If f : R → R satisfies f ′ (x) = af (x), then f (x) = f (0) · eax follows from

ax =

∫ x

0

a dt =

∫ x

0

f ′ (t)

f (t)
dt =

∫ x

0

(ln f (t))
′
dt = ln f (x)− ln f (0) .

We could also try to find a power-series solution f (x) =
∑∞
k=0 ckx

k, and solve: ck = a·ck−1

k (and c0 = f (0)), hence
f (x) = f (0)

∑∞
k=0

(ax)k

k! .

• ex : R+ → R× turns addition into multiplication.
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• What if p : R → Rn satisfies p′ (t) = X · p (t) for a fixed X ∈Mn (R)? We can try to find a power series solution of
the form p (t) =

∑∞
k=0 t

kpk (with pk ∈ Rn). We get again pk = 1
kXpk−1, so pk = Xk

k! p0, and p (t) =
∑∞
k=0

tkXkp0
k! =(∑∞

k=0
(tX)k

k!

)
p0 = etXp0, and we can check this is a solution (inside the circle of convergence we can differentiate

term by term).

• Differentiation: for A,B : R → Mn (R) (or C), (A(t)B(t))
′
= A′(t)B(t) + A(t)B′(t), which also gives A−1 (t)

′
=

−A−1 (t)A′ (t)A−1 (t) for invertible A (compare this with f−1(t)
′
= f ′(t)

f2(t) in the commutative case!)

• Frobenius norm: ∥A∥F =
√∑

i,j |aij |
2
= trAA∗ =

∑
σ∈Sing(A) σ

2. Like any norm satisfies ∥A+B∥ ≤ ∥A∥ + ∥B∥,
∥αA∥ = |α| ∥A∥, ∥A∥ ≥ 0 with ∥A∥ = 0 only for A = 0, and is also submultiplicative: ∥AB∥ ≤ ∥A∥ ∥B∥ (using
Cauchy-Schwartz).

• Thus, eX =
∑∞
k=0

Xk

k! converges for any X, and is continuous.

• Properties:

– e0 = I, eX
t

=
(
eX
)t, eY XY −1

= Y eXY −1 (by distributivity).

–
(
etX
)′

=
(∑∞

k=0
(tX)k

k!

)′
=
∑∞
k=1

tk−1Xk

(k−1)! = XetX = etXX

– f (t) = etX is the unique solution of f : R →Mn (R), f (0) = I, f ′ (t) = Xf (t).Pf: Check that
(
e−tXf (t)

)′ ≡ 0.

– If XY = Y X then eX+Y = eXeY . (not in general, i.e. ( 1 0
0 0 ) , (

0 1
0 0 )).

Exercise: X,Y commute ⇔ etX , etY commute ∀t ⇔ esX+tY = esXetY ∀s, t.

– X 7→ eX :Mn (R) → GLn (R), and
(
eX
)−1

= e−X .

– t 7→ etX : R → GLn (R) is a homomorphism.

– f (t) = etX is the unique differentiable homomorphism R → GLn (R) with f ′ (0) = X. Pf: we have f ′(t) =

Xf(t) since f(t+h)−f(t)
h = f(h)−f(0)

h f(t).

• Example: For X =
(
a b
−b a

)
, etX = eat

(
cos bt sin bt
− sin bt cos bt

)
.

• If X = P−1diag (a1, . . . , an)P , then

eX = eP
−1diag(a1,...,an)P = P−1ediag(a1,...,an)P = P−1diag (ea1 , . . . , ean)P.

Exercise: compute eX for a Jordan block X =

(
a 1

. . . . . .
a

)
. This settles computations...

• det eX = etraceX : clear for diagonalizable, which are dense in Mn (C).

• For ∥A− I∥ < 1,

logA :=

∞∑
k=1

(−1)
k−1

k
(A− I)

k

converges and satisfies

∥A− I∥ < 1 ⇒ elogA = A

∥X∥ < log 2 ⇒ log eX = X.

Pf: The diagonalizable matrices are dense in GLn, and if A is diagonalizable then ∥A− I∥2 ≤ ∥A− I∥F < 1 implies
|1− λ| < 1 for every λ ∈ Spec (A), and we use conjugation.

• Thus, exp bijects a neighborhood of 0 ∈ Mn with a neighborhood of I ∈ GLn: if U = exp
(
B̊log 2 (0)

)
then

B̊log 2 (0)
log

⇆
exp

U .
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• exp is not locally injective everywhere: We have eX = I for all X =
(

2ai 2b
−2b −2ai

)
with a2 + b2 = π2, as they are all

conjugate to
(
2πi

−2πi

)
(and C →M2 (R) turns this to an example in M4 (R)).

• Applications:

– Roots: for A ∈ U , n
√
A := e

1
n logA is an n-th root of A in U , and it is the unique n-th root in exp

(
B̊ log 2

n
(0)
)
.

– Every continuous homomorphism R → GLn (C) is of the form t 7→ etX .

• Trotter-Lie Formula (First take on failure of exp to be homomorphism): eX+Y = limm→∞

(
e

X
m e

Y
m

)m
.

– log (I +A) = A+O
(
∥A∥2

)
as ∥A∥ → 0. More concretely, for ∥A∥ ≤ 1

2

∥log (I +A)−A∥ ≤ ∥A∥2
(
1

2
+

∥A∥
3

+
∥A∥2

4
+ . . .

)
≤ ∥A∥2 log 16

e2
.

– For fixed X, e
X
m = I + X

m +O
(

1
m2

)
(since

∥∥∥eX
m − I − X

m

∥∥∥ ≤ e∥X∥

m2 ), hence e
X
m e

Y
m = I + X

m + Y
m +O

(
1
m2

)
.

– As e
X
m e

Y
m

m→∞−→ I, for m large enough we have
∥∥∥eX

m e
Y
m − I

∥∥∥ ≤ 1
2 , hence

log e
X
m e

Y
m = log

(
I +

(
e

X
m e

Y
m − I

))
= e

X
m e

Y
m − I +O

(∥∥∥eX
m e

Y
m − I

∥∥∥2)
=
X

m
+
Y

m
+O

(
1

m2

)
+O

(∥∥∥∥Xm +
Y

m
+O

(
1

m2

)∥∥∥∥2
)

=
X

m
+
Y

m
+O

(
1

m2

)
,

so
e

X
m e

Y
m = e

X
m+ Y

m+O( 1
m2 ) =⇒

(
e

X
m e

Y
m

)m
= eX+Y+O( 1

m ) m→∞−→ eX+Y .

2 Matrix Lie Groups

• A Matrix Lie Groups is a closed subgroup of GLn (C) (which itself embeds as a closed subgroup of GL2n (R)).

• Nonexamples: GLn (Q),
{(

e2πit

e2πiαt

) ∣∣∣ t ∈ R
}

with α ∈ R\Q.

• Examples: GLn, SLn, (unipotent) upper-triangular, R+, C+, S1, H×, H1.

• For G ≤ GLn, H ≤ GLm we have G×H ≤ GLm+n.

2.1 Classical groups

• Let V be a fin.dim. v.s. over F = R or C. A bilinear form on V is b : V × V → F (if b is fixed we sometimes write
⟨v, w⟩ for b (v, w)) which is linear in each entry. We denote

Aut (b) = {A ∈ GL (V ) | ∀v, w ∈ V : b (Av,Aw) = b (v, w)}

where GL (V ) are invertible linear transformations from V to itself. Choosing a basis for V identifies it with Fn.
Under this identification, b (v, w) = vtBw for some B ∈ Mn (F) (specifically, Bij = b (vi, vj) for a basis {vi}), and
Aut (b) corresponds to Aut (B) := {A ∈ GLn (F) |AtBA = B}. This is a matrix Lie group in GLn (F).

• We can also write Aut (B) =
{
A ∈ GLn (F)

∣∣∣A = B−1 (At)
−1
B
}

, which presents Aut (B) as the fixed points of the

involutary automorphism A 7→ B−1 (At)
−1
B of GLn (F).

• Change of basis: If we want to change our identification of V ∼= Fn to another one, this is given by v 7→ Pv

(where P ∈ GLn (F) is the “change of basis” matrix), and then B becomes P tBP . We say B and C are congruent
if they represent the same bilinear form, namely, ∃P ∈ GLn (F) with C = P tBP . In this case it is clear that
Aut (B) ∼= Aut (C) (in fact, they are conjugate subgroups of GLn (F)).
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• Note that also Aut (B) = Aut (αB) for α ∈ F×, even if B and αB are not congruent.

