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A HOST–KRA Fω
2

-SYSTEM OF ORDER 5 THAT IS NOT

ABRAMOV OF ORDER 5, AND NON-MEASURABILITY OF

THE INVERSE THEOREM FOR THE U6(Fn
2
) NORM

ASGAR JAMNESHAN, OR SHALOM, AND TERENCE TAO

Abstract. It was conjectured by Bergelson, Tao, and Ziegler [1] that

every Host–Kra Fωp -system of order k is an Abramov system of order

k. This conjecture has been verified for k ≤ p + 1. In this paper we

show that the conjecture fails when k = 5, p = 2. We in fact estab-

lish a stronger (combinatorial) statement, in that we produce a bounded

function f : Fn
2
→ C of large Gowers norm ‖ f ‖U6 (Fn

2
) which (as per the

inverse theorem for that norm) correlates with a non-classical quintic

phase polynomial e(P), but with the property that all such phase poly-

nomials e(P) are “non-measurable” in the sense that they cannot be well

approximated by functions of a bounded number of random translates of

f .

1. Introduction

Let p be a prime, and let k ≥ 1. We consider two statements associ-

ated to these parameters: the (now-proven) inverse conjecture [9], [19] [11]

for the Gowers norms in characteristic p, and the Bergelson–Tao–Ziegler

conjecture [1]. We begin with the former. Given any finite abelian group

G = (G,+), we define the Gowers uniformity norm ‖ f ‖Uk+1(G) ≥ 0 of a

function f : G → C by the formula

‖ f ‖2
k+1

Uk+1(G)
≔ Ex,h1 ,...,hk+1∈G

∏

ω∈{0,1}k+1

C|ω| f
(

x + ω · ~h
)

where C : z 7→ z̄ denotes complex conjugation, ω = (ω1, . . . , ωk+1), |ω| ≔

ω1 + · · · + ωk+1, ~h ≔ (h1, . . . , hk+1), ω · ~h denotes the dot product

ω · ~h ≔ ω1h1 + · · · + ωk+1hk+1,

Ex∈A ≔
1
|A|

∑

x∈A denotes the averaging operation, and |A| denotes the car-

dinality of a finite set A. If P : G → T is a function taking values in the
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unit circle T ≔ R/Z, then we have ‖e(P)‖Uk+1(G) ≤ 1, with equality precisely

when P is a (non-classical) polynomial of degree k, as defined in Definition

A.18 (endowing G with the degree 1 filtration); here e : T → C is the fun-

damental character e(θ) ≔ e2πiθ. The space of polynomials P : G → T of

degree at most k is an abelian group which we denote Polyk(G). By conven-

tion, Poly0(G) will denote the constant functions T, and Polyk(G) = {0} for

all k < 0 (thus non-zero constants have degree 0, and zero has degree −∞).

For each p, k, we can then form the following claim:

Conjecture 1.1 (Inverse conjecture for the Gowers norm). For every η > 0

there exists c = c(k, p, η) > 0 such that, whenever G = Fn
p is an elementary

abelian p-group and f : G → D is a function taking values in the unit disk

D ≔ {z ∈ C : |z| ≤ 1} and ‖ f ‖Uk+1(G) ≥ η, there exists P ∈ Polyk(G) such that

|Ex∈G f (x)e(−P(x))| ≥ c.

This conjecture has now been established for all values of k, p [23]. The

case k = 1 is trivial, the case k = 2 follows from standard Fourier ana-

lytic calculations, and the case k = 3 was previously established in [9] (for

p > 2) and [19] (for p = 2). In [22], this conjecture was shown to be

a consequence of a conjecture in ergodic theory which we now pause to

introduce. Define an Fωp -system to be a (countably generated) probability

space (X, µ) equipped with a measure-preserving action T h : X → X, h ∈ Fωp

of the group Fωp ≔ lim
←−−
F

n
p (the vector space over Fp with a countably infinite

basis). One can define analogues of the Gowers uniformity norms ‖ f ‖Uk+1(X)

(known as Gowers–Host–Kra seminorms) for f ∈ L∞(X), and one can sim-

ilarly define the group Polyk(X) of polynomials P : X → T (defined up to

almost everywhere equivalence) as

Polyk(X) ≔ {P : ‖e(P)‖Uk+1(X) = 1};

see [22] for details. An Fωp -system is said to be of order at most k if

‖ f ‖Uk+1(X) > 0 for any non-zero element f of L∞(X) (where elements of

the latter are defined up to almost everywhere equivalence). We then have

Conjecture 1.2 (Bergelson–Tao–Ziegler conjecture). [1, Remark 1.25] Let

X be an ergodic Fωp -system of order at most k. Then the σ-algebra of X is

generated (modulo null sets) by the polynomials in Polyk(X).
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We remark that the ergodicity hypothesis on X can in fact be removed by

ergodic decomposition, but we will not need to do so here.

In [23], a variant of the Furstenberg correspondence principle was used

to show that Conjecture 1.2 implied Conjecture 1.1 for any given choice of

p, k. In [1], Conjecture 1.2 was established in the high characteristic case

k + 1 ≤ p; combining the two results, this also gave Conjecture 1.1 in this

regime. The full case of Conjecture 1.1 was subsequently established in

[23] by a different method; alternate proofs of some or all of the cases of

this conjecture have since been given in [7], [8], [4], [24], [18]. In particular

Conjecture 1.2 was established in [4, Theorem 1.12] in the slightly larger

range k ≤ p + 1 (and an alternate proof of Conjecture 1.1 was given for

all k, p). We also remark that in [1, Theorem 1.20], a weaker version of

Conjecture 1.2 was established in which Polyk(X) was replaced by some

unspecified subalgebra of PolyC(p,k)(X) for some constant C(p, k) depending

only on p, k. We also note that several other structural results on ergodic Fωp -

systems are known; see in particular [4], [16].

Although it was not explicitly noted in [23], Conjecture 1.2 in fact gives

a stronger version of Conjecture 1.1 in which the polynomial P produced

by the conjecture is (approximately) “measurable” with respect to the orig-

inal function f together with random shifts. More precisely, consider the

following more complicated strengthening of Conjecture 1.1.

Conjecture 1.3 (Strong inverse conjecture for the Gowers norm). Let η >

0, and let ε : N → R+ be a decreasing function. Then there exists M =

M(k, p, η, ε()) such that whenever G = Fn
p is an elementary abelian p-group

and functions f : G → D with ‖ f ‖Uk+1(G) ≥ η, such that if ~h = (h1, . . . , hM) ∈

GM is a tuple of shifts drawn uniformly from GM , then with probability at

least 1/2, there exist 1 ≤ m ≤ M, P ∈ Polyk(G) and a function F : DF
M
p → C

of Lipschitz constant at most M (using say the Euclidean metric on DF
M
p ),

such that

|Ex∈G f (x)e(−P(x))| ≥
1

m

and
∣

∣

∣

∣

∣

Ex∈Ge(P(x)) − F

(

(

f (x + a · ~h)
)

a∈FM
p

)

∣

∣

∣

∣

∣

≤ ε(m).
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The numerical value of the probability 1/2 here is inessential and could

be replaced by any other constant between 0 and 1. Roughly speaking,

Conjecture 1.3 is a strengthening of Conjecture 1.1 in which the polyno-

mial P produced by that conjecture is well approximated by some combi-

nation of random shifts of f , where the degree ε(m) of approximation can

be guaranteed to be much better than the level 1
m

of correlation between the

polynomial P and the original function f . The Lipschitz property of F is

unimportant, since one can easily discretize f to take on a bounded number

of values, but we retain it for minor technical reasons.

Example 1.4. When k = 1, Conjecture 1.3 can be established by standard

Fourier-analytic arguments which we now sketch here (suppressing the pre-

cise quantitative bounds needed to make precise terms such as “large” in or-

der to simplify the exposition). If f : G → D has large U2(G) norm, then f

has a large inner product with the convolution f ∗ f ∗ f̃ , where f̃ (x) ≔ f (−x).

Furthermore, this convolution can be approximated in the uniform norm by

a bounded linear combination of characters e(ξ · x). If one chooses a large

number of random shifts h1, . . . , hM, then with high probability one can find

a convolution filter on these shifts that isolates one of these characters, that

is to say there exists a linear combination λ of the Kronecker delta func-

tions δh1
, . . . , δhM

such that f ∗ f ∗ f̃ ∗ λ(x) is close to e(ξ · x). By further

random sampling of the f ∗ f̃ factor (and increasing the number M of shifts

if necessary), one can with high probability approximate f ∗ f ∗ f̃ ∗ λ (in L1

norm) by a linear combination of shifts of f along linear combinations of

h1, . . . , hM. This can then be used to establish the k = 1 case of Conjecture

1.3; we leave the details to the interested reader.

For k = 2, 3 (and p = 2), the strong inverse conjecture is reminiscent1

of the quadratic Goldreich–Levin theorem from [25] (and the more recent

cubic Goldreich–Levin theorem from [17]), which gives a polynomial (in

n) time randomized algorithm to reconstruct the polynomial P from the

function f ; however strong inverse conjecture is (in principle) stronger than

these Goldreich–Levin type results, in that it should (after some additional

effort) yield a bounded-time (rather than polynomial-time) randomized al-

gorithm to obtain an approximation to the polynomial P. Such algorithms

1We are indebted to James Leng for this observation.
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are similar in spirit2 to implicit (or “local”) list decoding algorithms for

Reed–Muller codes, as discussed for instance in [20], [6].

In Appendix B we will modify the arguments in [23] to show

Theorem 1.5 (Application of correspondence principle). For any given

choice of k and p, Conjecture 1.2 implies Conjecture 1.3 (and hence also

Conjecture 1.1).

In particular, from the previously mentioned results of [4], Conjecture

1.3 holds in the high characteristic case k ≤ p + 1; also, from [1, Theorem

1.20] one can establish a weaker version of Conjecture 1.3 in which the

polynomial P is of degree at most C(p, k) rather than k for some quantity

C(p, k) depending only on p, k.

However, the low characteristic case presents additional difficulties; for

instance, a key “exact roots” property for polynomials in order k Fωp -systems

is known to fail in low characteristic [23, Appendix E]. In fact we are able

to construct the following counterexample, which is the main result of our

paper.

Theorem 1.6 (Counterexample to strong inverse conjecture). Conjecture

1.3 fails when p = 2 and k = 5.

Combining Theorem 1.6 with the contrapositive of Theorem 1.5, we con-

clude that Conjecture 1.2 also fails when p = 2 and k = 5; see also Remark

5.11 for how one might give a more direct construction of a counterexample

to that conjecture. Our construction was located numerically, but we give a

human-verifiable proof of the theorem here, taking advantage in particular

of several technical simplifications available in the p = 2 case (in particular,

we take advantage of the ability to identify the n-dimensional cube {0, 1}n

with the n-dimensional vector space Fn
2
, for instance in (62)). It would be

interesting to determine the complete range of p, k for which Conjecture

1.3 and Conjecture 1.2 holds; for instance, the case p = 2, k = 4 remains

unresolved for both conjectures, and we have not been able to rigorously

establish that these conjectures are monotone in k.

2We are indebted to Avi Wigderson for this remark.
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Informally, Theorem 1.6 asserts that in characteristic two, there exist

“pseudo-quintic” functions f which have large U6(Fn
2
) norm, and in fact

correlate with a genuine quintic e(P), but that the quintics that f correlates

with will be “non-measurable” in the sense that they cannot be approxi-

mated by a combination of boundedly many translates of f . Instead, one

has to use “non-measurable” operations, such as taking exact roots of poly-

nomials as in [23], in order to locate such quintics e(P).

Remark 1.7. Recently, quantitative versions of Conjecture 1.1 for p = 2

and k = 3, 4, 5 have been established in [24, 18]; in particular the paper

[18] covers the case p = 2, k = 5 of Theorem 1.6. This is however not a

contradiction; a crucial step [24, Proposition 3.5] in both those papers (a

special case of Theorem 2.3 below) is the ability to represent a “strongly

symmetric k-linear form” as the k-fold derivative of a degree k polynomial,

and this step is “non-measurable” as it requires one to expand the form into

monomials using a choice of basis for Fn
2
.

1.1. Overview of proof. We now give an informal, high-level description

of our proof of Theorem 1.6, deferring more precise details to later sections.

Roughly speaking, it would suffice to exhibit, for any sufficiently large n,

a function S : Fn
2
→ 1

2
Z/Z which was “pseudo-quintic” in the sense that

the Gowers norm ‖e(S )‖U6(Fn
2
) was large, but such that e(S ) did not corre-

late in any significant fashion with e(P) for any genuine quintic polynomial

P : Fn
2
→ Twhich was somehow “measurable” with respect to S and related

functions.

One way to ensure that the Gowers norm ‖e(S )‖U6(Fn
2
) is to enforce some

structure on the sixth derivative d6S : Fn
2
× (Fn

2
)6 → 1

2
Z/Z of S , defined by

the formula

(d6S )h1,...,h6
(x) ≔ ∂h1

. . . ∂h6
S (x)

where ∂hS (x) ≔ S (x + h) − S (x). Indeed, a routine application of the

Gowers–Cauchy–Schwarz inequality and Fourier decomposition reveals that

if (d6S )h1,...,h6
(x) can be expressed in terms of a bounded number of quintic

or lower degree polynomials applied to the various vertices x + ω · ~h of the

6-dimensional cube (x+ω ·~h)ω∈{0,1}6 , then e(S ) will have large U6(Fn
2
) norm

(see Lemma 5.2 for a rigorous version of this implication). As it turns out,
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we will be able to construct a counterexample in which d6S is a function

of a (randomly chosen) quadratic polynomial Q : Fn
2
→ F2

2
taking values in

the Klein four-group X2 ≔ F
2
2
. That is to say, S will be chosen to obey the

equation

(1) (d6S )h1,...,h6
(x) = ρ

(

(

Q(x + ω · ~h)
)

ω∈{0,1}6

)

for some function ρ : C6(X2) → 1
2
Z/Z whose domain C6(X2) ⊂ X

{0,1}6

2
is

a space of “6-cubes” in X2 that contains all possible values of the tuple
(

Q(x + ω · ~h)
)

ω∈{0,1}6
. In fact, C6(X2) can be described explicitly as the set

of all tuples of the form
















x +

6
∑

i=1

hiωi +
∑

1≤i< j≤6

hi jωiω j

















ω∈{0,1}6

for x, hi, hi j ∈ X2. (In the language of nilspaces that we will use later, we

are equipping X2 with the nilspace structure associated to the degree two

filtrationD2(F2
2
) on the Klein four-group.)

The function ρ has to obey a certain number of properties in order to be

able to find a solution S to the equation (1). Firstly, ρ must be symmet-

ric with respect to permutations of {1, . . . , 6} and must also obey a certain

“cocycle equation” arising from the identity ∂h+kS = ∂hS + T h∂kS , where

T hS (x) ≔ S (x + h) is the shift map. These properties can be formalized

in the language of nilspaces by requiring ρ to be a degree 5 cocycle on X2

taking values in 1
2
Z/Z; see Definition A.6 for details. However, the property

of being a degree 5 cocycle is not yet sufficient to guarantee a solution to

(1); in the language of nilspaces, not all degree 5 cocycles on Fn
2

are degree

5 coboundaries. In order to locate a solution, we will require the cocycle ρ

to obey an additional property that we call “strong 2-homogeneity”. This

property asserts that ρ takes the form

ρ((xω)ω∈{0,1}6) =
∑

ω∈{0,1}5

(−1)5−|ω|ψ(xω0, xω1)

for all (xω)ω∈{0,1}6 in C6(X2) and some function ψ : C1(X2)→ T on the space

of pairs C1(X2) = X2 × X2 on X2, such that 2ψ is a “cubic” polynomial on

C1(X2) with respect to a certain natural nilspace structure on C1(X2); see

Definition 2.5 for a precise statement. This turns out to be sufficient to
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guarantee the existence of the pseudo-quintic function S : Fn
2
→ 1

2
Z/Z; see

Theorem 2.6 and Lemma 4.1 for precise statements.

We would still like to ensure that S does not correlate with a quintic phase

e(P) where P can be well approximated in terms of S and its translates.

An obstruction to this claim would occur if the cocycle ρ was a “degree 5

coboundary” in the sense that ρ takes the form

ρ((xω)ω∈{0,1}6) =
∑

ω∈{0,1}6

(−1)6−|ω|F(xω)

for all (xω)ω∈{0,1}6 in C6(X2) and some function F : X2 → T. Indeed, if this

were the case, then one could rearrange (1) as

d6(S − F(Q)) = 0

and thus we have e(S ) = e(P)e(F(Q)) for some quintic polynomial P ∈

Poly5(Fn
2
). Morally speaking, this relation indicates that e(P) correlates with

e(S ), and that P should be well approximated by S and its translates (since

from (1) we expect Q to similarly be well approximable in this fashion).

The key step in our argument is thus to locate a degree 5 cocycle ρ : C6(X2)→
1
2
Z/Z which is strongly 2-homogeneous, but not a degree 5 coboundary.

This is accomplished in Section 3. We remark that this claim involves a fi-

nite system of linear equations on a finite-dimensional vector space over F2,

and can be verified numerically by standard linear algebra packages (and

in particular through calculations of certain Smith normal forms of matri-

ces); indeed, we used such computer-assisted calculations to lead us to this

particular claim. However, we were subsequently able to describe the cocy-

cle ρ and verify its properties in a completely human-verifiable fashion; see

Section 3 for details.

