Matrix Lie Groups - 2022

Ori Parzanchevski

May 18, 2023

These notes are based mostly on the books of Hall and Rossmann.

Contents

1 The Exponential 1
2 Matrix Lie Groups 3
2.1 Classical groups 3
2.1.1 Orthogonal groups 4
2.1.2 Symplectic groups 4
2.1.3 General bilinear 4
2.1.4 Unitary groups 5
2.1.5 Some topology 5
2.2 Quaternions 6
2.2.1 Quaternions and rotations 6
2.2.2 Quaternionic Classical groups 6
3 Lie Algebras 7
3.1 Lie algebras of matrix Lie groups 7
3.2 Exponential again 9
3.3 Homomoprhisms 9
4 From Algebra to Groups 10
4.1 Covers 12
4.2 Representations 12
4.3 Example - $S U(2)$ 13
4.4 Roots and weights in $S U(3)$ 14

1 The Exponential

- If $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f^{\prime}(x)=a f(x)$, then $f(x)=f(0) \cdot e^{a x}$ follows from

$$
a x=\int_{0}^{x} a d t=\int_{0}^{x} \frac{f^{\prime}(t)}{f(t)} d t=\int_{0}^{x}(\ln f(t))^{\prime} d t=\ln f(x)-\ln f(0) .
$$

We could also try to find a power-series solution $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$, and solve: $c_{k}=\frac{a \cdot c_{k-1}}{k}$ (and $c_{0}=f(0)$), hence $f(x)=f(0) \sum_{k=0}^{\infty} \frac{(a x)^{k}}{k!}$.

- $e^{x}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{\times}$turns addition into multiplication.
- What if $p: \mathbb{R} \rightarrow \mathbb{R}^{n}$ satisfies $p^{\prime}(t)=X \cdot p(t)$ for a fixed $X \in M_{n}(\mathbb{R})$? We can try to find a power series solution of the form $p(t)=\sum_{k=0}^{\infty} t^{k} p_{k}$ (with $p_{k} \in \mathbb{R}^{n}$). We get again $p_{k}=\frac{1}{k} X p_{k-1}$, so $p_{k}=\frac{X^{k}}{k!} p_{0}$, and $p(t)=\sum_{k=0}^{\infty} \frac{t^{k} X^{k} p_{0}}{k!}=$ $\left(\sum_{k=0}^{\infty} \frac{(t X)^{k}}{k!}\right) p_{0}=e^{t X} p_{0}$, and we can check this is a solution (inside the circle of convergence we can differentiate term by term).
- Differentiation: for $A, B: \mathbb{R} \rightarrow M_{n}(\mathbb{R})($ or $\mathbb{C}),(A(t) B(t))^{\prime}=A^{\prime}(t) B(t)+A(t) B^{\prime}(t)$, which also gives $A^{-1}(t)^{\prime}=$ - $A^{-1}(t) A^{\prime}(t) A^{-1}(t)$ for invertible A (compare this with $f^{-1}(t)^{\prime}=\frac{f^{\prime}(t)}{f^{2}(t)}$ in the commutative case!)
- Frobenius norm: $\|A\|_{F}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}=\operatorname{tr} A A^{*}=\sum_{\sigma \in \operatorname{Sing}(A)} \sigma^{2}$. Like any norm satisfies $\|A+B\| \leq\|A\|+\|B\|$, $\|\alpha A\|=|\alpha|\|A\|,\|A\| \geq 0$ with $\|A\|=0$ only for $A=0$, and is also submultiplicative: $\|A B\| \leq\|A\|\|B\|$ (using Cauchy-Schwartz).
- Thus, $e^{X}=\sum_{k=0}^{\infty} \frac{X^{k}}{k!}$ converges for any X, and is continuous.
- Properties:
$-e^{0}=I, e^{X^{t}}=\left(e^{X}\right)^{t}, e^{Y X Y^{-1}}=Y e^{X} Y^{-1}$ (by distributivity).
$-\left(e^{t X}\right)^{\prime}=\left(\sum_{k=0}^{\infty} \frac{(t X)^{k}}{k!}\right)^{\prime}=\sum_{k=1}^{\infty} \frac{t^{k-1} X^{k}}{(k-1)!}=X e^{t X}=e^{t X} X$
$-f(t)=e^{t X}$ is the unique solution of $f: \mathbb{R} \rightarrow M_{n}(\mathbb{R}), f(0)=I, f^{\prime}(t)=X f(t)$.Pf: Check that $\left(e^{-t X} f(t)\right)^{\prime} \equiv 0$.
- If $X Y=Y X$ then $e^{X+Y}=e^{X} e^{Y}$. (not in general, i.e. $\left.\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)$.

Exercise: X, Y commute $\Leftrightarrow e^{t X}, e^{t Y}$ commute $\forall t \Leftrightarrow e^{s X+t Y}=e^{s X} e^{t Y} \forall s, t$.
$-X \mapsto e^{X}: M_{n}(\mathbb{R}) \rightarrow G L_{n}(\mathbb{R})$, and $\left(e^{X}\right)^{-1}=e^{-X}$.
$-t \mapsto e^{t X}: \mathbb{R} \rightarrow G L_{n}(\mathbb{R})$ is a homomorphism.
$-f(t)=e^{t X}$ is the unique differentiable homomorphism $\mathbb{R} \rightarrow G L_{n}(\mathbb{R})$ with $f^{\prime}(0)=X$. Pf: we have $f^{\prime}(t)=$ $X f(t)$ since $\frac{f(t+h)-f(t)}{h}=\frac{f(h)-f(0)}{h} f(t)$.

- Example: For $X=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right), e^{t X}=e^{a t}\left(\begin{array}{c}\cos b t \\ -\sin b t \\ -\sin b t \\ \cos b t\end{array}\right)$.
- If $X=P^{-1} \operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) P$, then

$$
e^{X}=e^{P^{-1} \operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) P}=P^{-1} e^{\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)} P=P^{-1} \operatorname{diag}\left(e^{a_{1}}, \ldots, e^{a_{n}}\right) P .
$$

Exercise: compute e^{X} for a Jordan block $X=\left(\begin{array}{cccc}a & 1 & & \\ & \ddots & \ddots \\ & & \ddots\end{array}\right)$. This settles computations...

- $\operatorname{det} e^{X}=e^{\text {trace } X}$: clear for diagonalizable, which are dense in $M_{n}(\mathbb{C})$.
- For $\|A-I\|<1$,

$$
\log A:=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}(A-I)^{k}
$$

converges and satisfies

$$
\begin{array}{cll}
\|A-I\|<1 & \Rightarrow & e^{\log A}=A \\
\|X\|<\log 2 & \Rightarrow & \log e^{X}=X
\end{array}
$$

Pf: The diagonalizable matrices are dense in $G L_{n}$, and if A is diagonalizable then $\|A-I\|_{2} \leq\|A-I\|_{F}<1$ implies $|1-\lambda|<1$ for every $\lambda \in \operatorname{Spec}(A)$, and we use conjugation.

- Thus, exp bijects a neighborhood of $0 \in M_{n}$ with a neighborhood of $I \in G L_{n}$: if $U=\exp \left(\stackrel{\circ}{B}_{\log 2}(0)\right)$ then $\stackrel{\circ}{B}_{\log 2}(0) \underset{\exp }{\stackrel{\log }{\leftrightarrows}} U$.
- \exp is not locally injective everywhere: We have $e^{X}=I$ for all $X=\left(\begin{array}{cc}2 a i & 2 b \\ -2 b & -2 a i\end{array}\right)$ with $a^{2}+b^{2}=\pi^{2}$, as they are all conjugate to $\left({ }^{2 \pi i}{ }_{-2 \pi i}\right)$ (and $\mathbb{C} \rightarrow M_{2}(\mathbb{R})$ turns this to an example in $M_{4}(\mathbb{R})$).
- Applications:
- Roots: for $A \in U, \sqrt[n]{A}:=e^{\frac{1}{n} \log A}$ is an n-th root of A in U, and it is the unique n-th root in $\exp \left(\dot{B}_{\frac{\log 2}{n}}(0)\right)$.
- Every continuous homomorphism $\mathbb{R} \rightarrow G L_{n}(\mathbb{C})$ is of the form $t \mapsto e^{t X}$.
- Trotter-Lie Formula (First take on failure of exp to be homomorphism): $e^{X+Y}=\lim _{m \rightarrow \infty}\left(e^{\frac{X}{m}} e^{\frac{Y}{m}}\right)^{m}$.
$-\log (I+A)=A+O\left(\|A\|^{2}\right)$ as $\|A\| \rightarrow 0$. More concretely, for $\|A\| \leq \frac{1}{2}$

$$
\|\log (I+A)-A\| \leq\|A\|^{2}\left(\frac{1}{2}+\frac{\|A\|}{3}+\frac{\|A\|^{2}}{4}+\ldots\right) \leq\|A\|^{2} \log \frac{16}{e^{2}}
$$

- For fixed $X, e^{\frac{X}{m}}=I+\frac{X}{m}+O\left(\frac{1}{m^{2}}\right)$ (since $\left\|e^{\frac{X}{m}}-I-\frac{X}{m}\right\| \leq \frac{e^{\|X\|}}{m^{2}}$), hence $e^{\frac{X}{m}} e^{\frac{Y}{m}}=I+\frac{X}{m}+\frac{Y}{m}+O\left(\frac{1}{m^{2}}\right)$.
- As $e^{\frac{X}{m}} e^{\frac{Y}{m}} \xrightarrow{m \rightarrow \infty} I$, for m large enough we have $\left\|e^{\frac{X}{m}} e^{\frac{Y}{m}}-I\right\| \leq \frac{1}{2}$, hence

$$
\begin{aligned}
& \log e^{\frac{X}{m}} e^{\frac{Y}{m}}=\log \left(I+\left(e^{\frac{X}{m}} e^{\frac{Y}{m}}-I\right)\right)=e^{\frac{X}{m}} e^{\frac{Y}{m}}-I+O\left(\left\|e^{\frac{X}{m}} e^{\frac{Y}{m}}-I\right\|^{2}\right) \\
&=\frac{X}{m}+\frac{Y}{m}+O\left(\frac{1}{m^{2}}\right)+O\left(\left\|\frac{X}{m}+\frac{Y}{m}+O\left(\frac{1}{m^{2}}\right)\right\|^{2}\right)=\frac{X}{m}+\frac{Y}{m}+O\left(\frac{1}{m^{2}}\right)
\end{aligned}
$$

SO

$$
e^{\frac{X}{m}} e^{\frac{Y}{m}}=e^{\frac{X}{m}+\frac{Y}{m}+O\left(\frac{1}{m^{2}}\right)} \Longrightarrow\left(e^{\frac{X}{m}} e^{\frac{Y}{m}}\right)^{m}=e^{X+Y+O\left(\frac{1}{m}\right) \xrightarrow{m \rightarrow \infty} e^{X+Y} . ~}
$$

2 Matrix Lie Groups

- A Matrix Lie Groups is a closed subgroup of $G L_{n}(\mathbb{C})$ (which itself embeds as a closed subgroup of $G L_{2 n}(\mathbb{R})$).
- Nonexamples: $G L_{n}(\mathbb{Q}),\left\{\left(e^{2 \pi i t} e^{2 \pi i \alpha t}\right) \mid t \in \mathbb{R}\right\}$ with $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.
- Examples: $G L_{n}, S L_{n}$, (unipotent) upper-triangular, $\mathbb{R}^{+}, \mathbb{C}^{+}, S^{1}, \mathbb{H}^{\times}, \mathbb{H}^{1}$.
- For $G \leq G L_{n}, H \leq G L_{m}$ we have $G \times H \leq G L_{m+n}$.

2.1 Classical groups

- Let V be a fin.dim. v.s. over $\mathbb{F}=\mathbb{R}$ or \mathbb{C}. A bilinear form on V is $b: V \times V \rightarrow \mathbb{F}$ (if b is fixed we sometimes write $\langle v, w\rangle$ for $b(v, w))$ which is linear in each entry. We denote

$$
A u t(b)=\{A \in G L(V) \mid \forall v, w \in V: b(A v, A w)=b(v, w)\}
$$

where $G L(V)$ are invertible linear transformations from V to itself. Choosing a basis for V identifies it with \mathbb{F}^{n}. Under this identification, $b(v, w)=v^{t} B w$ for some $B \in M_{n}(\mathbb{F})$ (specifically, $B_{i j}=b\left(v_{i}, v_{j}\right)$ for a basis $\left\{v_{i}\right\}$), and $A u t(b)$ corresponds to $A u t(B):=\left\{A \in G L_{n}(\mathbb{F}) \mid A^{t} B A=B\right\}$. This is a matrix Lie group in $G L_{n}(\mathbb{F})$.

- We can also write $\operatorname{Aut}(B)=\left\{A \in G L_{n}(\mathbb{F}) \mid A=B^{-1}\left(A^{t}\right)^{-1} B\right\}$, which presents $A u t(B)$ as the fixed points of the involutary automorphism $A \mapsto B^{-1}\left(A^{t}\right)^{-1} B$ of $G L_{n}(\mathbb{F})$.
- Change of basis: If we want to change our identification of $V \cong \mathbb{F}^{n}$ to another one, this is given by $v \mapsto P v$ (where $P \in G L_{n}(\mathbb{F})$ is the "change of basis" matrix), and then B becomes $P^{t} B P$. We say B and C are congruent if they represent the same bilinear form, namely, $\exists P \in G L_{n}(\mathbb{F})$ with $C=P^{t} B P$. In this case it is clear that Aut $(B) \cong \operatorname{Aut}(C)$ (in fact, they are conjugate subgroups of $G L_{n}(\mathbb{F})$).
- Note that also $\operatorname{Aut}(B)=\operatorname{Aut}(\alpha B)$ for $\alpha \in \mathbb{F}^{\times}$, even if B and αB are not congruent.
- b is called
- non-degenerate if $\forall v \neq 0 \exists w$ such that $b(v, w) \neq 0$. This is equivalent to $\operatorname{det} B \neq 0$.
- symmetric if $b(v, w)=b(w, v)$ (equivalent to $B^{t}=B$).
- anti-symmetric (or skew-symmetric) if $b(v, w)=-b(w, v)$ (equivalent to $B^{t}=-B$). Over char $\neq 2$ this is equivalent to $b(v, v)=0 \forall v$.
- One can also consider the affine isometry group of (V, b), which is $\operatorname{Aff}(V, b)=A u t(b) \ltimes V$, and can be considered as a matrix Lie group in $G L_{n+1}(\mathbb{F})$ via $(A, v) \mapsto\left(\begin{array}{cc}A & v \\ 0 & 1\end{array}\right)$.