• b is called

– non-degenerate if ∀v ̸= 0 ∃w such that b (v, w) ̸= 0. This is equivalent to detB ̸= 0.

– symmetric if b (v, w) = b (w, v) (equivalent to Bt = B).

– anti-symmetric (or skew-symmetric) if b (v, w) = −b (w, v) (equivalent to Bt = −B).
Over char ̸= 2 this is equivalent to b (v, v) = 0 ∀v.

• One can also consider the affine isometry group of (V, b), which is Aff (V, b) = Aut (b)⋉ V , and can be considered
as a matrix Lie group in GLn+1 (F) via (A, v) 7→ (A v

0 1 ).

2.1.1 Orthogonal groups

• Sylvester: A symmetric regular B ∈ Mn (R) is congruent to diag (1×p,−1×q) for (a unique) 0 ≤ p ≤ n, called the
signature of B.
Proof (without uniqueness): Let ⟨v, w⟩ = vtBw. There exists v with ⟨v, v⟩ ≠ 0, since ⟨v, w⟩ ≠ 0 for some v, w,
which implies that one of ⟨v, v⟩, ⟨w,w⟩ or ⟨v + w, v + w⟩ must be nonzero. Now replace v with v√

|⟨v,v⟩|
, so that we

have ⟨v, v⟩ = 1 or −1. Observe that dim v⊥ = n− 1, since w 7→ ⟨v, w⟩ has rank one, and that ⟨v⟩ ∩ v⊥ = 0, so that
Rn = ⟨v⟩ ⊕ v⊥. Now check that ⟨·, ·⟩

∣∣
v⊥×v⊥ is symmetric and non-degenerate, and repeat everything again. At the

end, you will have found vectors v1, . . . , vn with ⟨vi, vj⟩ = ±δi,j , as desired.

• We denote Aut (diag (1×p,−1×q)) by O (p, q). By Sylvester, for every symmetric non-degenerate bilinear form b on
Rn, Aut (b) ∼= O (p, q) for some 0 ≤ p ≤ n (and we denote O (n, 0) = O (n)). Note that O (p, q) ∼= O (q, p) (by
Aut (B) ∼= Aut (−B)) and one can check that O (p, q) ̸∼= O (p′, q′) if {p, q} ≠ {p′, q′}.

• If A ∈ Aut (B) then det (AtBA) = detB (and detB ̸= 0) forces detA = ±1, and we define SO (p, q) =

{A ∈ O (p, q) |detA = 1}. This is a subgroup of index 2 in O (p, q) (since diag
(
−1, 1×n−1

)
∈ O (p, q), for example).

• Over C, every regular symmetric matrix is congruent to I, since in the proof of Sylvester we can even replace v by
v√
⟨v,v⟩

when ⟨v, v⟩ < 0, and thus obtain ⟨v, v⟩ = 1. There is thus a unique complex orthogonal group which we

denote by On (C), and again SOn (C) is of index 2.

2.1.2 Symplectic groups

• If B is non-degenerate anti-symmetric, then it is always congruent to Ω =
(

0 I
−I 0

)
(in fact over any F with char ̸= 2),

and we denote Aut (Ω) by Sp2n (F).

• Again detA = ±1 for A ∈ Sp2n (F) is easy, but it turns out that actually detA = 1. One way: prove that the Pfaffian
pf (A) = 1

2nn!

∑
σ∈S2n

sgnσ
∏n
i=1 aσ(2i−1),σ(2i) satisfies pf (Ω) = pf

(
ATΩA

)
= det (A) pf (Ω) and pf (Ω) ̸= 0.

2.1.3 General bilinear

• Why did we restrict to non-degenerate and (anti-)symmetric forms? In general we can always write b = bs + ba

where bs (v, w) = b(v,w)+b(w,v)
2 is symmetric and ba (v, w) = b(v,w)−b(w,v)

2 is anti-symmetric. Obviously Aut (b) ⊇
Aut (bs) ∩Aut (ba), but it turns out that this is an equality (at least in the non-degenerate case).

• b is called reflexive if b (v, w) = 0 implies b (w, v) (so ⊥ is symmetric).
Exercise: b is reflexive iff it is either symmetric or anti-symmetric.
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2.1.4 Unitary groups

For a complex vector space V , a sesquilinear (latin: one and a half linear) form on V is a form b : V × V → C which is
additive in both entries and satisfies b (αv, βw) = αβb (v, w).

• By V ∼= Cn, it corresponds to v∗Bw for some B ∈ Mn (C), and B,C are congruent if C = P ∗BP for some
P ∈ GLn (C). Now Aut (b) corresponds to {A ∈ GLn (C) |A∗BA = B}, which is a matrix Lie group in GLn (C).

• Again non-degenerate corresponds to detB ̸= 0. Assuming b is non-degenerate, it cannot be symmetric, nor
anti-symmetric, as in both cases ⟨iv, w⟩ = ±⟨w, iv⟩ forces ⟨v, w⟩ = 0 for all v, w.

• But it can be hermitian: ⟨v, w⟩ = ⟨w, v⟩, which is equivalent to B∗ = B. Any non-degenerate hermitian B ∈Mn (C)
is congruent to diag (1×p,−1×q) for a unique 0 ≤ p ≤ n: the proof is like in Sylvester, once ⟨v, v⟩ ≠ 0 we know
⟨v, v⟩ ∈ R by hermiticity, and we can replace v by v√

|⟨v,v⟩|
to get ⟨v, v⟩ = ±1. We cannot force ⟨v, v⟩ = 1 because

⟨αv, αv⟩ = |α|2 ⟨v, v⟩ always has the same sign.

• We denote Aut (diag (1×p,−1×q)) by U (p, q), and U (n, 0) = U (n).

• A∗BA = B gives |detA| = 1 (when detB ̸= 0), and SU (p, q) = U (p, q) ∩ SLn (C) is of infinite index in U (p, q).

• We don’t bother with anti-hermitian forms (⟨v, w⟩ = −⟨w, v⟩, or B∗ = −B) because if B is anti-hermitian then iB
is Hermitian and Aut (B) = Aut (iB).

• We could stay with R using C ↪→M2 (R), which would embed Mn (C) ↪→Mn (M2 (R)) ∼=M2n (R). In fact U (n) is
precisely O (2n) ∩ Sp2n (R), since i acts on R2 by Ω =

( −1
1

)
, so being complex-linear is the same as commuting

with Ω, which for A ∈ O (n) is the same as AΩAt = Ω.
In fact U (n) equals the intersection of any two out of three (and all three) among O (2n) , Sp2n (R) and the image
of GLn (C) in GL2n (R). (Is U (p, q) = O (2p, 2q) ∩ Sp2n (R) ?)

• Exercise: Sp2 (R) ∼= SU (1, 1) ∼= SL2 (R) ∼= SO (2, 1)0 (G0 is the connected component of the identity of a Lie group
G).

2.1.5 Some topology

• Compactness: (S)O (n) , (S)U (n) are compact, and also Sp (n) below.

• In a non-degenerate symmetric/anti-symmetric bilinear/hermitian space, if v, w satisfy v⊥v, w⊥w, ⟨v, w⟩ = 1 (hence
⟨w, v⟩ = ±1), then v, w are called a hyperbolic pair and the subspace Span (v, w) is called a hyperbolic plane. They
are very useful, for example:

– They allow to perform “Gram-Schmidt” - to get u which is orthogonal to v, rather then taking u 7→ u−⟨u, v⟩ v,
one takes u 7→ u− ⟨u, v⟩w.

– If such a plane exists Aut (b) is non-compact since (v, w) 7→
(
αv, 1

αw
)

(and identity on Span (v, w)
⊥) is in

Aut (b) for any α ̸= 0.

• O (p, q) , U (p, q) with pq ̸= 0, On (C), Spn (F) all contain hyperbolic plane (note
(
1
−1

)
, ( 1

1 ) are congruent even
over R), hence non-compact.

• GLn (F), SLn (F), U (n) , SO (n) are connected: in U (n) every matrix is diagonalizable (even normal) and conjugate
to diag

(
eit1 , . . . , eitn

)
, and we can build a path to it. In SO (n) we can do this with 2× 2 rotation blocks matrices

(diagonalize over C, then take
(
a+bi

a−bi
)

back to
(
a b
−b a

)
).

• For pq ̸= 0, SO (p, q) has two connected components and O (p, q) four.
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2.2 Quaternions

• Quaternions: H = {r + xi+ yj + zk | r, x, y, z ∈ R} with multiplication defined by i2 = j2 = k2 = ijk = −1 (and
R ⊆ H in the center).