Remark 1.8. With our specific choice of ρ, we can describe the solutions

to (1) more explicitly as

S =

(

R

2

)

Q2

2
+ P

where Q = (Q1,Q2), R : Fn
2
→ Z/4Z is a cubic polynomial which is a

“square root” of Q1 in the sense that 2R
4
=

Q1

2
mod 1 (or equivalently

R = Q1 mod 2), and P : Fn
2
→ T is an arbitrary quintic polynomial (we

can require P to take values in 1
2
Z/Z if we wish S to also take values in
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this group). See Lemma 4.2. Heuristically, the presence of the square

root in this construction prevents the quintic P (which correlates with S )

from being “measurable” with respect to S and its shifts, although actually

demonstrating this rigorously requires a surprisingly large amount of effort.

In order to convert this explicit cocycle ρ into an actual counterexample to

Conjecture 1.3 we will rely heavily on the theory of nilspaces, as developed

for instance in [3], although we will mostly only need to work with finite

nilspaces, as opposed to compact or measurable nilspaces. A central role is

played in particular by a certain explicit 5-step finite nilspace X5,5. As a set,

X5,5 is given as

X5,5 = X2 ×
1

25
Z/Z = F2

2 ×
1

25
Z/Z

but the cube structure on X5,5 is somewhat non-trivial, involving the cocycle

ρ : C6(X2) → 1
2
Z/Z mentioned previously. Roughly speaking, the nilspace

X5,5 is the abstraction of a pair (Q, S ) of functions, in which Q is itself a pair

Q = (Q1,Q2) of classical quadratic polynomials (taking values in F2), and

S is a “pseudo-quintic” taking values in 1
25Z/Z that obeys the identity (1). It

will turn out not to be possible to correlate S with any genuine quintics that

only arise from Q, S , and a bounded (and randomly selected) number of

their translates. The actual verification that these translates do not actually

provide any useful information for the purpose of constructing a quintic

turns out to be rather tricky, requiring one to show that a certain nilspace

extension “splits”: see Lemma 5.7. A simpler version X5,1 of the nilspace

X5,5, in which the cyclic group 1
25Z/Z is replaced by 1

2
Z/Z, can also be used

to quickly answer a question of Candela, González-Sánchez, and Szegedy

[4, Question 5.18] in the negative, thus giving a weaker version of Theorem

1.6; see Proposition 4.5.

1.2. Acknowledgments. OS was supported by OS was supported by NSF

grant DMS-1926686 and ISF grant 3056/21. TT was supported by a Si-

mons Investigator grant, the James and Carol Collins Chair, the Mathemat-

ical Analysis & Application Research Fund Endowment, and by NSF grant

DMS-1764034.

1.3. Notation. We identify the field F2 with the cyclic group Z/2Z. If a is

an element of a cyclic group Z/qZ, we use a
q

to denote the corresponding
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element of the finite subgroup 1
q
Z/Z of the unit circle T = R/Z, thus

a + qZ

q
=

a

q
mod 1.

We observe that the binomial coefficient n 7→
(

n

2

)

is well-defined as a map

from Z/4Z to F2; indeed, we have
(

n

2

)

= 0 mod 2 when n = 0, 1 mod 4

and
(

n

2

)

= 1 mod 2 when n = 2, 3 mod 4.

2. A characterization of coboundaries on Fn
2

Let G = (G,+) be a discrete abelian group. As discussed in Appendix A,

G can be given the structure D1(G) of a degree one filtered abelian group,

and hence a nilspace. Given a function F : G → T from G to the torusT, this

gives a derivative map dk+1F : G[k+1] → T for every k ≥ 0. We can describe

this map more explicitly by using the identification G ×Gk+1 ≡ G[k+1] given

by the formula

(2) (x, ~h) ≡
(

x + ω · ~h
)

ω∈{0,1}k+1

for x ∈ G and ~h = (h1, . . . , hk+1) ∈ Gk+1, and then writing

(dk+1F)h1 ,...,hk+1
(x) ≔ dk+1F

(

(

x + ω · ~h
)

ω∈{0,1}k+1

)

=
∑

ω∈{0,1}k+1

(−1)k+1−|ω|F
(

x + ω · ~h
)

= ∂h1
. . . ∂hk+1

F(x).

Thus for instance we have

Polyk(G) = {F : G → T : dk+1F = 0}

for any k ≥ 0.

In a similar spirit, a degree k cocycle ρ : G[k+1] → T as defined in Def-

inition A.6 can now be thought of as a tuple ρh1,...,hk+1
: G → T for each

h1, . . . , hk+1 ∈ G obeying the following two axioms:

• (Symmetry) ρh1,...,hk+1
is symmetric in the parameters h1, . . . , hk+1.

• (Cocycle) One has the identity

(3) ρh1+h′
1
,h2,...,hk+1

= ρh1,h2,...,hk+1
+ T h1ρh′

1
,h2,...,hk+1
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for all h1, h
′
1
, h2, . . . , hk+1 ∈ G, where (as in Appendix A) T h denotes

the translation operator

T hF(x) ≔ F(x + h).

We describe the cocycle property (3) in terms of the first shift h1 only, but

of course by the symmetry property, we have cocycle behavior with respect

to all the other shifts as well. In the language of Definition A.6, dk+1F is a

degree k coboundary, and thus also a degree k cocycle.

When G is an elementary abelian 2-group, there is a further constraint on

degree k coboundaries dk+1F, coming from the identity

(4) 0 = ∂2h = 2∂h + ∂
2
h

for any h ∈ G, which implies that

(5) ∂2
h1
∂h2
= ∂2

h2
∂h1

for all h1, h2 ∈ G. This leads to the additional “2-homogeneity” constraint

(6) dk+1Fh1 ,h1,h2,h3,...,hk
= dk+1Fh2,h2,h1,h3,...,hk

whenever k ≥ 2 and h1, . . . , hk ∈ G (our choice of terminology here is

inspired by [4]) . This motivates the following definition:

Definition 2.1 (2-homogeneous cocycles on elementary abelian 2-groups).

Let G be an elementary abelian 2-group, and let ρ : G[k+1] → T be a degree

k cocycle for some k ≥ 0. If k ≥ 2, we say that ρ is 2-homogeneous if we

have

(7) ρh1,h1,h2,h3,...,hk
= ρh2,h2,h1,h3,...,hk

whenever h1, . . . , hk ∈ G. For k < 2, we declare all degree k cocycles to

automatically be 2-homogeneous.

Remark 2.2. Not all cocycles on elementary abelian 2-groups obey the 2-

homogeneity condition (7). For instance, if G = F2
2

is generated by e1 =

(1, 0), e2 = (0, 1), then by letting ρ : G[3] → T be the symmetric trilinear

form

ρh1,h2,h3
(x) ≔

h
(2)

1
h

(1)

2
h

(1)

3
+ h

(1)

1
h

(2)

2
h

(1)

3
+ h

(1)

1
h

(1)

2
h

(2)

3

2
mod 1,

where hi = (h
(1)

i
, h(2)

i
) ∈ G, one can verify that ρ is a degree 2 cocycle on the

elementary abelian 2-group G that does not obey (7). This degree 2 cocycle
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will be related to a non-trivial (but now 2-homogeneous) degree 5 cocycle

on the degree 2 filtered abelian group D2(F2
2
) that we will construct in the

next section.

We have just established that every degree k coboundary on an elemen-

tary abelian 2-group is 2-homogeneous. We now provide a converse to this

above observation when G = Fn
2
.

Theorem 2.3 (All 2-homogeneousT-cocycles are coboundaries for elemen-

tary abelian 2-groups). Let G = Fn
2

be an elementary abelian 2-group, and

let k ≥ 0. Then every 2-homogeneous degree k cocycle ρ : G[k+1] → T is a

degree k coboundary.

Informally, this theorem asserts that the equation dkF = ρ can be solved

for some F : G → T if and only if ρ is a 2-homogeneous degree k cocycle.

This fact will be useful to us when the time comes to solve the equation (1),

as discussed in the introduction.

Remark 2.4. A notable special case of this theorem occurs when ρh1,...,hk

is constant for each h1, . . . , hk, then the 2-homogeneous degree k cocycle ρ

is what is referred to as a non-classical symmetric multilinear form in [24]

and a strongly symmetric multilinear form in [8], and the potential F pro-

duced by this theorem is then a (non-classical) polynomial of degree k. This

special case of Theorem 2.3 was previously established in [24, Proposition

3.5].

Proof. We first consider the base case k = 0. From the cocycle identity we

have

ρx+h(0) = ρx(0) + ρh(x)

for all x, h ∈ G. Hence we have ρ = dF where F(x) ≔ ρx(0).

Now suppose inductively that k > 0 and the claim has already been

proven for k − 1. For each h1 ∈ G, the function ρh1
: G[k] → T defined by

(ρh1
)h2,...,hk+1

(x) ≔ ρh1,...,hk+1
(x) can be easily verified to be a 2-homogeneous

degree k−1 cocycle. Hence by induction hypothesis, there exists Fh1
: G →

T such that

(8) ρh1
= dkFh1

.
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Since ρh1
is a cocycle in h1, we have

dkFh1+h′
1
= dkFh1

+ T h1dkFh′
1

for all h1, h
′
1
∈ G. In other words, we have the quasi-cocycle condition

(9) Fh1+h′
1
− Fh1

− T h1 Fh′
1
∈ Polyk−1(G).

Also, from the symmetry between h1, h2 of (ρh1
)h2,...,hk+1

, we have that

∂h3 ,...,hk+1
(∂h2

Fh1
− ∂h1

Fh2
) = 0

for all h1, . . . , hk+1 ∈ G, or in other words we have the quasi-curlfree condi-

tion

(10) ∂h2
Fh1
− ∂h1

Fh2
∈ Polyk−2(G)

for all h1, h2 ∈ G. Finally, when k ≥ 2, we have from (6) that

∂h3
. . . ∂hk

(∂2
h1

Fh2
− ∂2

h2
Fh1

) = 0

for all h1, . . . , hk ∈ G, or equivalently

∂2
h1

Fh2
− ∂2

h2
Fh1
∈ Polyk−3(G)

and hence (by (4))

(11) 2(∂h2
Fh1
− ∂h1

Fh2
) ∈ Polyk−3(G).

This constraint is implied by (10) when k > 2 thanks to (61), but is not

redundant for k = 2.

We will show that the properties (9), (10), (11) imply that there exists

φ : G → T such that

(12) Fh − ∂hφ ∈ Polyk−1(G)

for all h ∈ G. If (12) holds, then by applying dk and using (8) we conclude

that ρ − dk+1φ = 0, giving the claim.

It remains to establish (12). We prove this by a further induction on the

dimension n. The case n = 0 is trivial, so suppose n ≥ 1 and that the claim

has already been proven for n−1. Now split G = Fn−1
2
×F2 and let e = (0, 1)

be the generator for the F2 factor. The operator ∂e is annihilated by 1 + T e

since (1 + T e)∂e = ∂2e = 0. Also, for k > 2, the operator 1 + T e = 2 + ∂e

maps Polyk−2(G) to Polyk−3(G) thanks to (61), hence from (10)

∂h(1 + T e)Fe ∈ Polyk−3(G)
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for all h ∈ G, hence

(13) (1 + T e)Fe ∈ Polyk−2(G).

The same argument works when k = 2, where we use (11) instead of (10)

to handle the 2 component of 1 + T e = 2 + ∂e applied to ∂hFe − ∂eFh. The

conclusion (13) also holds when k = 1, since in this case the expression

(10) vanishes.

Applying Lemma A.24, we may find F′e ∈ Polyk−1(G) such that

(1 + T e)Fe = (1 + T e)F′e

Since Fe − F′e is annihilated by 1 + Te, we may write

Fe − F′e = ∂eφ

for some φ : G → T. If we then write

F′′h ≔ Fh − F′e − ∂hφ

we see that F′′
h

obeys the same axioms (9), (10), (11) as Fh, but with the

additional property that F′′e = 0. In particular from (10) we have

∂eF′′(h,0) ∈ Polyk−2(G)

for all h ∈ Fn−1
2

. Since ∂eF′′
(h,0)

(x, 1) = −∂eF′′
(h,0)

(x, 0), we thus have

∂eF′′(h,0)(x, xn) = (−1)xnGh(x)

for all x ∈ Fn−1
2

and some Gh ∈ Polyk−2(Fn−1
2

). If we set Hh : G → T be the

function

Hh(x, xn) ≔ 1xn=1Gh(x),

then

(14) ∂eHh = ∂eF
′′
(h,0)

is a polynomial of degree k − 2 on G, while

∂h1
. . . ∂hk−1

Hh = 0

whenever h1, . . . , hk−1 ∈ F
n−1
2

. From this (and Lemma A.17) we conclude

that Hh ∈ Polyk−1(G). By (14), F′′
(h,0)
− Hh is e-invariant and can be thus

viewed as a function on Fn−1
2

. One then verifies that the functions F′′
(h,0)
−Hh

obey the same axioms (9), (10), (11) as Fh, but on Fn−1
2

rather than Fn
2
.
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Applying the inner induction hypothesis and lifting back to G, we can find

an e-invariant φ′′ : G → T such that

F′′(h,0) − Hh − ∂(h,0)φ
′′ ∈ Polyk−1(G)

for all h ∈ Fn−1
2

, thus

(15) F′′h − ∂hφ
′′ ∈ Polyk−1(G)

for all h ∈ Fn−1
2
× {0}. On the other hand, from (9), the vanishing of F′′e , and

the e-invariance of φ′′ we see that

(F′′h+e − ∂h+eφ
′′) − (F′′h − ∂hφ

′′) ∈ Polyk−1(G)

and hence the property (15) holds for all h ∈ Fn
2
, not just h ∈ Fn−1

2
× {0}. In

particular,

Fh − ∂h(φ + φ′′) ∈ Polyk−1(G)

for all h, thus closing the induction. �

The above theorem applies to cocycles taking values in T. For our appli-

cation (and in particular, to solve the equation (1)) we will need a variant

of this theorem that applies to cocycles taking values in the smaller group
1
2
Z/Z, which is an elementary abelian 2-group. For this, we will need a

stronger version of the 2-homogeneity condition, which we only define for

k ≥ 3, but which we will define on more general nilspaces than elementary

abelian 2-groups with the degree 1 filtration.

Definition 2.5 (Strongly 2-homogeneous cocycles). Let X be a finite nilspace,

let k ≥ 3, and let ρ : Ck+1(X) → 1
2
Z/Z be a degree k cocycle taking val-

ues in the elementary abelian 2-group 1
2
Z/Z. We say that ρ is strongly 2-

homogeneous if we have ρ = dkψ for some function ψ : C1(X) → T with

2ψ ∈ Polyk−2(C1(X)), where the nilspace structure on C1(X) is defined in

Remark A.3.

We first observe that strongly 2-homogeneous cocycles on D1(Fn
2
) are 2-

homogeneous (viewed as cocycles in T). Indeed, since ρ = dkψ and k ≥ 3,

we have

ρh1,h1,h2,h3,...,hk
= ∂2

h1
∂h2

(dk−3ψ)h3 ,...,hk

and

ρh1,h2,h2,h3,...,hk
= ∂2

h2
∂h1

(dk−3ψ)h3 ,...,hk
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and the condition (7) follows from (5). Now we obtain a variant of Theorem

2.3.

Theorem 2.6 (All strongly 2-homogeneous cocycles are 1
2
Z/Z-coboundaries

for elementary abelian 2-groups). Let G = Fn
2

for some natural number n

(endowed with the degree one filtration D1(G)), and let k ≥ 3. Then a de-

gree k cocycle ρ : G[k+1] → 1
2
Z/Z is a degree k coboundary (in 1

2
Z/Z rather

than in T) if and only if it is strongly 2-homogeneous.

Proof. First suppose that ρ is a degree k coboundary in 1
2
Z/Z, thus ρ = dkF

for some F : G → 1
2
Z/Z. Then we can write ρ = dk−1ψ with ψ ≔ dF; since

2F = 0, we have 2ψ = 0, and so ρ is certainly strongly 2-homogeneous.

Conversely, suppose that ρ is strongly 2-homogeneous. Applying Theo-

rem 2.3 (viewing ρ as a cocycle in the larger group T), we already have

ρ = dk+1F

for some F : G → T. However, we are not done yet, because this function

F does not necessarily lie in the smaller group 1
2
Z/Z. To address this issue,

we exploit the further properties of the strongly 2-homogeneous cocycle ψ.

Writing ρ = dkψ, we have

dk(dF − ψ) = 0

or equivalently

dF − ψ ∈ Polyk−1(C1(G)).

Multiplying by 2 using Proposition A.22, we conclude that

d(2F) − 2ψ ∈ Polyk−2(C1(G));

since 2ψ also lies in Polyk−2(C1(G)) by hypothesis, we conclude

d(2F) ∈ Polyk−2(C1(G))

or equivalently

2F ∈ Polyk−1(G).

By (61), we may thus write 2F = 2F′ for some F′ ∈ Polyk(G). Then F −F′

takes values in 1
2
Z/Z and

ρ = dk+1F = dk+1(F − F′),

giving the claim. �
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3. A non-trivial cocycle

Henceforth we take k = 5 and p = 2. Theorem 2.6 asserts, roughly

speaking, there are no “non-trivial” order k cocycles on degree one filtra-

tions D1(Fn
2
), where by “non-trivial” we mean an order k cocycle which is

strongly 2-homogeneous but not an order k-coboundary. However, it turns

out that this claim breaks down as soon as n = 2 if one instead considers the

degree two filtrationD1(Fn
2
). More precisely, the main result of this section

is as follows. For the remainder of the paper, we take X2 to be the 2-step

nilspace

(16) X2 ≔ D
2(F2

2),

which is also 2-homogeneous thanks to Proposition A.29.