2.1.1 Orthogonal groups

- Sylvester: A symmetric regular $B \in M_{n}(\mathbb{R})$ is congruent to $\operatorname{diag}\left(1^{\times p},-1^{\times q}\right)$ for (a unique) $0 \leq p \leq n$, called the signature of B.
Proof (without uniqueness): Let $\langle v, w\rangle=v^{t} B w$. There exists v with $\langle v, v\rangle \neq 0$, since $\langle v, w\rangle \neq 0$ for some v, w, which implies that one of $\langle v, v\rangle,\langle w, w\rangle$ or $\langle v+w, v+w\rangle$ must be nonzero. Now replace v with $\frac{v}{\sqrt{|\langle v, v\rangle|}}$, so that we have $\langle v, v\rangle=1$ or -1 . Observe that $\operatorname{dim} v^{\perp}=n-1$, since $w \mapsto\langle v, w\rangle$ has rank one, and that $\langle v\rangle \cap v^{\perp}=0$, so that $\mathbb{R}^{n}=\langle v\rangle \oplus v^{\perp}$. Now check that $\left.\langle\cdot, \cdot\rangle\right|_{v^{\perp} \times v^{\perp}}$ is symmetric and non-degenerate, and repeat everything again. At the end, you will have found vectors v_{1}, \ldots, v_{n} with $\left\langle v_{i}, v_{j}\right\rangle= \pm \delta_{i, j}$, as desired.
- We denote $A u t\left(\operatorname{diag}\left(1^{\times p},-1^{\times q}\right)\right)$ by $O(p, q)$. By Sylvester, for every symmetric non-degenerate bilinear form b on \mathbb{R}^{n}, Aut $(b) \cong O(p, q)$ for some $0 \leq p \leq n$ (and we denote $O(n, 0)=O(n)$). Note that $O(p, q) \cong O(q, p)$ (by $\operatorname{Aut}(B) \cong \operatorname{Aut}(-B))$ and one can check that $O(p, q) \not \equiv O\left(p^{\prime}, q^{\prime}\right)$ if $\{p, q\} \neq\left\{p^{\prime}, q^{\prime}\right\}$.
- If $A \in A u t(B)$ then $\operatorname{det}\left(A^{t} B A\right)=\operatorname{det} B($ and $\operatorname{det} B \neq 0)$ forces $\operatorname{det} A= \pm 1$, and we define $S O(p, q)=$ $\{A \in O(p, q) \mid \operatorname{det} A=1\}$. This is a subgroup of index 2 in $O(p, q)$ (since $\operatorname{diag}\left(-1,1^{\times n-1}\right) \in O(p, q)$, for example).
- Over \mathbb{C}, every regular symmetric matrix is congruent to I, since in the proof of Sylvester we can even replace v by $\frac{v}{\sqrt{\langle v, v\rangle}}$ when $\langle v, v\rangle<0$, and thus obtain $\langle v, v\rangle=1$. There is thus a unique complex orthogonal group which we denote by $O_{n}(\mathbb{C})$, and again $S O_{n}(\mathbb{C})$ is of index 2 .

2.1.2 Symplectic groups

- If B is non-degenerate anti-symmetric, then it is always congruent to $\Omega=\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)$ (in fact over any \mathbb{F} with char $\neq 2$), and we denote $\operatorname{Aut}(\Omega)$ by $S p_{2 n}(\mathbb{F})$.
- Again $\operatorname{det} A= \pm 1$ for $A \in S p_{2 n}(\mathbb{F})$ is easy, but it turns out that actually $\operatorname{det} A=1$. One way: prove that the Pfaffian $p f(A)=\frac{1}{2^{n} n!} \sum_{\sigma \in S_{2 n}} \operatorname{sgn} \sigma \prod_{i=1}^{n} a_{\sigma(2 i-1), \sigma(2 i)}$ satisfies $p f(\Omega)=p f\left(A^{T} \Omega A\right)=\operatorname{det}(A) p f(\Omega)$ and $p f(\Omega) \neq 0$.

2.1.3 General bilinear

- Why did we restrict to non-degenerate and (anti-)symmetric forms? In general we can always write $b=b_{s}+b_{a}$ where $b_{s}(v, w)=\frac{b(v, w)+b(w, v)}{2}$ is symmetric and $b_{a}(v, w)=\frac{b(v, w)-b(w, v)}{2}$ is anti-symmetric. Obviously Aut (b) \supseteq Aut $\left(b_{s}\right) \cap \operatorname{Aut}\left(b_{a}\right)$, but it turns out that this is an equality (at least in the non-degenerate case).
- b is called reflexive if $b(v, w)=0$ implies $b(w, v)$ (so \perp is symmetric).

Exercise: b is reflexive iff it is either symmetric or anti-symmetric.

2.1.4 Unitary groups

For a complex vector space V, a sesquilinear (latin: one and a half linear) form on V is a form $b: V \times V \rightarrow \mathbb{C}$ which is additive in both entries and satisfies $b(\alpha v, \beta w)=\bar{\alpha} \beta b(v, w)$.

- By $V \cong \mathbb{C}^{n}$, it corresponds to $v^{*} B w$ for some $B \in M_{n}(\mathbb{C})$, and B, C are congruent if $C=P^{*} B P$ for some $P \in G L_{n}(\mathbb{C})$. Now $A u t(b)$ corresponds to $\left\{A \in G L_{n}(\mathbb{C}) \mid A^{*} B A=B\right\}$, which is a matrix Lie group in $G L_{n}(\mathbb{C})$.
- Again non-degenerate corresponds to $\operatorname{det} B \neq 0$. Assuming b is non-degenerate, it cannot be symmetric, nor anti-symmetric, as in both cases $\langle i v, w\rangle= \pm\langle w, i v\rangle$ forces $\langle v, w\rangle=0$ for all v, w.
- But it can be hermitian: $\langle v, w\rangle=\overline{\langle w, v\rangle}$, which is equivalent to $B^{*}=B$. Any non-degenerate hermitian $B \in M_{n}(\mathbb{C})$ is congruent to $\operatorname{diag}\left(1^{\times p},-1^{\times q}\right)$ for a unique $0 \leq p \leq n$: the proof is like in Sylvester, once $\langle v, v\rangle \neq 0$ we know $\langle v, v\rangle \in \mathbb{R}$ by hermiticity, and we can replace v by $\frac{v}{\sqrt{|\langle v, v\rangle|}}$ to get $\langle v, v\rangle= \pm 1$. We cannot force $\langle v, v\rangle=1$ because $\langle\alpha v, \alpha v\rangle=|\alpha|^{2}\langle v, v\rangle$ always has the same sign.
- We denote $\operatorname{Aut}\left(\operatorname{diag}\left(1^{\times p},-1^{\times q}\right)\right)$ by $U(p, q)$, and $U(n, 0)=U(n)$.
- $A^{*} B A=B$ gives $|\operatorname{det} A|=1$ (when $\operatorname{det} B \neq 0$), and $S U(p, q)=U(p, q) \cap S L_{n}(\mathbb{C})$ is of infinite index in $U(p, q)$.
- We don't bother with anti-hermitian forms $\left(\langle v, w\rangle=-\overline{\langle w, v\rangle}\right.$, or $\left.B^{*}=-B\right)$ because if B is anti-hermitian then $i B$ is Hermitian and $\operatorname{Aut}(B)=A u t(i B)$.
- We could stay with \mathbb{R} using $\mathbb{C} \hookrightarrow M_{2}(\mathbb{R})$, which would embed $M_{n}(\mathbb{C}) \hookrightarrow M_{n}\left(M_{2}(\mathbb{R})\right) \cong M_{2 n}(\mathbb{R})$. In fact $U(n)$ is precisely $O(2 n) \cap S p_{2 n}(\mathbb{R})$, since i acts on \mathbb{R}^{2} by $\Omega=\left({ }_{1}{ }^{-1}\right)$, so being complex-linear is the same as commuting with Ω, which for $A \in O(n)$ is the same as $A \Omega A^{t}=\Omega$.
In fact $U(n)$ equals the intersection of any two out of three (and all three) among $O(2 n), S p_{2 n}(\mathbb{R})$ and the image of $G L_{n}(\mathbb{C})$ in $G L_{2 n}(\mathbb{R})$. (Is $\left.U(p, q)=O(2 p, 2 q) \cap S p_{2 n}(\mathbb{R}) ?\right)$
- Exercise: $S p_{2}(\mathbb{R}) \cong S U(1,1) \cong S L_{2}(\mathbb{R}) \cong S O(2,1)_{0}\left(G_{0}\right.$ is the connected component of the identity of a Lie group G).

2.1.5 Some topology

- Compactness: $(S) O(n),(S) U(n)$ are compact, and also $S p(n)$ below.
- In a non-degenerate symmetric/anti-symmetric bilinear/hermitian space, if v, w satisfy $v \perp v, w \perp w,\langle v, w\rangle=1$ (hence $\langle w, v\rangle= \pm 1$), then v, w are called a hyperbolic pair and the subspace $\operatorname{Span}(v, w)$ is called a hyperbolic plane. They are very useful, for example:
- They allow to perform "Gram-Schmidt" - to get u which is orthogonal to v, rather then taking $u \mapsto u-\langle u, v\rangle v$, one takes $u \mapsto u-\langle u, v\rangle w$.
- If such a plane exists $A u t(b)$ is non-compact since $(v, w) \mapsto\left(\alpha v, \frac{1}{\alpha} w\right)$ (and identity on $\left.\operatorname{Span}(v, w)^{\perp}\right)$ is in Aut (b) for any $\alpha \neq 0$.
- $O(p, q), U(p, q)$ with $p q \neq 0, O_{n}(\mathbb{C}), S p_{n}(\mathbb{F})$ all contain hyperbolic plane (note $\left({ }^{1}-1\right),\left(1^{1}\right)$ are congruent even over \mathbb{R}), hence non-compact.
- $G L_{n}(\mathbb{F}), S L_{n}(\mathbb{F}), U(n), S O(n)$ are connected: in $U(n)$ every matrix is diagonalizable (even normal) and conjugate to $\operatorname{diag}\left(e^{i t_{1}}, \ldots, e^{i t_{n}}\right)$, and we can build a path to it. In $S O(n)$ we can do this with 2×2 rotation blocks matrices (diagonalize over \mathbb{C}, then take $\left(\begin{array}{cc}a+b i & \\ & a-b i\end{array}\right)$ back to $\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)\right)$.
- For $p q \neq 0, S O(p, q)$ has two connected components and $O(p, q)$ four.

2.2 Quaternions

- Quaternions: $\mathbb{H}=\{r+x i+y j+z k \mid r, x, y, z \in \mathbb{R}\}$ with multiplication defined by $i^{2}=j^{2}=k^{2}=i j k=-1$ (and $\mathbb{R} \subseteq \mathbb{H}$ in the center).
- Can be written as $\mathbb{H}=\mathbb{C} \oplus \mathbb{C} j$ with $\alpha j=j \bar{\alpha}$. Embeds in $M_{2}(\mathbb{C})$ by $\mathbb{H} \cong\left(\begin{array}{c}\alpha \\ -\bar{\beta} \\ -\bar{\alpha}\end{array}\right) \leq M_{2}(\mathbb{C})$, which shows \mathbb{H} is associative.
- For $\alpha=r+x i+y j+z k$, its conjugate is $\bar{\alpha}=r-x i-y j-z k$. Exercise: $\overline{\alpha \beta}=\bar{\beta} \bar{\alpha}$.
- Norm: $N(\alpha)=\alpha \bar{\alpha}=r^{2}+x^{2}+y^{2}+z^{2}$. It is multiplicative since $\alpha \beta \overline{\alpha \beta}=\alpha \beta \bar{\beta} \bar{\alpha}=\alpha \bar{\alpha} \beta \bar{\beta}$, and it follows that \mathbb{H} is a division ring $\left(\alpha^{-1}=\frac{\bar{\alpha}}{N(\alpha)}\right)$. Under $\mathbb{H} \hookrightarrow M_{2}(\mathbb{C}), N$ corresponds to det.
- $\mathbb{H}^{1}:=\{\alpha \in \mathbb{H} \mid N(\alpha)=1\}$ is a matrix Lie group, homeomorphic to S^{3} (by definition of the latter).
- Exercise: The embedding $\mathbb{H} \hookrightarrow M_{2}(\mathbb{C})$ restricts to an isomorphism $\mathbb{H}^{1} \cong S U(2)$.

2.2.1 Quaternions and rotations

- The pure quaternions are $\mathbb{P}=\operatorname{Span}_{\mathbb{R}}\{i, j, k\}$. We think of (\mathbb{P}, N) as Euclidean three-space $\left(N\right.$ coincides with $\left.\|\cdot\|^{2}\right)$, and observe that for $\mathfrak{p} \in \mathbb{P},\|\mathfrak{p}\|^{2}=N(\mathfrak{p})=\mathfrak{p} \overline{\mathfrak{p}}=-\mathfrak{p}^{2}$. Thus, $\mathbb{P}^{1}:=\{\mathfrak{p} \in \mathbb{P} \mid N(\mathfrak{p})=1\}$ (which is geometrically a two-sphere) consists entirely of square roots of -1 .
- We can express the Euclidean inner product in \mathbb{P} by polarization:

$$
\langle\mathfrak{p}, \mathfrak{q}\rangle=\frac{\|\mathfrak{p}+\mathfrak{q}\|^{2}-\|\mathfrak{p}\|^{2}-\|\mathfrak{q}\|^{2}}{2}=\frac{-(\mathfrak{p}+\mathfrak{q})^{2}+\mathfrak{p}^{2}+\mathfrak{q}^{2}}{2}=\frac{-\mathfrak{p q}-\mathfrak{q} \mathfrak{p}}{2},
$$

so in particular $\mathfrak{p} \perp \mathfrak{q}$ (for $\mathfrak{p}, \mathfrak{q} \in \mathbb{P}$) iff $\mathfrak{p q}=-\mathfrak{q} \mathfrak{p}$.