• Can be written as H = C ⊕ Cj with αj = jα. Embeds in M2 (C) by H ∼=
(

α β

−β α

)
≤ M2 (C), which shows H is

associative.

• For α = r + xi+ yj + zk, its conjugate is α = r − xi− yj − zk. Exercise: αβ = βα.

• Norm: N (α) = αα = r2 + x2 + y2 + z2. It is multiplicative since αβαβ = αββα = ααββ, and it follows that H is
a division ring (α−1 = α

N(α) ). Under H ↪→M2 (C), N corresponds to det.

• H1 := {α ∈ H |N (α) = 1} is a matrix Lie group, homeomorphic to S3 (by definition of the latter).

• Exercise: The embedding H ↪→M2 (C) restricts to an isomorphism H1 ∼= SU (2).

2.2.1 Quaternions and rotations

• The pure quaternions are P = SpanR {i, j, k}. We think of (P, N) as Euclidean three-space (N coincides with ∥·∥2),
and observe that for p ∈ P, ∥p∥2 = N (p) = pp = −p2. Thus, P1 := {p ∈ P |N (p) = 1} (which is geometrically a
two-sphere) consists entirely of square roots of −1.

• We can express the Euclidean inner product in P by polarization:

⟨p, q⟩ = ∥p+ q∥2 − ∥p∥2 − ∥q∥2

2
=

− (p+ q)
2
+ p2 + q2

2
=

−pq− qp

2
,

so in particular p⊥q (for p, q ∈ P) iff pq = −qp.

• H1 acts by conjugation on P (if α ∈ H1 and p ∈ P then αpα−1 = αpα is pure since αpα = −αpα). This action
is by orthogonal transformations (since N (αp) = N (p)), so we obtain a homomorphism H1 → O (3), and in fact
H1 → SO (3) (for example, since H1 ∼= S3 is connected).

• If p ∈ P1 (pure of norm one) and ϑ ∈ R, then p2 = −1 implies eϑp = cosϑ+ p sinϑ, which shows that exp : P↠ H1

(similarly to exp : iR↠ S1 in C). It turns out that eϑp (acting via conjugation) rotates P by 2ϑ around the axis p

(whereas in C, eϑi acts via multiplication, and rotates by ϑ).

– Proof: first verify that if q ∈ P1 with q⊥p then pq ∈ P1 as well1, and that {p, q, pq} is an orthonormal basis for
P. Now, eϑppe−ϑp = p as always so p is fixed, and eϑpqe−ϑp = cos 2ϑ · q + sin 2ϑ · qp, so we got a 2ϑ-rotation
in the (q, pq)-plane.

• By Euler’s theorem, every element in SO (3) is a rotation around some axis, so that the homomorphism H1 → SO (3)

is onto. Furthermore, we see that if eϑp ∈ H1 acts trivially on P then ϑ ∈ πZ, so eϑp = ±1. This shows that
1 → {±1} → H1 → SO (3) → 1 is exact (in fact, H1 is the universal cover of SO (3), as H1 ∼= S3 is simply-
connected). In general, SO (p, q)0 has a double universal cover for p+ q ≥ 3, called Spin (p, q). Thus, H1 ∼= Spin (3).

• H1 × H1 acts on H ∼= R4 via orthogonal transformations, by (α, β) · γ = αγβ−1. Thus we get H1 × H1 → SO (4).
Exercise: this is onto, and two-to-one, so that H1 ×H1 ∼= Spin (4).

2.2.2 Quaternionic Classical groups

• The theory of vector spaces (bases, dimension, linear transformations/matrices) is pretty much the same over
division rings as over fields. One difference though: the scalars H act on Hn from the right (in order to commute
with the action of GLn (H) from the left). A binary form on V ∼= Hn is called bilinear if b (αv, βw) = αb (v, w)β

and sesquilinear if b (αv, βw) = αb (v, w)β.
1but unlike H1 and S1 ⊆ C, P1 is not a group (in fact, there is no topological group structure on S2).
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• U∗ (2n) = GLn (H). Note it is not enough to have nonzero determinant! e.g. det
(
i j
i j

)
= ij − ji = 2k. In fact, the

determinant is not well defined for non-commutative rings.

• SU∗ (2n) = SLn (H). What is det here? We can observe the Dieudonné determinant (which is a homomorphism
GLn (H) → H×

/[H×,H×] ∼= R×
>0), or use H ↪→ M2 (C) and take determinant there: for example det ((α+ jβ)) =

det
(

α β

−β α

)
= αα+ ββ.

• As over C, there are no nondegenerate (anti-)symmetric bilinear forms over H.

• The quaternionic-unitary group Sp (p, q):2 Any nondegenerate sesquilinear Hermitian form on Hn is congruent to
b (v, w) = v∗Ip,qw with Ip,q = diag (1×p,−1×q), and we define Sp (p, q) = {A ∈ GLp+q (H) |A∗Ip,qA = Ip,q}. Under
H ↪→ M2 (C) we have Sp (p, q) = U (2p, 2q) ∩ Sp2p+2q (C), hence the name. In particular Sp (n) is compact since
U (2n) is.

• The quaternionic orthogonal group O∗ (2n): Any nondegenerate sesquilinear anti-Hermitian form (⟨v, w⟩ = −⟨w, v⟩)
on Hn is congruent to b (v, w) = v∗jw, and O∗ (2n) = On (H) = {A ∈ GLn (H) |A∗jA = jI}. It equals O2n (C) ∩
U (n, n), hence the name. Pf: find ⟨v, v⟩ ̸= 0. We have ⟨v, v⟩ ∈ P, and we can normalize (by

√
N (⟨v, v⟩) ∈ R) to

get ⟨v, v⟩ ∈ P1. Since H1 ∼= SO (3) acts transitively on P1 ∼= S2, there is α ∈ H1 with ⟨αv, αv⟩ = α ⟨v, v⟩α = j, so
we replace v with αv and continue as before.

3 Lie Algebras

• Abstract Lie Algebra: a (non-associative, non-unital) vector space g over F, with a F-bilinear product g × g → g,
which is denoted by [·, ·] (and called bracket), satisfying

– [X,X] = 0 (which implies [X,Y ] = − [Y,X]).

– the Jacobi identity [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

• Example: if R is any associative algebra, then [X,Y ] := XY − Y X defines a structure of a Lie algebra (the old
multiplication is forgotten).
Even for Lie algebras which don’t arise in this way, the terminology pretends that it did: X,Y are called commuting
if [X,Y ] = 0, the center of g is Z (g) = {X | [X, g] = 0}, and g is commutative if [g, g] = 0.

• h ≤ g is a subalgebra if it is a linear subspace (so dimension considerations are helpful!) and [h, h] ⊆ h. It is an ideal
(h ⊴ g) if furthermore [h, g] ⊆ h. g is called simple if it has no non-trivial ideals, and dim g ≥ 2 (equivalently, is
non-commutative - in a commutative Lie algebra every subspace is an ideal).

• Direct sum: g⊕ g′ is defined by [(X,X ′) , (Y, Y ′)] =
(
[X,Y ]g , [X

′, Y ′]g′

)
. Inner direct sum (exercise): if h, h′ ≤ g,

g = h⊕ h′ as vector spaces and [h, h′] = 0, then g = h⊕ h′.

3.1 Lie algebras of matrix Lie groups

• A matrix Lie algebra is a subspace V ≤Mn (F) which is closed under bracket.

• The (matrix) Lie algebra g = Lie (G) of a matrix Lie group G ≤ GLn (F) is g =
{
X ∈Mn (F)

∣∣ ∀t ∈ R : etX ∈ G
}
.

2Also called: the unitary symplectic, compact symplectic, or hyperunitary group.
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Examples:

gln (F) =Mn (F) (also for F = H)

sln (F) = {X ∈Mn (F) | trace (X) = 0}

on (F) = son (F) =
{
X ∈Mn (F)

∣∣XT = −X
}

u (n) = {X ∈Mn (C) |X∗ = −X}

su (n) = u (n) ∩ sl (n)

so (p, q) =
{
X ∈Mn (R)

∣∣ Ip,qXT Ip,q = −X
}

sp2n (F) =
{
X ∈Mn (F)

∣∣ΩXTΩ = X
}

sp (n) = {X ∈Mn (H) |X∗ = −X} H∼=C2
= u (2n) ∩ sp2n (C)

sp (1) = Lie
(
H1
)
= P ⊆ H

e.g., if XT = −X then
(
etX
)T

=
(
etX

T
)
= e−tX implies etX ∈ O (n), and if etX ∈ O (n) for all t then

0 = (I)
′
(0) =

(
etX · etX

T
)′

(0) = XetXetX
T

+ etXXT etX
T ∣∣

t=0
= X +XT .