Theorem 3.1 (A non-trivial cocycle). There exists a strongly 2-homogeneous

degree 5 cocycle ρ : C6(X2) → 1
2
Z/Z on X2 taking values in 1

2
Z/Z, which is

not a degree 5 coboundary (when viewed as a cocycle in T).

In the remainder of this section we establish this theorem; our original

discovery of this cocycle was computer-assisted, and indeed one could eas-

ily verify the claims in this theorem from standard linear algebra packages,

but we provide a human-verifiable proof of this theorem below.

It will be convenient to adopt the following notation from [23, Definitions

6.1, 6.3].

Definition 3.2 (Concatenation and symmetric square). [23] If V is a vec-

tor space over a field F, and S : Vk → F and T : V l → F are symmetric

multilinear forms, we define the concatenation S ∗ T : Vk+l → F to be the

symmetric multilinear form

S ∗ T (h1, . . . , hk+l) ≔
∑

{1,...,k+l}={i1 ,...,ik}∪{ j1,..., jl}

S (hi1 , . . . , hik)T (h j1 , . . . , h jl)

and similarly define the symmetric square Sym2(S ) : V2k → F to be the

symmetric multilinear form

Sym2(S )(h1, . . . , h2k)

≔

∑

{{i1,...,ik},{ j1,..., jk}}:{1,...,2k}={i1 ,...,ik}∪{ j1 ,..., jk}

S (hi1 , . . . , hik)S (h j1 , . . . , h jl).
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One can similarly define higher symmetric powers Symm(S ) : Vmk → F,

but we will only need the m = 2 case here.

Examples 3.3. If B : V2 → F is a symmetric bilinear form, then Sym2(B) : V4 →

F is the symmetric quartilinear form

Sym2(B)(a, b, c, d) ≔ B(a, b)B(c, d) + B(a, c)B(b, d)+ B(a, d)B(b, c),

while if L : V → F is a linear form, then L ∗ B : V3 → F is the trilinear form

L ∗ B(a, b, c) ≔ L(a)B(b, c) + L(b)B(a, c) + L(c)B(a, b)

and B∗B = 2Sym2(B); in particular, in characteristic two we have B∗B = 0.

The trilinear form in Remark 2.2 can be written as

(17) ρh1,h2,h3
(x) = (Sym2(L1) ∗ L2)(h1, h2, h3)

where L1, L2 : F2
2 → F2 are the coordinate functions Li(x1, x2) ≔ xi.

A 6-cube in X2 = D
2(F2

2
) can be viewed as a pair (Q(1),Q(2)), where

Q(1),Q(2) : F6
2
→ F2 are quadratic polynomials, so in particular their second

derivatives can be viewed as symmetric bilinear forms d2Q(i) : F6
2
×F6

2
→ F2,

defined for i = 1, 2 by the formula

d2Q(i)(h, k) ≔ ∂h∂kQ(i)

(note that the right-hand side is a constant and thus identifiable with an

element of F2). We then define the cocycle ρ by

(18) ρ(Q(1),Q(2)) ≔
Sym2(d2Q(1)) ∗ (d2Q(2))(e1, . . . , e6)

2
mod 1

with e1, . . . , e6 the standard basis of F6
2
; compare with (17).

One can describe ρ more explicitly as follows. Instead of using the pair

(Q(1),Q(2)), one can alternatively parameterize a 6-cube in X2 as a tuple

(19)

















x +

6
∑

i=1

hiωi +
∑

1≤i< j≤6

hi jωiω j

















ω∈{0,1}6

for some x, hi, hi j ∈ X2. We write x in coordinates as x = (x(1), x(2)) for

x(1), x(2) ∈ F2, and similarly write hi = (h
(1)

i
, h(2)

i
) and hi j = (h

(1)

i j
, h(2)

i j
); the
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polynomials Q(k), k = 1, 2 in the previous description of a 6-cube in X2 then

take the form

Q(k)(ω1, . . . , ω6) = x(k) +

6
∑

i=1

h
(k)

i
ωi +

∑

1≤i< j≤6

h
(k)

i j
ωiω j,

so in particular

d2Q(k)(ω,ω′) =
∑

1≤i< j≤6

h
(k)

i j
(ωiω

′
j + ω

′
iω j)

for ω = (ω1, . . . , ω6), ω′ = (ω′1, . . . , ω
′
6
) in F6

2
. From (18) we conclude that

the cocycle ρ applied to the 6-cube (19) is then given by the formula

ρ



































x +

6
∑

i=1

hiωi +
∑

1≤i< j≤6

hi jωiω j

















ω∈{0,1}6



















≔

∑

{{a,b},{c,d}},{e, f }:{1,...,6}={a,b}∪{c,d}∪{e, f } h
(1)

ab
h

(1)

cd
h

(2)

e f

2
mod 1

(20)

where the sum is over the 1
2!

6!
2!2!2!

= 45 different ways one can partition

{1, . . . , 6} into three doubleton sets {a, b}, {c, d}, {e, f }, where we only sum

once for each choice of {{a, b}, {c, d}} and {e, f } (so that each monomial

h
(1)

ab
h

(1)

cd
h

(2)

e f
occurs at most once).

The function ρ is clearly symmetric with respect to permutations of the

indices 1, . . . , 6. If we fix the hi j for 1 < i < j ≤ 6, then this function is

linear in the remaining variables h1i, 1 < i < 6, from which it is easy to

verify that ρ obeys the cocycle property in Definition A.6(ii). Thus ρ is a

degree 5 cocycle.

Suppose for contradiction that ρ is a degree 5 coboundary, thus there is a

function F : X2 → T such that

ρ



































x +

6
∑

i=1

hiωi +
∑

1≤i< j≤6

hi jωiω j

















ω∈{0,1}6



















=
∑

ω∈{0,1}6

(−1)|ω|F

















x +

6
∑

i=1

hiωi +
∑

1≤i< j≤6

hi jωiω j

















(21)

whenever x, hi, hi j ∈ X2. We now descend from this sixth order equation on

X2 = D
2(F2

2
) to a third order equation on D1(F2

2
) as follows. We restrict to

those cubes in which all the hi and hi j vanish except for h12, h34, h56, which
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we relabel as k1, k2, k3 respectively. Then the right-hand side of (21) cancels

down to
∑

ω∈{0,1}3

(−1)3−|ω|F















x +

3
∑

i=1

kiωi















while the right-hand side of (20) simplifies to

k
(1)

1
k

(1)

2
k

(2)

3
+ k

(1)

1
k

(2)

2
k

(1)

3
+ k

(2)

1
k

(1)

2
k

(1)

3

2
mod 1

and hence onD1(F2
2
) we have

(d3F)k1 ,k2,k3
=

k
(1)

1
k

(1)

2
k

(2)

3
+ k

(1)

1
k

(2)

2
k

(1)

3
+ k

(2)

1
k

(1)

2
k

(1)

3

2
mod 1

for all k1, k2, k3 ∈ F
2
2
. However, as observed in Remark 2.2, the right-hand

side does not obey the 2-homogeneity condition (7) and so cannot be a

coboundary onD1(F2
2
), giving the desired contradiction.

Finally, we need to show that ρ = d5ψ for some ψ : X
[1]

2
→ T with 2ψ

a cubic polynomial. We let [] : F2 → Z/4Z be any left inverse of the pro-

jection map mod 2: Z/4Z → F2; in particular one has [0]2 = 0 mod 4

and [1]2 = 1 mod 4 regardless of the choice of left inverse. An element

of C1(X2) takes the form (x, x + h) with x, h ∈ F2
2
, We write x = (x(1), x(2)),

h = (h(1), h(2)) and define ψ by the formula

ψ(x, x + h) ≔
[x(1)]2[h(2)]2

4
+

x(1)h(1)x(2)

2
mod 1.

We first verify that 2ψ is a cubic polynomial. Since [x]2 = x2 = x mod 2,

We have

2ψ(x, x + h) =
x(1)h(2)

2
mod 1

and a 4-cube in C1(X2) takes the form
































x +

4
∑

i=1

hiωi +
∑

1≤i< j≤4

hi jωiω j, x +

4
∑

i=1

hiωi +
∑

1≤i< j≤4

hi jωiω j + h0 +

4
∑

i=1

h0iωi

































ω∈{0,1}4

for some x, h0, hi, h0i, hi j ∈ X2. The function d4(2ψ) applied to this cube is

then equal to

∑

ω∈{0,1}4

(−1)|ω|
(x(1) +

∑4
i=1 h

(1)

i
ωi +

∑

1≤i< j≤4 h
(1)

i j
ωiω j)(h

(2)

0
+

∑4
i=1 h

(2)

0i
ωi)

2
mod 1.
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But the numerator is cubic in the ωi and thus does not contain any monomi-

als of the form ω1ω2ω3ω4. This expression therefore vanishes, and so 2ψ is

cubic as required.

It remains to show that ρ = d5ψ. A 5-cube in X
[1]

2
takes the form

































x +

5
∑

i=1

hiωi +
∑

1≤i< j≤4

hi jωiω j, x +

5
∑

i=1

hiωi +
∑

1≤i< j≤5

hi jωiω j + h0 +

5
∑

i=1

h0iωi

































ω∈{0,1}5

for some x, h0, hi, h0i, hi j ∈ X2. The function d5ψ applied to this cube is the

sum of

(22)
∑

ω∈{0,1}5

(−1)5−|ω| [X
(1)(ω)]2[H(2)(ω)]2

4
mod 1

and

(23)
∑

ω∈{0,1}5

(−1)5−|ω|X
(1)(ω)H(1)(ω)X(2)(ω)

2
mod 1

where

X(a)(ω) ≔ x(a) +

5
∑

i=1

h
(a)

i
ωi +

∑

1≤i< j≤5

h
(a)

i j
ωiω j

and

H(a)(ω) ≔ h
(a)

0
+

5
∑

i=1

h
(a)

0i
ωi

for a = 1, 2. We first consider (23). The numerator X(1)(ω)H(1)(ω)X(2)(ω)

is quintic in the ωi, so the alternating sum
∑

ω∈{0,1}5(−1)5−|ω| is extracting

the ω1 . . . ω5 coefficient of this numerator, which after expanding out all the

definitions can be expressed as

(24)

∑∗ h
(1)

ab
h

(1)

cd
h

(2)

e f

2
mod 1

where the sum
∑∗ ranges over the 30 pairs of sets {{a, b}, {c, d}}, {e, f }with

{0, 1, 2, 3, 4, 5} = {a, b} ∪ {c, d} ∪ {e, f } such that 0 lies in one of {a, b} or

{c, d}.

Now consider (22). Using the easily verified identities [a + b]2 = [a]2 +

[b]2 + 2[ab] and [aω]2 = [a]2ω for a, b ∈ F2 and ω ∈ {0, 1} (and noting that
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the map a 7→ 2[a] is an additive homomorphism), we can expand out

[H(2)(ω)]2 =















h
(2)

0
+

5
∑

i=1

h
(2)

0i
ωi















2

= [h
(2)

0
]2 +

5
∑

i=1

[h
(2)

0i
]2ωi + 2[Q(ω)]

where Q : {0, 1}5 → F2 is the quadratic

Q(ω) ≔

5
∑

i=1

h
(2)

0
h

(2)

0,1
ωi +

∑

1≤i< j≤5

h
(2)

0i
h

(2)

0 j
ωiω j,

and similarly

[X(1)(ω)]2 = [x(1)]2 +

5
∑

i=1

[h
(1)

i
]2ωi +

∑

1≤i< j≤5

[h
(1)

i j
]2ωiω j + 2[R(ω)]

where R : {0, 1}5 → F2 is the quartic

R(ω) ≔

5
∑

i=1

x(1)h
(1)

i
ωi +

∑

1≤i< j≤5

(h
(1)

i
h

(1)

j
+ x(1)h

(1)

i j
)ωiω j

+
∑

1≤i< j<k≤5

(h
(1)

i
h

(1)

jk
+ h

(1)

j
h

(1)

ik
+ h

(1)

k
h

(1)

i j
)ωiω jωk

+
∑

1≤i< j<k<l≤5

(h
(1)

i j
h

(1)

kl
+ h

(1)

ik
h

(1)

jl
+ h

(1)

il
h

(1)

jk
)ωiω jωkωl.

The product [X(1)(ω)]2[H(2)(ω)]2 is then quintic (the product of 2Q and 2R

would be sextic, but vanishes modulo 4), and the alternating sum
∑

ω∈{0,1}5(−1)5−|ω|

is then extracting the ω1 . . . ω5 coefficient, which can only arise from the

terms

2[R(ω)] ·

5
∑

i=1

[h
(2)

0i
]2ωi

in the numerator. Inspecting the cubic terms of R(ω), we conclude that (23)

is of the form

(25)

∑∗∗ h
(1)

ab
h

(1)

cd
h

(2)

e f

2
mod 1

where the sum
∑∗∗ ranges over the 15 pairs of sets {{a, b}, {c, d}}, {e, f }with

{0, 1, 2, 3, 4, 5} = {a, b} ∪ {c, d} ∪ {e, f } such that 0 does not lie in either

{a, b} or {c, d}. Summing (24), (25), we obtain the claim. This concludes

the proof of Theorem 3.1.
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4. Two key nilspaces

We now use the non-trivial cocycle ρ introduced in the previous section

to construct family of finite 5-step nilspaces X5,r for 1 ≤ r ≤ 5 that will

play a key role in our counterexamples. To prove our main result in Theo-

rem 1.6 we will use the larger and more complicated nilspace X5,5, however

in Proposition 4.5 below we obtain a weaker counterexample with signifi-

cantly less effort using the smaller and simpler nilspace X5,1.

Fix 1 ≤ r ≤ 5. We define X2 by (16), and let ρ be the non-trivial cocycle

from Theorem 3.1. We define the nilspace X5,r to be the Cartesian product

X5,r ≔ X2 ×
1

2r
Z/Z

with the n-cubes Cn(X5,r) defined to be the space of all tuples ((Q, S )(ω))ω∈{0,1}n ,

where Q : Fn
2
→ X2 and S : Fn

2
→ 1

2rZ/Z are functions (identifying {0, 1}n

with Fn
2
) that obey the following axioms:

(i) Q is a nilspace morphism from Fn
2

to X2 (or equivalently by (62),

that Q ∈ Cn(X2)). In other words, Q = (Q1,Q2) ∈ Poly2(Fn
2
→ F2

2)

is a pair of classical quadratic polynomials Q1,Q2 : Fn
2
→ F2. In

particular, one has d3Q = 0.

(ii) S obeys the equation (1) for all x, h1, . . . , h6 ∈ F
n
2
. Equivalently, one

has d6S = Q∗ρ, where Q∗ρ : C6(Fn
2
) → 1

2
Z/Z is the pullback of ρ,

defined by

Q∗ρ((xω)ω∈{0,1}6) ≔ ρ((Q(xω))ω∈{0,1}6).

More succinctly, one has

Cn(X5,r) = {(Q, S ) : Fn
2 → X5,r : d3Q = 0; d6S = Q∗ρ}.

We will shortly verify that X5,r is indeed a nilspace, but first we establish

an important lemma that exploits the strong 2-homogeneity of ρ to allow

one to lift n-cubes in X2 to n-cubes in X5,r.

Lemma 4.1 (Lifting lemma). Let r ≥ 1 and n ≥ 0, and let Q ∈ Cn(X2).

Then there exists a map S : Fn
2
→ 1

2rZ/Z such that (Q, S ) ∈ Cn(X5,r). Fur-

thermore, the set of such S forms a coset of Poly5(Fn
2
→ 1

2rZ/Z).

Proof. We first show existence. Since ρ is a strongly 2-homogeneous degree

6 cocycle, it is not difficult to see that the pullback Q∗ρ is also. Hence
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by Theorem 2.6, Q∗ρ is a degree 6 coboundary in 1
2
Z/Z, thus there exists

S : Fn
2
→ 1

2
Z/Z such that Q∗ρ = d6S , which is precisely the condition (1).

Since 1
2
Z/Z is contained in 1

2rZ/Z, we have obtained an n-cube (Q, S ) in

X5,r as required.

Now suppose that (Q, S ), (Q, S ′) are both n-cubes in X5,r. Then d6S =

d6S ′ = Q∗ρ and hence d6(S −S ′) = 0, thus S and S ′ differ by an element of

Poly5(Fn
2
→ 1

2rZ/Z). Reversing these implications, we see that the set of S

for which (Q, S ) ∈ Cn(X5,r) is a coset of Poly5(Fn
2
→ 1

2rZ/Z) as claimed. �

In fact, with the specific choice of cocycle we have constructed, we can

describe the coset in Lemma 4.1 explicitly.

Lemma 4.2 (Explicit description of lift). Let the notation and hypotheses be

as in Lemma 4.1. Write Q = (Q1,Q2), thus Q1,Q2 : F2
2
→ F2 are classical

quadratic polynomials. Let R ∈ Poly3(F2
2
→ Z/4Z) be a cubic polynomial

such that 2R
4
=

Q1

2
mod 1 (or equivalently that R = Q1 mod 2); the exis-

tence of such a polynomial follows from (61). Then the coset of S in Lemma

4.1 is equal to
(

R

2

)

Q2

2
+ Poly5

(

F
n
2 →

1

2r
Z/Z

)

where (as in Section 1.3)
(

a

2

)

∈ F2 is equal to 1 when a = 2, 3 mod 4 and 0

for a = 0, 1 mod 4.

