Matrix Lie Groups - 2022

Ori Parzanchevski

May 18, 2023

These notes are based mostly on the books of Hall and Rossmann.

Contents

1

1	The	e Exponential	1
2	Mat	trix Lie Groups	3
	2.1	Classical groups	3
		2.1.1 Orthogonal groups	4
		2.1.2 Symplectic groups	4
		2.1.3 General bilinear	4
		2.1.4 Unitary groups	5
		2.1.5 Some topology	5
	2.2	Quaternions	6
		2.2.1 Quaternions and rotations	6
		2.2.2 Quaternionic Classical groups	6
3	Lie	Algebras	7
	3.1	Lie algebras of matrix Lie groups	7
	3.2	Exponential again	9
	3.3	Homomoprhisms	9
4	From	m Algebra to Groups	10
	4.1	Covers	12
	4.2	Representations	12
	4.3	Example - $SU(2)$	13
	4.4		14

The Exponential 1

• If $f: \mathbb{R} \to \mathbb{R}$ satisfies f'(x) = af(x), then $f(x) = f(0) \cdot e^{ax}$ follows from

$$ax = \int_0^x a \, dt = \int_0^x \frac{f'(t)}{f(t)} dt = \int_0^x \left(\ln f(t)\right)' dt = \ln f(x) - \ln f(0) \, dt.$$

We could also try to find a power-series solution $f(x) = \sum_{k=0}^{\infty} c_k x^k$, and solve: $c_k = \frac{a \cdot c_{k-1}}{k}$ (and $c_0 = f(0)$), hence $f(x) = f(0) \sum_{k=0}^{\infty} \frac{(ax)^k}{k!}$.

• $e^x \colon \mathbb{R}^+ \to \mathbb{R}^{\times}$ turns addition into multiplication.

- What if $p: \mathbb{R} \to \mathbb{R}^n$ satisfies $p'(t) = X \cdot p(t)$ for a fixed $X \in M_n(\mathbb{R})$? We can try to find a power series solution of the form $p(t) = \sum_{k=0}^{\infty} t^k p_k$ (with $p_k \in \mathbb{R}^n$). We get again $p_k = \frac{1}{k} X p_{k-1}$, so $p_k = \frac{X^k}{k!} p_0$, and $p(t) = \sum_{k=0}^{\infty} \frac{t^k X^k p_0}{k!} = \left(\sum_{k=0}^{\infty} \frac{(tX)^k}{k!}\right) p_0 = e^{tX} p_0$, and we can check this is a solution (inside the circle of convergence we can differentiate term by term).
- Differentiation: for $A, B: \mathbb{R} \to M_n(\mathbb{R})$ (or \mathbb{C}), (A(t)B(t))' = A'(t)B(t) + A(t)B'(t), which also gives $A^{-1}(t)' = -A^{-1}(t)A'(t)A^{-1}(t)$ for invertible A (compare this with $f^{-1}(t)' = \frac{f'(t)}{f^2(t)}$ in the commutative case!)
- Frobenius norm: $||A||_F = \sqrt{\sum_{i,j} |a_{ij}|^2} = \operatorname{tr} AA^* = \sum_{\sigma \in Sing(A)} \sigma^2$. Like any norm satisfies $||A + B|| \le ||A|| + ||B||$, $||\alpha A|| = |\alpha| ||A||$, $||A|| \ge 0$ with ||A|| = 0 only for A = 0, and is also submultiplicative: $||AB|| \le ||A|| ||B||$ (using Cauchy-Schwartz).
- Thus, $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$ converges for any X, and is continuous.
- Properties:
 - $e^{0} = I, e^{X^{t}} = (e^{X})^{t}, e^{YXY^{-1}} = Ye^{X}Y^{-1}$ (by distributivity). $- (e^{tX})' = \left(\sum_{k=0}^{\infty} \frac{(tX)^{k}}{k!}\right)' = \sum_{k=1}^{\infty} \frac{t^{k-1}X^{k}}{(k-1)!} = Xe^{tX} = e^{tX}X$
 - $-f(t) = e^{tX}$ is the unique solution of $f: \mathbb{R} \to M_n(\mathbb{R}), f(0) = I, f'(t) = Xf(t)$. Pf: Check that $(e^{-tX}f(t))' \equiv 0$.
 - If XY = YX then $e^{X+Y} = e^X e^Y$. (not in general, i.e. $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$), $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$). Exercise: X, Y commute $\Leftrightarrow e^{tX}, e^{tY}$ commute $\forall t \Leftrightarrow e^{sX+tY} = e^{sX}e^{tY} \ \forall s, t$.
 - $-X \mapsto e^X : M_n(\mathbb{R}) \to GL_n(\mathbb{R}), \text{ and } (e^X)^{-1} = e^{-X}.$
 - $-t \mapsto e^{tX} : \mathbb{R} \to GL_n(\mathbb{R})$ is a homomorphism.
 - $-f(t) = e^{tX}$ is the unique differentiable homomorphism $\mathbb{R} \to GL_n(\mathbb{R})$ with f'(0) = X. Pf: we have f'(t) = Xf(t) since $\frac{f(t+h)-f(t)}{h} = \frac{f(h)-f(0)}{h}f(t)$.
- Example: For $X = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, $e^{tX} = e^{at} \begin{pmatrix} \cos bt & \sin bt \\ -\sin bt & \cos bt \end{pmatrix}$.
- If $X = P^{-1} \operatorname{diag}(a_1, \ldots, a_n) P$, then

$$e^{X} = e^{P^{-1}\operatorname{diag}(a_{1},\ldots,a_{n})P} = P^{-1}e^{\operatorname{diag}(a_{1},\ldots,a_{n})}P = P^{-1}\operatorname{diag}(e^{a_{1}},\ldots,e^{a_{n}})P.$$

Exercise: compute e^X for a Jordan block $X = \begin{pmatrix} a & 1 \\ & \ddots & \ddots \\ & & a \end{pmatrix}$. This settles computations...

- det $e^X = e^{\operatorname{trace} X}$: clear for diagonalizable, which are dense in $M_n(\mathbb{C})$.
- For ||A I|| < 1,

$$\log A := \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (A - I)^k$$

converges and satisfies

$$\begin{split} \|A - I\| < 1 & \Rightarrow & e^{\log A} = A \\ \|X\| < \log 2 & \Rightarrow & \log e^X = X \end{split}$$

Pf: The diagonalizable matrices are dense in GL_n , and if A is diagonalizable then $||A - I||_2 \le ||A - I||_F < 1$ implies $|1 - \lambda| < 1$ for every $\lambda \in Spec(A)$, and we use conjugation.

• Thus, exp bijects a neighborhood of $0 \in M_n$ with a neighborhood of $I \in GL_n$: if $U = \exp\left(\mathring{B}_{\log 2}(0)\right)$ then $\mathring{B}_{\log 2}(0) \stackrel{\log}{\hookrightarrow} U$.

- exp is <u>not</u> locally injective everywhere: We have $e^X = I$ for all $X = \begin{pmatrix} 2ai & 2b \\ -2b & -2ai \end{pmatrix}$ with $a^2 + b^2 = \pi^2$, as they are all conjugate to $\begin{pmatrix} 2\pi i \\ -2\pi i \end{pmatrix}$ (and $\mathbb{C} \to M_2(\mathbb{R})$ turns this to an example in $M_4(\mathbb{R})$).
- Applications:
 - Roots: for $A \in U$, $\sqrt[n]{A} := e^{\frac{1}{n} \log A}$ is an *n*-th root of A in U, and it is the unique *n*-th root in exp $\left(\mathring{B}_{\frac{\log 2}{n}}(0)\right)$.
 - Every continuous homomorphism $\mathbb{R} \to GL_n(\mathbb{C})$ is of the form $t \mapsto e^{tX}$.
- Trotter-Lie Formula (First take on failure of exp to be homomorphism): $e^{X+Y} = \lim_{m \to \infty} \left(e^{\frac{X}{m}} e^{\frac{Y}{m}} \right)^m$.

 $-\log(I+A) = A + O\left(\|A\|^2\right)$ as $\|A\| \to 0$. More concretely, for $\|A\| \le \frac{1}{2}$

$$\|\log(I+A) - A\| \le \|A\|^2 \left(\frac{1}{2} + \frac{\|A\|}{3} + \frac{\|A\|^2}{4} + \dots\right) \le \|A\|^2 \log \frac{16}{e^2}$$

 $\begin{aligned} - \text{ For fixed } X, e^{\frac{X}{m}} &= I + \frac{X}{m} + O\left(\frac{1}{m^2}\right) \text{ (since } \left\| e^{\frac{X}{m}} - I - \frac{X}{m} \right\| \leq \frac{e^{\|X\|}}{m^2} \text{), hence } e^{\frac{X}{m}} e^{\frac{Y}{m}} &= I + \frac{X}{m} + \frac{Y}{m} + O\left(\frac{1}{m^2}\right). \\ - \text{ As } e^{\frac{X}{m}} e^{\frac{Y}{m}} \xrightarrow{m \to \infty} I, \text{ for } m \text{ large enough we have } \left\| e^{\frac{X}{m}} e^{\frac{Y}{m}} - I \right\| \leq \frac{1}{2}, \text{ hence} \end{aligned}$

$$\log e^{\frac{X}{m}} e^{\frac{Y}{m}} = \log \left(I + \left(e^{\frac{X}{m}} e^{\frac{Y}{m}} - I \right) \right) = e^{\frac{X}{m}} e^{\frac{Y}{m}} - I + O\left(\left\| e^{\frac{X}{m}} e^{\frac{Y}{m}} - I \right\|^2 \right)$$
$$= \frac{X}{m} + \frac{Y}{m} + O\left(\frac{1}{m^2}\right) + O\left(\left\| \frac{X}{m} + \frac{Y}{m} + O\left(\frac{1}{m^2}\right) \right\|^2 \right) = \frac{X}{m} + \frac{Y}{m} + O\left(\frac{1}{m^2}\right),$$

 \mathbf{SO}

$$e^{\frac{X}{m}}e^{\frac{Y}{m}} = e^{\frac{X}{m} + \frac{Y}{m} + O\left(\frac{1}{m^2}\right)} \Longrightarrow \left(e^{\frac{X}{m}}e^{\frac{Y}{m}}\right)^m = e^{X + Y + O\left(\frac{1}{m}\right)} \xrightarrow{m \to \infty} e^{X + Y}.$$

2 Matrix Lie Groups

- A Matrix Lie Groups is a closed subgroup of $GL_n(\mathbb{C})$ (which itself embeds as a closed subgroup of $GL_{2n}(\mathbb{R})$).
- Nonexamples: $GL_n(\mathbb{Q}), \left\{ \left(e^{2\pi i t} e^{2\pi i \alpha t} \right) \mid t \in \mathbb{R} \right\}$ with $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.
- Examples: GL_n , SL_n , (unipotent) upper-triangular, \mathbb{R}^+ , \mathbb{C}^+ , S^1 , \mathbb{H}^{\times} , \mathbb{H}^1 .
- For $G \leq GL_n, H \leq GL_m$ we have $G \times H \leq GL_{m+n}$.

2.1 Classical groups

• Let V be a fin.dim. v.s. over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . A bilinear form on V is $b: V \times V \to \mathbb{F}$ (if b is fixed we sometimes write $\langle v, w \rangle$ for b(v, w)) which is linear in each entry. We denote

$$Aut(b) = \{A \in GL(V) \,|\, \forall v, w \in V : b(Av, Aw) = b(v, w)\}$$

where GL(V) are invertible linear transformations from V to itself. Choosing a basis for V identifies it with \mathbb{F}^n . Under this identification, $b(v, w) = v^t B w$ for some $B \in M_n(\mathbb{F})$ (specifically, $B_{ij} = b(v_i, v_j)$ for a basis $\{v_i\}$), and Aut(b) corresponds to $Aut(B) := \{A \in GL_n(\mathbb{F}) \mid A^t B A = B\}$. This is a matrix Lie group in $GL_n(\mathbb{F})$.