- \mathbb{H}^{1} acts by conjugation on \mathbb{P} (if $\alpha \in \mathbb{H}^{1}$ and $\mathfrak{p} \in \mathbb{P}$ then $\alpha \mathfrak{p} \alpha^{-1}=\alpha \mathfrak{p} \bar{\alpha}$ is pure since $\overline{\alpha \mathfrak{p} \bar{\alpha}}=-\alpha \mathfrak{p} \bar{\alpha}$). This action is by orthogonal transformations (since $N(\alpha \mathfrak{p})=N(\mathfrak{p})$), so we obtain a homomorphism $\mathbb{H}^{1} \rightarrow O(3)$, and in fact $\mathbb{H}^{1} \rightarrow S O(3)$ (for example, since $\mathbb{H}^{1} \cong S^{3}$ is connected).
- If $\mathfrak{p} \in \mathbb{P}^{1}$ (pure of norm one) and $\vartheta \in \mathbb{R}$, then $\mathfrak{p}^{2}=-1$ implies $e^{\vartheta \mathfrak{p}}=\cos \vartheta+\mathfrak{p} \sin \vartheta$, which shows that exp $: \mathbb{P} \rightarrow \mathbb{H}^{1}$ (similarly to $\exp : i \mathbb{R} \rightarrow S^{1}$ in \mathbb{C}). It turns out that $e^{\vartheta \mathfrak{p}}$ (acting via conjugation) rotates \mathbb{P} by 2ϑ around the axis \mathfrak{p} (whereas in $\mathbb{C}, e^{\vartheta i}$ acts via multiplication, and rotates by ϑ).
- Proof: first verify that if $\mathfrak{q} \in \mathbb{P}^{1}$ with $\mathfrak{q} \perp \mathfrak{p}$ then $\mathfrak{p q} \in \mathbb{P}^{1}$ as well ${ }^{1}$ and that $\{\mathfrak{p}, \mathfrak{q}, \mathfrak{p q}\}$ is an orthonormal basis for \mathbb{P}. Now, $e^{\vartheta \mathfrak{p}} \mathfrak{p} e^{-\vartheta \mathfrak{p}}=\mathfrak{p}$ as always so \mathfrak{p} is fixed, and $e^{\vartheta \mathfrak{p}} \mathfrak{q} e^{-\vartheta \mathfrak{p}}=\cos 2 \vartheta \cdot \mathfrak{q}+\sin 2 \vartheta \cdot \mathfrak{q}$, so we got a 2ϑ-rotation in the $(\mathfrak{q}, \mathfrak{p q})$-plane.
- By Euler's theorem, every element in $S O(3)$ is a rotation around some axis, so that the homomorphism $\mathbb{H}^{1} \rightarrow S O(3)$ is onto. Furthermore, we see that if $e^{\vartheta \mathfrak{p}} \in \mathbb{H}^{1}$ acts trivially on \mathbb{P} then $\vartheta \in \pi \mathbb{Z}$, so $e^{\vartheta \mathfrak{p}}= \pm 1$. This shows that $1 \rightarrow\{ \pm 1\} \rightarrow \mathbb{H}^{1} \rightarrow S O(3) \rightarrow 1$ is exact (in fact, \mathbb{H}^{1} is the universal cover of $S O(3)$, as $\mathbb{H}^{1} \cong S^{3}$ is simplyconnected). In general, $S O(p, q)_{0}$ has a double universal cover for $p+q \geq 3$, called $\operatorname{Spin}(p, q)$. Thus, $\mathbb{H}^{1} \cong \operatorname{Spin}(3)$.
- $\mathbb{H}^{1} \times \mathbb{H}^{1}$ acts on $\mathbb{H} \cong \mathbb{R}^{4}$ via orthogonal transformations, by $(\alpha, \beta) \cdot \gamma=\alpha \gamma \beta^{-1}$. Thus we get $\mathbb{H}^{1} \times \mathbb{H}^{1} \rightarrow S O(4)$. Exercise: this is onto, and two-to-one, so that $\mathbb{H}^{1} \times \mathbb{H}^{1} \cong \operatorname{Spin}(4)$.

2.2.2 Quaternionic Classical groups

- The theory of vector spaces (bases, dimension, linear transformations/matrices) is pretty much the same over division rings as over fields. One difference though: the scalars \mathbb{H} act on \mathbb{H}^{n} from the right (in order to commute with the action of $G L_{n}(\mathbb{H})$ from the left). A binary form on $V \cong \mathbb{H}^{n}$ is called bilinear if $b(\alpha v, \beta w)=\alpha b(v, w) \beta$ and sesquilinear if $b(\alpha v, \beta w)=\bar{\alpha} b(v, w) \beta$.

[^0]- $U^{*}(2 n)=G L_{n}(\mathbb{H})$. Note it is not enough to have nonzero determinant! e.g. $\operatorname{det}\binom{i j}{i j}=i j-j i=2 k$. In fact, the determinant is not well defined for non-commutative rings.
- $S U^{*}(2 n)=S L_{n}(\mathbb{H})$. What is det here? We can observe the Dieudonné determinant (which is a homomorphism $\left.G L_{n}(\mathbb{H}) \rightarrow \mathbb{H}^{\times} /\left[\mathbb{H}^{\times}, \mathbb{H}^{\times}\right] \cong \mathbb{R}_{>0}^{\times}\right)$, or use $\mathbb{H} \hookrightarrow M_{2}(\mathbb{C})$ and take determinant there: for example $\operatorname{det}((\alpha+j \beta))=$ $\operatorname{det}\left(\begin{array}{c}\alpha \\ -\bar{\beta} \\ \bar{\alpha}\end{array}\right)=\alpha \bar{\alpha}+\beta \bar{\beta}$.
- As over \mathbb{C}, there are no nondegenerate (anti-)symmetric bilinear forms over \mathbb{H}.
- The quaternionic-unitary group $S p(p, q) \downarrow^{2}$ Any nondegenerate sesquilinear Hermitian form on \mathbb{H}^{n} is congruent to $b(v, w)=v^{*} I_{p, q} w$ with $I_{p, q}=\operatorname{diag}\left(1^{\times p},-1^{\times q}\right)$, and we define $S p(p, q)=\left\{A \in G L_{p+q}(\mathbb{H}) \mid A^{*} I_{p, q} A=I_{p, q}\right\}$. Under $\mathbb{H} \hookrightarrow M_{2}(\mathbb{C})$ we have $S p(p, q)=U(2 p, 2 q) \cap S p_{2 p+2 q}(\mathbb{C})$, hence the name. In particular $S p(n)$ is compact since $U(2 n)$ is.
- The quaternionic orthogonal group $O^{*}(2 n)$: Any nondegenerate sesquilinear anti-Hermitian form $(\langle v, w\rangle=-\overline{\langle w, v\rangle})$ on \mathbb{H}^{n} is congruent to $b(v, w)=v^{*} j w$, and $O^{*}(2 n)=O_{n}(\mathbb{H})=\left\{A \in G L_{n}(\mathbb{H}) \mid A^{*} j A=j I\right\}$. It equals $O_{2 n}(\mathbb{C}) \cap$ $U(n, n)$, hence the name. Pf: find $\langle v, v\rangle \neq 0$. We have $\langle v, v\rangle \in \mathbb{P}$, and we can normalize (by $\sqrt{N(\langle v, v\rangle)} \in \mathbb{R}$) to get $\langle v, v\rangle \in \mathbb{P}^{1}$. Since $\mathbb{H}^{1} \cong S O(3)$ acts transitively on $\mathbb{P}^{1} \cong S^{2}$, there is $\alpha \in \mathbb{H}^{1}$ with $\langle\alpha v, \alpha v\rangle=\alpha\langle v, v\rangle \bar{\alpha}=j$, so we replace v with αv and continue as before.

3 Lie Algebras

- Abstract Lie Algebra: a (non-associative, non-unital) vector space \mathfrak{g} over \mathbb{F}, with a \mathbb{F}-bilinear product $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$, which is denoted by $[, \cdot$,$] (and called bracket), satisfying$
$-[X, X]=0$ (which implies $[X, Y]=-[Y, X])$.
- the Jacobi identity $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$.
- Example: if R is any associative algebra, then $[X, Y]:=X Y-Y X$ defines a structure of a Lie algebra (the old multiplication is forgotten).
Even for Lie algebras which don't arise in this way, the terminology pretends that it did: X, Y are called commuting if $[X, Y]=0$, the center of \mathfrak{g} is $Z(\mathfrak{g})=\{X \mid[X, \mathfrak{g}]=0\}$, and \mathfrak{g} is commutative if $[\mathfrak{g}, \mathfrak{g}]=0$.
- $\mathfrak{h} \leq \mathfrak{g}$ is a subalgebra if it is a linear subspace (so dimension considerations are helpful!) and $[\mathfrak{h}, \mathfrak{h}] \subseteq \mathfrak{h}$. It is an ideal $(\mathfrak{h} \unlhd \mathfrak{g})$ if furthermore $[\mathfrak{h}, \mathfrak{g}] \subseteq \mathfrak{h}$. \mathfrak{g} is called simple if it has no non-trivial ideals, and $\operatorname{dim} \mathfrak{g} \geq 2$ (equivalently, is non-commutative - in a commutative Lie algebra every subspace is an ideal).
- Direct sum: $\mathfrak{g} \oplus \mathfrak{g}^{\prime}$ is defined by $\left[\left(X, X^{\prime}\right),\left(Y, Y^{\prime}\right)\right]=\left([X, Y]_{\mathfrak{g}},\left[X^{\prime}, Y^{\prime}\right]_{\mathfrak{g}^{\prime}}\right)$. Inner direct sum (exercise): if $\mathfrak{h}, \mathfrak{h}^{\prime} \leq \mathfrak{g}$, $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{h}^{\prime}$ as vector spaces and $\left[\mathfrak{h}, \mathfrak{h}^{\prime}\right]=0$, then $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{h}^{\prime}$.

3.1 Lie algebras of matrix Lie groups

- A matrix Lie algebra is a subspace $V \leq M_{n}(\mathbb{F})$ which is closed under bracket.
- The (matrix) Lie algebra $\mathfrak{g}=\operatorname{Lie}(G)$ of a matrix Lie group $G \leq G L_{n}(\mathbb{F})$ is $\mathfrak{g}=\left\{X \in M_{n}(\mathbb{F}) \mid \forall t \in \mathbb{R}: e^{t X} \in G\right\}$.

[^1]
Examples:

$$
\begin{aligned}
\mathfrak{g l}_{n}(\mathbb{F}) & \left.=M_{n}(\mathbb{F}) \text { (also for } \mathbb{F}=\mathbb{H}\right) \\
\mathfrak{s l}_{n}(\mathbb{F}) & =\left\{X \in M_{n}(\mathbb{F}) \mid \operatorname{trace}(X)=0\right\} \\
\mathfrak{o}_{n}(\mathbb{F})=\mathfrak{s o}_{n}(\mathbb{F}) & =\left\{X \in M_{n}(\mathbb{F}) \mid X^{T}=-X\right\} \\
\mathfrak{u}(n) & =\left\{X \in M_{n}(\mathbb{C}) \mid X^{*}=-X\right\} \\
\mathfrak{s u}(n) & =\mathfrak{u}(n) \cap \mathfrak{s l}(n) \\
\mathfrak{s o}(p, q) & =\left\{X \in M_{n}(\mathbb{R}) \mid I_{p, q} X^{T} I_{p, q}=-X\right\} \\
\mathfrak{s p}_{2 n}(\mathbb{F}) & =\left\{X \in M_{n}(\mathbb{F}) \mid \Omega X^{T} \Omega=X\right\} \\
\mathfrak{s p}(n) & =\left\{X \in M_{n}(\mathbb{H}) \mid X^{*}=-X\right\} \stackrel{\mathbb{H}_{\mathbb{C}^{2}}}{=} \mathfrak{u}(2 n) \cap \mathfrak{s p}_{2 n}(\mathbb{C}) \\
\mathfrak{s p}(1)=\operatorname{Lie}\left(\mathbb{H}^{1}\right) & =\mathbb{P} \subseteq \mathbb{H}
\end{aligned}
$$

e.g., if $X^{T}=-X$ then $\left(e^{t X}\right)^{T}=\left(e^{t X^{T}}\right)=e^{-t X}$ implies $e^{t X} \in O(n)$, and if $e^{t X} \in O(n)$ for all t then

$$
0=(I)^{\prime}(0)=\left(e^{t X} \cdot e^{t X^{T}}\right)^{\prime}(0)=X e^{t X} e^{t X^{T}}+\left.e^{t X} X^{T} e^{t X^{T}}\right|_{t=0}=X+X^{T}
$$

- Example: a basis for $\mathfrak{s o}$ (3) is

$$
X_{1}=\left(\begin{array}{cc}
0 & -1 \\
1
\end{array}\right), \quad X_{2}=\left(0_{-1}{ }^{1}\right), \quad X_{3}=\left(\begin{array}{cc}
1_{1} & \\
& 0
\end{array}\right),
$$

and the bracket is given by $\left[X_{1}, X_{2}\right]=X_{3},\left[X_{2}, X_{3}\right]=X_{1},\left[X_{3}, X_{1}\right]=X_{2}$. We have $e^{t X_{1}}=\left(\begin{array}{c}1 \\ \cos t-\sin t \\ \sin t \cos t\end{array}\right)$, and similarly for the other two, but $e^{t X_{1}+s X_{2}}$ is already complicated.