Proof. By Lemma 4.1, it suffices to show that

∂h1
. . . ∂h6

(

R

2

)

Q2

2
(x) = ρ((Q(x + ω · ~h))ω∈{0,1}6) mod 1

for x ∈ Fn
2

and ~h = (h1, . . . , h6) ∈ (Fn
2
)6. By construction of ρ, it suffices to

show that

∂h1
. . . ∂h6

((

R

2

)

Q2

)

=
∑

{{a,b},{c,d}},{e, f }:{1,...,6}={a,b}∪{c,d}∪{e, f }

(∂ha
∂hb

Q1)(∂hc
∂hd

Q1)(∂he
∂h f

Q2)

for all h1, . . . , h6 ∈ F
n
2
. The expressions in parentheses on the right-hand side

are all constants since Q is quadratic. By the Leibniz rule (60), it suffices to

show that

∂h1
. . . ∂h4

(

R

2

)

=
∑

{{a,b},{c,d}}:{1,...,4}={a,b}∪{c,d}

(∂ha
∂hb

Q1)(∂hc
∂hd

Q1)
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or equivalently that d4
(

R

2

)

= Sym2(d2Q1). But this follows from [23, Lemma

6.4, Example 6.5] (or from several direct applications of the Leibniz rule

(60) using the identity

(26) ∂h

(

F

2

)

=

(

∂hF

2

)

+ F∂hF mod 2

for any F : Fn
2
→ Z/4Z and h ∈ Fn

2
, as well as the identities R = Q1 mod 2,

d3Q1 = 0, and d4R = 0). �

Proposition 4.3. Let 1 ≤ r ≤ 5. Then X5,r is an ergodic 2-homogeneous

5-step nilspace, and the projection map π : X5,r → X2 given by π(q, s) ≔ q

for q ∈ X2 and s ∈ 1
2rZ/Z is a nilspace morphism.

Proof. We begin by verifying the nilspace axioms from Definition A.1. The

composition axiom is easy: if (Q, S ) : Fn
2
→ X5,r is an n-cube in X5,r and

φ : {0, 1}m → {0, 1}n is a cube morphism, then one can view φ as an affine

map from Fm
2

to Fn
2
, in which case it is clear that (Q, S ) ◦ φ : Fm

2
→ X5,r is an

m-cube in X5,r.

Now we verify ergodicity. Let (Q, S ) : F2 → X5,r be an arbitrary map.

Then Q is linear, so certainly d3Q = 0. Since r ≤ 5, every map S : F2 →
1
2rZ/Z lies in Poly6(F2 →

1
2rZ/Z) by Lemma A.23, and hence by Lemma

4.1 all pairs (Q, S ) lie in C1(X5,r), giving the claim.

Now we verify the corner completion axiom. Let (Q, S ) : Fn
2
\{1}n → X5,r

be a map such that the restriction of (Q, S ) to any (n−1)-face of {0, 1}n ≡ Fn
2

containing 0n is in Cn−1(X5,r). From the corner completion property of X2,

we may extend Q to an n-cube Q : Fn
2
→ X2, and then by Lemma 4.1 we

can find a lift (Q, S ′) : Fn
2
→ X5,r which is an n-cube. By (1), we conclude

that the difference S − S ′ : Fn
2
\{1}n → 1

2rZ/Z is a degree 5 polynomial on

each (n − 1)-face of {0, 1}n ≡ Fn
2

containing 0n. By the corner completion

property of D5( 1
2rZ/Z), we may extend S − S ′ to a degree 5 polynomial

from Fn
2

to 1
2rZ/Z; the resulting extension S : Fn

2
→ 1

2rZ/Z then obeys (1), so

that (Q, S ) is now extended to an n-cube on X5,r as required. When n = 6,

the extension of Q is unique, and equation (1) (with x = 0 and h1, . . . , h6

the standard basis) also shows that the extension of S is unique, so that X5,r

is 5-step as claimed.
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The nilspace morphism property of π is clear from chasing definitions,

so it remains to verify 2-homogeneity. Let (Q, S ) : Fn
2
→ X5,r be an n-

cube in X5,r; we need to show that (Q, S ) is also a nilspace morphism from

D1(Fn
2
) to X5,r. But an m-cube in D1(Fn

2
) can be viewed as an affine map

φ : Fm
2
→ Fn

2
, and then (Q, S ) ◦ φ : Fm

2
→ X5,r can then be easily verified to

obey the axioms (i), (ii) for an m-cube in X5,r, and so (Q, S ) is a nilspace

morphism as claimed. �

Remark 4.4. When r = 1, one can think of X5,1 as the skew product

X2 ⋊
(5)
ρ

1
2
Z/Z, in the sense of Proposition A.9, and the fact that X5,1 is a

2-homogeneous nilspace can also be established from Lemma A.27 and

Lemma 4.1 in this case. For larger values of r, however, the situation is

more complicated; the nilspace X5,r appears at first glance to be a degree

5 extension of X2 by 1
2rZ/Z, but the cube structure is slightly smaller than

what would arise from such an extension (the equation (1) provides more

constraints on S than the constraint (53) used to define a skew product,

because the shifts h1, . . . , h6 are not required to be distinct basis vectors).

Instead, by making the (slightly artificial) identification

(q, s) ≡ ((q, 2s), s − {2s}/2)

between X2 ×
1
2rZ/Z and (X2 ×

1
2r−1Z/Z) × (1

2
Z/Z), where {} : R/Z → [0, 1)

denotes the fractional part map, we can identify X5,r with the skew product

(X2 ×
1

2r−1
Z/Z) ⋊

(5)

ρ̃

1

2
Z/Z

where we give 1
2r−1Z/Z the 2-adic filtration ( 1

2r−1Z/Z)i =
1

2min(r−i,0)Z/Z for i ≥ 1

(so that X2 ×
1

2r−1Z/Z is a max(2, r − 1)-step filtered abelian group), and

ρ̃ : C6(X2 ×
1

2r−1Z/Z)→ 1
2
Z/Z is the modified cocycle

ρ̃((qω, tω)ω∈{0,1}6) ≔ ρ((qω)ω∈{0,1}6) −
∑

ω∈{0,1}6

(−1)|ω|{tω}/2

for all 6-cubes (qω, tω)ω∈{0,1}6 in X2 ×
1

2r−1Z/Z (one can check that 2ρ̃ = 0,

so that this cocycle does indeed take values in 1
2
Z/Z). As we will not need

this description of X5,r here, we leave the justification of this claim to the

interested reader.

As an application of the smaller X5,1 of the two nilspaces X5,r, we have
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Proposition 4.5. There is no injective nilspace morphism from X5,1 to a

5-step compact filtered abelian group.

This gives a negative answer (in the case p = 2, k = 5) to [4, Ques-

tion 5.18], which asked the more general question of whether every k-step

compact p-homogeneous nilspace has an injective nilspace morphism into a

k-step compact filtered abelian group. As noted in that paper, an affirmative

answer to this question for a given value of p and k would imply an affir-

mative answer to Conjecture 1.2 (and hence Conjecture 1.3 and Conjecture

1.1) for those values of p, k. Indeed, [4, Question 5.18] was answered affir-

matively for k ≤ p + 1, leading to the corresponding results on Conjectures

1.2, 1.3, 1.1 mentioned in the introduction. Thus, Proposition 4.5 can be

viewed as a weaker version of Theorem 1.6.

Proof. Suppose for contradiction that there was an injective nilspace mor-

phism ι : X5,1 → G from X5,1 to some 5-step compact filtered abelian group

G. Let µ be the finite measure on G defined via Riesz representation as
∫

G

f dµ ≔
∑

(q,s)∈X5,1

f (ι(q, s))e(s).

This is a non-trivial measure, hence must have a non-zero Fourier coeffi-

cient. In other words, there exists a continuous homomorphism ξ : G → T

such that
∑

(q,s)∈X5,1

e(s − P(q, s)) , 0

where P : X5,1 → T is the map P ≔ ξ ◦ ι. By Lemma A.5, ξ is a quin-

tic polynomial on the 5-step filtered abelian group G, hence P is a quintic

polynomial on X5,1.

Now we consider the “vertical derivative”

∂uP(q, s) ≔ P(q, s +
1

2
) − P(q, s)

of the polynomial P. We claim that this derivative is constant, by the follow-

ing standard argument. If (q0, s0), (q1, s1) ∈ X5,1, then the tuple (Q, S ) : F6
2
→

X5,1 defined by

(Q, S )(ω) ≔

(

qω1
, sω1
+ 1ω2=···=ωk+1=0

1

2

)
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can easily be verified to obey the axioms (i), (ii) required to be a 6-cube in

X5,1. From the quintic nature of P we conclude that
∑

ω∈{0,1}6

(−1)|ω|P((Q, S )(ω)) = 0

which simplifies to

(27) ∂uP(q0, s0) = ∂uP(q1, s1),

giving the claim.

Another way of phrasing this is that the function e(P) is an eigenfunction

of the vertical Koopman operator Vu defined by

VuF(q, s) ≔ F

(

q, s +
1

2

)

.

On the other hand, the function (q, s) 7→ e(s) is also an eigenfunction of this

operator with eigenvalue e(1
2
). Since the Koopman operator Vu is unitary,

and e(P) has a non-zero inner product with e(s), the eigenvalue of e(P) must

also be e(1
2
), thus

∂uP =
1

2
.

Equivalently, we may write

P(q, s) = s − F(q)

for some function F : X2 → T. Applying d6 to eliminate the quintic poly-

nomial P, we conclude that

0 = ρ − d6F

and hence ρ is a degree 5 coboundary (in T), contradicting Theorem 3.1. �

Remark 4.6. While the above proposition shows that X5,1 cannot be em-

bedded into a finite filtered abelian group, [4, Theorem 1.7] does show that

there is an fibration π : Y → X5,1 (as defined in [14, Definition 7.1], [3, Def-

inition 3.3.7]) that has the structure of a finite filtered abelian group and has

good lifting properties; this result was in particular used in [4] to give an al-

ternate proof of Conjecture 1.1 in both high and low characteristic. In fact,

we can explicitly give such an extension. Let G denote the abelian group

Z/4Z with the degree 3 filtration

G0 = G1 = G2 = G; G3 = 2Z/4Z; Gi = {0}∀i > 3,
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and consider the filtered abelian group

Y ≔ G × D2(F2) × D5(F2).

One can show using Lemma 4.2 that the map π : Y → X5,1 defined by

φ(a, b, c) =

















a mod 2, b,

(

a

2

)

b + c

2

















,

is a fibration; we leave the details to the interested reader.

5. Counterexample to the strong inverse conjecture

We now use the larger nilspace X5,5 introduced in the previous section to

establish Theorem 1.6. (The reason for using X5,5 instead of X5,1 will only

be apparent near the end of the argument.)

5.1. Constructing the counterexample. To locate the counterexample to

Conjecture 1.3 (for a suitable choice of parameters), we use a probabilistic

construction. Let n be a large parameter (which will eventually be sent to

infinity). We let (Q, S ) : Fn
2
→ X5,5 be an n-cube in X5,5, chosen uniformly

at random from Cn(X5,5). In view of Lemma 4.1, one way to generate such

an element is as follows. First, one generates an n-cube Q : Fn
2
→ X2 of

X2, uniformly at random; in other words, Q is a pair (Q1,Q2) of indepen-

dent classical quadratic polynomials Q1,Q2 : Fn
2
→ F2. By Lemma 4.1, the

set of all S : Fn
2
→ 1

25Z/Z for which (Q, S ) is an n-cube in X5,5 is a coset

(depending on Q) of the finite group Poly5(Fn
2
→ 1

25Z/Z), and so once Q is

chosen, one simply selects an element of this coset uniformly at random, or

equivalently one chooses uniformly at random a solution S : Fn
2
→ 1

25Z/Z to

the equation (1). This gives a uniformly distributed element on the entirety

of Cn(X5,5), a product of two uniform distributions, because all cosets of

Poly5(Fn
2
→ 1

25Z/Z) have the same cardinality.

Remark 5.1. Thanks to Lemma 4.2, we can also generate (Q, S ) as

(Q, S ) =

















(2R,Q(2)),

(

R

2

)

Q(2)

2
+ P

















,

where R,Q(2), P are elements of Poly3(Fn
2
→ Z/4Z), Poly2(Fn

2
→ F2), and

Poly5(Fn
2
→ 1

25Z/Z) respectively, chosen uniformly and independently at
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random; compare with Remark 4.6. However, we will not make significant

use of this representation here.

The random function f = e(S ) will be used as our counterexample (or

more precisely, as a sequence of counterexamples as n→ ∞) to Conjecture

1.3. We first record a deterministic lower bound on the U6 norm of e(S ):

Lemma 5.2 (Deterministic lack of Gowers uniformity). Whenever (Q, S ) : Fn
2
→

X5,5 is an n-cube in X5,5, we have

‖e(S )‖U6(Fn
2
) ≥ η

for some absolute constant η > 0 (independent of n).

Informally, this lemma asserts that S behaves (in some weak statistical

sense) like a “pseudo-quintic”, and indeed Conjecture 1.1 could now be in-

voked to conclude that e(S ) correlated with an actual (non-classical) quintic

polynomial. For instance, from Remark 5.1 we see that with high prob-

ability e(S ) would correlate with the function e(P), where P is as in that

remark, as the phase
(R

2)Q(2)

2
will vanish approximately three quarters of the

time. However, we will show that (with high probability) such quintic poly-

nomials cannot be (approximately) constructed out of a bounded number of

translates of S , leading to the proof of Theorem 1.6.

Proof. From (1) we have

Ex,h1,...,h6∈F
n
2
e((d6S )h1,...,h6

(x))e(−ρ((Q(x + ω · ~h))ω∈{0,1}6)) = 1

where ~h ≔ (h1, . . . , h6). Performing a Fourier expansion of e(−ρ) (which

one extends arbitrarily to a function on the finite abelian group X
{0,1}6

2
) and

using the pigeonhole principle, we conclude that

Ex,h1,...,h6∈F
n
2
e((d6S )h1,...,h6

(x))(−1)
∑

ω∈{0,1}6
cω·Q(x+ω·~h)

≥ η

for some absolute constant η > 0 and some Fourier coefficients cω ∈ X2

(which may depend on n and S ), using the usual F2-valued inner product

(c1, c2) · (q1, q2) ≔ c1q1 + c2q2

on the vector space X2. Applying the Cauchy–Schwarz–Gowers inequality

(see e.g., [10, (5.5)]) we conclude that

‖e(S )(−1)c
06 ·Q‖U6(Fn

2
) ≥ η.
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As Q is of degree 2 < 5, multiplication by the quadratic phase (−1)c
06 ·Q

does not affect the U6(Fn
2
) norm, and the claim follows. �

Now let ε : R+ → R+ be an increasing function to be chosen later with

ε(1/m) → 0 sufficiently quickly as m → ∞. Suppose for contradiction that

Conjecture 1.3 held for p = 2 and k = 5. Then by the above lemma, apply-

ing that conjecture to each of the random functions e(S ) and then using the

law of total probability, there exists M (depending on ε(), but determinis-

tic and independent of n) such that, for any n, and with the random n-cube

(Q, S ) ∈ Cn(X5,5) chosen as above, and ~h = (h1, . . . , hM) ∈ (Fn
2
)M chosen

uniformly at random, with probability at least 1/2, there exist 1 ≤ m ≤ M,

P ∈ Poly5(Fn
2
) and a function F : ( 1

25Z/Z)F
M
2 → C (which may depend on

Q, S , h1, . . . , hM), such that

(28) |Ex∈Fn
2
e(S (x) − P(x))| ≥

1

m

and

|Ex∈Fn
2
e(P(x)) − F((S (x + a · ~h))a∈FM

2
)| ≤ ε(m).

(We drop the Lipschitz condition on F as being of little use due to the finite

nature of the domain.) By projecting F to the unit circle we may assume

that F = e(Φ) for some Φ : ( 1
25Z/Z)F

M
2 → T, thus

(29) |Ex∈Fn
2
e(P(x)) − e(Φ((S (x + a · ~h))a∈FM

2
))| ≤ ε(m).

We have two independent sources of randomness present in the above

assertions: one coming from the uniformly chosen n-cube (Q, S ), and one

coming from the uniformly chosen sampling vectors h1, . . . , hM. It will be

convenient to normalize the h1, . . . , hM by the following argument. By Fu-

bini’s theorem, we can choose the sampling vectors h1, . . . , hM ∈ F
n
2

first,

and then choose the n-cube (Q, S ) ∈ Cn(X5,5) second, and it will still be the

case with probability at least 1/2 that we can find m, P,Φ obeying (28), (29).

For n sufficiently large (depending on M), the probability that the h1, . . . , hM

are linearly dependent is less than 1/4 (say). Deleting this event and apply-

ing the pigeonhole principle for the h1, . . . , hM, we conclude that for all suf-

ficiently large n, we may find linearly independent (and now deterministic)

h1, . . . , hM ∈ F
n
2

such that, for a uniformly chosen n-cube (Q, S ) in X5,5, with

probability at least 1/4, there exists a quintic polynomial P ∈ Poly5(Fn
2
), a



32 A. JAMNESHAN, O. SHALOM, AND T. TAO

natural number 1 ≤ m ≤ M, and a function Φ : ( 1
25Z/Z)F

M
2 → T, obeying the

properties (28), (29).