- We can also write $Aut(B) = \left\{ A \in GL_n(\mathbb{F}) \mid A = B^{-1}(A^t)^{-1}B \right\}$, which presents Aut(B) as the fixed points of the involutary automorphism $A \mapsto B^{-1}(A^t)^{-1}B$ of $GL_n(\mathbb{F})$.
- Change of basis: If we want to change our identification of $V \cong \mathbb{F}^n$ to another one, this is given by $v \mapsto Pv$ (where $P \in GL_n(\mathbb{F})$ is the "change of basis" matrix), and then B becomes P^tBP . We say B and C are congruent if they represent the same bilinear form, namely, $\exists P \in GL_n(\mathbb{F})$ with $C = P^tBP$. In this case it is clear that $Aut(B) \cong Aut(C)$ (in fact, they are conjugate subgroups of $GL_n(\mathbb{F})$).

- Note that also $Aut(B) = Aut(\alpha B)$ for $\alpha \in \mathbb{F}^{\times}$, even if B and αB are not congruent.
- b is called
 - non-degenerate if $\forall v \neq 0 \exists w$ such that $b(v, w) \neq 0$. This is equivalent to det $B \neq 0$.
 - symmetric if b(v, w) = b(w, v) (equivalent to $B^t = B$).
 - anti-symmetric (or skew-symmetric) if b(v, w) = -b(w, v) (equivalent to $B^t = -B$). Over char $\neq 2$ this is equivalent to $b(v, v) = 0 \forall v$.
- One can also consider the affine isometry group of (V, b), which is $Aff(V, b) = Aut(b) \ltimes V$, and can be considered as a matrix Lie group in $GL_{n+1}(\mathbb{F})$ via $(A, v) \mapsto \begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix}$.

2.1.1 Orthogonal groups

• Sylvester: A symmetric regular $B \in M_n(\mathbb{R})$ is congruent to diag $(1^{\times p}, -1^{\times q})$ for (a unique) $0 \le p \le n$, called the *signature* of B.

Proof (without uniqueness): Let $\langle v, w \rangle = v^t B w$. There exists v with $\langle v, v \rangle \neq 0$, since $\langle v, w \rangle \neq 0$ for some v, w, which implies that one of $\langle v, v \rangle$, $\langle w, w \rangle$ or $\langle v + w, v + w \rangle$ must be nonzero. Now replace v with $\frac{v}{\sqrt{|\langle v, v \rangle|}}$, so that we have $\langle v, v \rangle = 1$ or -1. Observe that dim $v^{\perp} = n - 1$, since $w \mapsto \langle v, w \rangle$ has rank one, and that $\langle v \rangle \cap v^{\perp} = 0$, so that $\mathbb{R}^n = \langle v \rangle \oplus v^{\perp}$. Now check that $\langle \cdot, \cdot \rangle |_{v^{\perp} \times v^{\perp}}$ is symmetric and non-degenerate, and repeat everything again. At the end, you will have found vectors v_1, \ldots, v_n with $\langle v_i, v_j \rangle = \pm \delta_{i,j}$, as desired.

- We denote $Aut (\text{diag} (1^{\times p}, -1^{\times q}))$ by O(p, q). By Sylvester, for every symmetric non-degenerate bilinear form b on \mathbb{R}^n , $Aut (b) \cong O(p,q)$ for some $0 \le p \le n$ (and we denote O(n, 0) = O(n)). Note that $O(p,q) \cong O(q,p)$ (by $Aut (B) \cong Aut (-B)$) and one can check that $O(p,q) \not\cong O(p',q')$ if $\{p,q\} \ne \{p',q'\}$.
- If $A \in Aut(B)$ then det $(A^t B A) = \det B$ (and det $B \neq 0$) forces det $A = \pm 1$, and we define $SO(p,q) = \{A \in O(p,q) | \det A = 1\}$. This is a subgroup of index 2 in O(p,q) (since diag $(-1, 1^{\times n-1}) \in O(p,q)$, for example).
- Over \mathbb{C} , every regular symmetric matrix is congruent to I, since in the proof of Sylvester we can even replace v by $\frac{v}{\sqrt{\langle v,v \rangle}}$ when $\langle v,v \rangle < 0$, and thus obtain $\langle v,v \rangle = 1$. There is thus a unique complex orthogonal group which we denote by $O_n(\mathbb{C})$, and again $SO_n(\mathbb{C})$ is of index 2.

2.1.2 Symplectic groups

- If B is non-degenerate anti-symmetric, then it is always congruent to $\Omega = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$ (in fact over any \mathbb{F} with char $\neq 2$), and we denote $Aut(\Omega)$ by $Sp_{2n}(\mathbb{F})$.
- Again det $A = \pm 1$ for $A \in Sp_{2n}(\mathbb{F})$ is easy, but it turns out that actually det A = 1. One way: prove that the Pfaffian $pf(A) = \frac{1}{2^n n!} \sum_{\sigma \in S_{2n}} \operatorname{sgn} \sigma \prod_{i=1}^n a_{\sigma(2i-1),\sigma(2i)}$ satisfies $pf(\Omega) = pf(A^T \Omega A) = \det(A) pf(\Omega)$ and $pf(\Omega) \neq 0$.

2.1.3 General bilinear

- Why did we restrict to non-degenerate and (anti-)symmetric forms? In general we can always write $b = b_s + b_a$ where $b_s(v,w) = \frac{b(v,w)+b(w,v)}{2}$ is symmetric and $b_a(v,w) = \frac{b(v,w)-b(w,v)}{2}$ is anti-symmetric. Obviously $Aut(b) \supseteq Aut(b_s) \cap Aut(b_a)$, but it turns out that this is an equality (at least in the non-degenerate case).
- b is called *reflexive* if b(v, w) = 0 implies b(w, v) (so ⊥ is symmetric).
 Exercise: b is reflexive iff it is either symmetric or anti-symmetric.

2.1.4 Unitary groups

For a complex vector space V, a sesquilinear (latin: one and a half linear) form on V is a form $b: V \times V \to \mathbb{C}$ which is additive in both entries and satisfies $b(\alpha v, \beta w) = \overline{\alpha}\beta b(v, w)$.

- By $V \cong \mathbb{C}^n$, it corresponds to v^*Bw for some $B \in M_n(\mathbb{C})$, and B, C are congruent if $C = P^*BP$ for some $P \in GL_n(\mathbb{C})$. Now Aut(b) corresponds to $\{A \in GL_n(\mathbb{C}) | A^*BA = B\}$, which is a matrix Lie group in $GL_n(\mathbb{C})$.
- Again non-degenerate corresponds to det $B \neq 0$. Assuming b is non-degenerate, it cannot be symmetric, nor anti-symmetric, as in both cases $\langle iv, w \rangle = \pm \langle w, iv \rangle$ forces $\langle v, w \rangle = 0$ for all v, w.
- But it can be *hermitian*: $\langle v, w \rangle = \overline{\langle w, v \rangle}$, which is equivalent to $B^* = B$. Any non-degenerate hermitian $B \in M_n(\mathbb{C})$ is congruent to diag $(1^{\times p}, -1^{\times q})$ for a unique $0 \le p \le n$: the proof is like in Sylvester, once $\langle v, v \rangle \ne 0$ we know $\langle v, v \rangle \in \mathbb{R}$ by hermiticity, and we can replace v by $\frac{v}{\sqrt{|\langle v, v \rangle|}}$ to get $\langle v, v \rangle = \pm 1$. We cannot force $\langle v, v \rangle = 1$ because $\langle \alpha v, \alpha v \rangle = |\alpha|^2 \langle v, v \rangle$ always has the same sign.
- We denote $Aut(diag(1^{\times p}, -1^{\times q}))$ by U(p,q), and U(n,0) = U(n).
- $A^*BA = B$ gives $|\det A| = 1$ (when $\det B \neq 0$), and $SU(p,q) = U(p,q) \cap SL_n(\mathbb{C})$ is of infinite index in U(p,q).
- We don't bother with anti-hermitian forms $(\langle v, w \rangle = -\overline{\langle w, v \rangle}, \text{ or } B^* = -B)$ because if B is anti-hermitian then iB is Hermitian and Aut(B) = Aut(iB).
- We could stay with R using C → M₂ (R), which would embed M_n (C) → M_n (M₂ (R)) ≅ M_{2n} (R). In fact U (n) is precisely O (2n) ∩ Sp_{2n} (R), since i acts on R² by Ω = (¹₁⁻¹), so being complex-linear is the same as commuting with Ω, which for A ∈ O (n) is the same as AΩA^t = Ω. In fact U (n) equals the intersection of any two out of three (and all three) among O (2n), Sp_{2n} (R) and the image of GL_n (C) in GL_{2n} (R). (Is U (p,q) = O (2p, 2q) ∩ Sp_{2n} (R)?)
- Exercise: $Sp_2(\mathbb{R}) \cong SU(1,1) \cong SL_2(\mathbb{R}) \cong SO(2,1)_0$ (G_0 is the connected component of the identity of a Lie group G).

2.1.5 Some topology

- Compactness: (S)O(n), (S)U(n) are compact, and also Sp(n) below.
- In a non-degenerate symmetric/anti-symmetric bilinear/hermitian space, if v, w satisfy $v \perp v, w \perp w, \langle v, w \rangle = 1$ (hence $\langle w, v \rangle = \pm 1$), then v, w are called a *hyperbolic pair* and the subspace Span (v, w) is called a *hyperbolic plane*. They are very useful, for example:
 - They allow to perform "Gram-Schmidt" to get u which is orthogonal to v, rather than taking $u \mapsto u \langle u, v \rangle v$, one takes $u \mapsto u \langle u, v \rangle w$.
 - If such a plane exists Aut(b) is non-compact since $(v, w) \mapsto (\alpha v, \frac{1}{\alpha}w)$ (and identity on $\text{Span}(v, w)^{\perp}$) is in Aut(b) for any $\alpha \neq 0$.
- O(p,q), U(p,q) with $pq \neq 0, O_n(\mathbb{C}), Sp_n(\mathbb{F})$ all contain hyperbolic plane (note $\begin{pmatrix} 1 & \\ -1 \end{pmatrix}, \begin{pmatrix} 1 & \\ 1 \end{pmatrix}$ are congruent even over \mathbb{R}), hence non-compact.
- $GL_n(\mathbb{F}), SL_n(\mathbb{F}), U(n), SO(n)$ are connected: in U(n) every matrix is diagonalizable (even normal) and conjugate to diag $(e^{it_1}, \ldots, e^{it_n})$, and we can build a path to it. In SO(n) we can do this with 2×2 rotation blocks matrices (diagonalize over \mathbb{C} , then take $\binom{a+bi}{a-bi}$ back to $\binom{a}{-b}{a}$).
- For $pq \neq 0$, SO(p,q) has two connected components and O(p,q) four.

2.2 Quaternions

- Quaternions: $\mathbb{H} = \{r + xi + yj + zk | r, x, y, z \in \mathbb{R}\}$ with multiplication defined by $i^2 = j^2 = k^2 = ijk = -1$ (and $\mathbb{R} \subseteq \mathbb{H}$ in the center).
- Can be written as $\mathbb{H} = \mathbb{C} \oplus \mathbb{C}j$ with $\alpha j = j\overline{\alpha}$. Embeds in $M_2(\mathbb{C})$ by $\mathbb{H} \cong \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} \leq M_2(\mathbb{C})$, which shows \mathbb{H} is associative.
- For $\alpha = r + xi + yj + zk$, its conjugate is $\overline{\alpha} = r xi yj zk$. Exercise: $\overline{\alpha\beta} = \overline{\beta}\overline{\alpha}$.
- Norm: $N(\alpha) = \alpha \overline{\alpha} = r^2 + x^2 + y^2 + z^2$. It is multiplicative since $\alpha \beta \overline{\alpha} \overline{\beta} = \alpha \beta \overline{\beta} \overline{\alpha} = \alpha \overline{\alpha} \beta \overline{\beta}$, and it follows that \mathbb{H} is a division ring $(\alpha^{-1} = \frac{\overline{\alpha}}{N(\alpha)})$. Under $\mathbb{H} \hookrightarrow M_2(\mathbb{C})$, N corresponds to det.
- $\mathbb{H}^1 := \{ \alpha \in \mathbb{H} \mid N(\alpha) = 1 \}$ is a matrix Lie group, homeomorphic to S^3 (by definition of the latter).
- Exercise: The embedding $\mathbb{H} \hookrightarrow M_2(\mathbb{C})$ restricts to an isomorphism $\mathbb{H}^1 \cong SU(2)$.