- The following basis for $\mathfrak{s u}(2)$:

$$
\begin{equation*}
X_{1}=\frac{1}{2}\left({ }^{i}{ }_{-i}\right), \quad X_{2}=\frac{1}{2}\left({ }_{i}{ }^{i}\right), \quad X_{3}=\frac{1}{2}\left({ }_{1}{ }^{-1}\right) \tag{3.1}
\end{equation*}
$$

satisfies the same brackets relations as in the previous example, which means that $\mathfrak{s u}(2) \cong \mathfrak{s o}$ (3) (recall that $S U(2) \nsubseteq S O(3)$ as topological groups - we saw that $S U(2) \cong \mathbb{H}^{1}$ is a double cover of $\left.S O(3)\right)$.

- \mathfrak{g} is indeed a matrix Lie algebra: $\mathbb{R} \mathfrak{g} \subseteq \mathfrak{g}$ by the definition, $\mathfrak{g}+\mathfrak{g} \subseteq \mathfrak{g}$ by Trotter-Lie formula, and $[X, Y] \in \mathfrak{g}$ as follows: $\left(e^{t X} Y e^{-t X}\right)^{\prime}=e^{t X}(X Y-Y X) e^{-t X}$, so that $[X, Y]=\left(e^{t X} Y e^{-t X}\right)^{\prime}(0)$. But $e^{t X} Y e^{-t X} \in \mathfrak{g}$, since for any $s \in \mathbb{R}$ we have $e^{s e^{t X} Y e^{-t X}}=e^{t X} e^{s Y} e^{-t X} \in G$; Thus $\frac{e^{t X} Y e^{-t X}-Y}{t} \in \mathfrak{g}$ for any $t>0$, hence $[X, Y] \in \mathfrak{g}$ (\mathfrak{g} is closed, being a linear subspace of M_{n}).
- A way to get the commutator back from the group is:

$$
\begin{equation*}
[X, Y]=\left(e^{t X} Y e^{-t X}\right)^{\prime}(0)=\left.\frac{\partial}{\partial t}\left[\left.\frac{\partial}{\partial s}\left(e^{t X} e^{s Y} e^{-t X}\right)\right|_{s=0}\right]\right|_{t=0} \tag{3.2}
\end{equation*}
$$

- This shows for example that if G is commutative then so is \mathfrak{g}.
- It also shows that if two Lie groups G, H have neighborhood of their identities which are isomorphic (e.g. $S O(3)$ and $U(2))$ then $\mathfrak{g} \cong \mathfrak{h}$.
- Also, it gives a hint on how to define the Lie bracket of an abstract Lie group...
- Note that \mathfrak{g} is only an algebra over \mathbb{R}, even when $G \leq G L_{n}(\mathbb{C}$ or $\mathbb{H})$, e.g. $\mathfrak{u}(n)$. We call G a complex Lie group if \mathfrak{g} is also a Lie algebra over $\mathbb{C}\left(\right.$ e.g. $G L_{n}(\mathbb{C}), S L_{n}(\mathbb{C}), O_{n}(\mathbb{C})$ and $S p_{2 n}(\mathbb{C})$ - I think these are the only ones in the list above).
- Denote by $\mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ the complexification of \mathfrak{g}, which is the complex Lie algebra with the same basis and structure coefficients as \mathfrak{g} has over \mathbb{R}. If $\mathfrak{g} \leq M_{n}(\mathbb{C})$ and $\mathfrak{g} \cap i \mathfrak{g}=0$ then we have $\mathfrak{g}_{\mathbb{C}} \cong \mathfrak{g} \oplus i \mathfrak{g} \leq M_{n}(\mathbb{C})$ (including the Lie
algebra structure), which gives for example

$$
\begin{equation*}
\mathfrak{s l}_{n}(\mathbb{R})_{\mathbb{C}} \cong \mathfrak{s l}_{n}(\mathbb{C}) \cong \mathfrak{s u}(2)_{\mathbb{C}} \tag{3.3}
\end{equation*}
$$

as $\mathfrak{s u}(2) \cap i \mathfrak{s u}(2)=0$ and $\mathfrak{s u}(2)+i \mathfrak{s u}(2)=\mathfrak{s l}_{2}(\mathbb{C})$.

3.2 Exponential again

- Fix $G \leq G L_{d}(\mathbb{F}), \mathfrak{g}=\operatorname{Lie}(G)$. By definition, we have $\exp : \mathfrak{g} \rightarrow G$. In general it is neither injective nor onto. The image $e^{\mathfrak{g}}$ is connected, so it is contained in the identity component of G, but it is not always onto this component (e.g. $\left(\begin{array}{cc}-1 & 1 \\ & -1\end{array}\right)$ is not in $e^{\mathfrak{s l}_{2}(\mathbb{C})}$ and not in $\left.e^{\mathfrak{g l}_{2}(\mathbb{R})}\right) 4^{3}$
- Theorem: There is a neighborhood of $I \in G L_{n}(\mathbb{F})$ in which $A \in G \Leftrightarrow \log A \in \mathfrak{g}$.
- Corollary: There are nbds. U of $0 \in \mathfrak{g}$ and V of $I \in G$ such that $\left.\exp \right|_{U}: U \rightarrow V$ is a homeomorphism. Pf: take $0<\varepsilon<\log 2$ for which $e^{B_{\varepsilon}(0)}$ is as in the theorem, and then let $U=B_{\varepsilon}(0) \cap \mathfrak{g}, V=e^{B_{\varepsilon}(0)} \cap G$.
- Lemma: For $X_{n} \in M_{m}(\mathbb{F})$ with $e^{X_{n}} \in G$ and $X_{n} \rightarrow 0$, if $\frac{X_{n}}{\left\|X_{n}\right\|} \rightarrow X$ then $X \in \mathfrak{g}$. Pf: Since $\left\|X_{n}\right\| \rightarrow 0$, for any $t \in \mathbb{R}$ taking $k_{n}=\left\lfloor\frac{t}{\left\|X_{n}\right\|}\right\rfloor$ we have $k_{n}\left\|X_{n}\right\| \rightarrow t$, so that $e^{t X}=\lim e^{k_{n}\left\|X_{n}\right\| \frac{X_{n}}{\left\|X_{n}\right\|}}=\lim \left(e^{X_{n}}\right)^{k_{n}} \in G$.
- Proof: \Leftarrow if $\log A \in \mathfrak{g}$ then $A=e^{\log A} \in G$ for $\|A-I\|<1 . \Rightarrow$ assume to the contrary than we have $A_{n} \rightarrow I$ with $A_{n} \in G$ and $\log A_{n} \notin \mathfrak{g}$. We identify $V=M_{n}(\mathbb{F}) \cong \mathbb{R}^{c n^{2}}$ with $c=1 / 2 / 4$ and the standard inner product, and write $V=\mathfrak{g} \oplus \mathfrak{g}^{\perp}$. Define $\Phi: V \rightarrow V$ by $\Phi(X+Y)=e^{X} e^{Y}$ for $X \in \mathfrak{g}, Y \perp \mathfrak{g}$. Then Φ is differentiable, and its Jacobiar ${ }^{4}$ satisfies $\mathbf{J}_{\Phi}(0)=I$ by checking on a basis composed of \mathfrak{g} and \mathfrak{g}^{\perp} elements. By the inverse function theorem, Φ has a continuous inverse around $\Phi(0)=I$, so we can write $A_{m}=\Phi\left(X_{m}+Y_{m}\right)=e^{X_{m}} e^{Y_{m}}$ with $X_{m} \in \mathfrak{g}, Y_{m} \perp \mathfrak{g}$, and $X_{m}, Y_{m} \rightarrow 0$. Since $\log A_{n} \notin \mathfrak{g}$ we have $Y_{n} \neq 0$, and after passing to a subsequence, $\frac{Y_{n}}{\left\|Y_{n}\right\|}$ converges to some $Y \in \mathfrak{g}^{\perp}$ of norm 1. As $e^{Y_{n}}=e^{-X_{n}} A_{m} \in G$ and $Y_{n} \rightarrow 0$, by the Lemma $Y \in \mathfrak{g}$, which is a contradiction.
- More corollaries:
- As G acts transitively on G, it is a manifold, of dimension $\operatorname{dim} \mathfrak{g}{ }^{5}$
- If G is connected then $e^{\mathfrak{g}}$ generates G (every $A \in G$ equals $e^{X_{1}} \ldots e^{X_{n}}$ for some $X_{i} \in \mathfrak{g}$): for $g \in G$ pick a path $\gamma: I \rightarrow g$. We know $e^{\mathfrak{g}}$ contains some nbd. V of I, and the translates $\gamma(t) V$ cover γ, which is compact, so there is a finite subcover.
- If G is connected and \mathfrak{g} is commutative so is G (since elements in $e^{\mathfrak{g}}$ commute).
- G_{0} is closed (hence also a matrix Lie group): if $A_{n} \in G_{0}$ and $A_{n} \rightarrow A$, then $A_{n} A^{-1} \rightarrow I$, so $A_{n} A^{-1}=e^{X}$ for some n and $X \in \mathfrak{g}$, hence $A=e^{-X} A_{n}$ is path-connected to A_{n} (by $e^{-t X} A_{n}$).
$-\mathfrak{g}=T_{I} G:=\left\{\gamma^{\prime}(0) \mid \gamma: C^{1}(\mathbb{R}, G), \gamma(0)=I\right\}: \subseteq$ by $\gamma(t)=e^{t X}, \supseteq:$ for $|t|$ small enough, $\gamma(t)=e^{\log \gamma(t)}$, and $\gamma^{\prime}(0)=\left(e^{\log \gamma}\right)^{\prime}(0)=(\log \gamma)^{\prime}(0)\left(e^{\log \gamma(0)}\right)=(\log \gamma)^{\prime}(0)$. Since $\log \gamma(t) \in \mathfrak{g}$ for t small enough, also $(\log \gamma)^{\prime}(0) \in \mathfrak{g}$.

3.3 Homomoprhisms

- A matrix Lie groups hom. is a continuous group hom., e.g.: det: $G \rightarrow \mathbb{F}^{\times}, e^{t X}: \mathbb{R} \rightarrow G$ (we saw these are the only (continuous) homs from \mathbb{R} to $\left.G L_{n}\right), S U(2) \cong \mathbb{H}^{1} \rightarrow S O(3), \mathbb{H}^{1} \times \mathbb{H}^{1} \rightarrow S O$ (4).
- G acts on its Lie algebra \mathfrak{g} by conjugation: $A \cdot X=A X A^{-1}$. This gives the "adjoint representation" which is a Lie group hom. Ad: $X \rightarrow \operatorname{Ad}_{X}: G \rightarrow G L(\mathfrak{g})$. In fact, we even have Ad : $G \rightarrow A u t_{\text {LieAlg }}(\mathfrak{g}) \leq G L(\mathfrak{g})$ as $\operatorname{Ad}_{A}[X, Y]=\left[\operatorname{Ad}_{A} X, \operatorname{Ad}_{A} Y\right]$.

[^2]- For $\Phi: G \rightarrow H$ there is a unique Lie algebra hom. Lie $(\Phi)=d \Phi=\phi: \mathfrak{g} \rightarrow \mathfrak{h}$ (called the differential of Φ) such that $\Phi\left(e^{X}\right)=e^{\phi(X)}(\forall X \in \mathfrak{g})$. In addition, Φ, ϕ intertwine Ad of G and $H: \phi\left(\operatorname{Ad}_{A}(X)\right)=\operatorname{Ad}_{\Phi(A)}(\phi(X))$ for $A \in G, X \in \mathfrak{g}$.
- Example: d det $=$ trace since $\operatorname{det} e^{X}=e^{\operatorname{trace} X}$.
- Since $e^{\psi(\phi(X))}=\Psi\left(e^{\phi(X)}\right)=\Psi(\Phi(X))$, Lie is a functor from matrix Lie groups to Lie algebras. For connected groups Lie is faithful: If $\Phi, \Psi: G \rightarrow H$ and $\phi=\psi$ then $\Phi=\Psi$ since $e^{\mathfrak{g}}$ generates G.
- Pf: Let $\gamma: t \mapsto \Phi\left(e^{t X}\right): \mathbb{R} \rightarrow H$. As γ is a (continuous) hom., there is $Z \in \mathfrak{h}$ with $\gamma(t)=e^{t Z}$ (see "Applications" in $\mathbb{1}$, hence γ is smooth, ϕ is homogeneous, and it equals

$$
\phi(X)=\left(e^{t \phi(X)}\right)^{\prime}(0)=\Phi\left(e^{t X}\right)^{\prime}(0)
$$

implying uniqueness. For the rest:

$$
\begin{aligned}
\phi(X+Y) & =\Phi\left(e^{t(X+Y)}\right)^{\prime}(0)=\Phi\left(\lim _{m}\left(e^{\frac{t}{m} X} e^{\frac{t}{m} Y}\right)^{m}\right)^{\prime}(0)=\left[\lim _{m}\left(\Phi\left(e^{\frac{t}{m} X}\right) \Phi\left(e^{\frac{t}{m} Y}\right)\right)^{m}\right]^{\prime}(0) \\
& =\left[\lim _{m}\left(e^{\phi\left(\frac{t}{m} X\right)} e^{\phi\left(\frac{t}{m} Y\right)}\right)^{m}\right]^{\prime}(0)=\left[\lim _{m}\left(e^{\frac{t}{m} \phi(X)} e^{\frac{t}{m} \phi(Y)}\right)^{m}\right]^{\prime}(0)=\left(e^{t(\phi(X)+\phi(Y))}\right)^{\prime}(0)=\phi(X)+\phi(Y) . \\
\phi\left(\operatorname{Ad}_{A}(X)\right) & =\Phi\left(e^{t A X A^{-1}}\right)^{\prime}(0)=\Phi(A) \Phi\left(e^{t X}\right) \Phi\left(A^{-1}\right)^{\prime}(0)=\Phi(A) \phi(X) \Phi\left(A^{-1}\right)=\operatorname{Ad}_{\Phi(A)}(\phi(X)) . \\
\phi([X, Y]) & =\phi\left(\left(e^{t X} Y e^{-t X}\right)^{\prime}(0)\right)=\phi\left(\operatorname{Ad}_{e^{t X}}(Y)^{\prime}(0)\right) \stackrel{\star}{=} \phi\left(\operatorname{Ad}_{e^{t X}}(Y)\right)^{\prime}(0)=\left(\Phi\left(e^{t X}\right) \phi(Y) \Phi\left(e^{-t X}\right)\right)^{\prime}(0) \\
& =\left(e^{t \phi(X)} \phi(Y) e^{-t \phi(X)}\right)^{\prime}(0)=[\phi(X), \phi(Y)] .
\end{aligned}
$$

where \star is from ϕ being linear (and thus also continuous).