The above claim is invariant with respect to general linear transforma-

tions on Fn
2

(i.e., changes of coordinate basis), so without loss of generality

we may take hi = ei for 1 ≤ i ≤ M, where e1, . . . , en is the standard basis for

F
n
2
. Then we can simplify the tuple (S (x+a·~h))a∈FM

2
as (S (x+(a, 0n−M)))a∈FM

2
.

We summarize the situation so far as follows.

Proposition 5.3 (e(S ) can be approximated by a measurable quintic). Sup-

pose that Conjecture 1.3 holds for p = 2 and k = 5, and let ε : N → R+ be

a function decreasing to zero. Then there exists M ≥ 1 such that for all suf-

ficiently large n, and (Q, S ) a uniformly chosen n-cube in X5,5, one has with

probability at least 1/4 that there exist a quintic polynomial P ∈ Poly5(Fn
2
),

1 ≤ m ≤ M and a function Φ : ( 1
25Z/Z)F

M
2 → T (which are all permitted to

depend on (Q, S )) such that

(30) |Ex∈Fn
2
e(P(x)) − e(Φ((S (x + (a, 0n−M)))a∈FM

2
))| ≤ ε(m)

and

(31) |Ex∈Fn
2
e(S (x) − P(x))| ≥

1

m

where we split Fn
2

as FM
2 × F

n−M
2

(so that an element a of FM
2 induces a

corresponding element (a, 0n−M) of Fn
2
).

5.2. Equidistribution theory for Q, S . In order to extract a contradiction

from the estimates (30), (31) and the polynomial nature of P, we will need to

understand the asymptotic equidistribution properties of the n-cube (Q, S )

in the following randomly sampled sense. Given a choice of n-cube (Q, S ),

and a natural number d, let v1, . . . , vd ∈ F
n
2

be vectors drawn uniformly

and independently from Fn
2

(and also independently of (Q, S )), and consider

the random functions (Q̃, S̃ ) = (Q̃, S̃ )(Q,S ),v1,...,vd
: FM+d

2
→ X5,5 defined by

sampling (Q, S ) in the directions e1, . . . , eM, v1, . . . , vd, or more precisely by

the formula

(Q̃, S̃ )(a1, . . . , aM, b1, . . . , bd) ≔ (Q, S )(a1e1+ · · ·+aMeM+b1v1+ · · ·+bdvd)

for all a1, . . . , aM, b1, . . . , bd ∈ F2. This is the composition of the nilspace

morphism (Q, S ) : D1(Fn
2
) → X5,5 with a (random) linear transformation
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from FM+d
2

to Fn
2
, and so (Q̃, S̃ ) is a (random) nilspace morphism from

D1(FM+d
2

) to X5,5, or equivalently a (random) M + d-cube in X5,5. Also,

regardless of the choice of sampling vectors v1, . . . , vd, (Q̃, S̃ ) must agree

with (Q, S ) on FM
2 in the sense that

(32) (Q̃, S̃ )(a, 0d) = (Q0, S 0)(a)

for all a ∈ FM
2

, where (Q0, S 0) : FM
2
→ X5,5 is the restriction of (Q, S ) to FM

2
,

defined by the formula

(33) (Q0, S 0)(a) ≔ (Q, S )(a, 0n−M).

Note that (Q0, S 0) is an M-cube in X5,5, since (Q, S ) is an n-cube in X5,5.

Let

Σ
(d)

Q0,S 0
⊂ CM+d(X5,5)

denote the space of all M + d-cubes (Q̃, S̃ ) that agree with the M-cube

(Q0, S 0) on the face FM
2 × {0

d} in the sense of (32); this is a non-empty

finite set whose cardinality is bounded uniformly in n. For each choice

of (Q, S ), d, let µ(d)

Q,S denote the distribution of the random variable (Q̃, S̃ )

generated by the random variables v1, . . . , vd, thus µ(d)

Q,S is the probability

measure on Σ
(d)

Q0,S 0
defined by the formula

∫

Σ
(d)

Q0 ,S 0

G(Q̃, S̃ ) dµ(d)

Q,S (Q̃, S̃ ) = Ev1,...,vd∈F
n
2
G(Q̃Q,v1,...,vd

, S̃ S ,v1,...,vd
)

for any observable G : Σ
(d)

Q0,S 0
→ C. Meanwhile, let µ(d)

Q0,S 0
denote the uni-

form probability measure on Σ
(d)

Q0,S 0
.

The following key equidistribution theorem asserts that, for (Q, S ) a uni-

formly chosen n-cube, µ(d)

Q,S converges to µ(d)

Q0,S 0
“in probability”. More pre-

cisely:

Theorem 5.4 (Equidistribution theorem). Let d be fixed. Then, we have

(34) dTV(µ(d)

Q,S , µ
(d)

Q0,S 0
) = o(1)

with probability 1 − o(1), where o(1) denotes any quantity that goes to zero

as n → ∞ holding all other parameters not depending on n (such as d)

fixed. Here dTV denotes the total variation distance between probability

measures.
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Informally, this theorem asserts that the condition (32) on the M+d-cube

(Q̃, S̃ ) is asymptotically the only constraint that could control (or even bias)

the distribution of this M+d-cube. One could replace the total variation dis-

tance here by any other reasonable metric, since µ(d)

Q,S , µ(d)

Q0,S 0
are supported

on finite sets of cardinality bounded uniformly on n.

Proof. We first establish the equidistribution claim for Q only. Let Σ
(d)

Q0
⊂

CM+d(X2) be the collection of all M + d-cubes Q̃ in X2 which agree with Q0

on the face FM
2
× {0d} in the sense of (32). We then define µ(d)

Q
as before,

and set µ(d)

Q0
to be uniform measure on Σ

(d)

Q0
. Observe that the projection map

(Q̃, S̃ ) 7→ Q̃ maps Σ
(d)

Q0,S 0
to Σ

(d)

Q0
; by Lemma 4.1, the map is surjective, and

the fibers of this map are essentially cosets of the finite group

(35) K ≔

{

P ∈ Poly5

(

F
M+d
2 →

1

25
Z/Z

)

: P(x, 0d) = 0∀x ∈ FM
2

}

.

In particular, all fibers have the same cardinality, and hence the uniform

measure µ(d)

Q0,S 0
pushes forward to the uniform measure µ(d)

Q0
. Also, by defi-

nition the sampling measure µ(d)

Q,S pushes forward to the sampling measure

µ(d)

Q
. Hence, in order to establish (34) with probability 1 − o(1), a natural

first step would be to first show the weaker claim that

(36) dTV(µ(d)

Q
, µ(d)

Q0
) = o(1)

with probability 1 − o(1).

We use the second moment method. The set Σ
(d)

Q0
is a (random) coset of

the (deterministic) finite group

H ≔ {P ∈ Poly2(FM+d
2 → X2) : P(x, 0d) = 0∀x ∈ FM

2 }.

By the finite Fourier transform, it thus suffices to establish the claim
∫

Σ
(d)

Q0

e(ξ · (Q̃ − Q̃∗)) dµ(d)

Q
= o(1)

with probability 1−o(1) for any fixed non-trivial character ξ : H → T, where

Q̃∗ = Q̃∗(Q) is an arbitrary element of Σ
(d)

Q
(the exact choice is unimportant

as it does not affect the magnitude of the left-hand side). By Chebyshev’s

inequality, it suffices to show that

EQ,S

∣

∣

∣

∣

∣

∣

∣

∫

Σ
(d)
Q0

e(ξ · (Q̃ − Q̃∗)) dµ(d)

Q

∣

∣

∣

∣

∣

∣

∣

2

= o(1).
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The left-hand side can be rewritten as

Ev1,...,vd ,v
′
1
,...,v′

d
∈Fn

2
EQe(ξ · (Q̃Q,v1 ,...,vd

− Q̃Q,v′
1
,...,v′

d
)).

Since d is fixed and n is going to infinity, we see that the vectors v1, . . . , vd,

v′1, . . . , v
′
d
, e1, . . . , eM will be linearly independent with probability 1 − o(1).

Hence we may restrict to this portion of the average with acceptable error.

Applying a linear change of variables (which does not affect the distribution

of the random variable Q), we may then normalize vi = eM+i and v′
i
= eM+d+i

for i = 1, . . . , d. It will thus suffice to show that

EQe(ξ · (Q̃Q,eM+1 ,...,eM+d
− Q̃Q,eM+d+1 ,...,eM+2d

)) = o(1).

The random variable Q is uniformly distributed over a finite abelian group

Poly2(Fn
2
→ X2), and the expression inside the e() is a homomorphism in Q.

Hence by Fourier analysis, the claim follows unless we have the vanishing

(37) ξ · (Q̃Q,eM+1 ,...,eM+d
− Q̃Q,eM+d+1 ,...,eM+2d

) = 0

for all quadratic polynomials Q : Fn
2
→ X2. But if we let P : FM+d

2
→ X2 be

an element of the group H that is not annihilated by ξ, one easily checks

that the function Q : Fn
2
→ X2 defined by

Q(x1, . . . , xn) ≔ P(x1, . . . , xM+d)

is a quadratic polynomial for which the left-hand side of (37) is non-zero.

Thus we have the desired equidistribution (36).

To show full equidistribution, it suffices by the triangle inequality to

show, for each element Q̃∗ of Σ
(d)

Q
, that

dTV(µ(d)

Q,S 1Q̃=Q̃∗
, µ(d)

Q0,S 0
1Q̃=Q̃∗

) = o(1),

with probability 1 − o(1), where 1Q̃=Q̃∗
denotes the indicator function to the

set {(Q̃, S̃ ) ∈ Σ
(d)

Q0,S 0
: Q̃ = Q̃∗}. Note from (36) that with probability 1−o(1),

both of these measures differ in mass by o(1). Once one fixes Q̃ = Q̃∗, the

variable S̃ ranges in a coset S̃ (S 0,Q̃∗)+K of the finite abelian group K defined

in (35), where we arbitrarily choose one representative S̃ (S 0,Q̃∗) of this coset

for each choice of S 0, Q̃∗. By Fourier analysis, it thus suffices to show that
∫

Σ
(d)
Q0 ,S 0

e(ξ · (S̃ − S̃ (S 0,Q̃∗)))1Q̃=Q̃∗
dµ(d)

Q,S (Q̃, S̃ ) = o(1)
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with probability 1 − o(1) for each non-trivial character ξ : K → T of K. As

before, it suffices by the Chebyshev inequality to show that

EQ,S |

∫

Σ
(d)
Q,S

e(ξ · (S̃ − S̃ S 0,Q̃∗))1Q̃=Q̃∗
dµ(d)

Q,S (Q̃, S̃ )|2 = o(1).

The left-hand side can be rewritten as

Ev1,...,vd ,v
′
1
,...,v′

d
∈Fn

2
EQ,S e(ξ · (S̃ S ,v1,...,vd

− S̃ S ,v′
1
,...,v′

d
))1Q̃Q,v1 ,...,vd

=Q̃Q,v′
1
,...,v′

d
=Q̃0

.

As before we can restrict to the case where v1, . . . , vd, v′
1
, . . . , v′

d
, e1, . . . , eM

are linearly independent, and then after a change of basis it suffices to show

that

EQ,S e(ξ ·(S̃ S ,eM+1 ,...,eM+d
−S̃ S ,eM+d+1 ,...,eM+2d

))1Q̃Q,eM+1 ,...,M+d=Q̃Q,eM+d+1 ,...,eM+2d
=Q̃0
= o(1).

Clearly it would suffice to show that

ES e(ξ · (S̃ S ,eM+1 ,...,eM+d
− S̃ S ,eM+d+1 ,...,eM+2d

)) = o(1)

uniformly over all Q with

Q̃Q,eM+1 ,...,M+d = Q̃Q,eM+d+1 ,...,eM+2d
= Q̃0.

For fixed Q, S ranges over a coset of Poly5(Fn
2
→ 1

25Z/Z) by Lemma 4.1,

and the expression inside e() is an (affine) homomorphism of S on this coset.

Thus by Fourier analysis we are done unless the expression

ξ · (S̃ S ,eM+1 ,...,eM+d
− S̃ S ,eM+d+1 ,...,eM+2d

)

is constant on this coset, or equivalently that

(38) ξ · (S̃ P,eM+1,...,eM+d
− S̃ P,eM+d+1,...,eM+2d

) = 0

for all P in the group Poly5(Fn
2
→ 1

25Z/Z). But if we let P′ ∈ K be an

element of K not annihilated by ξ, and set

P(x1, . . . , xn) ≔ P′(x1, . . . , xM+d)

then we see that P lies in Poly5(Fn
2
→ 1

25Z/Z) and does not obey (38). This

completes the proof of the theorem. �

We conclude

Corollary 5.5 (Equidistributed sequence). Suppose that Conjecture 1.3 holds

for p = 2 and k = 5, and let ε : N → R+ be a function decreasing to zero.

Let M be as in Proposition 5.3. Then there exists a sequence of n going
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to infinity, an integer 1 ≤ m ≤ M and a function Φ : ( 1
25Z/Z)F

M
2 → T such

that, for n along some sequence going to infinity, and for each n in this se-

quence we may find a deterministic n-cube (Q, S ) in X5,5, with the resulting

M-cube (Q0, S 0) (and hence Σ
(d)

Q0,S 0
and µ(d)

Q0,S 0
) independent of n, obeying

the estimates

(39) |Ex∈Fn
2
e(P(x)) − e(Φ((S (x + (a, 0n−M)))a∈FM

2
))| ≤ 2ε(m)

and

(40) |Ex∈Fn
2
e(S (x) − P(x))| ≥

1

m
,

such that µ(d)

Q,S converges in total variation norm to µ(d)

Q0,S 0
for each d ≥ 0.

Proof. Applying Theorem 5.4 and a standard diagonal argument, we obtain

along a sequence n going to infinity, an n-cube (Q, S ) in X5,5, an integer

1 ≤ m ≤ M, a polynomial P ∈ Poly5(Fn
2
), and a functionΦ : ( 1

25Z/Z)F
M
2 → T

obeying (30), (31) such that

dTV(µ(d)

Q,S , µ
(d)

Q0,S 0
)→ 0

as n goes to infinity along this sequence, for each d ≥ 0. The quantity m

currently depends on n, but it takes only finitely many values, so by the

pigeonhole principle we may pass to a subsequence and assume that m is

independent of n. Similarly, the number of possible restrictions (Q0, S 0)

of (Q, S ) to FM
2

is bounded independently of n, because (Q0, S 0) is an M-

cube in the finite nilspace X5,5. Hence by the pigeonhole principle, we may

pass to a further subsequence of n and assume that this restriction (Q0, S 0) is

independent of n. Finally, withΦ, we may roundΦ to the nearest multiple of

ε(m)/100 in [0, 1], at the cost of worsening (30) to (39). Now the number of

possible Φ is bounded independently of n, so by another application of the

pigeonhole principle we can makeΦ independent of n, giving the claim. �

The next step is to construct a certain finite nilspace X(Q0,S 0) associated

to the M-cube (Q0, S 0), that can be viewed as an abstraction of the random

samples ((Q, S )(x+ (a, 0n−M)))a∈FM
2

of (Q, S ) in the limit n→ ∞ (somewhat

in the spirit of the Furstenberg correspondence principle). The construction

is as follows. As X5,5 is 2-homogeneous, we see from (62) that we have the

equivalence

CM(X5,5) ≡ Hom�(F
M
2 , X5,5).
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By either Remark A.3 or A.4, this space has the structure of a finite 5-step

2-homogeneous nilspace (it is easy to see that the two nilspace structures

given by these remarks agree). This space will not be ergodic in general,

so the equivalence relation ∼0 on this space introduced in Remark A.2 can

be non-trivial. The morphism (Q0, S 0) is a point in Hom�(F
M
2 , X5,5), and we

define X(Q0,S 0) to be the equivalence class of this point:

X(Q0,S 0) ≔ {(Q
′, S ′) ∈ CM(X5,5) : (Q′, S ′) ∼0 (Q0, S 0)}.

This is then an ergodic finite 5-step 2-homogeneous nilspace.

For every s ≥ 0, we define a map πs : Σ
(1+s)

Q0,S 0
→ Cs(X(Q0 ,S 0)) by the formula

πs(Q̃, S̃ ) ≔ ((Q̃, S̃ )(·, 1, ω))ω∈{0,1}s

for all (Q̃, S̃ ) ∈ Σ
(1+s)

Q0,S 0
; thus πs(Q̃, S̃ ) is the tuple formed by restricting (Q̃, S̃ )

to the affine subspaces FM
2 ×(1, ω) of FM+1+s

2
forω ∈ {0, 1}s. Let us first check

that πs(Q̃, S̃ ) lies in Cs(X(Q0,S 0)) as claimed. Since (Q̃, S̃ ) is a M+1+ s-cube

in X5,5, the map

(a, ω) 7→ (Q̃, S̃ )(a, 1, ω)

is a M + s-cube in X5,5, and hence the map

ω 7→ (a 7→ (Q̃, S̃ )(a, 1, ω))

is an s-cube in CM(X5,5). Applying (62), the tuple πs(Q̃, S̃ ) is thus a s-cube

in CM(X5,5), and thus lies in a single equivalence class of ∼0. A similar

argument shows that the pair

((a 7→ (Q̃, S̃ )(a, 0, 0s)), (a 7→ (Q̃, S̃ )(a, 1, 0s)))

is a 1-cube in CM(X5,5), and so the two elements of this pair are also equiv-

alent by ∼0. By (32), the first map is (Q0, S 0), and hence ψs(Q̃, S̃ ) is an

s-cube in X(Q0,S 0) as claimed.