2.2.1 Quaternions and rotations

- The pure quaternions are $\mathbb{P} = \operatorname{Span}_{\mathbb{R}} \{i, j, k\}$. We think of (\mathbb{P}, N) as Euclidean three-space $(N \text{ coincides with } \|\cdot\|^2)$, and observe that for $\mathfrak{p} \in \mathbb{P}$, $\|\mathfrak{p}\|^2 = N(\mathfrak{p}) = \mathfrak{p}\overline{\mathfrak{p}} = -\mathfrak{p}^2$. Thus, $\mathbb{P}^1 := \{\mathfrak{p} \in \mathbb{P} \mid N(\mathfrak{p}) = 1\}$ (which is geometrically a two-sphere) consists entirely of square roots of -1.
- We can express the Euclidean inner product in $\mathbb P$ by polarization:

$$\langle \mathfrak{p}, \mathfrak{q} \rangle = \frac{\|\mathfrak{p} + \mathfrak{q}\|^2 - \|\mathfrak{p}\|^2 - \|\mathfrak{q}\|^2}{2} = \frac{-(\mathfrak{p} + \mathfrak{q})^2 + \mathfrak{p}^2 + \mathfrak{q}^2}{2} = \frac{-\mathfrak{p}\mathfrak{q} - \mathfrak{q}\mathfrak{p}}{2}$$

so in particular $\mathfrak{p} \perp \mathfrak{q}$ (for $\mathfrak{p}, \mathfrak{q} \in \mathbb{P}$) iff $\mathfrak{p}\mathfrak{q} = -\mathfrak{q}\mathfrak{p}$.

- \mathbb{H}^1 acts by conjugation on \mathbb{P} (if $\alpha \in \mathbb{H}^1$ and $\mathfrak{p} \in \mathbb{P}$ then $\alpha \mathfrak{p} \alpha^{-1} = \alpha \mathfrak{p} \overline{\alpha}$ is pure since $\overline{\alpha \mathfrak{p} \overline{\alpha}} = -\alpha \mathfrak{p} \overline{\alpha}$). This action is by orthogonal transformations (since $N(\alpha \mathfrak{p}) = N(\mathfrak{p})$), so we obtain a homomorphism $\mathbb{H}^1 \to O(3)$, and in fact $\mathbb{H}^1 \to SO(3)$ (for example, since $\mathbb{H}^1 \cong S^3$ is connected).
- If p ∈ P¹ (pure of norm one) and θ ∈ R, then p² = −1 implies e^{∂p} = cos θ + p sin θ, which shows that exp : P → H¹ (similarly to exp : iR → S¹ in C). It turns out that e^{∂p} (acting via conjugation) rotates P by 2θ around the axis p (whereas in C, e^{∂i} acts via multiplication, and rotates by θ).
 - Proof: first verify that if $\mathbf{q} \in \mathbb{P}^1$ with $\mathbf{q} \perp \mathbf{p}$ then $\mathbf{pq} \in \mathbb{P}^1$ as well¹, and that $\{\mathbf{p}, \mathbf{q}, \mathbf{pq}\}$ is an orthonormal basis for \mathbb{P} . Now, $e^{\vartheta \mathbf{p}} \mathbf{p} e^{-\vartheta \mathbf{p}} = \mathbf{p}$ as always so \mathbf{p} is fixed, and $e^{\vartheta \mathbf{p}} \mathbf{q} e^{-\vartheta \mathbf{p}} = \cos 2\vartheta \cdot \mathbf{q} + \sin 2\vartheta \cdot \mathbf{qp}$, so we got a 2ϑ -rotation in the $(\mathbf{q}, \mathbf{pq})$ -plane.
- By Euler's theorem, every element in SO(3) is a rotation around some axis, so that the homomorphism $\mathbb{H}^1 \to SO(3)$ is onto. Furthermore, we see that if $e^{\vartheta \mathfrak{p}} \in \mathbb{H}^1$ acts trivially on \mathbb{P} then $\vartheta \in \pi\mathbb{Z}$, so $e^{\vartheta \mathfrak{p}} = \pm 1$. This shows that $1 \to \{\pm 1\} \to \mathbb{H}^1 \to SO(3) \to 1$ is exact (in fact, \mathbb{H}^1 is the universal cover of SO(3), as $\mathbb{H}^1 \cong S^3$ is simply-connected). In general, $SO(p,q)_0$ has a double universal cover for $p+q \ge 3$, called Spin (p,q). Thus, $\mathbb{H}^1 \cong Spin(3)$.
- $\mathbb{H}^1 \times \mathbb{H}^1$ acts on $\mathbb{H} \cong \mathbb{R}^4$ via orthogonal transformations, by $(\alpha, \beta) \cdot \gamma = \alpha \gamma \beta^{-1}$. Thus we get $\mathbb{H}^1 \times \mathbb{H}^1 \to SO(4)$. Exercise: this is onto, and two-to-one, so that $\mathbb{H}^1 \times \mathbb{H}^1 \cong Spin(4)$.

2.2.2 Quaternionic Classical groups

• The theory of vector spaces (bases, dimension, linear transformations/matrices) is pretty much the same over division rings as over fields. One difference though: the scalars \mathbb{H} act on \mathbb{H}^n from the right (in order to commute with the action of $GL_n(\mathbb{H})$ from the left). A binary form on $V \cong \mathbb{H}^n$ is called bilinear if $b(\alpha v, \beta w) = \alpha b(v, w) \beta$ and sesquilinear if $b(\alpha v, \beta w) = \overline{\alpha} b(v, w) \beta$.

¹but unlike \mathbb{H}^1 and $S^1 \subseteq \mathbb{C}$, \mathbb{P}^1 is not a group (in fact, there is no topological group structure on S^2).

- $U^*(2n) = GL_n(\mathbb{H})$. Note it is not enough to have nonzero determinant! e.g. $\det \begin{pmatrix} i & j \\ i & j \end{pmatrix} = ij ji = 2k$. In fact, the determinant is not well defined for non-commutative rings.
- $SU^*(2n) = SL_n(\mathbb{H})$. What is det here? We can observe the Dieudonné determinant (which is a homomorphism $GL_n(\mathbb{H}) \to \mathbb{H}^{\times}/[\mathbb{H}^{\times},\mathbb{H}^{\times}] \cong \mathbb{R}_{>0}^{\times}$), or use $\mathbb{H} \to M_2(\mathbb{C})$ and take determinant there: for example det $((\alpha + j\beta)) = \det \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} = \alpha \overline{\alpha} + \beta \overline{\beta}$.
- As over \mathbb{C} , there are no nondegenerate (anti-)symmetric bilinear forms over \mathbb{H} .
- The quaternionic-unitary group Sp(p,q):² Any nondegenerate sesquilinear Hermitian form on \mathbb{H}^n is congruent to $b(v,w) = v^*I_{p,q}w$ with $I_{p,q} = \text{diag}(1^{\times p}, -1^{\times q})$, and we define $Sp(p,q) = \{A \in GL_{p+q}(\mathbb{H}) \mid A^*I_{p,q}A = I_{p,q}\}$. Under $\mathbb{H} \hookrightarrow M_2(\mathbb{C})$ we have $Sp(p,q) = U(2p, 2q) \cap Sp_{2p+2q}(\mathbb{C})$, hence the name. In particular Sp(n) is compact since U(2n) is.
- The quaternionic orthogonal group $O^*(2n)$: Any nondegenerate sesquilinear anti-Hermitian form $(\langle v, w \rangle = -\overline{\langle w, v \rangle})$ on \mathbb{H}^n is congruent to $b(v, w) = v^* j w$, and $O^*(2n) = O_n(\mathbb{H}) = \{A \in GL_n(\mathbb{H}) \mid A^* j A = jI\}$. It equals $O_{2n}(\mathbb{C}) \cap U(n, n)$, hence the name. Pf: find $\langle v, v \rangle \neq 0$. We have $\langle v, v \rangle \in \mathbb{P}$, and we can normalize (by $\sqrt{N(\langle v, v \rangle)} \in \mathbb{R}$) to get $\langle v, v \rangle \in \mathbb{P}^1$. Since $\mathbb{H}^1 \cong SO(3)$ acts transitively on $\mathbb{P}^1 \cong S^2$, there is $\alpha \in \mathbb{H}^1$ with $\langle \alpha v, \alpha v \rangle = \alpha \langle v, v \rangle \overline{\alpha} = j$, so we replace v with αv and continue as before.

3 Lie Algebras

- Abstract Lie Algebra: a (non-associative, non-unital) vector space \mathfrak{g} over \mathbb{F} , with a \mathbb{F} -bilinear product $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, which is denoted by $[\cdot, \cdot]$ (and called *bracket*), satisfying
 - [X, X] = 0 (which implies [X, Y] = [Y, X]).
 - the Jacobi identity [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.
- Example: if R is any associative algebra, then [X, Y] := XY YX defines a structure of a Lie algebra (the old multiplication is forgotten).

Even for Lie algebras which don't arise in this way, the terminology pretends that it did: X, Y are called *commuting* if [X, Y] = 0, the *center* of \mathfrak{g} is $Z(\mathfrak{g}) = \{X \mid [X, \mathfrak{g}] = 0\}$, and \mathfrak{g} is *commutative* if $[\mathfrak{g}, \mathfrak{g}] = 0$.

- $\mathfrak{h} \leq \mathfrak{g}$ is a *subalgebra* if it is a linear subspace (so dimension considerations are helpful!) and $[\mathfrak{h}, \mathfrak{h}] \subseteq \mathfrak{h}$. It is an *ideal* $(\mathfrak{h} \leq \mathfrak{g})$ if furthermore $[\mathfrak{h}, \mathfrak{g}] \subseteq \mathfrak{h}$. \mathfrak{g} is called *simple* if it has no non-trivial ideals, and dim $\mathfrak{g} \geq 2$ (equivalently, is non-commutative in a commutative Lie algebra every subspace is an ideal).
- Direct sum: $\mathfrak{g} \oplus \mathfrak{g}'$ is defined by $[(X, X'), (Y, Y')] = ([X, Y]_{\mathfrak{g}}, [X', Y']_{\mathfrak{g}'})$. Inner direct sum (exercise): if $\mathfrak{h}, \mathfrak{h}' \leq \mathfrak{g}, \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{h}'$ as vector spaces and $[\mathfrak{h}, \mathfrak{h}'] = 0$, then $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{h}'$.

3.1 Lie algebras of matrix Lie groups

- A matrix Lie algebra is a subspace $V \leq M_n(\mathbb{F})$ which is closed under bracket.
- The (matrix) Lie algebra $\mathfrak{g} = Lie(G)$ of a matrix Lie group $G \leq GL_n(\mathbb{F})$ is $\mathfrak{g} = \{X \in M_n(\mathbb{F}) \mid \forall t \in \mathbb{R} : e^{tX} \in G\}.$

²Also called: the unitary symplectic, compact symplectic, or hyperunitary group.

Examples:

$$\begin{split} \mathfrak{gl}_n\left(\mathbb{F}\right) &= M_n\left(\mathbb{F}\right) \text{ (also for } \mathbb{F} = \mathbb{H})\\ \mathfrak{sl}_n\left(\mathbb{F}\right) &= \{X \in M_n\left(\mathbb{F}\right) | \operatorname{trace}\left(X\right) = 0\}\\ \mathfrak{o}_n\left(\mathbb{F}\right) &= \mathfrak{so}_n\left(\mathbb{F}\right) = \{X \in M_n\left(\mathbb{F}\right) | X^T = -X\}\\ \mathfrak{u}\left(n\right) &= \{X \in M_n\left(\mathbb{C}\right) | X^* = -X\}\\ \mathfrak{su}\left(n\right) &= \mathfrak{u}\left(n\right) \cap \mathfrak{sl}\left(n\right)\\ \mathfrak{so}\left(p,q\right) &= \{X \in M_n\left(\mathbb{R}\right) | I_{p,q}X^TI_{p,q} = -X\}\\ \mathfrak{sp}_{2n}\left(\mathbb{F}\right) &= \{X \in M_n\left(\mathbb{F}\right) | \Omega X^T \Omega = X\}\\ \mathfrak{sp}\left(n\right) &= \{X \in M_n\left(\mathbb{H}\right) | X^* = -X\} \stackrel{\mathbb{H} \cong \mathbb{C}^2}{=} \mathfrak{u}\left(2n\right) \cap \mathfrak{sp}_{2n}\left(\mathbb{C}\right)\\ \mathfrak{sp}\left(1\right) &= Lie\left(\mathbb{H}^1\right) = \mathbb{P} \subseteq \mathbb{H} \end{split}$$

e.g., if $X^T = -X$ then $(e^{tX})^T = (e^{tX^T}) = e^{-tX}$ implies $e^{tX} \in O(n)$, and if $e^{tX} \in O(n)$ for all t then

$$0 = (I)'(0) = \left(e^{tX} \cdot e^{tX^{T}}\right)'(0) = Xe^{tX}e^{tX^{T}} + e^{tX}X^{T}e^{tX^{T}}\Big|_{t=0} = X + X^{T}.$$

• Example: a basis for $\mathfrak{so}(3)$ is

$$X_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \quad X_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

and the bracket is given by $[X_1, X_2] = X_3$, $[X_2, X_3] = X_1$, $[X_3, X_1] = X_2$. We have $e^{tX_1} = \begin{pmatrix} 1 \cos t - \sin t \\ \sin t & \cos t \end{pmatrix}$, and similarly for the other two, but $e^{tX_1 + sX_2}$ is already complicated.