- Another example: $\operatorname{ad}=d \operatorname{Ad}: X \mapsto \operatorname{ad}_{X}: \mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})$. For $X, Y \in \mathfrak{g}$ we find that

$$
\operatorname{ad}_{X}(Y)=\left(\operatorname{Ad}_{e^{t X}}\right)^{\prime}(0)(Y)=\left(\operatorname{Ad}_{e^{t X}}(Y)\right)^{\prime}(0)=[X, Y]
$$

Spelling this out, we get a bracket-description of conjugation by exponents:

$$
e^{X} Y e^{-X}=\operatorname{Ad}_{e^{X}}(Y)=e^{\operatorname{ad} x}(Y)=\sum \frac{\operatorname{ad}_{X}^{k}(Y)}{k!}=Y+[X, Y]+\frac{[X,[X, Y]]}{2}+\frac{[X,[X,[X, Y]]]}{3!}+\ldots
$$

- Lie $(\operatorname{ker} \Phi)=\operatorname{ker} \phi($ for $\Phi: G \rightarrow H): \phi(X)=0 \Leftrightarrow \forall t: \Phi\left(e^{t X}\right)=e^{t \phi(X)}=1 \Leftrightarrow X \in \operatorname{Lie}(\operatorname{ker} \Phi)$.

4 From Algebra to Groups

- Our goals: Does every (matrix) Lie algebra arise from a Lie group? Does every homomorphism between Lie algebras arise from a Lie group homomorphism? If \mathfrak{g} does come from G, can we recover G from \mathfrak{g} (without the exponent, using \mathfrak{g} only as an abstract Lie algebra)?
- Preparation: d exp. Theorem (Poincare?): For $X, Y \in M_{n}(\mathbb{F})$,

$$
\begin{equation*}
\left(e^{X+t Y}\right)^{\prime}(0)=e^{X} \xi\left(\operatorname{ad}_{X}\right)(Y), \quad \xi(z)=\frac{1-e^{-z}}{z}=\sum_{k=0}^{\infty} \frac{(-z)^{k}}{(k+1)!} \tag{4.1}
\end{equation*}
$$

Note $\operatorname{ad}_{X}, \xi\left(\operatorname{ad}_{X}\right) \in E n d_{\mathbb{F}}\left(M_{n}(\mathbb{F})\right) \cong \mathbb{F}^{n^{4}}, e^{\operatorname{ad}_{X}} \in G L\left(M_{n}(\mathbb{F})\right)$.

- Lemma: for a bounded operator $M, \lim _{m \rightarrow \infty} \frac{1}{m} \sum_{j=0}^{m-1} e^{-\frac{j}{m} M}=\xi(M)$. Pf: the l.h.s. is a Darboux sum of $\int_{0}^{1} e^{-t M} d x=\left.\frac{-e^{-t M}}{M}\right|_{0} ^{1}=\xi(M)$. On diagonalizable this is enough. Conclude by continuity?
- Pf: note $\left(e^{X+t Y}\right)^{\prime}(0)$ is continuous in X, Y.

$$
\begin{align*}
\left(e^{X+t Y}\right)^{\prime}(0) & =\left[\left(e^{\frac{X}{m}+\frac{t Y}{m}}\right)^{m}\right]^{\prime}(0)=\frac{1}{m}\left[\left(e^{\frac{X}{m}+t Y}\right)^{m}\right]^{\prime}(0)=\left.\frac{1}{m} \sum_{j=0}^{m-1}\left(e^{\frac{X}{m}+t Y}\right)^{m-j-1}\left(e^{\frac{X}{m}+t Y}\right)^{\prime}\left(e^{\frac{X}{m}+t Y}\right)^{j}\right|_{t=0} \\
& =\frac{1}{m} \sum_{j=0}^{m-1}\left(e^{\frac{X}{m}}\right)^{m-j-1}\left(e^{\frac{X}{m}+t Y}\right)^{\prime}(0)\left(e^{\frac{X}{m}}\right)^{j}=e^{\left(\frac{m-1}{m} X\right)} \frac{1}{m} \sum_{j=0}^{m-1} \operatorname{Ad}_{e^{-\frac{j}{m} X}}\left(\left(e^{\frac{X}{m}+t Y}\right)^{\prime}(0)\right) \\
& =e^{\left(\frac{m-1}{m} X\right)} \sum_{j=0}^{m-1} e^{\text {ad }-\frac{j}{m} X}\left(\left(e^{\frac{X}{m}+t Y}\right)^{\prime}(0)\right)=e^{\left(\frac{m-1}{m} X\right)}\left[\frac{1}{m-1} \sum_{j=0}^{m-1} e^{-\frac{j}{m} \operatorname{adx}}\right]\left(\left(e^{\frac{X}{m}+t Y}\right)^{\prime}(0)\right) \tag{0}\\
& \xrightarrow{m \rightarrow \infty} e^{X} \xi\left(\operatorname{ad}_{X}\right)\left(\left(e^{t Y}\right)^{\prime}(0)\right)=e^{X} \xi\left(\operatorname{ad}_{X}\right)(Y) .
\end{align*}
$$

- Recovering G from \mathfrak{g} : in some neighborhood of the identity we have $e^{X} e^{Y}=e^{\log \left(e^{X} e^{Y}\right)}$, so we want to express $\log \left(e^{X} e^{Y}\right)$ using the Lie structure alone. This is achieved by the $\boldsymbol{B C H}$ formula: for $\|X\|,\|Y\| \leq \log \sqrt{2}$,

$$
\begin{array}{ll}
\text { (Poincaré) } & \log \left(e^{X} e^{Y}\right)=X+\left(\int_{0}^{1} \psi\left(e^{\operatorname{ad}_{X}} e^{\operatorname{tad}_{Y}}\right) d t\right)(Y) \quad\left(\psi(z)=\frac{z \log z}{z-1}=1-\sum_{k=1}^{\infty} \frac{(1-z)^{k}}{k(k+1)}\right) \\
\text { (Dynkin) } & \log \left(e^{X} e^{Y}\right)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sum_{\substack{\forall i \in[k] \\
r_{i}+s_{i}>0}} \frac{\left[X^{\left(\times r_{1}\right)}, Y^{\left(\times s_{1}\right)}, \ldots, X^{\left(\times r_{k}\right)}, Y^{\left(\times s_{k}\right)}\right]}{r_{1}!s_{1}!\ldots r_{k}!s_{k}!\left(r_{1}+s_{1}+\ldots+r_{k}+s_{n}\right)}
\end{array}
$$

where e.g. $\left[X^{(\times 2)}, Y^{(\times 2)}\right]=[X,[X,[Y, Y]]]$. Note $\psi(z)=\xi(\log z)^{-1}$ converges at $|z-1|<1$.
Proof: Take $Z(t)=\log \left(e^{X} e^{t Y}\right)$ so that

$$
\log \left(e^{X} e^{Y}\right)=Z(1)=Z(0)+\int_{0}^{1} Z^{\prime}(t) d t=X+\int_{0}^{1} Z^{\prime}(t) d t
$$

Using (4.1) we have

$$
\begin{aligned}
& \left(e^{Z(t)}\right)^{\prime}(t)=\left(e^{X} e^{t Y}\right)^{\prime}(t)=e^{X} e^{t Y} Y=e^{Z(t)} Y, \quad \text { and also } \\
& \left(e^{Z(t)}\right)^{\prime}(t)=\left.\frac{d}{d h}\left(e^{Z(t)+h Z^{\prime}(t)}\right)\right|_{h=0}=e^{Z(t)} \xi\left(\operatorname{ad}_{Z(t)}\right)\left(Z^{\prime}(t)\right)
\end{aligned}
$$

so that

$$
Z^{\prime}(t)=\xi\left(\operatorname{ad}_{Z(t)}\right)^{-1}(Y) \stackrel{\star}{=} \xi\left(\log \left(e^{\operatorname{ad}_{X}} e^{t \operatorname{ad}_{Y}}\right)\right)^{-1}(Y)=\psi\left(e^{\operatorname{ad}_{X}} e^{t \operatorname{ad}_{Y}}\right)(Y)
$$

where \star is by $e^{\operatorname{ad}_{Z(t)}}=\operatorname{Ad}_{e^{Z(t)}}=\operatorname{Ad}_{e^{X} e^{t Y}}=\operatorname{Ad}_{e^{X}} \operatorname{Ad}_{e^{t Y}}=e^{\operatorname{ad}_{X}} e^{t \mathrm{ad}_{Y}}$.

- From BCH, $\log \left(e^{X} e^{Y}\right)=X+Y+\frac{[X, Y]}{2}+\frac{[X,[X, Y]]-[Y,[X, Y]]}{12}-\frac{[X,[Y,[X, Y]]]}{24}+$ terms with more than four X, Y.
- Given $\phi: \mathfrak{g} \rightarrow \mathfrak{h}$, there is $f: U \rightarrow H$ for some nbd. $I \in U \subseteq G$ which satisfies $f\left(e^{X}\right)=e^{\phi(X)}$, and $f(A B)=$ $f(A) f(B)$ for $A, B, A B \in U$. Pf: defining $f\left(e^{X}\right)=e^{\phi(X)}$, for $\|X\|<\log 2$ we obtain $f\left(e^{X}\right)=e^{\phi(X)}$. We choose U such that ${ }^{\exp }: U \rightleftarrows e^{U}$, and that BCH holds on $\log U$ and on $\log \phi(U)$, and we need to show that (for X, Y small) $\left.e^{\phi\left(\log e^{X} e^{Y}\right.}\right)=f\left(e^{X} e^{Y}\right)=f\left(e^{X}\right) f\left(e^{Y}\right)=e^{\phi(X)} e^{\phi(Y)}$, namely that $\phi\left(\log e^{X} e^{Y}\right)=\log e^{\phi(X)} e^{\phi(Y)}$. Using BCH for \mathfrak{g} and \mathfrak{h}, it is enough to show that

$$
\phi\left(\psi\left(e^{\operatorname{ad}_{X}} e^{t \operatorname{ad}_{Y}}\right)(Y)\right)=\psi\left(e^{\operatorname{ad}_{\phi(X)}} e^{\left.t \operatorname{ad}_{\phi(Y)}\right)}\right)(\phi(Y)),
$$

which follows from the intertwining of ad: $\phi\left(\operatorname{ad}_{X}(Y)\right)=\operatorname{ad}_{\phi(X)} \phi(Y)\left(\right.$ due to $\left.\phi \in \operatorname{Hom}_{\text {LieAl }}(\mathfrak{g}, \mathfrak{h})\right)$.

- If G is simply-connected, any hom. $f: U \rightarrow H$ where U is a nbd. of $I \in G$ extends to a hom. $\Phi: G \rightarrow H$. Idea: for $A \in G$ construct a path $\gamma: I \rightsquigarrow A$, and define $\Phi(A)=\prod_{j=m}^{1} f\left(\gamma\left(t_{j}\right) \gamma\left(t_{j-1}\right)^{-1}\right)$ where $\left(t_{0}, \ldots, t_{m}\right)$ is a partition of I fine enough that $\gamma\left(t_{j}\right) \gamma\left(t_{j-1}\right)^{-1} \in U$. This is well defined since passing to a finer partition does not change $\Phi(A)$. A small enough homotopic change of γ also does not change $\Phi(A)$, by taking a partition whose points are
not affected by the change. As G is simply-connected, this means Φ is well defined globally. Φ agrees with f on U, and is a homomorphism by concatenation of paths.
- Combining the last two, we have that if G is simply connected then $\phi: \mathfrak{g} \rightarrow \mathfrak{h}$ is obtained from (a unique) $\Phi: G \rightarrow H$: if we construct f on U by BCH and extend it to Φ, for any X we have $\frac{X}{m} \in U$ for some m, hence $\Phi\left(e^{X}\right)=\Phi\left(e^{\frac{X}{m}}\right)^{m}=$ $e^{m \phi\left(\frac{X}{m}\right)}=e^{\phi(X)}$.
- Decomposing: if G is simply-connected and $\mathfrak{g}=\mathfrak{h}_{1} \oplus \mathfrak{h}_{2}$ then $G=H_{1} \times H_{2}$ for simply connected H_{1}, H_{2} with Lie $\left(H_{i}\right)=\mathfrak{h}_{i}$: The projection $\pi_{2}: \mathfrak{g} \rightarrow \mathfrak{h}_{2}\left(\right.$ w.r.t. $\left.\mathfrak{h}_{1} \oplus \mathfrak{h}_{2}\right)$ comes from some $\Pi_{2}: G \rightarrow G$, and for $H_{1}:=\operatorname{ker} \Pi_{2}$ we have $\operatorname{Lie}\left(H_{1}\right)=\operatorname{ker} \pi_{2}=\mathfrak{h}_{1}$. Similarly, $H_{2}=\operatorname{ker} \Pi_{1} \operatorname{has} \operatorname{Lie}\left(H_{2}\right)=\mathfrak{h}_{2}$. From $\left.\Pi_{2}\right|_{e^{\mathfrak{h}_{1}}}=0,\left.\Pi_{2}\right|_{e^{\mathfrak{h}_{2}}}=i d$, and $G=\left\langle e^{\mathfrak{h}_{1}+\mathfrak{h}_{2}}\right\rangle=\left\langle e^{\mathfrak{h}_{1}} e^{\mathfrak{h}_{2}}\right\rangle$ (using $\left[\mathfrak{h}_{1}, \mathfrak{h}_{2}\right]=0$), it follows that $\Pi_{2}: G \rightarrow H_{2}$ is also a projection, which implies that H_{2} is simply connected, and likewise for H_{1}. Thus, $H_{1} \times H_{2}$ (externally) is simply-connected, so $\mathfrak{h}_{1} \oplus_{\text {ext }} \mathfrak{h}_{2} \xrightarrow{\cong} \mathfrak{g}$ corresponds to some Φ : $H_{1} \times H_{2} \rightarrow G$, which is an isomoprhism (its inverse is $\Pi_{1} \times \Pi_{2}$).
- Does every matrix Lie algebra \mathfrak{g} corresponds to a matrix Lie group? No: if $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ then $\mathfrak{g}=\mathbb{R}\left({ }^{i}{ }_{\alpha i}\right)$ is a matrix Lie algebra, whose exponent is not closed (it is a dense irrationally sloped line in the torus $\left({ }^{U(1)}{ }_{U(1)}\right)$). However, $\mathfrak{g} \mapsto\left\langle e^{\mathfrak{g}}\right\rangle$ and $G \mapsto \operatorname{Lie}(G)$ do constitute a correspondence between matrix Lie algebras in $G L_{n}(\mathbb{C})$ and connected subgroups of $G L_{n}(\mathbb{C})$ (not necessarily closed). Pf: Rossmann $\S 2.5$ and Hall §5.9.