Next, we claim that the map πs is surjective. Let ((Q′ω, S
′
ω))ω∈{0,1}s be an

s-cube in X(Q0,S 0). Our goal is to locate an M+1+ s-cube (Q̃, S̃ ) in X5,5 such

that

(Q̃, S̃ )(a, 0, 0s) = (Q0, S 0)(a)

and

(Q̃, S̃ )(a, 1, ω) = (Q′ω, S
′
ω)(a)
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for all a ∈ FM
2

and ω ∈ {0, 1}s. So (Q̃, S̃ ) is already partially specified on the

set

(41) F
M
2 × ({(0, 0s)} ∪ ({1} × Fs

2)).

By the construction of X(Q0,S 0), this partially specified function is known to

be an M + s-cube on

(42) F
M
2 × {1} × F

s
2

and an M + 1-cube on

(43) F
M
2 × {0, 1} × {0

s}.

The claim then follows from a large number of applications of the com-

pletion axiom for nilspaces (or by [3, Lemma 3.1.5], after performing a

reflection to move (0M, 1, 0s) to the origin).

Now we claim that all the fibers of πs have the same cardinality. Observe

that if (Q̃, S̃ ), (Q̃′, S̃ ′) ∈ Σ(1+s)

Q0,S 0
have the same image under πs, then Q̃ − Q̃′

is an element of Poly2(FM+1+s
2

→ X2) that vanishes on the set (41); and if

Q̃ = Q̃′, then S̃ − S̃ ′ is an element of Poly5(FM+1+s
2

→ 1
25Z/Z) that van-

ishes on (41). Conversely, if (Q̃, S̃ ) ∈ Σ
(1+s)

Q0,S 0
and S̃ − S̃ ′ is an element of

Poly5(FM+1+s
2

→ 1

25Z/Z) that vanishes on (41), then (Q̃, S̃ ′) is an element

of Σ
(1+s)

Q0,S 0
with the same image as (Q̃, S̃ ) under πs. To conclude the claim, it

suffices to show that whenever (Q̃, S̃ ) ∈ Σ
(1+s)

Q0,S 0
and Q̃ − Q̃′ is an element of

Poly2(FM+1+s
2

→ X2) that vanishes on (41), then there exists (Q̃′, S̃ ′) ∈ Σ(1+s)

Q0,S 0

with the same image as (Q̃, S̃ ) under πs. By Lemma 4.1, we can at least

find a function S̃ ′′ : Fn
2
→ 1

2
Z/Z with (Q̃′, S̃ ′′) an n-cube in X5,5. If the

S̃ ′′ − S̃ vanished on (41), we would be done; but the best that can be said at

present is that this function is a polynomial of degree k on (42) and on (43),

again thanks to Lemma 4.1. Applying the completion axiom (or [3, Lemma

3.1.5]) many times, we can then find P ∈ Poly5(Fn
2
→ 1

25Z/Z) which agrees

with S̃ ′′ − S̃ on (41); setting S̃ ′ ≔ S̃ ′′ − P gives the claim.

From the above properties of πs we see that πs pushes forward the uni-

form probability measure µ(1+s)

Q0,S 0
on Σ

(1+s)

Q0,S 0
to the uniform probability mea-

sure on Cs(X(Q0,S 0)). Combining this with Corollary 5.5, we conclude

Corollary 5.6 (Equidistributed sequence, again). Suppose that Conjecture

1.3 holds for p = 2 and k = 5, and let ε : N→ R+ be a function decreasing
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to zero. Let M be as in Proposition 5.3, and let n, (Q, S ), (Q0, S 0),m,Φ be

as in Corollary 5.5. If for any s ≥ 0 we select x, h1, . . . , hs ∈ F
n
2

uniformly

and independently at random, then the random tuple

((a 7→ (Q, S )((a, 0n−M) + x +

s
∑

i=1

ωihi)))ω∈{0,1}s

converges in distribution to the uniform distribution on Cs(X(Q0,S 0)).

Proof. Observe that this random tuple is nothing more than the image under

πs of the randomly sampled tuple (Q̃, S̃ )(Q,S ),x,h1,...,hs
. The claim follows. �

In the language of [5], this corollary asserts that the sampling map

x 7→ (a 7→ (Q, S )((a, 0n−M) + x))

becomes an asymptotically balanced map from D1(Fn
2
) to X(Q0,S 0) as n goes

to infinity along the sequence.

5.3. Concluding the argument. With the equidistribution theory for the

n-cube (Q, S ) in hand, we can now return to the task of deriving a contra-

diction. Let the notation be as in Proposition 5.3 and Corollary 5.6.

The first step is to use Corollary 5.6 to transfer the various structural

conclusions of Proposition 5.3 to the nilspace X(Q0,S 0), in order to obtain a

situation somewhat resembling that in the proof of Proposition 4.5. Let n

be in the indicated sequence going to infinity, and let x, h1, . . . , h6 be drawn

uniformly and independently at random from Fn
2
. By Corollary 5.6, the

random tuple

(44) ((a 7→ (Q, S )((a, 0n−M) + x +

6
∑

i=1

ωihi)))ω∈{0,1}6

(which is a 6-cube in X(Q0,S 0)) converges in distribution to the uniform dis-

tribution on C6(X(Q0 ,S 0)), while the random function

(45) a 7→ (Q, S )((a, 0n−M) + x)

on FM
2

(which is an element of X(Q0,S 0)) converges in distribution to the uni-

form distribution on X(Q0,S 0).

From (39), (31) we have (for ε(m) small enough) that

Ex∈Fn
2
|e(S (x)) − e(Φ((S (x + a))a∈FM

2
))| ≥

1

2m
.
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Since the random variable (45) converges to the uniform distribution on

X(Q0,S 0), we conclude that

(46) |E(Q′,S ′)∈X(Q0,S 0)
e(S ′(0) − Φ(S ′))| ≥

1

2m
.

Similarly, as P is a quintic polynomial, we have

E
x∈Fn

2
;~h∈(Fn

2
)6

∣

∣

∣

∣

∣

∣

∣

∣

e



















∑

ω∈{0,1}6

(−1)|ω|P(x + ω · ~h)



















− 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Hence by (30) and many applications of the triangle inequality
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∣

∣
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∑

ω∈{0,1}6

(−1)|ω|Φ((S (x + a + ω · ~h))a∈FM
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∣
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∣

∣

∣

∣

= O(ε(m))

where the implied constant in the O() notation is absolute. Since the ran-

dom variable (44) converges to the uniform distribution on C6(X(Q0 ,S 0)), we

conclude that

E(Q′,S ′)∈C6(X(Q0,S 0))
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∑

ω∈{0,1}6

(−1)|ω|Φ((S ′(a, ω)))a∈FM
2



















− 1

∣

∣

∣

∣

∣

∣

∣

∣

= O(ε(m)).

Applying Theorem A.25 (and Markov’s inequality), we conclude (for ε

sufficiently rapidly decreasing) that there exists a quintic polynomial Φ′ ∈

Poly5(X(Q0,S 0)) such that

E(Q′,S ′)∈X(Q0,S 0)
|e(Φ(S ′)) − e(Φ′(Q′, S ′))| ≤

1

4m

and hence by (46) and the triangle inequality

(47) |E(Q′,S ′)∈X(Q0,S 0)
e(S ′(0) − Φ′(Q′, S ′)))| ≥

1

4m
.

To take advantage of this correlation, we perform vertical differentiation in

the S ′ direction. Arguing exactly as in the proof of (27), we see that the

vertical derivative Φ′(Q′, S ′ + 1
2
) − Φ′(Q′, S ′) is constant, and thus e(Φ′) is

an eigenfunction of the vertical Koopman operator Vu defined by

VuF(Q′, S ′) ≔ F(Q′, S ′ +
1

2
).

As before, (Q′, S ′) 7→ e(S ′(0)) is also an eigenfunction of this operator,

with eigenvalue e(1
2
). From (47), these two eigenfunctions of this unitary

operator are not orthogonal, and hence the eigenvalue of e(Φ′) must also be

e(1
2
). Thus, if we place an equivalence relation ∼ on X(Q0,S 0) by declaring



42 A. JAMNESHAN, O. SHALOM, AND T. TAO

(Q′, S ′) ∼ (Q′′, S ′′) if Q′ = Q′′ and S ′′ is equal to either S ′ or S ′ + 1
2
, then

the function

(Q′, S ′) 7→ S ′(0) − Φ′(Q′, S ′)

is invariant with respect to this equivalence and thus can be viewed as a

function on the quotient space X(Q0,S 0)/ ∼. In order to exploit this invariance

to contradict Theorem 3.1, we will need to build a “lifting map” from X2 to

X(Q0,S 0)/ ∼ that assigns to each q ∈ X2 a certain element (Q∗q, S
∗
q) of X(Q0,S 0)

(defined up to the equivalence ∼) that has good properties. More precisely,

we will show:

Lemma 5.7 (Existence of lift). One can assign an element (Q∗q, S
∗
q) of

X(Q0,S 0) to each q ∈ X2 with the following properties:

• (Lift) For each q ∈ X2, one has Q∗q(0) = q.

• (Morphism up to equivalence) For any 6-cube (qω)ω∈{0,1}6 ∈ C6(X2)

in X2, there exists a 6-cube ((Q′ω, S
′
ω))ω∈{0,1}6 ∈ C6(X(Q0,S 0)) in X(Q0,S 0)

such that (Q′ω, S
′
ω) ∼ (Q∗qω , S

∗
qω

) for all ω ∈ {0, 1}6.

Remark 5.8. Although we will not prove it here, one can show that the

quotient space X(Q0,S 0)/ ∼ is itself a nilspace which is an extension of the

nilspace X2. The map that sends q to (the equivalence class of) (Q∗q, S
∗
q) can

then be viewed as a “splitting” of that extension by a section that is itself a

nilspace morphism. It is in order to obtain this lifting that we were forced

to use the larger nilspace X5,5 instead of the smaller nilspace X5,1, as we

will need to take advantage of the freedom to modify S by non-classical

polynomials, and not merely by classical ones.

Let us assume this lemma for the moment and obtain the desired contra-

diction. Let (qω)ω∈{0,1}6 ∈ C6(X2) be a 6-cube in X2, and let ((Q′ω, S
′
ω))ω∈{0,1}6 ∈

C6(X(Q0,S 0)) be as in the above lemma. Since Φ′ is quintic on X(Q0,S 0), we

have
∑

ω∈{0,1}6

(−1)|ω|Φ′(Q′ω, S
′
ω) = 0.

Also, from the nilspace structure of X(Q0,S 0) we have
∑

ω∈{0,1}6

(−1)|ω|S ′ω(0) = ρ((Q′ω(0))ω∈{0,1}6).
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Subtracting, we conclude that
∑

ω∈{0,1}6

(−1)|ω|(S ′ω(0) −Φ′(Q′ω, S
′
ω) = ρ((Q′ω(0))ω∈{0,1}6).

Both sides are invariant with respect to ∼, so we may replace (Q′ω, S
′
ω) with

(Q∗qω , S
∗
qω

) in this identity, thus
∑

ω∈{0,1}6

(−1)|ω|(S ∗qω(0) − Φ′(Q∗qω , S
∗
qω

) = ρ((Q∗qω(0))ω∈{0,1}6).

By the lifting property we have Q∗qω(0) = qω. We conclude that

ρ = dF

where F : F2
2
→ T is the function

F(q) ≔ S ∗q(0) −Φ′(Q∗q, S
∗
q).

But this contradicts Theorem 3.1.

It remains to construct the lift (Q∗q, S
∗
q) in Lemma 5.7. This will be ac-

complished by solving a certain system of constraints. More precisely:

Proposition 5.9 (Solving a system of constraints). Let d ≥ 0, and let

(qω)ω∈{0,1}d be a d-cube in X2. Then there exists a d-cube ((Q′ω, S
′
ω))ω∈{0,1}d in

X(Q0,S 0) obeying the following constraints:

(1) For every ω ∈ {0, 1}d, one has Q′ω(a) = qω + Q0(a) − Q0(0) for all

a ∈ FM
2 . In particular, Q′ω(0) = qω.

(2) For every 1 ≤ l ≤ k − 1 and 1 ≤ i1 < · · · < il ≤ M, one has

∂ei1
. . . ∂eil

S ′ω(0) = ∂ei2
. . . ∂eil

ψω,il(0) − ∂ei2
. . . ∂eil

ψ∗,il(0) + ∂ei1
. . . ∂eil

S 0(0)

where

ψω,il(a) ≔ ψ(Q′ω(a),Q′ω(a + eil))

and

ψ∗,il(a) ≔ ψ(Q0(a),Q0(a + eil))

for all a ∈ FM
2

.

(3) One has 2S ′ω(0) = 2S 0(0) for all ω ∈ {0, 1}d.

Furthermore, this cube is unique up to equivalence in the following sense: if

((Q′ω, S
′
ω))ω∈{0,1}d , ((Q

′′
ω, S

′′
ω))ω∈{0,1}d ∈ Cd(X) both obey the properties (1)-(3),

then we have (Q′ω, S
′
ω) ∼ (Q′′ω, S

′′
ω) for all ω ∈ {0, 1}d.
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Let us assume this proposition for the moment and see how it implies

Lemma 5.7. Applying this proposition with d = 0, we see that for each

q ∈ X2, we can find (Q∗q, S
∗
q) ∈ X(Q0,S 0) obeying the d = 0 conclusions

(1)-(3) of the proposition; in particular, Q∗q(0) = q. Now let (qω)ω∈{0,1}6 ∈

C6(X2) be a 6-cube in X2, and let ((Q′ω, S
′
ω))ω∈{0,1}6 ∈ C6(X(Q0 ,S 0)) be as in

the proposition. For each ω ∈ {0, 1}6, the point (Q′ω, S
′
ω) in X(Q0,S 0) obeys

the d = 0 axioms of (1)-(3) with respect to the 0-cube qω. Since (Q∗qω , S
∗
qω

)

does also, we conclude from the uniqueness component of this proposition

that (Q′ω, S
′
ω) ∼ (Q∗qω , S

∗
qω

) for all ω ∈ {0, 1}d. Lemma 5.7 follows.

It remains to establish Proposition 5.9. We first verify the uniqueness

aspect. Suppose we have two cubes ((Q′ω, S
′
ω))ω∈{0,1}d , ((Q

′′
ω, S

′′
ω))ω∈{0,1}d ∈

Cd(X(Q0 ,S 0)) both obeying axioms (1)-(3). From axiom (1) we see that Q′ω =

Q′′ω for all ω ∈ {0, 1}d. From axiom (2), we see that

(48) ∂ei1
. . . ∂eil

S ′ω(0) = ∂ei1
. . . ∂eil

S ′′ω(0)

whenever 1 ≤ l ≤ k − 1 and 1 ≤ i1 < · · · ≤ il ≤ M. We claim that the same

statement also holds for l = k. Indeed, by construction of X(Q0,S 0), we can

find (Q̃, S̃ ) ∈ Σ
(1+d)

(Q,S )
such that

(Q′ω, S
′
ω)(a) = (Q̃, S̃ )(a, 1, ω)

for all ω ∈ {0, 1}d and a ∈ FM
2

. Since S̃ agrees with S on FM
2

, we conclude

that

∂ei1
. . . ∂eik

S ′ω(0) = ∂ei1
. . . ∂eik

S 0(0) + ∂(0,1,ω)∂ei1
. . . ∂eik

S̃ (0).

As (Q̃, S̃ ) is an M + 1 + d-cube in X5,5, the right-hand side is equal to

∂ei1
. . . ∂eik

S 0(0) + ρ((Q̃(

k+1
∑

j=1

α jw j))α∈{0,1}k+1)

where w j ≔ ei j
for j = 1, . . . , k and wk+1 ≔ (0, 1, ω). This expression

depends only on Q′ω, Q0, and S 0. We have a similar formula for S ′′ω. Since

Q′ω = Q′′ω, we conclude that (48) holds for l = k.

Now we claim that (48) also holds for l > k. It suffices to show that

∂ei1
. . . ∂eik+1

S ′ω(a) = ∂ei1
. . . ∂eik+1

S ′′ω(a)
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whenever a ∈ FM
2

and 1 ≤ i1 < · · · < ik+1 ≤ M. As (Q′ω, S
′
ω) is an M-cube in

X5,5, one has

∂ei1
. . . ∂eik+1

S ′ω(a) = Ψ((Q′ω((a +

k+1
∑

j=1

α jei j
))α∈{0,1}k+1)).

Similarly for S ′′ω and Q′′ω. Since Q′ω = Q′′ω, we obtain (48) for all l > k.

Now that (48) has been established for all l > 0, we see from Taylor

expansion that

S ′′ω = S ′ω − S ′ω(0) + S ′′ω(0).

From axiom (3), 2(−S ′ω(0) + S ′′ω(0)) = −2S (0) + 2S (0) = 0, hence for each

ω ∈ {0, 1}d, S ′′ω is either equal to S ′ω or S ′ω +
1
2
. Since also Q′ω = Q′′ω, we

conclude that (Q′ω, S
′
ω) ∼ (Q′′ω, S

′′
ω). This completes the proof of uniqueness.

Now we establish existence. Let d ≥ 0, and let (qω)ω∈{0,1}d be a d-cube

in X2. By the construction of X(Q0,S 0), our task is to find a M + 1 + d-cube

(Q̃, S̃ ) in X5,5 obeying the following properties:

(0) For a ∈ FM
2

, we have (Q̃, S̃ )(a, 0n−M) = (Q0, S 0)(a).