• Example: a basis for so (3) is

X1 =
(

0
−1

1

)
, X2 =

(
1

0
−1

)
, X3 =

( −1
1

0

)
,

and the bracket is given by [X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2. We have etX1 =
(

1
cos t − sin t
sin t cos t

)
, and

similarly for the other two, but etX1+sX2 is already complicated.

• The following basis for su (2):

X1 = 1
2

(
i
−i
)
, X2 = 1

2 (
i

i ) , X3 = 1
2

( −1
1

)
(3.1)

satisfies the same brackets relations as in the previous example, which means that su (2) ∼= so (3) (recall that
SU (2) ≇ SO (3) as topological groups - we saw that SU (2) ∼= H1 is a double cover of SO (3)).

• g is indeed a matrix Lie algebra: Rg ⊆ g by the definition, g + g ⊆ g by Trotter-Lie formula, and [X,Y ] ∈ g as
follows:

(
etXY e−tX

)′
= etX (XY − Y X) e−tX , so that [X,Y ] =

(
etXY e−tX

)′
(0). But etXY e−tX ∈ g, since for any

s ∈ R we have ese
tXY e−tX

= etXesY e−tX ∈ G; Thus etXY e−tX−Y
t ∈ g for any t > 0, hence [X,Y ] ∈ g (g is closed,

being a linear subspace of Mn).

• A way to get the commutator back from the group is:

[X,Y ] =
(
etXY e−tX

)′
(0) =

∂

∂t

[
∂

∂s

(
etXesY e−tX

) ∣∣
s=0

] ∣∣∣∣
t=0

. (3.2)

– This shows for example that if G is commutative then so is g.

– It also shows that if two Lie groups G,H have neighborhood of their identities which are isomorphic (e.g.
SO (3) and U (2)) then g ∼= h.

– Also, it gives a hint on how to define the Lie bracket of an abstract Lie group...

• Note that g is only an algebra over R, even when G ≤ GLn (C or H), e.g. u (n). We call G a complex Lie group if
g is also a Lie algebra over C (e.g. GLn (C), SLn (C), On (C) and Sp2n (C) - I think these are the only ones in the
list above).

• Denote by gC = g⊗RC the complexification of g, which is the complex Lie algebra with the same basis and structure
coefficients as g has over R. If g ≤ Mn(C) and g ∩ ig = 0 then we have gC ∼= g ⊕ ig ≤ Mn(C) (including the Lie
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algebra structure), which gives for example

sln(R)C ∼= sln (C) ∼= su(2)C, (3.3)

as su(2) ∩ i su(2) = 0 and su(2) + i su(2) = sl2(C).

3.2 Exponential again

• Fix G ≤ GLd (F) , g = Lie (G). By definition, we have exp : g → G. In general it is neither injective nor onto. The
image eg is connected, so it is contained in the identity component of G, but it is not always onto this component
(e.g.

(−1 1
−1

)
is not in esl2(C) and not in egl2(R)).3

• Theorem: There is a neighborhood of I ∈ GLn (F) in which A ∈ G ⇔ logA ∈ g.

– Corollary: There are nbds. U of 0 ∈ g and V of I ∈ G such that exp
∣∣
U

: U → V is a homeomorphism. Pf:
take 0 < ε < log 2 for which eBε(0) is as in the theorem, and then let U = Bε (0) ∩ g, V = eBε(0) ∩G.

– Lemma: For Xn ∈Mm (F) with eXn ∈ G and Xn → 0, if Xn

∥Xn∥ → X then X ∈ g. Pf: Since ∥Xn∥ → 0, for any

t ∈ R taking kn =
⌊

t
∥Xn∥

⌋
we have kn∥Xn∥ → t, so that etX = lim ekn∥Xn∥ Xn

∥Xn∥ = lim
(
eXn

)kn ∈ G.

– Proof: ⇐ if logA ∈ g then A = elogA ∈ G for ∥A− I∥ < 1. ⇒ assume to the contrary than we have An → I

with An ∈ G and logAn /∈ g. We identify V =Mn (F) ∼= Rcn2

with c = 1/2/4 and the standard inner product,
and write V = g ⊕ g⊥. Define Φ: V → V by Φ (X + Y ) = eXeY for X ∈ g, Y ⊥ g. Then Φ is differentiable,
and its Jacobian4 satisfies JΦ (0) = I by checking on a basis composed of g and g⊥ elements. By the inverse
function theorem, Φ has a continuous inverse around Φ (0) = I, so we can write Am = Φ(Xm + Ym) = eXmeYm

with Xm ∈ g, Ym ⊥ g, and Xm, Ym → 0. Since logAn /∈ g we have Yn ̸= 0, and after passing to a subsequence,
Yn

∥Yn∥ converges to some Y ∈ g⊥ of norm 1. As eYn = e−XnAm ∈ G and Yn → 0, by the Lemma Y ∈ g, which
is a contradiction.

• More corollaries:

– As G acts transitively on G, it is a manifold, of dimension dim g.5

– If G is connected then eg generates G (every A ∈ G equals eX1 . . . eXn for some Xi ∈ g): for g ∈ G pick a path
γ : I → g. We know eg contains some nbd. V of I, and the translates γ (t)V cover γ, which is compact, so
there is a finite subcover.

– If G is connected and g is commutative so is G (since elements in eg commute).

– G0 is closed (hence also a matrix Lie group): if An ∈ G0 and An → A, then AnA−1 → I, so AnA−1 = eX for
some n and X ∈ g, hence A = e−XAn is path-connected to An (by e−tXAn).

– g = TIG :=
{
γ′ (0)

∣∣ γ : C1 (R, G) , γ (0) = I
}
: ⊆ by γ(t) = etX , ⊇: for |t| small enough, γ(t) = elog γ(t),

and γ′ (0) =
(
elog γ

)′
(0) = (log γ)

′
(0)
(
elog γ(0)

)
= (log γ)

′
(0). Since log γ (t) ∈ g for t small enough, also

(log γ)
′
(0) ∈ g.

3.3 Homomoprhisms

• A matrix Lie groups hom. is a continuous group hom., e.g.: det : G→ F×, etX : R → G (we saw these are the only
(continuous) homs from R to GLn), SU(2) ∼= H1 → SO(3), H1 ×H1 → SO (4).

• G acts on its Lie algebra g by conjugation: A · X = AXA−1. This gives the “adjoint representation” which is
a Lie group hom. Ad: X 7→ AdX : G → GL (g). In fact, we even have Ad : G → AutLieAlg (g) ≤ GL (g) as
AdA [X,Y ] = [AdAX,AdA Y ].

3Maybe we will later show that if G is connected and compact then eg = G.
4a.k.a. differential DΦ or total derivative ∇Φ.
5Even a smooth manifold, for those who know the term.
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• For Φ: G → H there is a unique Lie algebra hom. Lie (Φ) = dΦ = ϕ : g → h (called the differential of Φ) such
that Φ

(
eX
)
= eϕ(X) (∀X ∈ g). In addition, Φ, ϕ intertwine Ad of G and H: ϕ (AdA (X)) = AdΦ(A)(ϕ (X)) for

A ∈ G,X ∈ g.

– Example: ddet = trace since det eX = etraceX .

– Since eψ(ϕ(X)) = Ψ
(
eϕ(X)

)
= Ψ(Φ (X)), Lie is a functor from matrix Lie groups to Lie algebras. For connected

groups Lie is faithful: If Φ,Ψ: G→ H and ϕ = ψ then Φ = Ψ since eg generates G.

– Pf: Let γ : t 7→ Φ
(
etX
)
: R → H. As γ is a (continuous) hom., there is Z ∈ h with γ (t) = etZ (see

“Applications” in §1), hence γ is smooth, ϕ is homogeneous, and it equals

ϕ (X) =
(
etϕ(X)

)′
(0) = Φ(etX)′ (0) ,

implying uniqueness. For the rest:

ϕ (X + Y ) = Φ
(
et(X+Y )

)′
(0) = Φ

(
lim
m

(
e

t
mXe

t
mY
)m)′

(0) =
[
lim
m

(
Φ
(
e

t
mX
)
Φ
(
e

t
mY
))m]′

(0)

=
[
lim
m

(
eϕ(

t
mX)eϕ(

t
mY )

)m]′
(0) =

[
lim
m

(
e

t
mϕ(X)e

t
mϕ(Y )

)m]′
(0) =

(
et(ϕ(X)+ϕ(Y ))

)′
(0) = ϕ (X) + ϕ (Y ) .