4.1 Covers

- What happens if G is not simply-connected? A universal cover for G is a simply-connected Lie group \widetilde{G} equipped with a map $\widetilde{G} \rightarrow G$ which induces an isomorphism $\widetilde{\mathfrak{g}}=\mathfrak{g}$. examples: $\left(\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right) \mapsto\left(e^{i t}\right): \mathbb{R} \rightarrow U(1)$, and $\mathbb{H}^{1} \rightarrow S O(3)$.
- Given $\phi: \mathfrak{g} \rightarrow \mathfrak{h}$, there exists $\Phi: \widetilde{G} \rightarrow H$ with $d \Phi=\phi$ (assuming \widetilde{G} exists).
- Any Lie group G has a universal cover \widetilde{G} (by alg. top. arguments), but it is not always a matrix Lie group. For example, $\widehat{S L_{2}(\mathbb{R})}$ is not: First, $S L_{2}(\mathbb{R}) \simeq\left(\begin{array}{cc}t & a \\ 0 & t^{-1}\end{array}\right) \times S O(2)$ (by Gram-Schmidt), which shows that $\pi_{1}\left(S L_{2}(\mathbb{R})\right)=\mathbb{Z}$. Any hom. $\phi: \mathfrak{s l}_{2}(\mathbb{R}) \rightarrow \mathfrak{g l}_{n}(\mathbb{R})$ corresponds to some $\Phi: S L_{2}(\mathbb{R}) \rightarrow G L_{n}(\mathbb{C})$ by noting that ϕ extends to $\phi_{\mathbb{C}}: \mathfrak{s l}_{2}(\mathbb{C}) \rightarrow$ $\mathfrak{g l}_{n}(\mathbb{C})$, and $S L_{2}(\mathbb{C}) \simeq\left(\begin{array}{cc}t & a \\ 0 & t^{-1}\end{array}\right) \times S U(2)$ is simply-connected, so there is $\Phi_{\mathbb{C}}: S L_{2}(\mathbb{C}) \rightarrow G L_{n}(\mathbb{C})$, and we can take $\Phi=\left.\Phi_{\mathbb{C}}\right|_{S L_{2}(\mathbb{R})}$. Now, if we had $G \subseteq G L_{n}(\mathbb{R})$ with $\Phi: G \rightarrow S L_{2}(\mathbb{R})$ and $d \Phi$ an isomorphism, then $\psi=(d \Phi)^{-1}$ would induce some $\Psi: S L_{2}(\mathbb{R}) \rightarrow G L_{n}(\mathbb{C})$, such that Φ, Ψ are inverse to each other on a nbd. of $I \in G$, hence $G \cong S L_{2}(\mathbb{R})$, and G is not simply-connected ${ }^{6}$

4.2 Representations

Assume throughout that G is connected.

- A (Lie group) rep. $\Pi: G \rightarrow G L(V)$ gives rise to (Lie algebra) representation $\pi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ with $\Pi\left(e^{X}\right)=e^{\pi(X)}$, $\pi(X)(v)=\Pi\left(e^{t X}\right)(v)^{\prime}(0)$, and $\pi\left(\operatorname{Ad}_{A} X\right)=\operatorname{Ad}_{\Pi(A)} \pi(X)$. Every (L.A.) representation $\pi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ is obtained from a (L.G.) representation $\Pi: \widetilde{G} \rightarrow G L(V)$ (and if G is simply-connected then $G=\widetilde{G}$).
- Π is irreducible iff π is: if $\pi(X) W \subseteq W$ then $e^{\pi(X)} W \subseteq W$, hence $\Pi\left(e^{\mathfrak{g}}\right) W \subseteq W$, and if $\Pi(G) W \subseteq W$ then $\pi(X) W=\Pi\left(e^{t X}\right)^{\prime}(0) W \subseteq W$.
$-\Pi \cong \Pi^{\prime}$ iff $\pi \cong \pi^{\prime}$ (similar proof).
- If V has an inner-product, Π is unitary $\left(\Pi(A)^{*}=\Pi(A)^{-1}\right)$ iff π is unitary $\left(\pi(X)^{*}=-\pi(X)\right)$.
- Every $G \leq G L_{n}(\mathbb{C})$ has the standard representation $i d: G \rightarrow G L_{n}(\mathbb{C})$, and the adjoint representation $\operatorname{Ad}: G \rightarrow$ $G L(\mathfrak{g})$. Likewise for \mathfrak{g}.
- We have Lie $(\Pi \oplus \Psi)=\pi \oplus \psi$ but Lie $(\Pi \otimes \Psi)=\pi \otimes i d+i d \otimes \psi$ and Lie $\left(\Pi^{*}\right)=-\pi^{T}$ (for the contragradient $\left.\Pi^{*}(A)=\left(\Pi\left(A^{-1}\right)\right)^{T}\right)$.

[^3]- A complex representation $\pi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ of a real Lie algebra admits $\pi_{\mathbb{C}}: \mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \rightarrow \mathfrak{g l}(V)$, and $\mathfrak{g}, \mathfrak{g}+i \mathfrak{g}$ have the same invariant subspaces in V, so π is irreducible iff $\pi_{\mathbb{C}}$ is.

4.3 Example - $S U(2)$

- $S U(2)$ acts on $V_{m}=\left\{\sum_{k=0}^{m} \alpha_{k} z^{m-k} w^{k}\right\}$ (homogeneous polynomials of degree m in $\left.z, w\right)$, by $(A f)(z, w)=f\left(A^{-1}\binom{z}{w}\right)$.
- V_{m} is irreducible. Pf: Compute for the basis in (3.1)

$$
\left.\left.\begin{array}{l}
\pi\left(X_{3}\right) f(z, w)=\left[\Pi\left(e^{t X_{3}}\right) f(z, w)\right]^{\prime}(0)=\left(\begin{array}{cc}
\cos t / 2 & -\sin t / 2 \\
\sin t / 2 & \cos t / 2
\end{array}\right) f(z, w)^{\prime}(0)=f\left(\left(\begin{array}{cc}
\cos t / 2 & \sin t / 2 \\
-\sin t / 2 & \cos t / 2
\end{array}\right)\binom{z}{w}\right)^{\prime}(0) \\
\quad=\left(\frac{\partial f(z, w)}{\partial z} \frac{\partial f(z, w)}{\partial w}\right)\left(\frac { 1 } { 2 } \left(\begin{array}{c}
-\sin t / 2 \\
-\cos t / 2 \\
-\cos t / 2
\end{array}-\sin t / 2\right.\right.
\end{array}\right)\binom{z}{w}\right)_{t=0}=\left(\frac{\partial f(z, w)}{\partial z} \frac{\partial f(z, w)}{\partial w}\right)\binom{\frac{w}{2}}{-\frac{z}{2}}=\left(\frac{w}{2} \frac{\partial}{\partial z}-\frac{z}{2} \frac{\partial}{\partial w}\right) f(z, w), ~ \$
$$

and similarly $\pi\left(X_{1}\right)=-\frac{i z}{2} \frac{\partial}{\partial z}+\frac{i w}{2} \frac{\partial}{\partial w}, \pi\left(X_{2}\right)=-\frac{i w}{2} \frac{\partial}{\partial z}-\frac{i z}{2} \frac{\partial}{\partial w}$. We complexify: $\mathfrak{s u}(2) \otimes \mathbb{C} \cong \mathfrak{s u}(2) \oplus i \mathfrak{s u}(2)=\mathfrak{s l}_{2}(\mathbb{C})$ (see (3.3). Taking the basis $H=\left({ }^{1}{ }_{-1}\right), X=\left({ }_{0}{ }^{1}\right), Y=\left({ }_{1}{ }^{0}\right)$ for $\mathfrak{s l}_{2}(\mathbb{C})$, we have $\pi(X)=\pi\left(-i X_{2}-X_{3}\right)=$ $-i \pi\left(X_{2}\right)-\pi\left(X_{3}\right)$ and so on, giving

$$
\pi(X)=-w \frac{\partial}{\partial z}, \quad \pi(Y)=-z \frac{\partial}{\partial w}, \quad \pi(H)=-z \frac{\partial}{\partial z}+w \frac{\partial}{\partial w} .
$$

Applying this to the natural basis of V_{m} we get

$$
\begin{align*}
& \pi(X)\left(z^{m-k} w^{k}\right)=(k-m) z^{m-k-1} w^{k+1} \\
& \pi(Y)\left(z^{m-k} w^{k}\right)=-k z^{m-k+1} w^{k-1} \tag{4.2}\\
& \pi(H)\left(z^{m-k} w^{k}\right)=(2 k-m) z^{m-k} w^{k},
\end{align*}
$$

which shows in particular that $\pi(Y)^{\mathbb{N}} \pi(X)^{\mathbb{N}}(f)$ span V_{m} for any $f \neq 0$.

- Remark: the eigenvalues of H (namely $-m,-m+2, \ldots, m$) are called the weights of the representation (so V_{m} has highest weight m).
- V_{m} are exhaustive: If V is an irrep of $S U(2)$, it is fin. dim. by Weyl's unitarity trick, and by complexification V is an irrep of $\left.\mathfrak{s u}(2)_{\mathbb{C}} \cong \mathfrak{s l}_{2}(\mathbb{C})\right]^{7}$ Let $v \in V$ be an H-eigenvector with $H v=\alpha v$. Using $[X, Y]=H,[H, X]=2 X$, and $[H, Y]=-2 Y$ we see that

$$
\begin{equation*}
H X v=([H, X]+X H) v=(2 X+X H) v=(2+\alpha) X v \tag{4.3}
\end{equation*}
$$

so that $X v$ has H-eigenvalue $\alpha+2$ (but possibly $X v=0)^{8}$ Similarly, $H Y v=(\alpha-2) Y v$. As $H Y^{\mathbb{N}} v$ have different H-eigenvalues, eventually $Y^{n+1} v=0$, and we take $v_{0}=Y^{n} v$, getting $Y v_{0}=0$ and $H v_{0}=\lambda v_{0}$ (for $\lambda=\alpha-2 n$). Set $v_{k}:=X^{k} v_{0}$, so that $H v_{k}=(\lambda+2 k) v_{k}$, and $Y v_{k}=-k(\lambda+k-1) v_{k-1}$ by induction:

$$
\begin{aligned}
Y v_{k+1} & =Y X v_{k}=(X Y-[X, Y]) v_{k}=X Y v_{k}-H v_{k} \\
(\text { ind. hyp. }) & =-k(\lambda+k-1) v_{k}-(\lambda+2 k) v_{k}=-(k+1)(k+\lambda) v_{k}
\end{aligned}
$$

We have $v_{m+1}=0$ for some $v_{m} \neq 0$ (as they have different H-eigenvalues), hence $0=Y v_{m+1}=-(m+1)(m+\lambda) v_{m}$ implies $\lambda=-m$, and taking $b_{k}=\frac{(-1)^{k}}{(m)_{k}} v_{k}$ we obtain

$$
\begin{equation*}
X b_{k}=(k-m) b_{k+1}, \quad Y b_{k}=-k b_{k-1}, \quad H b_{k}=(2 k-m) b_{k} \tag{4.4}
\end{equation*}
$$

[^4]From 4.2 we see that $z^{m-k} w^{k} \mapsto b_{k}$ embeds V_{m} in V, and as V is irreducible they are isomorphic (as $\mathfrak{s l}{ }_{2}(\mathbb{C})$-reps, hence as $\mathfrak{s u}(2)$-reps, hence as $S U(2)$-reps).

- We could also start from studying $\mathfrak{s u}(2)$-reps, taking 4.4 as a definition of an action of $\mathfrak{s u}(2)_{\mathbb{C}}$ on \mathbb{C}^{m+1} with basis b_{0}, \ldots, b_{m}, and verifying it respects the bracket relations. Then, we could restrict it to a representation of $\mathfrak{s u}(2)$ (still on \mathbb{C}^{m+1}), which itself comes from a representation of $S U(2)$, since the latter is simply-connected. However, this goes through BCH , and does not give us an explicit global description as we had in $V_{m}=\left\{\sum_{k=0}^{m} \alpha_{k} z^{m-k} w^{k}\right\}$.
- Since $S O(3) \cong S U(2) /\{ \pm I\}$ and $((-I) f)(z, w)=(-1)^{m} f(z, w)$, the irreps of $S O(3)$ are $\left\{V_{2 m}\right\}_{m \in \mathbb{N}}$ (every irrep of $S O(3)$ can be pulled back to an irrep of $S U(2))$.