• The following basis for $\mathfrak{su}(2)$:

$$X_{1} = \frac{1}{2} \begin{pmatrix} i \\ -i \end{pmatrix}, \quad X_{2} = \frac{1}{2} \begin{pmatrix} i \\ i \end{pmatrix}, \quad X_{3} = \frac{1}{2} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
(3.1)

satisfies the same brackets relations as in the previous example, which means that $\mathfrak{su}(2) \cong \mathfrak{so}(3)$ (recall that $SU(2) \ncong SO(3)$ as topological groups - we saw that $SU(2) \cong \mathbb{H}^1$ is a double cover of SO(3)).

- \mathfrak{g} is indeed a matrix Lie algebra: $\mathbb{R}\mathfrak{g} \subseteq \mathfrak{g}$ by the definition, $\mathfrak{g} + \mathfrak{g} \subseteq \mathfrak{g}$ by Trotter-Lie formula, and $[X, Y] \in \mathfrak{g}$ as follows: $(e^{tX}Ye^{-tX})' = e^{tX}(XY YX)e^{-tX}$, so that $[X, Y] = (e^{tX}Ye^{-tX})'(0)$. But $e^{tX}Ye^{-tX} \in \mathfrak{g}$, since for any $s \in \mathbb{R}$ we have $e^{se^{tX}Ye^{-tX}} = e^{tX}e^{sY}e^{-tX} \in G$; Thus $\frac{e^{tX}Ye^{-tX} Y}{t} \in \mathfrak{g}$ for any t > 0, hence $[X, Y] \in \mathfrak{g}$ (\mathfrak{g} is closed, being a linear subspace of M_n).
- A way to get the commutator back from the group is:

$$[X,Y] = \left(e^{tX}Ye^{-tX}\right)'(0) = \frac{\partial}{\partial t} \left[\frac{\partial}{\partial s} \left(e^{tX}e^{sY}e^{-tX}\right)\Big|_{s=0}\right]\Big|_{t=0}.$$
(3.2)

- This shows for example that if G is commutative then so is \mathfrak{g} .
- It also shows that if two Lie groups G, H have neighborhood of their identities which are isomorphic (e.g. SO(3) and U(2)) then $\mathfrak{g} \cong \mathfrak{h}$.
- Also, it gives a hint on how to define the Lie bracket of an abstract Lie group...
- Note that \mathfrak{g} is only an algebra over \mathbb{R} , even when $G \leq GL_n(\mathbb{C} \text{ or } \mathbb{H})$, e.g. $\mathfrak{u}(n)$. We call G a complex Lie group if \mathfrak{g} is also a Lie algebra over \mathbb{C} (e.g. $GL_n(\mathbb{C})$, $SL_n(\mathbb{C})$, $O_n(\mathbb{C})$ and $Sp_{2n}(\mathbb{C})$ I think these are the only ones in the list above).
- Denote by $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ the *complexification* of \mathfrak{g} , which is the complex Lie algebra with the same basis and structure coefficients as \mathfrak{g} has over \mathbb{R} . If $\mathfrak{g} \leq M_n(\mathbb{C})$ and $\mathfrak{g} \cap i\mathfrak{g} = 0$ then we have $\mathfrak{g}_{\mathbb{C}} \cong \mathfrak{g} \oplus i\mathfrak{g} \leq M_n(\mathbb{C})$ (including the Lie

algebra structure), which gives for example

$$\mathfrak{sl}_n(\mathbb{R})_{\mathbb{C}} \cong \mathfrak{sl}_n(\mathbb{C}) \cong \mathfrak{su}(2)_{\mathbb{C}},\tag{3.3}$$

as $\mathfrak{su}(2) \cap i \mathfrak{su}(2) = 0$ and $\mathfrak{su}(2) + i \mathfrak{su}(2) = \mathfrak{sl}_2(\mathbb{C})$.

3.2 Exponential again

- Fix G ≤ GL_d(F), g = Lie (G). By definition, we have exp : g → G. In general it is neither injective nor onto. The image e^g is connected, so it is contained in the identity component of G, but it is not always onto this component (e.g. (⁻¹ ¹₋₁) is not in e^{sl₂(C)} and not in e^{gl₂(R)}).³
- Theorem: There is a neighborhood of $I \in GL_n(\mathbb{F})$ in which $A \in G \Leftrightarrow \log A \in \mathfrak{g}$.
 - Corollary: There are nodes. U of $0 \in \mathfrak{g}$ and V of $I \in G$ such that $\exp |_U : U \to V$ is a homeomorphism. Pf: take $0 < \varepsilon < \log 2$ for which $e^{B_{\varepsilon}(0)}$ is as in the theorem, and then let $U = B_{\varepsilon}(0) \cap \mathfrak{g}, V = e^{B_{\varepsilon}(0)} \cap G$.
 - Lemma: For $X_n \in M_m(\mathbb{F})$ with $e^{X_n} \in G$ and $X_n \to 0$, if $\frac{X_n}{\|X_n\|} \to X$ then $X \in \mathfrak{g}$. Pf: Since $\|X_n\| \to 0$, for any $t \in \mathbb{R}$ taking $k_n = \left\lfloor \frac{t}{\|X_n\|} \right\rfloor$ we have $k_n \|X_n\| \to t$, so that $e^{tX} = \lim e^{k_n \|X_n\| \frac{X_n}{\|X_n\|}} = \lim \left(e^{X_n}\right)^{k_n} \in G$.
 - Proof: \Leftarrow if $\log A \in \mathfrak{g}$ then $A = e^{\log A} \in G$ for ||A I|| < 1. \Rightarrow assume to the contrary than we have $A_n \to I$ with $A_n \in G$ and $\log A_n \notin \mathfrak{g}$. We identify $V = M_n(\mathbb{F}) \cong \mathbb{R}^{cn^2}$ with c = 1/2/4 and the standard inner product, and write $V = \mathfrak{g} \oplus \mathfrak{g}^{\perp}$. Define $\Phi: V \to V$ by $\Phi(X + Y) = e^X e^Y$ for $X \in \mathfrak{g}, Y \perp \mathfrak{g}$. Then Φ is differentiable, and its Jacobian⁴ satisfies $\mathbf{J}_{\Phi}(0) = I$ by checking on a basis composed of \mathfrak{g} and \mathfrak{g}^{\perp} elements. By the inverse function theorem, Φ has a continuous inverse around $\Phi(0) = I$, so we can write $A_m = \Phi(X_m + Y_m) = e^{X_m} e^{Y_m}$ with $X_m \in \mathfrak{g}, Y_m \perp \mathfrak{g}$, and $X_m, Y_m \to 0$. Since $\log A_n \notin \mathfrak{g}$ we have $Y_n \neq 0$, and after passing to a subsequence, $\frac{Y_n}{||Y_n||}$ converges to some $Y \in \mathfrak{g}^{\perp}$ of norm 1. As $e^{Y_n} = e^{-X_n} A_m \in G$ and $Y_n \to 0$, by the Lemma $Y \in \mathfrak{g}$, which is a contradiction.
- More corollaries:
 - As G acts transitively on G, it is a manifold, of dimension dim $\mathfrak{g}.^5$
 - If G is connected then $e^{\mathfrak{g}}$ generates G (every $A \in G$ equals $e^{X_1} \dots e^{X_n}$ for some $X_i \in \mathfrak{g}$): for $g \in G$ pick a path $\gamma : I \to g$. We know $e^{\mathfrak{g}}$ contains some nbd. V of I, and the translates $\gamma(t) V$ cover γ , which is compact, so there is a finite subcover.
 - If G is connected and \mathfrak{g} is commutative so is G (since elements in $e^{\mathfrak{g}}$ commute).
 - G_0 is closed (hence also a matrix Lie group): if $A_n \in G_0$ and $A_n \to A$, then $A_n A^{-1} \to I$, so $A_n A^{-1} = e^X$ for some n and $X \in \mathfrak{g}$, hence $A = e^{-X} A_n$ is path-connected to A_n (by $e^{-tX} A_n$).
 - $-\mathfrak{g} = T_I G := \left\{ \gamma'(0) \mid \gamma \colon C^1(\mathbb{R}, G), \gamma(0) = I \right\} \colon \subseteq \text{ by } \gamma(t) = e^{tX}, \supseteq \colon \text{ for } |t| \text{ small enough, } \gamma(t) = e^{\log \gamma(t)},$ and $\gamma'(0) = \left(e^{\log \gamma}\right)'(0) = \left(\log \gamma\right)'(0) \left(e^{\log \gamma(0)}\right) = \left(\log \gamma\right)'(0).$ Since $\log \gamma(t) \in \mathfrak{g}$ for t small enough, also $\left(\log \gamma\right)'(0) \in \mathfrak{g}.$

3.3 Homomophisms

- A matrix Lie groups hom. is a continuous group hom., e.g.: det: $G \to \mathbb{F}^{\times}$, $e^{tX} : \mathbb{R} \to G$ (we saw these are the only (continuous) homs from \mathbb{R} to GL_n), $SU(2) \cong \mathbb{H}^1 \to SO(3)$, $\mathbb{H}^1 \times \mathbb{H}^1 \to SO(4)$.
- G acts on its Lie algebra \mathfrak{g} by conjugation: $A \cdot X = AXA^{-1}$. This gives the "adjoint representation" which is a Lie group hom. Ad: $X \mapsto \operatorname{Ad}_X : G \to GL(\mathfrak{g})$. In fact, we even have Ad : $G \to \operatorname{Aut}_{LieAlg}(\mathfrak{g}) \leq GL(\mathfrak{g})$ as Ad_A $[X, Y] = [\operatorname{Ad}_A X, \operatorname{Ad}_A Y]$.

³Maybe we will later show that if G is connected and compact then $e^{\mathfrak{g}} = G$.

⁴a.k.a. differential $D\Phi$ or total derivative $\nabla\Phi$.

 $^{^5\}mathrm{Even}$ a smooth manifold, for those who know the term.