(1) For every ω ∈ {0, 1}d and a ∈ FM
2

, one has Q̃(a, 1, ω) = qω +Q0(a)−

Q0(0).

(2) For every 1 ≤ l ≤ k − 1 and 1 ≤ i1 < · · · < il ≤ M, one has

(49)

∂ei1
. . . ∂eil

S̃ (0, 1, ω) = ∂ei2
. . . ∂eil

ψil(0, 1, ω)−∂ei2
. . . ∂eil

ψil(0, 0, 0)+∂ei1
. . . ∂eil

S̃ (0, 0, 0)

where

ψil(x) ≔ ψ(Q̃(x), Q̃(x + eil))

for all x ∈ FM+1+d
2

.

(3) We have 2S̃ (0M, 1, ω) = 2S 0(0) for all ω ∈ {0, 1}d.

To obey (1) (and the Q̃ component of (0)), we define Q̃ : FM+1+d
2

→ Y by

the formula

Q̃(a, t, ω) ≔ qω + tq0 − q0 + Q(a) − tQ(0)

for a ∈ FM
2

, t ∈ F2, ω ∈ Fd
2
. One easily verifies that Q̃ is a polynomial of

degree 2 that obeys (2) and the Q̃ component of (1). By Lemma 4.1, we can

then find a map S̃ 0 : FM+1+d
2

→ 1

25Z/Z such that (Q̃, S̃ 0) is a M + 1 + d-cube

in X5,5 (and in fact in X5,1). We need to then find an element S̃ of the coset

S̃ 0 + Poly(FM+1+d
2

→ 1
25Z/Z) which obeys the following properties:
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(0) For a ∈ FM
2

, we have S̃ (a, 0n−M) = S 0(a). It is not necessarily the

case that S̃ agrees with S on FM
2

(so that (Q̃, S̃ ) lies in Σ
(1+d)

(Q,S )
).

(2) For every 1 ≤ l ≤ k − 1 and 1 ≤ i1 < · · · < il ≤ M, (49) holds.

(3) We have 2S̃ (0M, 1, ω) = 2S 0(0) for all ω ∈ {0, 1}d.

We will enforce each of these properties (0), (2), (3) in turn (making sure

that each modification of S̃ that we make does not destroy any properties

that we have already established).

We first locate a function S̃ ∈ S̃ 0 + Poly(FM+1+d
2

→ 1
25Z/Z) obeying

(0). Observe that (Q0, S̃ (·, 01+d)) and (Q0, S 0) are both M-cubes in X5,5,

and hence the restriction of S̃ 0 − S to FM
2 lies in Poly5(FM

2 →
1

25Z/Z). By

composing this polynomial with the obvious projection from FM+1+d
2

to FM
2 ,

we conclude that S̃ 0 − S agrees on FM
2 × {0} × {0

d} with some polynomial in

Poly5(FM+1+d
2

→ 1
25Z/Z). Subtracting this polynomial from S̃ 0, we obtain

an element S̃ of S̃ 0 + Poly(FM+1+d
2

→ 1
25Z/Z) oyeing property (0).

We now enforce the property (2) by induction on i1. More precisely, we

assume inductively that we have found S̃ ∈ S̃ 0 + Poly(FM+1+d
2

→ 1
25Z/Z)

obeying (0) for which (1) has already been established in the case i1 < i∗

for some 1 ≤ i∗ ≤ M, and wish to modify S̃ so that it still obeys (0) but now

also obeys (1) in the case i1 ≤ i∗.

Observe that if we add or subtract to S̃ a polynomial P ∈ Poly5(FM+1+d
2

→
1
25Z/Z) which vanishes on FM

2
× {0} × {0d}, and which also does not depend

on the first i∗ − 1 coordinates in the sense that ∂ei
P = 0 for 1 ≤ i < i∗, then

S̃ continues to obey (0) and (1) for i1 < i∗ (though again this may destroy

property (d)). We exploit this freedom to modify S̃ as follows.

First, we use the fact that ρ = d5ψ to write the condition (1) on the

M + 1 + d-cube (Q̃, S̃ ) as

∂h1
. . . ∂h5

(∂hS̃ − ψ(Q̃(·), Q̃(· + h))) = 0

for all h, h1, . . . , h5 ∈ F
M+1+d
2

. Equivalently, one has

(50) ∂hS̃ − ψ(Q̃(·), Q̃(· + h)) ∈ Poly4(FM+1+d
2 )

for each h ∈ FM+1+d
2

. Applying this with h = ei∗ , we conclude that the

function

P ≔ ∂ei∗
S̃ − ψi∗
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lies in Poly4(FM+1+d
2

). Now we look at the expression

P(a, 1, ω)−P(a, 0, 0d) = ∂ei∗
S̃ (a, 1, ω)−ψi∗(a, 1, ω)−∂ei∗

S̃ (a, 0, 0d)+ψi∗(a, 0, 0
d)

for a ∈ 0i∗ × F
M−i∗
2

and ω ∈ Fd
2
. Expanding P out into monomials using

Lemma A.23, we can write

P(a, 1, ω) − P(a, 0, 0d) =

4
∑

l=1

∑

i∗<i1<···<il≤M+1+d;il>M

ci1 ,...,il |xi1 | . . . |xil |

25−l
mod 1

for some coefficients ci1 ,...,il ∈ Z, where (x1, . . . , xM+1+d) ≔ (a, 1, ω). If we

then introduce the function R : FM+1+d
2

→ 1
25Z/Z by the formula

R(x1, . . . , xM+1+d) ≔

4
∑

l=1

∑

i∗<i1<···<il≤M+1+d;il>M

ci1 ,...,il |xi∗ ||xi1 | . . . |xil |

2k−l
mod 1

for (x1, . . . , xM+1+d) ∈ FM
2 , then from Lemma A.23 we see that3 R ∈ Poly5(FM+1+d

2
→

1
25Z/Z) and that

P(a, 1, ω) − P(a, 0, 0d) = ∂ei∗
R(a, 1, ω)

for a ∈ 0i∗ × F
M−i∗
2

and ω ∈ Fd
2
. Also R vanishes on FM

2 and is invariant

with respect to the first i∗ coordinates, so as discussed above we may freely

subtract R from S̃ . If we do so, then we now have

P(a, 1, ω) − P(a, 0, 0d) = 0

for all a ∈ FM
2 and ω ∈ Fd

2
, which on further differentiation gives (49) for

i1 = i∗ as required.

Finally, we enforce the property (3). As already observed, if we add or

subtract to S̃ a polynomial P ∈ Poly5(FM+1+d
2

→ 1
25Z/Z) which vanishes on

F
M
2

, and which also does not depend on the first M coordinates, then the

properties (0), (2) remain unaffected. To exploit this, recall that S̃ lies in

the coset S̃ 0 + Poly5(FM+1+d
2

→ 1
25Z/Z); since S̃ 0 takes values in 1

2
Z/Z, we

conclude from (61) that

2S̃ ∈ Poly4(FM+1+d
2 →

1

24
Z/Z)

and hence from (61) again we may write

(51) 2S̃ = 2P

3It is here that we need to have worked with X5,5 instead of X5,1, as we cannot guarantee

that the quintic polynomial R will be classical.
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for some P ∈ Poly5(FM+1+d
2

→ 1
25Z/Z). The function

(a, t, ω) 7→ P(0M , t, ω) − P(0M , 0, 0d)

is then a quintic polynomial on FM+1+d
2

that vanishes on FM
2

and does not

depend on the first M coordinates; if we then define

S̃ ′(a, t, ω) ≔ S (a, t, ω) − P(0M , t, ω) + P(0M , 0, 0d)

then S̃ ′ lies in S̃ 0+Poly5(FM+1+d
2

→ 1
25Z/Z), obeys (0) and (2), and for each

ω ∈ {0, 1}d we have

2S̃ ′(0M, 1, ω) = 2P(0M, 0, 0d) = 2S̃ (0M, 0, 0d) = 2S 0(0)

giving (3). This completes the proof of Proposition 5.9, and thus Theorem

1.6.

Remark 5.10. If one replaces X5,5 by X5,1 in the above construction then

one no longer obtains a counterexample to Conjecture 1.3. We sketch the

proof of this as follows. By Remark 5.1, the pseudo-quintic function S

takes the form

S =

(

R

2

)

Q(2) + P

2
mod 1

for some randomly chosen polynomials R ∈ Poly3(Fn
2
→ Z/4Z), Q(1),Q(2) ∈

Poly2(Fn
2
→ F2), P ∈ Poly5(Fn

2
→ F2) with Q(1) = R mod 2; note crucially

that P now takes values in tje classical range F2 as opposed to the non-

classical range 1

25Z/Z. After many applications of the Leibniz rule (60) (and

(26)) we see that for any shifts a, b, c, d, e ∈ Fn
2

we have the fifth derivative

computation

∂a∂b∂c∂d∂eS =
∂a∂bQ(1)∂c∂dQ(1)∂eQ(2) + . . .

2

where the . . . are a sum of terms that are either constants in F2 (depending

on a, b, c, d, e), or linear functions that resemble permutations of ∂a∂bQ(1)∂c∂dQ(1)∂eQ(2)

(in fact there are 44 terms of this latter type). For a, b, c, d, e chosen at ran-

dom, it is true with positive probability that ∂a∂bQ(1) = ∂c∂dQ(1) = 1, so

that the displayed term ∂a∂bQ(1)∂c∂dQ(1)∂eQ
(2) simplifies to ∂eQ

(2), while

the other permutations of this term vanish. From this one can conclude that

with high probability, and for a given random shift e the linear functions

∂eQ
(2) are measurable in the sense that they are a function of boundedly
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many shifts of S by e and other random shifts. Similarly for ∂eQ
(1). In a

similar spirit, we have the fourth derivative computation

∂a∂b∂c∂dS =
∂a∂bQ(1)∂c∂dQ(1)Q(2) + . . .

2

where the terms in . . . take values in F2 and are either permutations of the

displayed term, are combinations of functions already known to be mea-

surable, or are linear. By the preceding argument one can show that with

high probability Q(2) is measurable up to a classical linear polynomial; and

similarly for Q(1). Finally, we have the second derivative computation

∂a∂bS =

(

R

2

)

∂a∂bQ(2) + . . .

2

where the terms in . . . take values in F2 and are either combinations of func-

tions already known to be measurable, or are cubic. Repeating the previous

argument, we conclude with high probability that
(

R

2

)

(which one can check

to be a classical quartic polynomial) is measurable up to a classical cubic

polynomial. Taking advantage of the ability to pointwise multiply in the

classical range F2 using Lemma A.21, we conclude with high probability

that
(

R

2

)

Q(2) is measurable up to a classical quintic polynomial. Hence S is

measurable up to a quintic polynomial, which must then also be measurable

since S is measurable. By a Fourier expansion, one can then show that S

correlates with a measurable quintic polynomial, giving Conjecture 1.3 in

this case. Thus one can explain the need to work with the more complicated

space X5,5 instead of X5,1 in order to destroy the ability to multiply polyno-

mials together by working in non-classical ranges such as 1
25Z/Z instead of

F2.

Remark 5.11. By combining these constructions with the arguments in Ap-

pendix B, we obtain a counterexample to Conjecture 1.2. It is natural to ask

whether there is a shortcut approach that could construct the counterexam-

ple to Conjecture 1.2 more directly, without first building a counterexample

to Conjecture 1.3. Morally speaking, this should proceed by starting with

the space Hom�(D
1(Fω

2
) → X5,5), which is a compact Fω

2
-system that can

be naturally equipped with a Haar measure. This system is not ergodic, but

a generic component of the ergodic decomposition should be a 5-step er-

godic Fω
2

-system that fails to be Abramov of order 5 (cf., the role of the pair
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(Q0, S 0) in the above analysis); however, in the spirit of Remark 4.6, one

would expect that this system would admit an extension that is Abramov of

order 5 (and it should even be a Weyl system of order 5, in the sense of e.g.,

[16]). The rigorous verification of these claims seems to be of comparable

complexity to the arguments just presented, and so we do not detail this

more direct approach here.

Appendix A. Nilspaces, filtered abelian groups, and non-classical

polynomials

In this section we gather some standard (and mostly algebraic) facts about

nilspaces, filtered abelian groups, and polynomial maps.

A.1. Nilspaces. Nilspaces were introduced by Host–Kra [15] (under the

equivalent formulation of parallelepiped structures) and Camarena–Szegedy

[2] as an abstraction of the concept of a parallelepiped in a group or dy-

namical system. They can be defined in the set-theoretic, topological, and

measurable categories, but we will only need to consider finite nilspaces,

which allows us to work in the technically simpler set-theoretic category.

We recall the definition of a nilspace, following [3, Definition 1.2.1]:

Definition A.1 (Nilspaces). A nilspace is a set X together with a collec-

tion of sets Cn(X) ⊂ X{0,1}
n

for each non-negative integer n, satisfying the

following axioms:

(i) (Composition) For every m, n ≥ 0 and every cube morphism φ : {0, 1}m →

{0, 1}n (by which we mean a function that extends to an affine map

from Rm to Rn) and every c ∈ Cn(X), we have c ◦ φ ∈ Cm(X).

(ii) (0-ergodicity) C0(X) = X. If we have the stronger property C1(X) =

X{0,1}, we say that the nilspace is ergodic (or 1-ergodic).

(iii) (Corner completion) Let n ≥ 1, and let c′ : {0, 1}n\{1}n → X be a

function such that every restriction of c′ to an (n−1)-face containing

0n is in Cn−1(X). Then there exists c ∈ Cn(X) such that c(v) = c′(v)

for all v , 1n. If this c is unique, we say that X is an (n − 1)-step

nilspace.

Elements of Cn(X) will be referred to as n-cubes in X.
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A nilspace morphism φ : X → Y between two nilspaces is a function

that preserves n-cubes for every n ≥ 0, in the sense that (φ(xω))ω∈{0,1}n) ∈

Cn(Y) whenever (xω)ω∈{0,1}n ∈ Cn(X). The space of such morphisms will be

denoted Hom�(X → Y).

Clearly the collection of nilspaces and their morphisms form a category.

It is also easy to see that if a nilspace X is k-step, then it is also k′-step for

any k′ ≥ k.

Remark A.2 (Ergodic decomposition). In much of the literature (e.g., [3])

the term “nilspace” is used to denote what we call an “ergodic nilspace”, but

it will be convenient for us to only impose the weaker axiom of 0-ergodicity

in our basic definitions. In any event, it is often not difficult to reduce to the

ergodic case via the following ergodic decomposition. If X is a nilspace, we

can define a relation4 ∼0 on X by declaring x ∼0 y if (x, y) ∈ C1(X). It is not

difficult to verify that this is an equivalence relation, that each equivalence

class has the structure of an ergodic nilspace, and the original nilspace X is

the disjoint union of these ergodic nilspaces; see [3, Lemma 3.1.8]. Because

of this, many of the foundational results on ergodic nilspaces (such as those

set out in [3]) extend without difficulty to the more general nilspace setting.

Remark A.3 (Cube spaces as nilspaces). If X is a nilspace and d ≥ 0, then

the collection Cd(X) of d-cubes in X is itself a nilspace, with cube structure

given by

Cn(Cd(X)) ≔ Cd+n(X)

for all n ≥ 0, after performing the identification

(52) (xω)ω∈{0,1}d+n ≡ ((xω,ω′)ω∈{0,1}d)ω′∈{0,1}n

that interprets any (d + n)-cube (xω)ω∈{0,1}d+n ∈ Cd+n(X) as an n-cube of d-

cubes. One can easily check that Cd(X) obeys the nilspace axioms, and is

k-step if X is k-step, although we caution that Cd(X) need not be ergodic

even when X is ergodic (this is a primary reason why we do not impose

ergodicity in our definition of a nilspace).

4This is a special case of a more general class of equivalence relations ∼k one can define

on nilspaces; see [3, Definition 3.2.3].
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Remark A.4 (Morphism spaces as nilspaces). If X, Y are nilspaces, then

the collection Hom�(X → Y) of nilspace morphisms from X to Y is itself a

nilspace, with the cube structure given by

Cn(Hom�(X → Y)) ≔ Hom�(X → Cn(Y))

for all n ≥ 0, where we view a map from X to Cn(Y) ⊂ Y {0,1}
n

as a {0, 1}n-

tuple of maps from X to Y in the obvious fashion. One can easily check

that Hom�(X → Y) obeys the nilspace axioms, and is k-step if Y is k-step.

Again, we caution that Hom�(X → Y) need not be ergodic even when X, Y

are both ergodic.

By definition, a nilspace morphism φ : X → Y has to preserve n-cubes

for every n ≥ 0. But if Y is k-step, it turns out one only has to check

preservation of k + 1-cubes:

Lemma A.5 (Preserving k + 1-cubes suffice). Let X be a nilspace, Y be a

k-step nilspace for some k ≥ 0, and let φ : X → Y be a map that preserves

k + 1-cubes. Then φ is a a nilspace morphism.

Proof. From the composition axiom (i) one easily verifies that if φ preserves

k+1-cubes, then it also preserves n-cubes for any n ≤ k+1. In the opposite

direction, if φ preserves k + 1-cubes and n > k + 1, then φ maps an n-cube

to a tuple (yω)ω∈{0,1}n with the property that every k + 1-dimensional face of

this tuple is a k + 1-cube. Using the completion axiom (and the fact that Y

is k′-step for every k′ ≥ k) one easily then verifies by induction that every

n′-dimensional face of this tuple is a n′-cube for k + 1 ≤ n′ ≤ n; setting

n′ = n gives the claim. �

If F : X → Z is a map from a nilspace X to an abelian group Z = (Z,+),

we can define the derivative dF : C1(X) → Z on the nilspace C1(X) by the

formula

dF(a, b) ≔ F(b) − F(a).