ϕ (AdA (X)) = Φ
(
etAXA

−1
)′

(0) = Φ (A) Φ
(
etX
)
Φ
(
A−1

)′
(0) = Φ (A)ϕ (X) Φ

(
A−1

)
= AdΦ(A)(ϕ (X)).

ϕ ([X,Y ]) = ϕ
((
etXY e−tX

)′
(0)
)
= ϕ (AdetX (Y )′ (0))

⋆
= ϕ (AdetX (Y ))

′
(0) =

(
Φ(etX)ϕ(Y )Φ(e−tX)

)′
(0)

=
(
etϕ(X)ϕ(Y )e−tϕ(X)

)′
(0) = [ϕ (X) , ϕ (Y )] .

where ⋆ is from ϕ being linear (and thus also continuous).

• Another example: ad = dAd : X 7→ adX : g → gl (g). For X,Y ∈ g we find that

adX (Y ) = (AdetX )
′
(0) (Y ) = (AdetX (Y ))

′
(0) = [X,Y ] .

Spelling this out, we get a bracket-description of conjugation by exponents:

eXY e−X = AdeX (Y ) = eadX (Y ) =
∑ adkX(Y )

k!
= Y + [X,Y ] +

[X, [X,Y ]]

2
+

[X, [X, [X,Y ]]]

3!
+ . . .

• Lie (kerΦ) = kerϕ (for Φ: G→ H): ϕ (X) = 0 ⇔ ∀t : Φ
(
etX
)
= etϕ(X) = 1 ⇔ X ∈ Lie (kerΦ).

4 From Algebra to Groups

• Our goals: Does every (matrix) Lie algebra arise from a Lie group? Does every homomorphism between Lie algebras
arise from a Lie group homomorphism? If g does come from G, can we recover G from g (without the exponent,
using g only as an abstract Lie algebra)?

• Preparation: d exp. Theorem (Poincare?): For X,Y ∈Mn (F),

(
eX+tY

)′
(0) = eXξ (adX) (Y ) , ξ (z) =

1− e−z

z
=

∞∑
k=0

(−z)k

(k + 1)!
. (4.1)

Note adX , ξ (adX) ∈ EndF (Mn (F)) ∼= Fn4

, eadX ∈ GL (Mn (F)).

– Lemma: for a bounded operator M , limm→∞
1
m

∑m−1
j=0 e−

j
mM = ξ (M). Pf: the l.h.s. is a Darboux sum of∫ 1

0
e−tMdx = −e−tM

M

∣∣1
0
= ξ (M). On diagonalizable this is enough. Conclude by continuity?
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– Pf: note
(
eX+tY

)′
(0) is continuous in X,Y .

(
eX+tY

)′
(0) =

[(
e

X
m+ tY

m

)m]′
(0) = 1

m

[(
e

X
m+tY

)m]′
(0) = 1

m

m−1∑
j=0

(
e

X
m+tY

)m−j−1 (
e

X
m+tY

)′ (
e

X
m+tY

)j ∣∣
t=0

= 1
m

m−1∑
j=0

(
e

X
m

)m−j−1 (
e

X
m+tY

)′
(0)
(
e

X
m

)j
= e(

m−1
m X) 1

m

m−1∑
j=0

Ad
e−

j
m

X

((
e

X
m+tY

)′
(0)

)

= e(
m−1
m X)

m−1∑
j=0

e
ad

− j
m

X

((
e

X
m+tY

)′
(0)

)
= e(

m−1
m X)

 1
m

m−1∑
j=0

e−
j
m adX

((eX
m+tY

)′
(0)

)
m→∞−→ eXξ (adX)

((
etY
)′
(0)
)
= eXξ (adX) (Y ).

• Recovering G from g: in some neighborhood of the identity we have eXeY = elog(e
XeY ), so we want to express

log
(
eXeY

)
using the Lie structure alone. This is achieved by the BCH formula : for ∥X∥ , ∥Y ∥ ≤ log

√
2,

(Poincaré) log
(
eXeY

)
= X +

(∫ 1

0

ψ
(
eadXet adY

)
dt

)
(Y )

(
ψ (z) =

z log z

z − 1
= 1−

∞∑
k=1

(1− z)
k

k(k + 1)

)

(Dynkin) log
(
eXeY

)
=

∞∑
k=1

(−1)k+1

k

∑
∀i∈[k]

ri+si>0

[
X(×r1), Y (×s1), . . . , X(×rk), Y (×sk)

]
r1!s1! . . . rk!sk! (r1+s1+. . .+rk+sn)

where e.g.
[
X(×2), Y (×2)

]
= [X, [X, [Y, Y ]]]. Note ψ (z) = ξ (log z)

−1 converges at |z − 1| < 1.
Proof: Take Z (t) = log

(
eXetY

)
so that

log
(
eXeY

)
= Z (1) = Z (0) +

∫ 1

0

Z ′ (t) dt = X +

∫ 1

0

Z ′ (t) dt.

Using (4.1) we have (
eZ(t)

)′
(t) =

(
eXetY

)′
(t) = eXetY Y = eZ(t)Y, and also(

eZ(t)
)′

(t) =
d

dh

(
eZ(t)+hZ′(t)

) ∣∣
h=0

= eZ(t)ξ
(
adZ(t)

)
(Z ′ (t)) ,

so that
Z ′ (t) = ξ

(
adZ(t)

)−1
(Y )

⋆
= ξ

(
log
(
eadXet adY

))−1
(Y ) = ψ

(
eadXet adY

)
(Y ),

where ⋆ is by eadZ(t) = AdeZ(t) = AdeXetY = AdeX AdetY = eadXet adY .

• From BCH, log
(
eXeY

)
= X + Y + [X,Y ]

2 + [X,[X,Y ]]−[Y,[X,Y ]]
12 − [X,[Y,[X,Y ]]]

24 + terms with more than four X,Y .

• Given ϕ : g → h, there is f : U → H for some nbd. I ∈ U ⊆ G which satisfies f
(
eX
)
= eϕ(X), and f (AB) =

f (A) f (B) for A,B,AB ∈ U . Pf: defining f
(
eX
)
= eϕ(X), for ∥X∥ < log 2 we obtain f

(
eX
)
= eϕ(X). We choose

U such that exp
log : U ⇄ eU , and that BCH holds on logU and on log ϕ (U), and we need to show that (for X,Y

small) eϕ(log e
XeY ) = f

(
eXeY

)
= f

(
eX
)
f
(
eY
)
= eϕ(X)eϕ(Y ), namely that ϕ

(
log eXeY

)
= log eϕ(X)eϕ(Y ). Using

BCH for g and h, it is enough to show that

ϕ
(
ψ
(
eadXet adY

)
(Y )
)
= ψ

(
eadϕ(X)et adϕ(Y )

)
(ϕ (Y )) ,

which follows from the intertwining of ad: ϕ (adX (Y )) = adϕ(X) ϕ (Y ) (due to ϕ ∈ HomLieAl (g, h)).

• If G is simply-connected, any hom. f : U → H where U is a nbd. of I ∈ G extends to a hom. Φ: G→ H. Idea: for
A ∈ G construct a path γ : I ⇝ A, and define Φ(A) =

∏1
j=m f

(
γ(tj)γ(tj−1)

−1
)

where (t0, . . . , tm) is a partition
of I fine enough that γ(tj)γ(tj−1)

−1 ∈ U . This is well defined since passing to a finer partition does not change
Φ(A). A small enough homotopic change of γ also does not change Φ(A), by taking a partition whose points are
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not affected by the change. As G is simply-connected, this means Φ is well defined globally. Φ agrees with f on U ,
and is a homomorphism by concatenation of paths.

• Combining the last two, we have that if G is simply connected then ϕ : g → h is obtained from (a unique) Φ: G→ H:
if we construct f on U by BCH and extend it to Φ, for anyX we have X

m ∈ U for somem, hence Φ
(
eX
)
= Φ

(
e

X
m

)m
=

emϕ(
X
m ) = eϕ(X).