- For $\Phi: G \to H$ there is a unique Lie algebra hom. Lie $(\Phi) = d\Phi = \phi: \mathfrak{g} \to \mathfrak{h}$ (called the *differential* of Φ) such that $\Phi(e^X) = e^{\phi(X)}$ ($\forall X \in \mathfrak{g}$). In addition, Φ, ϕ intertwine Ad of G and H: $\phi(\operatorname{Ad}_A(X)) = \operatorname{Ad}_{\Phi(A)}(\phi(X))$ for $A \in G, X \in \mathfrak{g}$.
 - Example: $d \det = \operatorname{trace since } \det e^X = e^{\operatorname{trace} X}$.
 - Since $e^{\psi(\phi(X))} = \Psi(e^{\phi(X)}) = \Psi(\Phi(X))$, *Lie* is a functor from matrix Lie groups to Lie algebras. For connected groups *Lie* is faithful: If $\Phi, \Psi: G \to H$ and $\phi = \psi$ then $\Phi = \Psi$ since $e^{\mathfrak{g}}$ generates *G*.
 - Pf: Let $\gamma: t \mapsto \Phi(e^{tX}) : \mathbb{R} \to H$. As γ is a (continuous) hom., there is $Z \in \mathfrak{h}$ with $\gamma(t) = e^{tZ}$ (see "Applications" in §1), hence γ is smooth, ϕ is homogeneous, and it equals

$$\phi(X) = \left(e^{t\phi(X)}\right)'(0) = \Phi(e^{tX})'(0)$$

implying uniqueness. For the rest:

$$\begin{split} \phi(X+Y) &= \Phi\left(e^{t(X+Y)}\right)'(0) = \Phi\left(\lim_{m} \left(e^{\frac{t}{m}X}e^{\frac{t}{m}Y}\right)^{m}\right)'(0) = \left[\lim_{m} \left(\Phi\left(e^{\frac{t}{m}X}\right)\Phi\left(e^{\frac{t}{m}Y}\right)\right)^{m}\right]'(0) \\ &= \left[\lim_{m} \left(e^{\phi\left(\frac{t}{m}X\right)}e^{\phi\left(\frac{t}{m}Y\right)}\right)^{m}\right]'(0) = \left[\lim_{m} \left(e^{\frac{t}{m}\phi(X)}e^{\frac{t}{m}\phi(Y)}\right)^{m}\right]'(0) = \left(e^{t(\phi(X)+\phi(Y))}\right)'(0) = \phi(X) + \phi(Y) \cdot \Phi(A_{A}(X)) \\ \phi(Ad_{A}(X)) &= \Phi\left(e^{tAXA^{-1}}\right)'(0) = \Phi(A)\Phi\left(e^{tX}\right)\Phi\left(A^{-1}\right)'(0) = \Phi(A)\phi(X)\Phi\left(A^{-1}\right) = Ad_{\Phi(A)}(\phi(X)) \cdot \Phi(X) \\ \phi([X,Y]) &= \phi\left(\left(e^{tX}Ye^{-tX}\right)'(0)\right) = \phi(Ad_{e^{tX}}(Y)'(0)) \stackrel{*}{=} \phi(Ad_{e^{tX}}(Y))'(0) = \left(\Phi(e^{tX})\phi(Y)\Phi(e^{-tX})\right)'(0) \\ &= \left(e^{t\phi(X)}\phi(Y)e^{-t\phi(X)}\right)'(0) = \left[\phi(X),\phi(Y)\right] \cdot \end{split}$$

where \star is from ϕ being linear (and thus also continuous).

• Another example: $\mathrm{ad} = d \operatorname{Ad} : X \mapsto \mathrm{ad}_X : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$. For $X, Y \in \mathfrak{g}$ we find that

$$\operatorname{ad}_{X}(Y) = (\operatorname{Ad}_{e^{tX}})'(0)(Y) = (\operatorname{Ad}_{e^{tX}}(Y))'(0) = [X, Y].$$

Spelling this out, we get a bracket-description of conjugation by exponents:

$$e^{X}Ye^{-X} = \operatorname{Ad}_{e^{X}}(Y) = e^{\operatorname{ad}_{X}}(Y) = \sum \frac{\operatorname{ad}_{X}^{k}(Y)}{k!} = Y + [X,Y] + \frac{[X,[X,Y]]}{2} + \frac{[X,[X,[X,Y]]]}{3!} + \dots$$

• $Lie(\ker \Phi) = \ker \phi$ (for $\Phi: G \to H$): $\phi(X) = 0 \Leftrightarrow \forall t: \Phi(e^{tX}) = e^{t\phi(X)} = 1 \Leftrightarrow X \in Lie(\ker \Phi)$.

4 From Algebra to Groups

- Our goals: Does every (matrix) Lie algebra arise from a Lie group? Does every homomorphism between Lie algebras arise from a Lie group homomorphism? If \mathfrak{g} does come from G, can we recover G from \mathfrak{g} (without the exponent, using \mathfrak{g} only as an abstract Lie algebra)?
- Preparation: $d \exp$. Theorem (Poincare?): For $X, Y \in M_n(\mathbb{F})$,

$$(e^{X+tY})'(0) = e^X \xi(ad_X)(Y), \qquad \xi(z) = \frac{1-e^{-z}}{z} = \sum_{k=0}^{\infty} \frac{(-z)^k}{(k+1)!}.$$
 (4.1)

Note $\operatorname{ad}_X, \xi(\operatorname{ad}_X) \in End_{\mathbb{F}}(M_n(\mathbb{F})) \cong \mathbb{F}^{n^4}, e^{\operatorname{ad}_X} \in GL(M_n(\mathbb{F})).$

- Lemma: for a bounded operator M, $\lim_{m\to\infty} \frac{1}{m} \sum_{j=0}^{m-1} e^{-\frac{j}{m}M} = \xi(M)$. Pf: the l.h.s. is a Darboux sum of $\int_0^1 e^{-tM} dx = \frac{-e^{-tM}}{M} \Big|_0^1 = \xi(M)$. On diagonalizable this is enough. Conclude by continuity?

- Pf: note $(e^{X+tY})'(0)$ is continuous in X, Y.

$$\left(e^{X+tY}\right)'(0) = \left[\left(e^{\frac{X}{m}+\frac{tY}{m}}\right)^{m}\right]'(0) = \frac{1}{m}\left[\left(e^{\frac{X}{m}+tY}\right)^{m}\right]'(0) = \frac{1}{m}\sum_{j=0}^{m-1} \left(e^{\frac{X}{m}+tY}\right)^{m-j-1} \left(e^{\frac{X}{m}+tY}\right)' \left(e^{\frac{X}{m}+tY}\right)^{j}\right|_{t=0}$$

$$= \frac{1}{m}\sum_{j=0}^{m-1} \left(e^{\frac{X}{m}}\right)^{m-j-1} \left(e^{\frac{X}{m}+tY}\right)'(0) \left(e^{\frac{X}{m}}\right)^{j} = e^{\left(\frac{m-1}{m}X\right)} \frac{1}{m}\sum_{j=0}^{m-1} \operatorname{Ad}_{e^{-\frac{j}{m}X}} \left(\left(e^{\frac{X}{m}+tY}\right)'(0)\right)$$

$$= e^{\left(\frac{m-1}{m}X\right)}\sum_{j=0}^{m-1} e^{\operatorname{ad}_{-\frac{j}{m}X}} \left(\left(e^{\frac{X}{m}+tY}\right)'(0)\right) = e^{\left(\frac{m-1}{m}X\right)} \left[\frac{1}{m}\sum_{j=0}^{m-1} e^{-\frac{j}{m}\operatorname{ad}_{X}}\right] \left(\left(e^{\frac{X}{m}+tY}\right)'(0)\right)$$

$$\xrightarrow{m \to \infty} e^{X}\xi \left(\operatorname{ad}_{X}\right) \left(\left(e^{tY}\right)'(0)\right) = e^{X}\xi \left(\operatorname{ad}_{X}\right) (Y).$$

• Recovering G from \mathfrak{g} : in some neighborhood of the identity we have $e^X e^Y = e^{\log(e^X e^Y)}$, so we want to express $\log(e^X e^Y)$ using the Lie structure alone. This is achieved by the **BCH formula**: for $||X||, ||Y|| \le \log \sqrt{2}$,

$$(Poincaré) \quad \log\left(e^{X}e^{Y}\right) = X + \left(\int_{0}^{1}\psi\left(e^{\operatorname{ad}_{X}}e^{t\operatorname{ad}_{Y}}\right)dt\right)(Y) \quad \left(\psi\left(z\right) = \frac{z\log z}{z-1} = 1 - \sum_{k=1}^{\infty}\frac{(1-z)^{k}}{k(k+1)}\right)$$

$$(Dynkin) \quad \log\left(e^{X}e^{Y}\right) = \sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k} \sum_{\substack{\forall i \in [k] \\ r_{i}+s_{i}>0}}\frac{\left[X^{(\times r_{1})}, Y^{(\times s_{1})}, \dots, X^{(\times r_{k})}, Y^{(\times s_{k})}\right]}{r_{1}!s_{1}!\dots r_{k}!s_{k}!\left(r_{1}+s_{1}+\dots+r_{k}+s_{n}\right)}$$

where e.g. $[X^{(\times 2)}, Y^{(\times 2)}] = [X, [X, [Y, Y]]]$. Note $\psi(z) = \xi (\log z)^{-1}$ converges at |z - 1| < 1. Proof: Take $Z(t) = \log (e^X e^{tY})$ so that

$$\log(e^{X}e^{Y}) = Z(1) = Z(0) + \int_{0}^{1} Z'(t) dt = X + \int_{0}^{1} Z'(t) dt.$$

Using (4.1) we have

$$(e^{Z(t)})'(t) = (e^{X}e^{tY})'(t) = e^{X}e^{tY}Y = e^{Z(t)}Y,$$
 and also
$$(e^{Z(t)})'(t) = \frac{d}{dh} (e^{Z(t)+hZ'(t)})|_{h=0} = e^{Z(t)}\xi (\operatorname{ad}_{Z(t)}) (Z'(t)),$$

so that

$$Z'(t) = \xi \left(\operatorname{ad}_{Z(t)} \right)^{-1}(Y) \stackrel{\bigstar}{=} \xi \left(\log \left(e^{\operatorname{ad}_X} e^{t \operatorname{ad}_Y} \right) \right)^{-1}(Y) = \psi \left(e^{\operatorname{ad}_X} e^{t \operatorname{ad}_Y} \right)(Y),$$

where \bigstar is by $e^{\operatorname{ad}_{Z(t)}} = \operatorname{Ad}_{e^{Z(t)}} = \operatorname{Ad}_{e^X e^{tY}} = \operatorname{Ad}_{e^X} \operatorname{Ad}_{e^{tY}} = e^{\operatorname{ad}_X} e^{t \operatorname{ad}_Y}.$

- From BCH, $\log(e^X e^Y) = X + Y + \frac{[X,Y]}{2} + \frac{[X,[X,Y]] [Y,[X,Y]]}{12} \frac{[X,[Y,[X,Y]]]}{24} + \text{terms with more than four } X, Y.$
- Given $\phi: \mathfrak{g} \to \mathfrak{h}$, there is $f: U \to H$ for some nbd. $I \in U \subseteq G$ which satisfies $f(e^X) = e^{\phi(X)}$, and f(AB) = f(A) f(B) for $A, B, AB \in U$. Pf: defining $f(e^X) = e^{\phi(X)}$, for $||X|| < \log 2$ we obtain $f(e^X) = e^{\phi(X)}$. We choose U such that $\exp_{\log} : U \rightleftharpoons e^U$, and that BCH holds on $\log U$ and on $\log \phi(U)$, and we need to show that (for X, Y small) $e^{\phi(\log e^X e^Y)} = f(e^X e^Y) = f(e^X) f(e^Y) = e^{\phi(X)} e^{\phi(Y)}$, namely that $\phi(\log e^X e^Y) = \log e^{\phi(X)} e^{\phi(Y)}$. Using BCH for \mathfrak{g} and \mathfrak{h} , it is enough to show that

$$\phi\left(\psi\left(e^{\operatorname{ad}_{X}}e^{t\operatorname{ad}_{Y}}\right)(Y)\right) = \psi\left(e^{\operatorname{ad}_{\phi(X)}}e^{t\operatorname{ad}_{\phi(Y)}}\right)\left(\phi\left(Y\right)\right),$$

which follows from the intertwining of ad: $\phi(\operatorname{ad}_X(Y)) = \operatorname{ad}_{\phi(X)}\phi(Y)$ (due to $\phi \in \operatorname{Hom}_{LieAl}(\mathfrak{g},\mathfrak{h})$).

• If G is simply-connected, any hom. $f: U \to H$ where U is a nbd. of $I \in G$ extends to a hom. $\Phi: G \to H$. Idea: for $A \in G$ construct a path $\gamma: I \to A$, and define $\Phi(A) = \prod_{j=m}^{1} f\left(\gamma(t_j)\gamma(t_{j-1})^{-1}\right)$ where (t_0, \ldots, t_m) is a partition of I fine enough that $\gamma(t_j)\gamma(t_{j-1})^{-1} \in U$. This is well defined since passing to a finer partition does not change $\Phi(A)$. A small enough homotopic change of γ also does not change $\Phi(A)$, by taking a partition whose points are

not affected by the change. As G is simply-connected, this means Φ is well defined globally. Φ agrees with f on U, and is a homomorphism by concatenation of paths.