4.4 Roots and weights in $S U(3)$

- $S U(3)$ acts irreducibly on homogeneous polynomials in three variables, but now these are not exhaustive. And in any case, we want to conduct a study that will generalize to all classical groups.
- We now start from $\mathfrak{g}=\mathfrak{s u}(3)_{\mathbb{C}}=\mathfrak{s l}_{3}(\mathbb{C})$, rather than from $S U(3)$. We define H_{1}, X_{1}, Y_{1} via the top-left copy of $\mathfrak{s l}_{2}(\mathbb{C})$ in $\mathfrak{s l}_{3}(\mathbb{C})$, and H_{2}, X_{2}, Y_{2} via the bottom-right copy. We also define $X_{3}=\left[X_{1}, X_{2}\right]=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $Y_{3}=\left[Y_{2}, Y_{1}\right]=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$ and together X_{*}, Y_{*}, H_{*} are a basis of $\mathfrak{s l}_{3}(\mathbb{C})$.
- As H_{1}, H_{2} commute, so do $\pi\left(H_{1}\right), \pi\left(H_{2}\right)$ for any representation (π, V) of \mathfrak{g}. For $\mu=\left(\mu_{1}, \mu_{2}\right) \in \mathbb{C}^{2}$, we define $V_{\mu}=\left\{v \in V \mid H_{i} v=\mu_{i} v\right\}$, and if $V_{\mu} \neq 0$ we say μ is a weight for V.
- Since H_{1}, H_{2} commute, V has at least one weight.
- The weights are in \mathbb{Z}^{2}, since if $v \in V_{\mu}$ we can restrict it to a $\mathfrak{s l}_{2}(\mathbb{C})$-rep via $\left\langle H_{1}, X_{1}, Y_{1}\right\rangle$ or $\left\langle H_{2}, X_{2}, Y_{2}\right\rangle$.
- Another (basis independent!) way to think of weights is as linear functionals $\mu: \mathfrak{h} \rightarrow \mathbb{C}$, where \mathfrak{h} is the diagonal subalgebra of $\mathfrak{s l}_{2}(\mathbb{C})$. Now $v \in V$ is of weight μ if $H v=\mu(H) v$ for every $H \in \mathfrak{h}$.
- The non-zero weights $\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{Z}^{2} \backslash(0,0)$ of the representation (ad, $\left.\mathfrak{g}\right)$ are called the roots of \mathfrak{g}, and the corresponding $v \in \mathfrak{g}_{\alpha}$ are called root-vectors. In turns out that $\operatorname{ad}_{H_{1}}, \operatorname{ad}_{H_{2}} \in M_{8}(\mathbb{C})$ are diagonal w.r.t. X_{*}, Y_{*}, H_{*}. In our case, X_{*}, Y_{*} are root-vectors with roots

$$
X_{1}:(2,-1), X_{2}:(-1,2), X_{3}:(1,1), Y_{1}:(-2,1), Y_{2}:(1,-2), Y_{3}:(-1,-1)
$$

but H_{1}, H_{2} are not root-vectors, since they have weights $(0,0)$.

- If $v \in V_{\mu}$ and $Z \in \mathfrak{g}_{\alpha}$ (i.e. v is of weight μ, and Z is a root-vector with root α), then $Z v \in V_{\mu+\alpha}$ since

$$
H_{i} Z v=\left(\left[H_{i}, Z\right]+Z H_{i}\right) v=\alpha_{i} Z v+Z \mu_{i} v=\left(\alpha_{i}+\mu_{i}\right) Z v
$$

This also implies that if V is irreducible then $V=\bigoplus_{\mu \in \mathbb{Z}^{2}} V_{\mu}$, since the latter is \mathfrak{g}-stable (and nonempty).

- For general \mathfrak{g}, the Cartan subalgebra of \mathfrak{g} is a maximal abelian $\mathfrak{h} \leq \mathfrak{g}$ such that ad_{H} is diagonalizable for every $H \in \mathfrak{h}$. This implies that $\left\{\operatorname{ad}_{H} \mid H \in \mathfrak{h}\right\}$ are diagonalizable simultaneously, and we can define weights and roots again, and see they shift weights as before.
- We call $\alpha_{1}=(2,-1), \alpha_{2}=(-1,2)$ the positive simple roots, and observe that every root is either in $\operatorname{Span}_{\mathbb{Z} \geq 0}\left\{\alpha_{1}, \alpha_{2}\right\}$ (the positive roots), or in $\operatorname{Span}_{\mathbb{Z}_{\leq 0}}\left\{\alpha_{1}, \alpha_{2}\right\}$ (the negative roots). We order the weights by $\mu \preceq \mu^{\prime}$ when $\mu^{\prime}-\mu \in$ $\operatorname{Span}_{\mathbb{Q}_{\geq 0}}\left\{\alpha_{1}, \alpha_{2}\right\}$. Even though this is only a partial order, we will see later that there is a unique highest weight (as we had m in $\mathfrak{s l}_{2}(\mathbb{C})$).
- The Highest Weight Theorem: Every (fin. dim.) irrep has a unique highest weight $\mu \in \mathbb{N}_{\geq 0}^{2}$, and every $\mu \in \mathbb{N}_{\geq 0}^{2}$ is the highest weight of a unique irrep.
- Lemma: If Z_{1}, \ldots, Z_{n} is a basis for \mathfrak{g}, then $Z_{i_{1}} \cdot \ldots \cdot Z_{i_{r}} v$ can be expressed as a linear combinations of terms of the form $Z_{1}^{k_{1}} \cdot \ldots \cdot Z_{n}^{k_{n}} v$, with $\sum k_{i} \leq r$. Idea: using induction on r, apply $Z_{i} Z_{j} v=Z_{j} Z_{i} v+\left[Z_{i}, Z_{j}\right] v$, and $\left[Z_{i}, Z_{j}\right]=\sum c_{i j k} Z_{k}$ to move the Z_{i} to the desired position.
- Lemma: If v_{0} has weight μ and $X_{*} v_{0}=0$, then μ is the unique highest weight for $\left\langle v_{0}\right\rangle$, and $\left\langle v_{0}\right\rangle_{\mu}=\mathbb{C} v_{0}$. Proof: Since $X_{*} v_{0}=0$ and $H_{i} v_{0} \in \mathbb{C} v_{0}$, taking $Z_{1}, \ldots, Z_{8}=Y_{*}, H_{*}, X_{*}$ we have

$$
\left\langle v_{0}\right\rangle=\operatorname{Span}_{\mathbb{C}}\left\{\left(\prod_{j=1}^{n} Z_{i_{j}}\right) v_{0} \left\lvert\, \begin{array}{c}
n \in \mathbb{N} \\
i_{j} \in[8]
\end{array}\right.\right\}=\operatorname{Span}_{\mathbb{C}}\left\{Y_{1}^{k_{1}} Y_{2}^{k_{2}} Y_{3}^{k_{3}} v_{0} \mid k_{*} \in \mathbb{N}\right\}
$$

and $Y_{1}^{k_{1}} Y_{2}^{k_{2}} Y_{3}^{k_{3}} v_{0}\left(\right.$ with $\left.k_{*} \neq(0,0,0)\right)$ all have weight strictly lower than μ.

- If V is fin. dim. irrep it has some \preceq-highest weight μ, and for $0 \neq v_{0} \in V_{\mu}$ this implies $X_{*} v_{0}=0$ (X_{*} being the positive roots), so by the lemma μ is the unique highest weight for $\left\langle v_{0}\right\rangle=V$. In addition, $\mu \in \mathbb{N}_{\geq 0}^{2}$ since $X_{i} v_{0}=0$ implies that $H_{i} v_{0} \in \mathbb{N}_{\geq 0} v_{0}$, by our analysis of $\mathfrak{s l}_{2}(\mathbb{C})$.
- Given $\mu \in \mathbb{N}_{\geq 0}^{2}$, let $S=\mathbb{C}^{3}$ with \mathfrak{g} acting by multiplication (which is induced from $S U(3)$ acting by multiplication), and S^{*} the contragradient, which is $Z(v)=-Z^{T} v$. Then S, S^{*} are irreducible, and $e_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \in S$ and $e_{3}^{\prime}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \in S^{*}$ have highest weights $(1,0)$ and $(0,1)$ respectively. In particular $X_{*} e_{1}, X_{*} e_{3}^{\prime}=0$, from which follows that $v_{0}=e_{1}^{\otimes \mu_{1}} \otimes e_{3}^{\prime} \otimes \mu_{2} \in S^{\otimes \mu_{1}} \otimes S^{* \otimes \mu_{2}}$ satisfies $X_{*} v_{0}=0$ and has weight μ (for this recall that $Z(v \otimes w)=Z(v) \otimes w+v \otimes Z(w)$. By the lemma, μ is the unique highest weight for $V=\left\langle v_{0}\right\rangle$ and $\mathbb{C} v_{0}=V_{\mu}$. To show V is irreducible, we note that S and S^{*} (with the standard inner product on \mathbb{C}^{3}) are unitary representations of $\mathfrak{s u}(3)$ (though not of $\mathfrak{g}=\mathfrak{s u}(3)_{\mathbb{C}}!$), hence so is $S^{\otimes \mu_{1}} \otimes S^{* \otimes \mu_{2}}$, hence so is V. Thus, V decomposes into irreducibles: $V=\bigoplus V_{i}$, hence $\mathbb{C} v_{0}=V_{\mu}=\bigoplus\left(V_{i}\right)_{\mu}$, showing $v_{0} \in\left(V_{i}\right)_{\mu}$ for a unique i and in particular thus $V=\left\langle v_{0}\right\rangle \subseteq V_{i}$.
- For irreps V, W with highest weight μ, we want to show $V \cong W$. By general representation theory nonsense, direct sums and subrepresentations preserve complete reducibility. For $\mathbb{C} v=V_{\mu}$ and $\mathbb{C} w=W_{\mu}$, we obtain that $U=\langle(v, w)\rangle \leq V \oplus W$ decomposes into irreps: $U=\bigoplus U_{i}$. But again $X_{*}(v, w)=0$ and $(v, w) \in U_{\lambda}$ show that $\mathbb{C}(v, w)=U_{\lambda}=\left(U_{i}\right)_{\lambda}$ for a unique i, hence $U=\langle(v, w)\rangle=U_{i}$ is irreducible. Since the projections $V \oplus W \rightarrow V, W$ restrict to nonzero maps $U \rightarrow V, W$, by Schur Lemma the three are isomorphic.

Lie Groups - Exercise 1

1. Compute e^{X} for a X a Jordan block (i.e. $\left(\begin{array}{cccc}a & 1 & & \\ & \ddots & \ddots \\ & & a\end{array}\right)$).
2. A matrix A is called nilpotent if $A^{k}=0$ for some $k \in \mathbb{N}$ and unipotent if $A-I$ is nilpotent. Note $\log A$ makes sense for all unipotent A (it is a polynomial in A). Show that exp and log give a complete bijection between the nilpotent and the unipotent matrices (over \mathbb{R} or \mathbb{C}).
3. Show that $\exp : M_{n}(\mathbb{C}) \rightarrow G L_{n}(\mathbb{C})$ is onto.
4. exp: $M_{n}(\mathbb{R}) \rightarrow G L_{n}(\mathbb{R})$ is not onto since $\operatorname{det}\left(e^{X}\right)=e^{\operatorname{tr}(X)}>0$, but it is not even onto $G L_{n}^{+}(\mathbb{R})$ (matrices with positive determinant): Show that $A=\left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right) \notin \exp \left(M_{2}(\mathbb{R})\right)$. Hint: show that if $e^{X}=A$ then X is non-diagonalizable over \mathbb{C}, and $\operatorname{tr}(X)=0$.
5. Every $X \in M_{2}(\mathbb{R})$ (over \mathbb{R} or \mathbb{C}) can be written as $\frac{\operatorname{tr}(X)}{2} I+Y$ with $\operatorname{tr}(Y)=0$. Show that $Y^{2}=-\operatorname{det}(Y) I$, and that

$$
e^{X}=e^{\frac{\operatorname{trace}(X)}{2}}\left(\cos (\sqrt{\operatorname{det} Y}) I+\frac{\sin (\sqrt{\operatorname{det} Y})}{\sqrt{\operatorname{det} Y}} Y\right)
$$

6. Optional: use the previous exercise to show that the image of exp: $M_{2}(\mathbb{R}) \rightarrow G L_{2}(\mathbb{R})$ is

$$
\left\{A \in G L_{2}^{+}(\mathbb{R}) \mid \operatorname{tr}(A)>-2 \sqrt{\operatorname{det} A}\right\} \cup\{c I \mid c<0\}
$$

(I think, could have got this one wrong).
7. Show that the following are equivalent:
(a) X, Y commute
(b) $e^{s X}, e^{t Y}$ commute for all $s, t \in \mathbb{R}$
(c) $e^{s X+t Y}=e^{s X} e^{t Y}$ for all $s, t \in \mathbb{R}$