• Decomposing: if G is simply-connected and g = h1 ⊕ h2 then G = H1 × H2 for simply connected H1, H2 with
Lie (Hi) = hi: The projection π2 : g ↠ h2 (w.r.t. h1 ⊕ h2) comes from some Π2 : G → G, and for H1 := kerΠ2

we have Lie (H1) = kerπ2 = h1. Similarly, H2 = kerΠ1 has Lie(H2) = h2. From Π2

∣∣
eh1

= 0, Π2

∣∣
eh2

= id, and
G =

〈
eh1+h2

〉
=
〈
eh1eh2

〉
(using [h1, h2] = 0), it follows that Π2 : G ↠ H2 is also a projection, which implies that

H2 is simply connected, and likewise for H1. Thus, H1 ×H2 (externally) is simply-connected, so h1 ⊕ext h2
∼=−→ g

corresponds to some Φ: H1 ×H2 → G, which is an isomoprhism (its inverse is Π1 ×Π2).

• Does every matrix Lie algebra g corresponds to a matrix Lie group? No: if α ∈ R\Q then g = R ( i αi ) is a matrix
Lie algebra, whose exponent is not closed (it is a dense irrationally sloped line in the torus

(
U(1)

U(1)

)
). However,

g 7→ ⟨eg⟩ and G 7→ Lie (G) do constitute a correspondence between matrix Lie algebras in GLn(C) and connected
subgroups of GLn(C) (not necessarily closed). Pf: Rossmann §2.5 and Hall §5.9.

4.1 Covers

• What happens if G is not simply-connected? A universal cover for G is a simply-connected Lie group G̃ equipped
with a map G̃→ G which induces an isomorphism g̃ = g. examples: ( 1 t0 1 ) 7→

(
eit
)
: R → U (1), and H1 → SO (3).

• Given ϕ : g → h, there exists Φ: G̃→ H with dΦ = ϕ (assuming G̃ exists).

• Any Lie group G has a universal cover G̃ (by alg. top. arguments), but it is not always a matrix Lie group. For
example, S̃L2(R) is not: First, SL2(R) ≃

(
t a
0 t−1

)
×SO(2) (by Gram-Schmidt), which shows that π1 (SL2 (R)) = Z.

Any hom. ϕ : sl2(R) → gln(R) corresponds to some Φ: SL2(R) → GLn(C) by noting that ϕ extends to ϕC : sl2 (C) →
gln (C), and SL2 (C) ≃

(
t a
0 t−1

)
× SU(2) is simply-connected, so there is ΦC : SL2 (C) → GLn(C), and we can take

Φ = ΦC
∣∣
SL2(R)

. Now, if we had G ⊆ GLn (R) with Φ: G → SL2(R) and dΦ an isomorphism, then ψ = (dΦ)
−1

would induce some Ψ: SL2 (R) → GLn (C), such that Φ,Ψ are inverse to each other on a nbd. of I ∈ G, hence
G ∼= SL2 (R), and G is not simply-connected.6

4.2 Representations

Assume throughout that G is connected.

• A (Lie group) rep. Π: G → GL (V ) gives rise to (Lie algebra) representation π : g → gl (V ) with Π
(
eX
)
= eπ(X),

π(X)(v) = Π(etX)(v)′(0), and π (AdAX) = AdΠ(A) π (X). Every (L.A.) representation π : g → gl (V ) is obtained
from a (L.G.) representation Π: G̃→ GL (V ) (and if G is simply-connected then G = G̃).

– Π is irreducible iff π is: if π(X)W ⊆ W then eπ(X)W ⊆ W , hence Π(eg)W ⊆ W , and if Π(G)W ⊆ W then
π(X)W = Π

(
etX
)′
(0)W ⊆W .

– Π ∼= Π′ iff π ∼= π′ (similar proof).

– If V has an inner-product, Π is unitary (Π(A)∗ = Π(A)
−1) iff π is unitary (π(X)∗ = −π(X)).

• Every G ≤ GLn (C) has the standard representation id : G → GLn(C), and the adjoint representation Ad: G →
GL(g). Likewise for g.

• We have Lie (Π⊕Ψ) = π ⊕ ψ but Lie (Π⊗Ψ) = π ⊗ id + id ⊗ ψ and Lie (Π∗) = −πT (for the contragradient
Π∗(A) =

(
Π(A−1)

)T ).

6In fact, even the double cover of SL2 (R), which is called the metaplectic group, is not a matrix Lie group - perhaps the same argument
works - complexification would then yield a double cover of SL2 (C) which is impossible.
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• A complex representation π : g → gl(V ) of a real Lie algebra admits πC : gC = g⊗R C → gl(V ), and g, g+ ig have
the same invariant subspaces in V , so π is irreducible iff πC is.

4.3 Example - SU(2)

• SU(2) acts on Vm =

{
m∑
k=0

αkz
m−kwk

}
(homogeneous polynomials of degreem in z, w), by (Af) (z, w) = f

(
A−1 ( zw )

)
.

• Vm is irreducible. Pf: Compute for the basis in (3.1)

π(X3)f(z, w) =
[
Π
(
etX3

)
f(z, w)

]′
(0) =

(
cos t/2 −sin t/2
sin t/2 cos t/2

)
f(z, w)′(0) = f(

(
cos t/2 sin t/2
−sin t/2 cos t/2

)
( zw ))′(0)

= ( ∂f(z,w)
∂z

∂f(z,w)
∂w )

(
1
2

(
−sin t/2 cos t/2
−cos t/2 −sin t/2

)
( zw )

)
t=0

= ( ∂f(z,w)
∂z

∂f(z,w)
∂w )

(
w
2

− z
2

)
=

(
w

2

∂

∂z
− z

2

∂

∂w

)
f (z, w) ,

and similarly π(X1) = − iz
2
∂
∂z +

iw
2

∂
∂w , π(X2) = − iw

2
∂
∂z −

iz
2

∂
∂w . We complexify: su(2)⊗C ∼= su(2)⊕ i su(2) = sl2(C)

(see (3.3)). Taking the basis H =
(
1
−1

)
, X = ( 1

0 ) , Y = ( 0
1 ) for sl2(C), we have π(X) = π(−iX2 − X3) =

−iπ(X2)− π(X3) and so on, giving

π(X) = −w ∂

∂z
, π(Y ) = −z ∂

∂w
, π(H) = −z ∂

∂z
+ w

∂

∂w
.

Applying this to the natural basis of Vm we get

π(X)
(
zm−kwk

)
= (k −m)zm−k−1wk+1

π(Y )
(
zm−kwk

)
= −kzm−k+1wk−1 (4.2)

π(H)
(
zm−kwk

)
= (2k −m)zm−kwk,

which shows in particular that π(Y )Nπ(X)N(f) span Vm for any f ̸= 0.

• Remark: the eigenvalues of H (namely −m,−m+2, . . . ,m) are called the weights of the representation (so Vm has
highest weight m).

• Vm are exhaustive: If V is an irrep of SU(2), it is fin. dim. by Weyl’s unitarity trick, and by complexification V is
an irrep of su(2)C ∼= sl2(C).7 Let v ∈ V be an H-eigenvector with Hv = αv. Using [X,Y ] = H, [H,X] = 2X, and
[H,Y ] = −2Y we see that

HXv = ([H,X] +XH) v = (2X +XH) v = (2 + α)Xv, (4.3)

so that Xv has H-eigenvalue α+ 2 (but possibly Xv = 0).8 Similarly, HY v = (α− 2)Y v. As HY Nv have different
H-eigenvalues, eventually Y n+1v = 0, and we take v0 = Y nv, getting Y v0 = 0 and Hv0 = λv0 (for λ = α − 2n).
Set vk := Xkv0, so that Hvk = (λ+ 2k) vk, and Y vk = −k (λ+ k − 1) vk−1 by induction:

Y vk+1 = Y Xvk = (XY − [X,Y ]) vk = XY vk −Hvk

(ind. hyp.) = −k (λ+ k − 1) vk − (λ+ 2k) vk = −(k + 1)(k + λ)vk.

We have vm+1 = 0 for some vm ̸= 0 (as they have differentH-eigenvalues), hence 0 = Y vm+1 = − (m+ 1) (m+ λ) vm

implies λ = −m, and taking bk = (−1)k

(m)k
vk we obtain

Xbk = (k −m)bk+1, Y bk = −kbk−1, Hbk = (2k −m)bk. (4.4)
7Be warned however that SL2 (C) and thus sl2 (C) have infinite-dimension irreps as well.
8An important point: in (4.3) we look at products, but sl2(C) is not closed under multiplication (e.g. XY /∈ sl2(C)). A wrong solution is to

say it is ok because we can work in gl2(C) (it is wrong because the representation V is only of sl2). A right solution is to note that in (4.3) we
never have XH without v after it, and XHv is well defined by X (Hv). The way to make this formal without v, is to take XH as an element
of the universal enveloping algebra of sl2(C), which we won’t cover.
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From (4.2) we see that zm−kwk 7→ bk embeds Vm in V , and as V is irreducible they are isomorphic (as sl2(C)-reps,
hence as su(2)-reps, hence as SU(2)-reps).