- Combining the last two, we have that if G is simply connected then $\phi: \mathfrak{g} \to \mathfrak{h}$ is obtained from (a unique) $\Phi: G \to H$: if we construct f on U by BCH and extend it to Φ , for any X we have $\frac{X}{m} \in U$ for some m, hence $\Phi\left(e^{X}\right) = \Phi\left(e^{\frac{X}{m}}\right)^{m} = e^{m\phi\left(\frac{X}{m}\right)} = e^{\phi(X)}$.
- Decomposing: if G is simply-connected and $\mathfrak{g} = \mathfrak{h}_1 \oplus \mathfrak{h}_2$ then $G = H_1 \times H_2$ for simply connected H_1, H_2 with $Lie(H_i) = \mathfrak{h}_i$: The projection $\pi_2 : \mathfrak{g} \twoheadrightarrow \mathfrak{h}_2$ (w.r.t. $\mathfrak{h}_1 \oplus \mathfrak{h}_2$) comes from some $\Pi_2 : G \to G$, and for $H_1 := \ker \Pi_2$ we have $Lie(H_1) = \ker \pi_2 = \mathfrak{h}_1$. Similarly, $H_2 = \ker \Pi_1$ has $Lie(H_2) = \mathfrak{h}_2$. From $\Pi_2|_{e^{\mathfrak{h}_1}} = 0, \Pi_2|_{e^{\mathfrak{h}_2}} = id$, and $G = \langle e^{\mathfrak{h}_1 + \mathfrak{h}_2} \rangle = \langle e^{\mathfrak{h}_1} e^{\mathfrak{h}_2} \rangle$ (using $[\mathfrak{h}_1, \mathfrak{h}_2] = 0$), it follows that $\Pi_2 : G \twoheadrightarrow H_2$ is also a projection, which implies that H_2 is simply connected, and likewise for H_1 . Thus, $H_1 \times H_2$ (externally) is simply-connected, so $\mathfrak{h}_1 \oplus_{ext} \mathfrak{h}_2 \xrightarrow{\cong} \mathfrak{g}$ corresponds to some $\Phi : H_1 \times H_2 \to G$, which is an isomorphism (its inverse is $\Pi_1 \times \Pi_2$).
- Does every matrix Lie algebra \mathfrak{g} corresponds to a matrix Lie group? No: if $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ then $\mathfrak{g} = \mathbb{R} \begin{pmatrix} i \\ \alpha i \end{pmatrix}$ is a matrix Lie algebra, whose exponent is not closed (it is a dense irrationally sloped line in the torus $\binom{U(1)}{U(1)}$). However, $\mathfrak{g} \mapsto \langle e^{\mathfrak{g}} \rangle$ and $G \mapsto Lie(G)$ do constitute a correspondence between matrix Lie algebras in $GL_n(\mathbb{C})$ and connected subgroups of $GL_n(\mathbb{C})$ (not necessarily closed). Pf: Rossmann §2.5 and Hall §5.9.

4.1 Covers

- What happens if G is not simply-connected? A universal cover for G is a simply-connected Lie group \widetilde{G} equipped with a map $\widetilde{G} \to G$ which induces an isomorphism $\widetilde{\mathfrak{g}} = \mathfrak{g}$. examples: $\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} e^{it} \end{pmatrix} : \mathbb{R} \to U(1)$, and $\mathbb{H}^1 \to SO(3)$.
- Given $\phi: \mathfrak{g} \to \mathfrak{h}$, there exists $\Phi: \widetilde{G} \to H$ with $d\Phi = \phi$ (assuming \widetilde{G} exists).
- Any Lie group G has a universal cover G̃ (by alg. top. arguments), but it is not always a matrix Lie group. For example, SL₂(ℝ) is not: First, SL₂(ℝ) ≃ (^t₀ ^a_{t⁻¹}) × SO(2) (by Gram-Schmidt), which shows that π₁ (SL₂(ℝ)) = ℤ. Any hom. φ : sl₂(ℝ) → gl_n(ℝ) corresponds to some Φ: SL₂(ℝ) → GL_n(ℂ) by noting that φ extends to φ_ℂ: sl₂(ℂ) → gl_n(ℂ), and SL₂(ℂ) ≃ (^t₀ ^a_{t⁻¹}) × SU(2) is simply-connected, so there is Φ_ℂ: SL₂(ℂ) → GL_n(ℂ), and we can take Φ = Φ_ℂ|_{SL₂(ℝ)}. Now, if we had G ⊆ GL_n(ℝ) with Φ: G → SL₂(ℝ) and dΦ an isomorphism, then ψ = (dΦ)⁻¹ would induce some Ψ: SL₂(ℝ) → GL_n(ℂ), such that Φ, Ψ are inverse to each other on a nbd. of I ∈ G, hence G ≅ SL₂(ℝ), and G is not simply-connected.⁶

4.2 Representations

Assume throughout that G is connected.

- A (Lie group) rep. $\Pi: G \to GL(V)$ gives rise to (Lie algebra) representation $\pi: \mathfrak{g} \to \mathfrak{gl}(V)$ with $\Pi(e^X) = e^{\pi(X)}$, $\pi(X)(v) = \Pi(e^{tX})(v)'(0)$, and $\pi(\operatorname{Ad}_A X) = \operatorname{Ad}_{\Pi(A)} \pi(X)$. Every (L.A.) representation $\pi: \mathfrak{g} \to \mathfrak{gl}(V)$ is obtained from a (L.G.) representation $\Pi: \widetilde{G} \to GL(V)$ (and if G is simply-connected then $G = \widetilde{G}$).
 - Π is irreducible iff π is: if $\pi(X)W \subseteq W$ then $e^{\pi(X)}W \subseteq W$, hence $\Pi(e^{\mathfrak{g}})W \subseteq W$, and if $\Pi(G)W \subseteq W$ then $\pi(X)W = \Pi(e^{tX})'(0)W \subseteq W$.
 - $-\Pi \cong \Pi'$ iff $\pi \cong \pi'$ (similar proof).
 - If V has an inner-product, Π is unitary $(\Pi(A)^* = \Pi(A)^{-1})$ iff π is unitary $(\pi(X)^* = -\pi(X))$.
- Every $G \leq GL_n(\mathbb{C})$ has the standard representation $id: G \to GL_n(\mathbb{C})$, and the adjoint representation $\mathrm{Ad}: G \to GL(\mathfrak{g})$. Likewise for \mathfrak{g} .
- We have $Lie(\Pi \oplus \Psi) = \pi \oplus \psi$ but $Lie(\Pi \otimes \Psi) = \pi \otimes id + id \otimes \psi$ and $Lie(\Pi^*) = -\pi^T$ (for the contragradient $\Pi^*(A) = (\Pi(A^{-1}))^T$).

⁶In fact, even the double cover of $SL_2(\mathbb{R})$, which is called the *metaplectic group*, is not a matrix Lie group - perhaps the same argument works - complexification would then yield a double cover of $SL_2(\mathbb{C})$ which is impossible.

• A complex representation $\pi: \mathfrak{g} \to \mathfrak{gl}(V)$ of a real Lie algebra admits $\pi_{\mathbb{C}}: \mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \to \mathfrak{gl}(V)$, and $\mathfrak{g}, \mathfrak{g} + i\mathfrak{g}$ have the same invariant subspaces in V, so π is irreducible iff $\pi_{\mathbb{C}}$ is.

4.3 Example - SU(2)

π

- SU(2) acts on $V_m = \left\{\sum_{k=0}^m \alpha_k z^{m-k} w^k\right\}$ (homogeneous polynomials of degree m in z, w), by $(Af)(z, w) = f\left(A^{-1}\left(\frac{z}{w}\right)\right)$.
- V_m is irreducible. Pf: Compute for the basis in (3.1)

$$\begin{aligned} f(X_3)f(z,w) &= \left[\Pi\left(e^{tX_3}\right)f(z,w)\right]'(0) = \left(\frac{\cos t/2 - \sin t/2}{\sin t/2 - \cos t/2}\right)f(z,w)'(0) = f\left(\left(\frac{\cos t/2 - \sin t/2}{-\sin t/2 \cos t/2}\right)\left(\frac{z}{w}\right)\right)'(0) \\ &= \left(\frac{\partial f(z,w)}{\partial z} - \frac{\partial f(z,w)}{\partial w}\right)\left(\frac{1}{2}\left(\frac{-\sin t/2 - \cos t/2}{-\cos t/2 - \sin t/2}\right)\left(\frac{z}{w}\right)\right)_{t=0} = \left(\frac{\partial f(z,w)}{\partial z} - \frac{\partial f(z,w)}{\partial w}\right)\left(\frac{w}{2}\right) = \left(\frac{w}{2}\frac{\partial}{\partial z} - \frac{z}{2}\frac{\partial}{\partial w}\right)f(z,w), \end{aligned}$$

and similarly $\pi(X_1) = -\frac{iz}{2} \frac{\partial}{\partial z} + \frac{iw}{2} \frac{\partial}{\partial w}, \pi(X_2) = -\frac{iw}{2} \frac{\partial}{\partial z} - \frac{iz}{2} \frac{\partial}{\partial w}$. We complexify: $\mathfrak{su}(2) \otimes \mathbb{C} \cong \mathfrak{su}(2) \oplus i \mathfrak{su}(2) = \mathfrak{sl}_2(\mathbb{C})$ (see (3.3)). Taking the basis $H = \begin{pmatrix} 1 & \\ & -1 \end{pmatrix}, X = \begin{pmatrix} & & \\ & & \end{pmatrix}, Y = \begin{pmatrix} & & \\ & & \end{pmatrix}$ for $\mathfrak{sl}_2(\mathbb{C})$, we have $\pi(X) = \pi(-iX_2 - X_3) = -i\pi(X_2) - \pi(X_3)$ and so on, giving

$$\pi(X) = -w\frac{\partial}{\partial z}, \qquad \pi(Y) = -z\frac{\partial}{\partial w}, \qquad \pi(H) = -z\frac{\partial}{\partial z} + w\frac{\partial}{\partial w}.$$

Applying this to the natural basis of V_m we get

$$\pi(X) \left(z^{m-k} w^k \right) = (k-m) z^{m-k-1} w^{k+1}$$

$$\pi(Y) \left(z^{m-k} w^k \right) = -k z^{m-k+1} w^{k-1}$$

$$\pi(H) \left(z^{m-k} w^k \right) = (2k-m) z^{m-k} w^k,$$
(4.2)

which shows in particular that $\pi(Y)^{\mathbb{N}}\pi(X)^{\mathbb{N}}(f)$ span V_m for any $f \neq 0$.

- Remark: the eigenvalues of H (namely $-m, -m+2, \ldots, m$) are called the *weights* of the representation (so V_m has highest weight m).
- V_m are exhaustive: If V is an irrep of SU(2), it is fin. dim. by Weyl's unitarity trick, and by complexification V is an irrep of $\mathfrak{su}(2)_{\mathbb{C}} \cong \mathfrak{sl}_2(\mathbb{C})$.⁷ Let $v \in V$ be an H-eigenvector with $Hv = \alpha v$. Using [X, Y] = H, [H, X] = 2X, and [H, Y] = -2Y we see that

$$HXv = ([H, X] + XH)v = (2X + XH)v = (2 + \alpha)Xv,$$
(4.3)

so that Xv has H-eigenvalue $\alpha + 2$ (but possibly Xv = 0).⁸ Similarly, $HYv = (\alpha - 2)Yv$. As $HY^{\mathbb{N}}v$ have different H-eigenvalues, eventually $Y^{n+1}v = 0$, and we take $v_0 = Y^n v$, getting $Yv_0 = 0$ and $Hv_0 = \lambda v_0$ (for $\lambda = \alpha - 2n$). Set $v_k := X^k v_0$, so that $Hv_k = (\lambda + 2k) v_k$, and $Yv_k = -k (\lambda + k - 1) v_{k-1}$ by induction:

$$Yv_{k+1} = YXv_k = (XY - [X, Y])v_k = XYv_k - Hv_k$$

(ind. hyp.) = $-k(\lambda + k - 1)v_k - (\lambda + 2k)v_k = -(k+1)(k+\lambda)v_k$.

We have $v_{m+1} = 0$ for some $v_m \neq 0$ (as they have different *H*-eigenvalues), hence $0 = Yv_{m+1} = -(m+1)(m+\lambda)v_m$ implies $\lambda = -m$, and taking $b_k = \frac{(-1)^k}{(m)_k}v_k$ we obtain

$$Xb_k = (k-m)b_{k+1}, \qquad Yb_k = -kb_{k-1}, \qquad Hb_k = (2k-m)b_k.$$
 (4.4)

⁷Be warned however that $SL_{2}(\mathbb{C})$ and thus $\mathfrak{sl}_{2}(\mathbb{C})$ have infinite-dimension irreps as well.