Lie Groups - Exercise 2

May 4, 2022

1. Prove that $Z(\mathbb{H})=\mathbb{R}$.
2. Prove that $\mathbb{H}^{1} \cong S U$ (2).
3. (a) Show that the action of $\mathbb{H}^{1} \times \mathbb{H}^{1}$ on \mathbb{H} by $(\alpha, \beta) \cdot \gamma=\alpha \gamma \beta^{-1}$ gives a homomorphism $\Phi: \mathbb{H}^{1} \times \mathbb{H}^{1} \rightarrow$ $S O$ (4).
(b) Show that $\operatorname{ker} \Phi=\{(1,1),(-1,-1)\}$.
(c) Show that Φ is onto. Hint: identifying $\mathbb{H} \cong \mathbb{R}^{4}$ via the basis $1, i, j, k$, let $\alpha, \beta, \gamma, \delta \in \mathbb{H}$ be such that $(\alpha|\beta| \gamma \mid \delta) \in S O(4)$. Show that using $\mathbb{H}^{1} \times \mathbb{H}^{1}$ one can take $(\alpha, \beta, \gamma, \delta)$ to $(1, i, j, k)$. It is helpful to remember that you already know well the action of the diagonal $\left\{(\alpha, \alpha) \in \mathbb{H}^{1} \times \mathbb{H}^{1}\right\}$ on $\mathbb{P} \ldots$
4. Let \mathbb{F} be a field with char $\mathbb{F} \neq 2$, and define the \mathbb{F}-quaternions $\mathbb{H}_{\mathbb{F}}$ as the algebra over \mathbb{F} with basis $1, i, j, k$ and product defined by $i^{2}=j^{2}=k^{2}=i j k=-1$, associativity and distributivity (and 1 being the multiplicative identity). Prove that if -1 is a square in \mathbb{F} then $\mathbb{H}_{\mathbb{F}} \cong M_{2}(\mathbb{F})$.
5. Let \mathbb{E} / \mathbb{F} be a quadratic field extension with char $\mathbb{F} \neq 2$ and $\operatorname{Gal}(\mathbb{E} / \mathbb{F})=\{i d, \sigma\}$. We know that $\mathbb{E}=\mathbb{F}[\sqrt{\delta}]$ for some $\delta \in \mathbb{F}$, so that $\sigma(\sqrt{\delta})=-\sqrt{\delta}$. Now, assume that the norm map

$$
N: \mathbb{E}^{\times} \rightarrow \mathbb{F}^{\times}, \quad N(a+b \sqrt{\delta})=(a+b \sqrt{\delta}) \cdot \sigma(a+b \sqrt{\delta})=a^{2}-\delta b^{2}
$$

is onto.
(a) Show that this is always the case for finite fields.
(b) Show that the following unitary groups are isomorphic:

$$
\begin{aligned}
U_{n}(\mathbb{E} / \mathbb{F}) & =\left\{A \in G L_{n}(\mathbb{E}) \mid A^{*} A=I\right\} \\
U_{n}(\mathbb{E} / \mathbb{F}, J) & =\left\{A \in G L_{n}(\mathbb{E}) \mid A^{*} J A=J\right\},
\end{aligned}
$$

where $J=\left(._{1} .{ }^{1}\right)$, and $\left(A^{*}\right)_{i j}=\sigma\left(A_{j i}\right)$. Hint: find hyperbolic pairs in the Hermitian space \mathbb{E}^{n} (with the standard product $\langle v, w\rangle=v^{*} w$).
(c) Optional: Show that $U_{n}(\mathbb{E} / \mathbb{F}, B) \cong U_{n}(\mathbb{E} / \mathbb{F}, J)$ for any hermitian matrix $B \in G L_{n}(\mathbb{E}) .{ }^{1}$

[^5]
Lie Groups - Exercise 3

June 22, 2022

1. Show that $\mathfrak{s l}_{n}(\mathbb{F})=\left\{X \in M_{n}(\mathbb{F}) \mid\right.$ trace $\left.(X)=0\right\}$.
2. Let G be the group of all upper-triangular matrices in $G L_{n}(\mathbb{F})$. Show that $\mathfrak{g}=\operatorname{Lie}(G)$ is the algebra of all upper-triangular matrices in $M_{n}(\mathbb{F})$.
3. What is \mathfrak{g} when G is the group of all unipotent upper-triangular matrices in $G L_{n}(\mathbb{F})$?
4. The derivations of an \mathbb{F}-algebra A are

$$
\operatorname{Der}_{\mathbb{F}}(A)=\left\{f \in \operatorname{End}_{\mathbb{F}}(A) \mid f(a b)=f(a) b+a f(b)\right\} .
$$

(a) Show that if $f \in \operatorname{Der}_{\mathbb{F}}(A)$ then $f^{n}(a b)=\sum_{k=0}^{n}\binom{n}{k} f^{n-k}(a) f^{k}(b)$.
(b) Show that $\operatorname{Der}_{\mathbb{F}}(A)$ is a Lie algebra, w.r.t. $[f, g]=f \circ g-g \circ f$.
(c) Show that if \mathfrak{g} is a finite-dimensional Lie algebra ${ }^{1}$ then Lie $\left(\operatorname{Aut}_{\text {LieAl }}(\mathfrak{g})\right)=\operatorname{Der}_{\mathbb{R}}(\mathfrak{g})$ (we consider $\operatorname{Aut}_{\text {LieAl }}(\mathfrak{g})$ as a Lie group by $\left.\operatorname{Aut}_{\text {LieAl }}(\mathfrak{g}) \leq G L(\mathfrak{g}) \cong G L_{\text {dim } \mathfrak{g}}(\mathbb{R})\right)$. Conclude (or show directly) that ad $\in \operatorname{Hom}_{\text {LieAl }}\left(\mathfrak{g}, \operatorname{Der}_{\mathbb{R}}(\mathfrak{g})\right.$).
5. Let $H \subseteq G \subseteq G L_{n}(\mathbb{F})$ be matrix Lie groups. Show that:
(a) If $H \unlhd G$ (normal) then $\mathfrak{h} \unlhd \mathfrak{g}$ (ideal).
(b) If G and H are connected and $\mathfrak{h} \unlhd \mathfrak{g}$ then $H \unlhd G$.
6. Optional: If G is abelian and connected then $e^{\mathfrak{g}}=G$.

[^6]
Lie Groups - Final Exercise

October 6, 2022

1. Recall that $S p_{2 n}(\mathbb{F})=\left\{A \mid A^{T} \Omega A=\Omega\right\}$, where $\Omega=\binom{I_{n}}{-I_{n}}$ (and $\mathbb{F}=\mathbb{R}$ or \mathbb{C}). Show that $\mathfrak{s p}_{2 n}(\mathbb{F})=$ $\left\{\left(\begin{array}{cc}A & B \\ C & -A^{T}\end{array}\right) \left\lvert\, \begin{array}{c}A, B, C \in \mathfrak{g l}_{n}(\mathbb{F}) \\ B=B^{T}, C=C^{T}\end{array}\right.\right\}$, and compute its dimension.
2. Recall the quaternionic-unitary group $S p(n)=\left\{A \in G L_{n}(\mathbb{H}) \mid A^{*} A=I\right\}$ (where $\left(A^{*}\right)_{i j}=\overline{A_{j i}}$ with the quaternionic conjugate). Show that $\mathfrak{s p}(n)_{\mathbb{C}}$ (the complexification of its Lie algebra) is isomorphic to $\mathfrak{s p}_{2 n}(\mathbb{C}) .{ }^{1}$
3. From now on we focus on $\mathfrak{s p}_{4}(\mathbb{C})$, and replace Ω by $\Omega=\left(\begin{array}{ccc}-1 & & \\ & & 1\end{array}\right)$ (they are congruent, and you'll soon see why this one serves us better). Work out what is $\mathfrak{s p}_{4}(\mathbb{C})$ using this Ω.
4. Show that $\left(\begin{array}{ccc}* & * & 0 \\ * & 0 \\ 0 & * & 0\end{array} 0\right.$ as we did in $\mathfrak{s l}_{3}(\mathbb{C})$. We define weights by H_{1}, H_{2} (namely, $\left(\mu_{1}, \mu_{2}\right)$ is a weight for V if there exist $0 \neq v \in V$ with $\left.H_{i} v=\mu_{i} v\right)$. Deduce that the weights of a fin. dim. representation of $\mathfrak{s p}_{4}(\mathbb{C})$ are in \mathbb{Z}^{2}.
5. Extend $H_{1}, X_{1}, Y_{1}, H_{2}, X_{2}, Y_{2}$ to a basis of $\mathfrak{s p}_{4}(\mathbb{C})$, and verify that in this basis $\operatorname{ad}_{H_{1}}$ and $\operatorname{ad}_{H_{2}}$ are diagonal (if they are not you probably tried to be unnecessarily creative in choosing your basis - remedy this).
6. Find the roots of $\mathfrak{s p}_{4}(\mathbb{C})$ and draw them in \mathbb{R}^{2}. Choose two roots α_{1}, α_{2} such that every root is in either $\operatorname{Span}_{\mathbb{Z}_{\geq 0}}\left\{\alpha_{1}, \alpha_{2}\right\}$ or in $\operatorname{Span}_{\mathbb{Z}_{\leq 0}}\left\{\alpha_{1}, \alpha_{2}\right\}$ (we call α_{1}, α_{2} the "positive simple roots"). Try to make it so that X_{1}, X_{2} are root-vectors with positive roots (though this is not crucial).
7. Order the weights by $\mu \preceq \mu^{\prime}$ when $\mu^{\prime}-\mu \in \operatorname{Span}_{\mathbb{Q}_{\geq 0}}\left\{\alpha_{1}, \alpha_{2}\right\}$, and show that every fin. dim. irreducible representation of $\mathfrak{s p}_{4}(\mathbb{C})$ has a unique vector of highest weight (up to scalars), and this weight is in $\mathbb{N}_{\geq 0}^{2}$ (or in another quadrant of the plane, if you didn't bother to make the roots corresponding to X_{1}, X_{2} positive).
8. Find all the weights of the standard representation $S=\mathbb{C}^{4}$ (with $\mathfrak{s p}_{4}(\mathbb{C})$ acting by multiplication). Which is the highest?
9. Show that the highest weight in an irreducible representation is actually in $\left\{\left(\mu_{1}, \mu_{2}\right) \mid \mu_{1} \geq \mu_{2} \geq 0\right\}$ (or in another eighth-plane, which one depends again on your choice of positive roots).
Hint: one of your positive simple root-vectors was one of $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}\right\}$; Find another copy of $\mathfrak{s l}_{2}(\mathbb{C})$ in $\mathfrak{s p}_{4}(\mathbb{C})$ whose " X " vector is your other positive simple root-vector.

For the next two questions you can assume total reducibility (namely, that every representation of $\mathfrak{s p}_{4}(\mathbb{C})$ decomposes as a some of irreducible ones). You are welcome to try to prove it, or you can simply decide we only care about representations of $\mathfrak{s p}(n)$, where the standard representation is unitary w.r.t. the standard inner product (this is what we did in class, where we studied representation of $\mathfrak{s u}(3)$, whose complexifiction was $\mathfrak{s l}_{3}(\mathbb{C})$).
10. Find an irreducible representation V of $\mathfrak{s p}_{4}(\mathbb{C})$ with highest weight $(1,1)$. Hint: look at $S \otimes S .^{2}$
11. Show that for any $\mu_{1} \geq \mu_{2} \geq 0, S^{\otimes\left(\mu_{1}-\mu_{2}\right)} \otimes V^{\otimes \mu_{2}}$ has an irreducible subrepresentation of highest weight $\left(\mu_{1}, \mu_{2}\right)$.

[^7]
[^0]: ${ }^{1}$ but unlike \mathbb{H}^{1} and $S^{1} \subseteq \mathbb{C}, \mathbb{P}^{1}$ is not a group (in fact, there is no topological group structure on S^{2}).

[^1]: ${ }^{2}$ Also called: the unitary symplectic, compact symplectic, or hyperunitary group.

[^2]: ${ }^{3}$ Maybe we will later show that if G is connected and compact then $e^{\mathfrak{g}}=G$.
 ${ }^{4}$ a.k.a. differential $D \Phi$ or total derivative $\nabla \Phi$.
 ${ }^{5}$ Even a smooth manifold, for those who know the term.

[^3]: ${ }^{6}$ In fact, even the double cover of $S L_{2}(\mathbb{R})$, which is called the metaplectic group, is not a matrix Lie group - perhaps the same argument works - complexification would then yield a double cover of $S L_{2}(\mathbb{C})$ which is impossible.

[^4]: ${ }^{7}$ Be warned however that $S L_{2}(\mathbb{C})$ and thus $\mathfrak{s l}_{2}(\mathbb{C})$ have infinite-dimension irreps as well.
 ${ }^{8}$ An important point: in 4.3 we look at products, but $\mathfrak{s l}_{2}(\mathbb{C})$ is not closed under multiplication (e.g. $X Y \notin \mathfrak{s l}_{2}(\mathbb{C})$). A wrong solution is to say it is ok because we can work in $\mathfrak{g l}_{2}(\mathbb{C})$ (it is wrong because the representation V is only of $\mathfrak{s l}_{2}$). A right solution is to note that in 4.3 we never have $X H$ without v after it, and $X H v$ is well defined by $X(H v)$. The way to make this formal without v, is to take $X H$ as an element of the universal enveloping algebra of $\mathfrak{s l}_{2}(\mathbb{C})$, which we won't cover.

[^5]: ${ }^{1}$ Since every finite field \mathbb{F} has a unique quadratic extension, this implies there is a unique unitary group over \mathbb{F} in each dimension!

[^6]: ${ }^{1}$ if you want you can assume it is the Lie algebra of a Lie group G, but I don't think it helps

[^7]: ${ }^{1}$ The triplet $S p(n), S p_{n}(\mathbb{R}), S p_{n}(\mathbb{C})$ is analogue to $S U(n), S L_{n}(\mathbb{R}), S L_{n}(\mathbb{C})$ - the first group is compact, the second is not, and both have a Lie algebra whose complexification is isomorphic to that of the third (which is a complex Lie group). In general, every complex semisimple Lie algebra has a compact and a non-compact "real form". We saw those of $\mathfrak{s l}_{n}(\mathbb{C})$ and $\mathfrak{s p}_{n}(\mathbb{C})$, can you work out such a triplet for $\mathfrak{s o}_{n}(\mathbb{C})$?
 ${ }^{2}$ If you're not used to tensors: taking any basis e_{1}, \ldots, e_{4} for S, we can define $S \otimes S$ as the vector space with basis $\left\{e_{i} \otimes e_{j}\right\}_{i, j \in[4]}$, and each $Z \in \mathfrak{s p}_{4}(\mathbb{C})$ acts on the basis elements by $Z\left(e_{i} \otimes e_{j}\right)=\left(Z e_{i}\right) \otimes e_{j}+e_{i} \otimes\left(Z e_{j}\right)$.