• We could also start from studying su(2)-reps, taking 4.4 as a definition of an action of su(2)C on Cm+1 with basis
b0, . . . , bm, and verifying it respects the bracket relations. Then, we could restrict it to a representation of su(2)
(still on Cm+1), which itself comes from a representation of SU(2), since the latter is simply-connected. However,

this goes through BCH, and does not give us an explicit global description as we had in Vm =

{
m∑
k=0

αkz
m−kwk

}
.

• Since SO(3) ∼= SU(2)/ {±I} and ((−I)f) (z, w) = (−1)
m
f (z, w), the irreps of SO(3) are {V2m}m∈N (every irrep of

SO(3) can be pulled back to an irrep of SU(2)).

4.4 Roots and weights in SU(3)

• SU(3) acts irreducibly on homogeneous polynomials in three variables, but now these are not exhaustive. And in
any case, we want to conduct a study that will generalize to all classical groups.

• We now start from g = su(3)C = sl3(C), rather than from SU(3). We define H1, X1, Y1 via the top-left copy
of sl2(C) in sl3(C), and H2, X2, Y2 via the bottom-right copy. We also define X3 = [X1, X2] =

(
0 0 1
0 0 0
0 0 0

)
and

Y3 = [Y2, Y1] =
(

0 0 0
0 0 0
1 0 0

)
and together X∗, Y∗, H∗ are a basis of sl3(C).

• As H1, H2 commute, so do π(H1), π(H2) for any representation (π, V ) of g. For µ = (µ1, µ2) ∈ C2, we define
Vµ = {v ∈ V |Hiv = µiv}, and if Vµ ̸= 0 we say µ is a weight for V .

– Since H1, H2 commute, V has at least one weight.

– The weights are in Z2, since if v ∈ Vµ we can restrict it to a sl2(C)-rep via ⟨H1, X1, Y1⟩ or ⟨H2, X2, Y2⟩.

– Another (basis independent!) way to think of weights is as linear functionals µ : h → C, where h is the diagonal
subalgebra of sl2(C). Now v ∈ V is of weight µ if Hv = µ(H)v for every H ∈ h.

• The non-zero weights (α1, α2) ∈ Z2\(0, 0) of the representation (ad, g) are called the roots of g, and the corre-
sponding v ∈ gα are called root-vectors. In turns out that adH1

, adH2
∈ M8 (C) are diagonal w.r.t. X∗, Y∗, H∗. In

our case, X∗, Y∗ are root-vectors with roots

X1 : (2,−1) , X2 : (−1, 2) , X3 : (1, 1) , Y1 : (−2, 1) , Y2 : (1,−2) , Y3 : (−1,−1) ,

but H1, H2 are not root-vectors, since they have weights (0, 0).

• If v ∈ Vµ and Z ∈ gα (i.e. v is of weight µ, and Z is a root-vector with root α), then Zv ∈ Vµ+α since

HiZv = ([Hi, Z] + ZHi) v = αiZv + Zµiv = (αi + µi)Zv.

This also implies that if V is irreducible then V =
⊕

µ∈Z2 Vµ, since the latter is g-stable (and nonempty).

• For general g, the Cartan subalgebra of g is a maximal abelian h ≤ g such that adH is diagonalizable for every
H ∈ h. This implies that {adH |H ∈ h} are diagonalizable simultaneously, and we can define weights and roots
again, and see they shift weights as before.

• We call α1 = (2,−1), α2 = (−1, 2) the positive simple roots, and observe that every root is either in SpanZ≥0
{α1, α2}

(the positive roots), or in SpanZ≤0
{α1, α2} (the negative roots). We order the weights by µ ⪯ µ′ when µ′ − µ ∈

SpanQ≥0
{α1, α2}. Even though this is only a partial order, we will see later that there is a unique highest weight

(as we had m in sl2(C)).

• The Highest Weight Theorem: Every (fin. dim.) irrep has a unique highest weight µ ∈ N2
≥0, and every µ ∈ N2

≥0 is
the highest weight of a unique irrep.
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– Lemma: If Z1, . . . , Zn is a basis for g, then Zi1 · . . . · Zirv can be expressed as a linear combinations of terms
of the form Zk11 · . . . · Zknn v, with

∑
ki ≤ r. Idea: using induction on r, apply ZiZjv = ZjZiv + [Zi, Zj ] v, and

[Zi, Zj ] =
∑
cijkZk to move the Zi to the desired position.

– Lemma: If v0 has weight µ and X∗v0 = 0, then µ is the unique highest weight for ⟨v0⟩, and ⟨v0⟩µ = Cv0.
Proof: Since X∗v0 = 0 and Hiv0 ∈ Cv0, taking Z1, . . . , Z8 = Y∗, H∗, X∗ we have

⟨v0⟩ = SpanC

{(∏n

j=1
Zij

)
v0

∣∣∣ n∈N
ij∈[8]

}
= SpanC

{
Y k11 Y k22 Y k33 v0

∣∣∣ k∗ ∈ N
}
,

and Y k11 Y k22 Y k33 v0 (with k∗ ̸= (0, 0, 0)) all have weight strictly lower than µ.

– If V is fin. dim. irrep it has some ⪯-highest weight µ, and for 0 ̸= v0 ∈ Vµ this implies X∗v0 = 0 (X∗ being
the positive roots), so by the lemma µ is the unique highest weight for ⟨v0⟩ = V . In addition, µ ∈ N2

≥0 since
Xiv0 = 0 implies that Hiv0 ∈ N≥0v0, by our analysis of sl2(C).

– Given µ ∈ N2
≥0, let S = C3 with g acting by multiplication (which is induced from SU(3) acting by multipli-

cation), and S∗ the contragradient, which is Z(v) = −ZT v. Then S, S∗ are irreducible, and e1 =
(

1
0
0

)
∈ S

and e′3 =
(

0
0
1

)
∈ S∗ have highest weights (1, 0) and (0, 1) respectively. In particular X∗e1, X∗e

′
3 = 0, from

which follows that v0 = e⊗µ1

1 ⊗ e′3
⊗µ2 ∈ S⊗µ1 ⊗ S∗⊗µ2 satisfies X∗v0 = 0 and has weight µ (for this recall

that Z (v ⊗ w) = Z(v) ⊗ w + v ⊗ Z(w). By the lemma, µ is the unique highest weight for V = ⟨v0⟩ and
Cv0 = Vµ. To show V is irreducible, we note that S and S∗ (with the standard inner product on C3) are
unitary representations of su(3) (though not of g = su(3)C !), hence so is S⊗µ1 ⊗ S∗⊗µ2 , hence so is V . Thus,
V decomposes into irreducibles: V =

⊕
Vi, hence Cv0 = Vµ =

⊕
(Vi)µ, showing v0 ∈ (Vi)µ for a unique i and

in particular thus V = ⟨v0⟩ ⊆ Vi.

– For irreps V,W with highest weight µ, we want to show V ∼= W . By general representation theory nonsense,
direct sums and subrepresentations preserve complete reducibility. For Cv = Vµ and Cw = Wµ, we obtain
that U = ⟨(v, w)⟩ ≤ V ⊕W decomposes into irreps: U =

⊕
Ui. But again X∗ (v, w) = 0 and (v, w) ∈ Uλ

show that C (v, w) = Uλ = (Ui)λ for a unique i, hence U = ⟨(v, w)⟩ = Ui is irreducible. Since the projections
V ⊕W → V,W restrict to nonzero maps U → V,W , by Schur Lemma the three are isomorphic.
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Lie Groups - Exercise 1

1. Compute eX for a X a Jordan block (i.e.

(
a 1

. . . . . .
a

)
).

2. A matrix A is called nilpotent if Ak = 0 for some k ∈ N and unipotent if A− I is nilpotent.
Note logA makes sense for all unipotent A (it is a polynomial in A). Show that exp and log
give a complete bijection between the nilpotent and the unipotent matrices (over R or C).

3. Show that exp: Mn (C) → GLn (C) is onto.

4. exp: Mn (R) → GLn (R) is not onto since det
(
eX
)
= etr(X) > 0, but it is not even onto

GL+
n (R) (matrices with positive determinant): Show that A =

(−1 1
0 −1

)
/∈ exp (M2 (R)).

Hint: show that if eX = A then X is non-diagonalizable over C, and tr (X) = 0.