⁸An important point: in (4.3) we look at products, but $\mathfrak{sl}_2(\mathbb{C})$ is not closed under multiplication (e.g. $XY \notin \mathfrak{sl}_2(\mathbb{C})$). A wrong solution is to say it is ok because we can work in $\mathfrak{gl}_2(\mathbb{C})$ (it is wrong because the representation V is only of \mathfrak{sl}_2). A right solution is to note that in (4.3) we never have XH without v after it, and XHv is well defined by X(Hv). The way to make this formal without v, is to take XH as an element of the universal enveloping algebra of $\mathfrak{sl}_2(\mathbb{C})$, which we won't cover.

From (4.2) we see that $z^{m-k}w^k \mapsto b_k$ embeds V_m in V, and as V is irreducible they are isomorphic (as $\mathfrak{sl}_2(\mathbb{C})$ -reps, hence as $\mathfrak{su}(2)$ -reps, hence as $\mathfrak{su}(2)$ -reps).

- We could also start from studying $\mathfrak{su}(2)$ -reps, taking 4.4 as a definition of an action of $\mathfrak{su}(2)_{\mathbb{C}}$ on \mathbb{C}^{m+1} with basis b_0, \ldots, b_m , and verifying it respects the bracket relations. Then, we could restrict it to a representation of $\mathfrak{su}(2)$ (still on \mathbb{C}^{m+1}), which itself comes from a representation of SU(2), since the latter is simply-connected. However, this goes through BCH, and does not give us an explicit global description as we had in $V_m = \left\{\sum_{k=0}^m \alpha_k z^{m-k} w^k\right\}$.
- Since $SO(3) \cong SU(2)/\{\pm I\}$ and $((-I)f)(z,w) = (-1)^m f(z,w)$, the irreps of SO(3) are $\{V_{2m}\}_{m\in\mathbb{N}}$ (every irrep of SO(3) can be pulled back to an irrep of SU(2)).

4.4 Roots and weights in SU(3)

- SU(3) acts irreducibly on homogeneous polynomials in three variables, but now these are not exhaustive. And in any case, we want to conduct a study that will generalize to all classical groups.
- We now start from $\mathfrak{g} = \mathfrak{su}(3)_{\mathbb{C}} = \mathfrak{sl}_3(\mathbb{C})$, rather than from SU(3). We define H_1, X_1, Y_1 via the top-left copy of $\mathfrak{sl}_2(\mathbb{C})$ in $\mathfrak{sl}_3(\mathbb{C})$, and H_2, X_2, Y_2 via the bottom-right copy. We also define $X_3 = [X_1, X_2] = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $Y_3 = [Y_2, Y_1] = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and together X_*, Y_*, H_* are a basis of $\mathfrak{sl}_3(\mathbb{C})$.
- As H_1, H_2 commute, so do $\pi(H_1), \pi(H_2)$ for any representation (π, V) of \mathfrak{g} . For $\mu = (\mu_1, \mu_2) \in \mathbb{C}^2$, we define $V_\mu = \{v \in V \mid H_i v = \mu_i v\}$, and if $V_\mu \neq 0$ we say μ is a *weight* for V.
 - Since H_1, H_2 commute, V has at least one weight.
 - The weights are in \mathbb{Z}^2 , since if $v \in V_{\mu}$ we can restrict it to a $\mathfrak{sl}_2(\mathbb{C})$ -rep via $\langle H_1, X_1, Y_1 \rangle$ or $\langle H_2, X_2, Y_2 \rangle$.
 - Another (basis independent!) way to think of weights is as linear functionals $\mu \colon \mathfrak{h} \to \mathbb{C}$, where \mathfrak{h} is the diagonal subalgebra of $\mathfrak{sl}_2(\mathbb{C})$. Now $v \in V$ is of weight μ if $Hv = \mu(H)v$ for every $H \in \mathfrak{h}$.
- The non-zero weights $(\alpha_1, \alpha_2) \in \mathbb{Z}^2 \setminus (0, 0)$ of the representation (ad, \mathfrak{g}) are called the *roots* of \mathfrak{g} , and the corresponding $v \in \mathfrak{g}_{\alpha}$ are called *root-vectors*. In turns out that $ad_{H_1}, ad_{H_2} \in M_8(\mathbb{C})$ are diagonal w.r.t. X_*, Y_*, H_* . In our case, X_*, Y_* are root-vectors with roots

$$X_1: (2, -1), X_2: (-1, 2), X_3: (1, 1), Y_1: (-2, 1), Y_2: (1, -2), Y_3: (-1, -1),$$

but H_1, H_2 are not root-vectors, since they have weights (0, 0).

• If $v \in V_{\mu}$ and $Z \in \mathfrak{g}_{\alpha}$ (i.e. v is of weight μ , and Z is a root-vector with root α), then $Zv \in V_{\mu+\alpha}$ since

$$H_i Z v = ([H_i, Z] + Z H_i) v = \alpha_i Z v + Z \mu_i v = (\alpha_i + \mu_i) Z v.$$

This also implies that if V is irreducible then $V = \bigoplus_{\mu \in \mathbb{Z}^2} V_{\mu}$, since the latter is g-stable (and nonempty).

- For general \mathfrak{g} , the *Cartan subalgebra* of \mathfrak{g} is a maximal abelian $\mathfrak{h} \leq \mathfrak{g}$ such that ad_H is diagonalizable for every $H \in \mathfrak{h}$. This implies that $\{\mathrm{ad}_H | H \in \mathfrak{h}\}$ are diagonalizable simultaneously, and we can define weights and roots again, and see they shift weights as before.
- We call $\alpha_1 = (2, -1), \alpha_2 = (-1, 2)$ the *positive simple roots*, and observe that every root is either in $\text{Span}_{\mathbb{Z}_{\geq 0}}\{\alpha_1, \alpha_2\}$ (the *positive* roots), or in $\text{Span}_{\mathbb{Z}_{\leq 0}}\{\alpha_1, \alpha_2\}$ (the *negative* roots). We order the weights by $\mu \preceq \mu'$ when $\mu' \mu \in \text{Span}_{\mathbb{Q}_{\geq 0}}\{\alpha_1, \alpha_2\}$. Even though this is only a partial order, we will see later that there is a unique highest weight (as we had m in $\mathfrak{sl}_2(\mathbb{C})$).
- The Highest Weight Theorem: Every (fin. dim.) irrep has a unique highest weight $\mu \in \mathbb{N}^2_{\geq 0}$, and every $\mu \in \mathbb{N}^2_{\geq 0}$ is the highest weight of a unique irrep.

- Lemma: If Z_1, \ldots, Z_n is a basis for \mathfrak{g} , then $Z_{i_1} \cdot \ldots \cdot Z_{i_r} v$ can be expressed as a linear combinations of terms of the form $Z_1^{k_1} \cdot \ldots \cdot Z_n^{k_n} v$, with $\sum k_i \leq r$. Idea: using induction on r, apply $Z_i Z_j v = Z_j Z_i v + [Z_i, Z_j] v$, and $[Z_i, Z_j] = \sum c_{ijk} Z_k$ to move the Z_i to the desired position.
- Lemma: If v_0 has weight μ and $X_*v_0 = 0$, then μ is the unique highest weight for $\langle v_0 \rangle$, and $\langle v_0 \rangle_{\mu} = \mathbb{C}v_0$. Proof: Since $X_*v_0 = 0$ and $H_iv_0 \in \mathbb{C}v_0$, taking $Z_1, \ldots, Z_8 = Y_*, H_*, X_*$ we have

$$\langle v_0 \rangle = \operatorname{Span}_{\mathbb{C}} \left\{ \left(\prod_{j=1}^n Z_{i_j} \right) v_0 \, \middle| \begin{array}{c} {}^{n \in \mathbb{N}}_{i_j \in [8]} \end{array} \right\} = \operatorname{Span}_{\mathbb{C}} \left\{ Y_1^{k_1} Y_2^{k_2} Y_3^{k_3} v_0 \, \middle| \, k_* \in \mathbb{N} \right\},$$

and $Y_1^{k_1}Y_2^{k_2}Y_3^{k_3}v_0$ (with $k_* \neq (0,0,0)$) all have weight strictly lower than μ .

- If V is fin. dim. irrep it has some \leq -highest weight μ , and for $0 \neq v_0 \in V_{\mu}$ this implies $X_*v_0 = 0$ (X_* being the positive roots), so by the lemma μ is the unique highest weight for $\langle v_0 \rangle = V$. In addition, $\mu \in \mathbb{N}^2_{\geq 0}$ since $X_i v_0 = 0$ implies that $H_i v_0 \in \mathbb{N}_{\geq 0} v_0$, by our analysis of $\mathfrak{sl}_2(\mathbb{C})$.
- Given $\mu \in \mathbb{N}^2_{\geq 0}$, let $S = \mathbb{C}^3$ with \mathfrak{g} acting by multiplication (which is induced from SU(3) acting by multiplication), and S^* the contragradient, which is $Z(v) = -Z^T v$. Then S, S^* are irreducible, and $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in S$ and $e'_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in S^*$ have highest weights (1,0) and (0,1) respectively. In particular $X_*e_1, X_*e'_3 = 0$, from which follows that $v_0 = e_1^{\otimes \mu_1} \otimes e'_3^{\otimes \mu_2} \in S^{\otimes \mu_1} \otimes S^{* \otimes \mu_2}$ satisfies $X_*v_0 = 0$ and has weight μ (for this recall that $Z(v \otimes w) = Z(v) \otimes w + v \otimes Z(w)$. By the lemma, μ is the unique highest weight for $V = \langle v_0 \rangle$ and $\mathbb{C}v_0 = V_{\mu}$. To show V is irreducible, we note that S and S^* (with the standard inner product on \mathbb{C}^3) are unitary representations of $\mathfrak{su}(3)$ (though not of $\mathfrak{g} = \mathfrak{su}(3)_{\mathbb{C}}$!), hence so is $S^{\otimes \mu_1} \otimes S^{*\otimes \mu_2}$, hence so is V. Thus, V decomposes into irreducibles: $V = \bigoplus V_i$, hence $\mathbb{C}v_0 = V_{\mu} = \bigoplus (V_i)_{\mu}$, showing $v_0 \in (V_i)_{\mu}$ for a unique i and in particular thus $V = \langle v_0 \rangle \subseteq V_i$.
- For irreps V, W with highest weight μ , we want to show $V \cong W$. By general representation theory nonsense, direct sums and subrepresentations preserve complete reducibility. For $\mathbb{C}v = V_{\mu}$ and $\mathbb{C}w = W_{\mu}$, we obtain that $U = \langle (v, w) \rangle \leq V \oplus W$ decomposes into irreps: $U = \bigoplus U_i$. But again $X_*(v, w) = 0$ and $(v, w) \in U_{\lambda}$ show that $\mathbb{C}(v, w) = U_{\lambda} = (U_i)_{\lambda}$ for a unique *i*, hence $U = \langle (v, w) \rangle = U_i$ is irreducible. Since the projections $V \oplus W \to V, W$ restrict to nonzero maps $U \to V, W$, by Schur Lemma the three are isomorphic.

Lie Groups - Exercise 1

- 1. Compute e^X for a X a Jordan block (i.e. $\begin{pmatrix} a & 1 \\ & \ddots & \ddots \\ & & a \end{pmatrix}$).
- 2. A matrix A is called *nilpotent* if $A^k = 0$ for some $k \in \mathbb{N}$ and *unipotent* if A I is nilpotent. Note log A makes sense for all unipotent A (it is a polynomial in A). Show that exp and log give a complete bijection between the nilpotent and the unipotent matrices (over \mathbb{R} or \mathbb{C}).
- 3. Show that exp: $M_n(\mathbb{C}) \to GL_n(\mathbb{C})$ is onto.
- 4. exp: $M_n(\mathbb{R}) \to GL_n(\mathbb{R})$ is not onto since det $(e^X) = e^{\operatorname{tr}(X)} > 0$, but it is not even onto $GL_n^+(\mathbb{R})$ (matrices with positive determinant): Show that $A = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \notin \exp(M_2(\mathbb{R}))$. Hint: show that if $e^X = A$ then X is non-diagonalizable over \mathbb{C} , and $\operatorname{tr}(X) = 0$.
- 5. Every $X \in M_2(\mathbb{R})$ (over \mathbb{R} or \mathbb{C}) can be written as $\frac{\operatorname{tr}(X)}{2}I + Y$ with $\operatorname{tr}(Y) = 0$. Show that $Y^2 = -\det(Y)I$, and that

$$e^{X} = e^{\frac{\operatorname{trace}(X)}{2}} \left(\cos\left(\sqrt{\det Y}\right) I + \frac{\sin\left(\sqrt{\det Y}\right)}{\sqrt{\det Y}} Y \right).$$

6. Optional: use the previous exercise to show that the image of exp: $M_2(\mathbb{R}) \to GL_2(\mathbb{R})$ is

$$\left\{A \in GL_{2}^{+}\left(\mathbb{R}\right) \middle| \operatorname{tr}\left(A\right) > -2\sqrt{\det A}\right\} \cup \left\{cI \middle| c < 0\right\}$$

(I think, could have got this one wrong).