5. Every X ∈ M2 (R) (over R or C) can be written as tr(X)
2 I + Y with tr (Y ) = 0. Show that

Y 2 = −det (Y ) I, and that

eX = e
trace(X)

2

cos
(√

detY
)
I +

sin
(√

detY
)

√
detY

Y

 .

6. Optional: use the previous exercise to show that the image of exp: M2 (R) → GL2 (R) is{
A ∈ GL+

2 (R)
∣∣∣ tr (A) > −2

√
detA

}
∪ {cI | c < 0}

(I think, could have got this one wrong).

7. Show that the following are equivalent:

(a) X,Y commute

(b) esX , etY commute for all s, t ∈ R
(c) esX+tY = esXetY for all s, t ∈ R

1



Lie Groups - Exercise 2

May 4, 2022

1. Prove that Z (H) = R.

2. Prove that H1 ∼= SU (2).

3. (a) Show that the action of H1×H1 on H by (α, β) ·γ = αγβ−1 gives a homomorphism Φ : H1×H1 →
SO (4).

(b) Show that kerΦ = {(1, 1) , (−1,−1)}.
(c) Show that Φ is onto. Hint: identifying H ∼= R4 via the basis 1, i, j, k, let α, β, γ, δ ∈ H be such that

(α|β|γ|δ) ∈ SO (4). Show that using H1 ×H1 one can take (α, β, γ, δ) to (1, i, j, k). It is helpful to
remember that you already know well the action of the diagonal

{
(α, α) ∈ H1 ×H1

}
on P...

4. Let F be a field with charF ̸= 2, and define the F-quaternions HF as the algebra over F with basis
1, i, j, k and product defined by i2 = j2 = k2 = ijk = −1, associativity and distributivity (and 1 being
the multiplicative identity). Prove that if −1 is a square in F then HF ∼= M2 (F).

5. Let E/F be a quadratic field extension with charF ̸= 2 and Gal (E/F) = {id, σ}. We know that
E = F

[√
δ
]

for some δ ∈ F, so that σ
(√

δ
)
= −

√
δ. Now, assume that the norm map

N : E× → F×, N
(
a+ b

√
δ
)
=

(
a+ b

√
δ
)
· σ

(
a+ b

√
δ
)
= a2 − δb2

is onto.

(a) Show that this is always the case for finite fields.

(b) Show that the following unitary groups are isomorphic:

Un (E/F) = {A ∈ GLn (E) |A∗A = I}
Un (E/F, J) = {A ∈ GLn (E) |A∗JA = J} ,

where J =

(
1

. .
.

1

)
, and (A∗)ij = σ (Aji). Hint: find hyperbolic pairs in the Hermitian space En

(with the standard product ⟨v, w⟩ = v∗w).

(c) Optional: Show that Un (E/F, B) ∼= Un (E/F, J) for any hermitian matrix B ∈ GLn (E).1

1Since every finite field F has a unique quadratic extension, this implies there is a unique unitary group over F in each
dimension!
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Lie Groups - Exercise 3

June 22, 2022

1. Show that sln (F) = {X ∈ Mn (F) | trace (X) = 0}.

2. Let G be the group of all upper-triangular matrices in GLn (F). Show that g = Lie (G) is the
algebra of all upper-triangular matrices in Mn (F).

3. What is g when G is the group of all unipotent upper-triangular matrices in GLn (F)?

4. The derivations of an F-algebra A are

DerF (A) = {f ∈ EndF (A) | f (ab) = f(a)b+ af(b)} .

(a) Show that if f ∈ DerF (A) then fn (ab) =
∑n

k=0

(
n
k

)
fn−k (a) fk (b).

(b) Show that DerF (A) is a Lie algebra, w.r.t. [f, g] = f ◦ g − g ◦ f .

(c) Show that if g is a finite-dimensional Lie algebra1 then Lie (AutLieAl (g)) = DerR (g) (we
consider AutLieAl (g) as a Lie group by AutLieAl (g) ≤ GL (g) ∼= GLdim g (R)). Conclude
(or show directly) that ad ∈ HomLieAl (g,DerR (g)).

5. Let H ⊆ G ⊆ GLn (F) be matrix Lie groups. Show that:

(a) If H ⊴ G (normal) then h ⊴ g (ideal).

(b) If G and H are connected and h ⊴ g then H ⊴ G.

6. Optional: If G is abelian and connected then eg = G.

1if you want you can assume it is the Lie algebra of a Lie group G, but I don’t think it helps
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Lie Groups - Final Exercise

October 6, 2022

1. Recall that Sp2n (F) =
{
A
∣∣ATΩA = Ω

}
, where Ω =

(
In

−In

)
(and F = R or C). Show that sp2n (F) ={(

A B
C −AT

) ∣∣∣∣ A,B,C ∈ gln (F)
B = BT , C = CT

}
, and compute its dimension.

2. Recall the quaternionic-unitary group Sp(n) = {A ∈ GLn (H) |A∗A = I} (where (A∗)ij = Aji with the quater-
nionic conjugate). Show that sp(n)C (the complexification of its Lie algebra) is isomorphic to sp2n (C). 1

3. From now on we focus on sp4(C), and replace Ω by Ω =

(
1

−1
1

−1

)
(they are congruent, and you’ll soon

see why this one serves us better). Work out what is sp4 (C) using this Ω.

4. Show that
(

∗ ∗ 0 0
∗ ∗ 0 0
0 0 0 0
0 0 0 0

)
and

(
0 0 0 0
0 0 0 0
0 0 ∗ ∗
0 0 ∗ ∗

)
form two copies of sl2 (C), and use them to define H1, X1, Y1, H2, X2, Y2

as we did in sl3(C). We define weights by H1, H2 (namely, (µ1, µ2) is a weight for V if there exist 0 ̸= v ∈ V
with Hiv = µiv). Deduce that the weights of a fin. dim. representation of sp4 (C) are in Z2.

5. Extend H1, X1, Y1, H2, X2, Y2 to a basis of sp4 (C), and verify that in this basis adH1
and adH2

are diagonal
(if they are not you probably tried to be unnecessarily creative in choosing your basis - remedy this).

6. Find the roots of sp4 (C) and draw them in R2. Choose two roots α1, α2 such that every root is in either
SpanZ≥0

{α1, α2} or in SpanZ≤0
{α1, α2} (we call α1, α2 the “positive simple roots”). Try to make it so that

X1, X2 are root-vectors with positive roots (though this is not crucial).

7. Order the weights by µ ⪯ µ′ when µ′ − µ ∈ SpanQ≥0
{α1, α2}, and show that every fin. dim. irreducible

representation of sp4(C) has a unique vector of highest weight (up to scalars), and this weight is in N2
≥0 (or

in another quadrant of the plane, if you didn’t bother to make the roots corresponding to X1, X2 positive).

8. Find all the weights of the standard representation S = C4 (with sp4(C) acting by multiplication). Which is
the highest?

9. Show that the highest weight in an irreducible representation is actually in {(µ1, µ2) |µ1 ≥ µ2 ≥ 0} (or in
another eighth-plane, which one depends again on your choice of positive roots).
Hint: one of your positive simple root-vectors was one of {X1, X2, Y1, Y2}; Find another copy of sl2(C) in
sp4(C) whose “X” vector is your other positive simple root-vector.

For the next two questions you can assume total reducibility (namely, that every representation of sp4 (C) decom-
poses as a some of irreducible ones). You are welcome to try to prove it, or you can simply decide we only care
about representations of sp (n), where the standard representation is unitary w.r.t. the standard inner product (this
is what we did in class, where we studied representation of su(3), whose complexifiction was sl3(C)).

10. Find an irreducible representation V of sp4(C) with highest weight (1, 1). Hint: look at S ⊗ S. 2

11. Show that for any µ1 ≥ µ2 ≥ 0, S⊗(µ1−µ2) ⊗ V ⊗µ2 has an irreducible subrepresentation of highest weight
(µ1, µ2).

1The triplet Sp (n) , Spn (R) , Spn (C) is analogue to SU (n) , SLn (R) , SLn (C) - the first group is compact, the second is not, and
both have a Lie algebra whose complexification is isomorphic to that of the third (which is a complex Lie group). In general, every
complex semisimple Lie algebra has a compact and a non-compact “real form”. We saw those of sln(C) and spn(C), can you work out
such a triplet for son(C)?

2If you’re not used to tensors: taking any basis e1, . . . , e4 for S, we can define S ⊗ S as the vector space with basis {ei ⊗ ej}i,j∈[4],
and each Z ∈ sp4(C) acts on the basis elements by Z (ei ⊗ ej) = (Zei)⊗ ej + ei ⊗ (Zej).
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