- 7. Show that the following are equivalent:
 - (a) X, Y commute
 - (b) e^{sX}, e^{tY} commute for all $s, t \in \mathbb{R}$
 - (c) $e^{sX+tY} = e^{sX}e^{tY}$ for all $s, t \in \mathbb{R}$

Lie Groups - Exercise 2

May 4, 2022

- 1. Prove that $Z(\mathbb{H}) = \mathbb{R}$.
- 2. Prove that $\mathbb{H}^1 \cong SU(2)$.
- 3. (a) Show that the action of $\mathbb{H}^1 \times \mathbb{H}^1$ on \mathbb{H} by $(\alpha, \beta) \cdot \gamma = \alpha \gamma \beta^{-1}$ gives a homomorphism $\Phi : \mathbb{H}^1 \times \mathbb{H}^1 \to SO(4)$.
 - (b) Show that ker $\Phi = \{(1,1), (-1,-1)\}.$
 - (c) Show that Φ is onto. Hint: identifying $\mathbb{H} \cong \mathbb{R}^4$ via the basis 1, i, j, k, let $\alpha, \beta, \gamma, \delta \in \mathbb{H}$ be such that $(\alpha|\beta|\gamma|\delta) \in SO(4)$. Show that using $\mathbb{H}^1 \times \mathbb{H}^1$ one can take $(\alpha, \beta, \gamma, \delta)$ to (1, i, j, k). It is helpful to remember that you already know well the action of the diagonal $\{(\alpha, \alpha) \in \mathbb{H}^1 \times \mathbb{H}^1\}$ on \mathbb{P} ...
- 4. Let \mathbb{F} be a field with char $\mathbb{F} \neq 2$, and define the \mathbb{F} -quaternions $\mathbb{H}_{\mathbb{F}}$ as the algebra over \mathbb{F} with basis 1, i, j, k and product defined by $i^2 = j^2 = k^2 = ijk = -1$, associativity and distributivity (and 1 being the multiplicative identity). Prove that if -1 is a square in \mathbb{F} then $\mathbb{H}_{\mathbb{F}} \cong M_2(\mathbb{F})$.
- 5. Let \mathbb{E}/\mathbb{F} be a quadratic field extension with char $\mathbb{F} \neq 2$ and $\operatorname{Gal}(\mathbb{E}/\mathbb{F}) = \{id, \sigma\}$. We know that $\mathbb{E} = \mathbb{F}\left[\sqrt{\delta}\right]$ for some $\delta \in \mathbb{F}$, so that $\sigma\left(\sqrt{\delta}\right) = -\sqrt{\delta}$. Now, assume that the norm map

$$N \colon \mathbb{E}^{\times} \to \mathbb{F}^{\times}, \quad N\left(a + b\sqrt{\delta}\right) = \left(a + b\sqrt{\delta}\right) \cdot \sigma\left(a + b\sqrt{\delta}\right) = a^2 - \delta b^2$$

is onto.

- (a) Show that this is always the case for finite fields.
- (b) Show that the following unitary groups are isomorphic:

$$U_n (\mathbb{E}/\mathbb{F}) = \{ A \in GL_n (\mathbb{E}) \mid A^*A = I \}$$
$$U_n (\mathbb{E}/\mathbb{F}, J) = \{ A \in GL_n (\mathbb{E}) \mid A^*JA = J \}$$

where $J = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, and $(A^*)_{ij} = \sigma(A_{ji})$. Hint: find hyperbolic pairs in the Hermitian space \mathbb{E}^n (with the standard product $\langle v, w \rangle = v^* w$).

(c) Optional: Show that $U_n(\mathbb{E}/\mathbb{F}, B) \cong U_n(\mathbb{E}/\mathbb{F}, J)$ for any hermitian matrix $B \in GL_n(\mathbb{E})$.¹

¹Since every finite field \mathbb{F} has a unique quadratic extension, this implies there is a unique unitary group over \mathbb{F} in each dimension!

Lie Groups - Exercise 3

June 22, 2022

- 1. Show that $\mathfrak{sl}_n(\mathbb{F}) = \{X \in M_n(\mathbb{F}) | \operatorname{trace}(X) = 0\}.$
- 2. Let G be the group of all upper-triangular matrices in $GL_n(\mathbb{F})$. Show that $\mathfrak{g} = Lie(G)$ is the algebra of all upper-triangular matrices in $M_n(\mathbb{F})$.
- 3. What is \mathfrak{g} when G is the group of all unipotent upper-triangular matrices in $GL_n(\mathbb{F})$?
- 4. The *derivations* of an \mathbb{F} -algebra A are

$$\operatorname{Der}_{\mathbb{F}}(A) = \{ f \in \operatorname{End}_{\mathbb{F}}(A) \mid f(ab) = f(a)b + af(b) \}.$$

- (a) Show that if $f \in \text{Der}_{\mathbb{F}}(A)$ then $f^{n}(ab) = \sum_{k=0}^{n} {n \choose k} f^{n-k}(a) f^{k}(b)$.
- (b) Show that $\operatorname{Der}_{\mathbb{F}}(A)$ is a Lie algebra, w.r.t. $[f,g] = f \circ g g \circ f$.
- (c) Show that if \mathfrak{g} is a finite-dimensional Lie algebra¹ then $Lie(\operatorname{Aut}_{LieAl}(\mathfrak{g})) = \operatorname{Der}_{\mathbb{R}}(\mathfrak{g})$ (we consider $\operatorname{Aut}_{LieAl}(\mathfrak{g})$ as a Lie group by $\operatorname{Aut}_{LieAl}(\mathfrak{g}) \leq GL(\mathfrak{g}) \cong GL_{\dim \mathfrak{g}}(\mathbb{R})$). Conclude (or show directly) that $\mathrm{ad} \in \operatorname{Hom}_{LieAl}(\mathfrak{g}, \operatorname{Der}_{\mathbb{R}}(\mathfrak{g}))$.
- 5. Let $H \subseteq G \subseteq GL_n(\mathbb{F})$ be matrix Lie groups. Show that:
 - (a) If $H \leq G$ (normal) then $\mathfrak{h} \leq \mathfrak{g}$ (ideal).
 - (b) If G and H are connected and $\mathfrak{h} \leq \mathfrak{g}$ then $H \leq G$.
- 6. Optional: If G is abelian and connected then $e^{\mathfrak{g}} = G$.

¹if you want you can assume it is the Lie algebra of a Lie group G, but I don't think it helps

Lie Groups - Final Exercise

October 6, 2022

- 1. Recall that $Sp_{2n}(\mathbb{F}) = \{A \mid A^T \Omega A = \Omega\}$, where $\Omega = \begin{pmatrix} I_n \\ -I_n \end{pmatrix}$ (and $\mathbb{F} = \mathbb{R}$ or \mathbb{C}). Show that $\mathfrak{sp}_{2n}(\mathbb{F}) = \begin{cases} \begin{pmatrix} A & B \\ C & -A^T \end{pmatrix} \mid A, B, C \in \mathfrak{gl}_n(\mathbb{F}) \\ B = B^T, C = C^T \end{cases}$, and compute its dimension.
- 2. Recall the quaternionic-unitary group $Sp(n) = \{A \in GL_n(\mathbb{H}) \mid A^*A = I\}$ (where $(A^*)_{ij} = \overline{A_{ji}}$ with the quaternionic conjugate). Show that $\mathfrak{sp}(n)_{\mathbb{C}}$ (the complexification of its Lie algebra) is isomorphic to $\mathfrak{sp}_{2n}(\mathbb{C})$.¹
- 3. From now on we focus on $\mathfrak{sp}_4(\mathbb{C})$, and replace Ω by $\Omega = \begin{pmatrix} -1 & 1 \\ & -1 \end{pmatrix}$ (they are congruent, and you'll soon see why this one serves us better). Work out what is $\mathfrak{sp}_4(\mathbb{C})$ using this Ω .
- 5. Extend $H_1, X_1, Y_1, H_2, X_2, Y_2$ to a basis of $\mathfrak{sp}_4(\mathbb{C})$, and verify that in this basis ad_{H_1} and ad_{H_2} are diagonal (if they are not you probably tried to be unnecessarily creative in choosing your basis remedy this).
- 6. Find the roots of $\mathfrak{sp}_4(\mathbb{C})$ and draw them in \mathbb{R}^2 . Choose two roots α_1, α_2 such that every root is in either $\operatorname{Span}_{\mathbb{Z}_{\geq 0}} {\alpha_1, \alpha_2}$ or in $\operatorname{Span}_{\mathbb{Z}_{\leq 0}} {\alpha_1, \alpha_2}$ (we call α_1, α_2 the "positive simple roots"). Try to make it so that X_1, X_2 are root-vectors with positive roots (though this is not crucial).
- 7. Order the weights by $\mu \leq \mu'$ when $\mu' \mu \in \text{Span}_{\mathbb{Q}_{\geq 0}}\{\alpha_1, \alpha_2\}$, and show that every fin. dim. irreducible representation of $\mathfrak{sp}_4(\mathbb{C})$ has a unique vector of highest weight (up to scalars), and this weight is in $\mathbb{N}^2_{\geq 0}$ (or in another quadrant of the plane, if you didn't bother to make the roots corresponding to X_1, X_2 positive).
- 8. Find all the weights of the standard representation $S = \mathbb{C}^4$ (with $\mathfrak{sp}_4(\mathbb{C})$ acting by multiplication). Which is the highest?
- 9. Show that the highest weight in an irreducible representation is actually in $\{(\mu_1, \mu_2) | \mu_1 \ge \mu_2 \ge 0\}$ (or in another eighth-plane, which one depends again on your choice of positive roots). Hint: one of your positive simple root-vectors was one of $\{X_1, X_2, Y_1, Y_2\}$; Find another copy of $\mathfrak{sl}_2(\mathbb{C})$ in $\mathfrak{sp}_4(\mathbb{C})$ whose "X" vector is your other positive simple root-vector.

For the next two questions you can assume total reducibility (namely, that every representation of $\mathfrak{sp}_4(\mathbb{C})$ decomposes as a some of irreducible ones). You are welcome to try to prove it, or you can simply decide we only care about representations of $\mathfrak{sp}(n)$, where the standard representation is unitary w.r.t. the standard inner product (this is what we did in class, where we studied representation of $\mathfrak{su}(3)$, whose complexification was $\mathfrak{sl}_3(\mathbb{C})$).

- 10. Find an irreducible representation V of $\mathfrak{sp}_4(\mathbb{C})$ with highest weight (1,1). Hint: look at $S \otimes S$.²
- 11. Show that for any $\mu_1 \ge \mu_2 \ge 0$, $S^{\otimes (\mu_1 \mu_2)} \otimes V^{\otimes \mu_2}$ has an irreducible subrepresentation of highest weight (μ_1, μ_2) .

¹The triplet Sp(n), $Sp_n(\mathbb{R})$, $Sp_n(\mathbb{C})$ is analogue to SU(n), $SL_n(\mathbb{R})$, $SL_n(\mathbb{C})$ - the first group is compact, the second is not, and both have a Lie algebra whose complexification is isomorphic to that of the third (which is a complex Lie group). In general, every complex semisimple Lie algebra has a compact and a non-compact "real form". We saw those of $\mathfrak{sl}_n(\mathbb{C})$ and $\mathfrak{sp}_n(\mathbb{C})$, can you work out such a triplet for $\mathfrak{so}_n(\mathbb{C})$?

²If you're not used to tensors: taking any basis e_1, \ldots, e_4 for S, we can define $S \otimes S$ as the vector space with basis $\{e_i \otimes e_j\}_{i,j \in [4]}$, and each $Z \in \mathfrak{sp}_4(\mathbb{C})$ acts on the basis elements by $Z(e_i \otimes e_j) = (Ze_i) \otimes e_j + e_i \otimes (Ze_j)$.