We can iterate this construction using Remark A.3 to define higher deriva-

tives5 dkF : Ck(X) → Z for any k ≥ 0, with the convention d0F = F.

5In particular, we caution that d does not form a chain complex and should not be

interpreted as an exterior derivative: d2
, 0.
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Explicitly, we have

dkF((xω)ω∈{0,1}k) =
∑

ω∈{0,1}k

(−1)k−|ω|F(xω).

Now we give a construction for extending a nilspace by a cocycle.

Definition A.6 (Cocycles on nilspaces). [3, Definitions 3.3.14, 3.3.18] Let

X be a nilspace, Z be an abelian group, and k ≥ 0. A cocycle of degree k on

X taking values in Z is a function ρ : Ck+1(X) → Z obeying the following

axioms:

(i) (Symmetry) If (xω)ω∈{0,1}k+1 ∈ Ck+1(X) is a k + 1-cube in X, and

σ : {0, 1}k+1 → {0, 1}k+1 is any map formed by permuting the k + 1

coordinates, then

ρ((xσ(ω))ω∈{0,1}k+1) = ρ((xω)ω∈{0,1}k+1).

(ii) (Cocycle) If x, y, z ∈ Ck(X) are k-cubes with (x, y), (y, z) ∈ C1(Ck(X)) ≡

Ck+1(X) are k+1-cubes (which implies that (x, z) is also a k+1-cube,

thanks to Remark A.3), then

ρ(x, z) = ρ(x, y) + ρ(y, z).

We say that ρ : Ck+1(X) → Z is a coboundary of degree k on X taking values

in Z if we have ρ = dk+1F for some F : X → Z.

Example A.7. A degree 1 cocycle is a map ρ : C2(X) → Z obeying the

symmetry axiom

ρ(x00, x01, x10, x11) = ρ(x00, x10, x01, x11)

for all (x00, x01, x10, x11) ∈ C2(X), and the cocycle axiom

ρ(x0, x1, z0, z1) = ρ(x0, x1, y0, y1) + ρ(y0, y1, z0, z1)

whenever (x0, x1, y0, y1), (y0, y1, z0, z1) ∈ C2(X). A degree 1 coboundary is a

map ρ : C2(X)→ Z of the form

ρ(x00, x01, x10, x11) = F(x00) − F(x01) − F(x10) + F(x11)

for all (x00, x01, x10, x11) ∈ C2(X).

It is easy to see that every coboundary of degree k is a cocycle of degree

k; indeed, the collection of coboundaries of degree k forms a subgroup of

the abelian group of cocycles of degree k. However, it will be crucial for
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our main results that the converse is not always true, so that nilspaces can

have non-trivial “degree k cohomology”.

Remark A.8. Axiom (ii) and the nilspace axioms imply that ρ(x, x) = 0

for all x ∈ Ck(X), and that ρ(x, y) = −ρ(y, x) for all (x, y) ∈ Ck+1(X). As a

consequence, the symmetry axiom (i) is equivalent to the stronger axiom

ρ((xθ(ω))ω∈{0,1}k+1) = (−1)r(θ)ρ((xω)ω∈{0,1}k+1)

whenever θ : {0, 1}k+1 → {0, 1}k+1 is a cube morphism and r(θ) is the number

of 1s in θ(0k+1) (informally, r(θ) is the number of face reflections needed to

generate θ). This alternate formulation of axiom (i) is the one used in [3,

Definition 3.3.14].

Now we introduce a key construction.

Proposition A.9 (Skew products). Let k ≥ 0, let X be a k-step nilspace,

and let ρ : Ck+1(X) → Z be a cocycle of degree k on X taking values in an

abelian group Z. Then we can define a nilspace X ⋊
(k)
ρ Z to be the Cartesian

product X×Z whose n-cubes for n ≥ 0 consist of those tuples ((xω, zω))ω∈{0,1}n

for which (xω)ω∈{0,1}n is an n-cube in X, and one has the equation

(53)
∑

ω∈{0,1}k+1

(−1)k+1−|ω|zφ(ω) = ρ((xφ(ω))ω∈{0,1}k+1)

whenever φ : {0, 1}k+1 → {0, 1}n is a k + 1-dimensional face of {0, 1}n (this

condition is vacuous when n < k + 1). If X is k-step, then so is X ⋊
(k)
ρ Z.

Finally, every n-cube (xω)ω∈{0,1}n in X has at least one lift ((xω, zω))ω∈{0,1}n

to an n-cube in X ⋊
(k)
ρ Z.

Proof. The claim that X ⋊
(k)
ρ Z is a nilspace is [3, Proposition 3.3.26] (with

slightly different notation). The conclusion about the k-step nature of X⋊
(k)
ρ Z

follows from the k-step nature of X and the equation (53) applied to the

identity face φ : {0, 1}k+1 → {0, 1}k+1, which constrains the final component

z1k+1 of the zω in terms of the other components zω and the base k + 1-cube

(xω)ω∈{0,1}k+1.

To prove the final claim, we set zω ≔ 0 for |ω| < k + 1, and whenever

|ω| = k + 1 we set

zω ≔ ρ((xφω(α))α∈{0,1}k+1)
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where φω : {0, 1}k+1 → {0, 1}n is the unique face map that sends 1k+1 to ω.

The tuple ((xω, zω))|ω|≤k+1 then is an n′-cube on X ⋊
(k)
ρ Z when restricted to

any n′-face in {ω ∈ {0, 1}n : |ω| ≤ k + 1} with n′ ≤ k + 1. By multiple

applications of the completion axiom on the k-step nilspace X ⋊
(k)
ρ Z (or

by [3, Lemma 3.1.5]), we may (uniquely) complete this tuple to an n-cube

((xω, zω))ω∈{0,1}n on X ⋊
(k)
ρ Z, whose first coordinates xω must agree with the

original n-cube (xω)ω∈{0,1}n on X since X is k-step. This gives the claim. �

We refer to X ⋊
(k)
ρ Z as the degree k skew product of the nilspace X and

the abelian group Z by the cocycle ρ. The map π : X ⋊
(k)
ρ Z → X defined

by π(x, z) ≔ x will be called the factor map; it is immediate that this is a

nilspace morphism.

Example A.10. If Z is an abelian group, then the k-step nilspace Dk(Z)

(defined in the next section) can be thought of as the skew product pt ⋊
(k)

0
Z

of a point pt and Z by the zero cocycle 0.

Example A.11. If ρ = dk+1F is a coboundary of degree k, then the skew

product X ⋊
(k)
ρ Z is isomorphic as a nilspace to the product nilspace X ×

Dk(Z) = X ⋊0 Z, with the isomorphism defined by mapping (x, z) to (x, z −

F(x)). More generally, adding or subtracting a degree k coboundary from a

cocycle does not affect the skew product up to nilspace isomorphism.

Remark A.12. In [3, Definition 3.3.13], a more abstract notion of a degree

k extension of a nilspace X is defined, and it is shown in [3, Lemma 3.3.21]

that any such extension can be written as a degree k skew product X ⋊
(k)
ρ Z

for some degree k cocycle after specifying a section of the extension; the

degree k coboundaries correspond to those extensions which are split. It is

also shown in [3, Theorem 3.2.19, Lemma 3.3.28] that an ergodic k-step

nilspace can be expressed as a tower

pt ⋊(1)
ρ1

Z1 ⋊
(2)
ρ2

Z2 · · · ⋊
(k)
ρk

Zk

of k successive skew products with abelian groups Z1, . . . , Zk (where we

apply the skew product construction from left to right). However, we will

not need these results here.
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A.2. Filtered abelian groups. The nilspaces that we shall consider in this

paper shall be constructed out of filtered abelian6 groups, and their extension

by cocycles. We first review the definition of a filtered abelian group.

Definition A.13 (Filtered abelian group). (see e.g., [12, §6]) A filtered

abelian group G = (G, (Gi)i≥0) is an abelian group G = (G,+) (which we

will usually think of as being discrete), equipped with a filtration

G = G0 ≥ G1 ≥ G2 ≥ . . .

of subgroups Gi. If G1 = G0 = G, we say that the filtered abelian group is

ergodic.

A filtered homomorphism from one filtered group G = (G, (Gi)i≥0) to

another H = (H, (Hi)i≥0) is a group homomorphism φ : G → H such that

φ(Gi) ≤ Hi for all i ≥ 0.

If G is a filtered group and k ≥ 0, we define the kth Host–Kra group

G[k] ≤ G{0,1}
k

of G to be the filtered abelian group of tuples of the form

(54) (
∑

α∈{0,1}k

hα

∏

i:αi=1

ωi)ω∈{0,1}k

where hα ∈ G|α| for all α ∈ {0, 1}k, where |α| ≔ α1 + · · · + αn, and with the

subgroup (G[k])i of the filtered abelian group G[k] defined to be the group of

tuples of the form (54) with hα ∈ G|α|+i for all A ∈ {0, 1}k. One can easily

verify that G[k] is also a filtered abelian group.

If Gi = {0} for i > d, we say that the filtered group G is of degree at

most d. An abelian group G is given the degree d filtration for some d ≥ 0

if Gi = G for i ≤ d and Gi = {0} for i > d, in which case we denote the

associated filtered abelian group asDd(G) (cf. [3, Definition 2.2.30]).

Example A.14. After some routine relabeling, we have

G[0] = G = {x : x ∈ G},

(55) G[1] = {(x, x + h1) : x ∈ G; h1 ∈ G1}

and

(56) G[2] = {(x, x+h1, x+h2, x+h1+h2+h12) : x ∈ G; h1, h2 ∈ G1; h12 ∈ G2}

6One can also build nilspace structures out of non-abelian filtered groups, and in partic-

ular out of nilpotent abelian groups; see for instance [3, §2.2]. However, we will not need

these more general nilspaces.
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and

G[3] ={(x, x + h1, x + h2, x + h3, x + h1 + h2 + h12, x + h1 + h3 + h23,

x + h2 + h3 + h13, x + h1 + h2 + h3 + h12 + h13 + h23 + h123) :

x ∈ G; h1, h2, h3 ∈ G1; h12, h13, h23 ∈ G2; h123 ∈ G3}.

(57)

In the case when G has the degree 1 filtration D1(G), one can omit the

h12, h13, h23, h123 terms in the above formulae.

From the construction one has a canonical identification

(58) (G[d])[n] ≡ G[d+n]

of filtered abelian groups for any d, n ≥ 0 defined by

(gω)ω∈{0,1}d+n ≡ ((g(ω,ω′))ω∈{0,1}d)ω′∈{0,1}n

for all (gω)ω∈{0,1}d+n ∈ G[d+n]; compare with (52).

Every filtered abelian group can be viewed as a nilspace.

Lemma A.15 (Filtered groups are nilspaces). If G = (G, (Gi)i≥0) is a filtered

abelian group, then G can be given the structure of a nilspace by setting

Cn(G) ≔ G[n]. This will be an ergodic nilspace if and only if G is ergodic.

If k ≥ 0, then G is of degree at most k as a filtered abelian group if and only

if it is a k-step nilspace.

Proof. See [3, Proposition 2.2.8] (which in fact proves this result even in the

non-abelian case). The proof in [3] is written only in the ergodic case, but

an inspection of the arguments reveals that it also holds in the non-ergodic

setting. �

Remark A.16. If G is a filtered abelian group, then we may potentially

have defined two nilspace structures on G[k]; one arising from applying the

above lemma to the filtered abelian group G[k], and the other by applying

the above lemma to G and then using the nilspace structure on n-cubes

Cn(G) from Remark A.3. However, it is easy to see that these two nilspace

structures coincide.

In view of the above lemma, we can now define nilspace morphisms be-

tween filtered abelian groups. As it turns out, these nilspace morphisms

have a nice characterisation in terms of difference operators. If G,H are
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(filtered) abelian groups and h ∈ G is a shift, we define the shift operator T h

and the difference operator ∂h on functions f : G → H by the formula

T h f (x) ≔ f (x + h)

and

∂h f (x) ≔ f (x + h) − f (x),

thus ∂h = T h − 1. Clearly these operators commute with each other, with

h 7→ T h being an action of G; we also note the cocycle identity

(59) ∂h+k = ∂h + T h∂k

for any h, k ∈ G.

Lemma A.17 (Characterization of nilspace morphisms). Let f : G → H

be a map from one filtered abelian group G = (G, (Gi)i≥0) to another H =

(H, (Hi)i≥0). Then f is a nilspace morphism if and only if

∂h1
. . . ∂hl

f (x) ∈ Hi1+···+il

for all l ≥ 0, i1, . . . , il ≥ 0, x ∈ G, and h j ∈ Gi j
for j = 1, . . . , l. In fact, it

suffices to check this condition for h j ∈ Ei j
, where for each i, Ei is a set of

generators for Gi.

Proof. See [13, Theorem B.3, Proposition B.8] or [3, Theorem 2.2.14] (the

latter statement is written in the ergodic case, but the proof extends without

difficulty to the non-ergodic setting). �

As one corollary of this lemma, we see that the space Hom�(G → H) of

nilspace morphisms from one filtered abelian group G to another H is an

abelian group, which contains the space of filtered homomorphisms from G

to H as a subgroup. In fact Hom�(G → H) naturally has the structure of

a filtered abelian group, in a manner consistent with the nilspace structure

on Hom�(G → H) already constructed in Remark A.3: see [13, Proposition

B.6]. The translation operators x 7→ x+h on G are also nilspace morphisms

for any h ∈ H.

A.3. Polynomials. We now define the notion of a polynomial:

Definition A.18 (Polynomials). If X is nilspace, H is an abelian group, and

d ≥ 0, a polynomial of degree at most d from X to H is a nilspace morphism
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from X toDd(H). When X is a filtered abelian group G, we can equivalently

define a polynomial by requiring that

∂h1
. . . ∂hl

P = 0

whenever i1, . . . , il ≥ 0 are such that i1 + · · · + il > d, and h j ∈ Gi j
for

j = 1, . . . , l; see [3, Theorem 2.2.14] for a proof of this equivalence. The

space of such polynomials will be denoted Polyd(X → H), thus

Polyd(X → H) ≡ Hom�(X →D
d(H)).

In particular, Polyd(X → H) is an abelian group, and when X is a filtered

abelian group it acquires a translation action h 7→ T h of G. If H = T, we

abbreviate Polyd(X → T) as Polyd(X), and refer to elements of Polyd(X) as

non-classical polynomials of degree at most d on X. By convention, we set

Polyd(X → H) = {0} for d < 0. For an abelian group G, we often abbreviate

Polyd(D1(G)→ H) as Polyd(G → H) (and Polyd(D1(G)) as Polyd(G)).

From the definitions we see that we can define polynomials recursively

on filtered abelian groups G: a map P : G → H lies in Polyd(G → H) if and

only if ∂hP ∈ Polyd−i(G → H) for all i ≥ 1 and h ∈ Gi. We remark that

classical polynomials correspond to the case when H is a field F, and G is

a vector space over that field (equipped with the degree 1 filtration).

Remark A.19. The space of polynomials Polyd(G) in a filtered abelian

group G is sensitive to the filtration structure on G. For instance, the func-

tion P : Z/2Z → T defined by P(x) ≔ x/2 is a polynomial of degree 1 if

Z/2Z is given the degree 1 filtration D1(Z/2Z), but is a polynomial of de-

gree 2 if Z/2Z is instead given the degree 2 filtrationD2(Z/2Z). Informally,

the difference operator ∂1 is a first-order operator in the former case, but a

second-order operator in the latter case.

If P : G → H is a map from a filtered abelian group G to an abelian group

H, recall from Section A.1 that we can define derivatives dkP : G[k] → H for

any k ≥ 0. By expanding all the definitions, we obtain a familiar-looking

relationship between polynomials and derivatives:

Proposition A.20 (Polynomials and derivatives). Let P : G → H be a map

from a filtered abelian group G to an abelian group H. If k ≥ −1, then P is
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a polynomial of degree at most k if and only if dk+1P = 0. In particular, for

k ≥ 0, we see that P is a polynomial of degree at most k if and only if dP is

a polynomial of degree at most k − 1.

As one application of this proposition, we have the following familiar-

looking result about multiplication of polynomials (cf. [21, Exercise 1.6.10]):

Lemma A.21 (Products of polynomials). Let G be a filtered abelian group,

and let R be a ring. If P1 : G → R, P2 : G → R are polynomials of degree

at most d1, d2 respectively, then P1P2 : G → R is a polynomial of degree at

most d1 + d2.

Proof. Observe the Leibniz rule

(60) ∂h(P1P2) = (∂hP1)P2+(T hP1)∂hP2 = (∂hP1)P2+P1∂hP2+(∂hP1)∂hP2

for any h ∈ G. The claim now follows by induction on the combined degree

d1 + d2. �

If G is a filtered abelian group which is also an elementary abelian 2-

group, then by (4) we have 2∂h = −∂
2
h

for any h ∈ G. When combined with

Proposition A.20, this gives

Proposition A.22 (Doubling lowers degree in 2-groups). Let G be a filtered

abelian group that is also an elementary abelian 2-group, and let H be

an abelian group. If P ∈ Polyk(G → H) for some k ≥ 1, then 2P ∈

Polyk−1(G → H).

In fact this property holds in the larger class of 2-homogeneous filtered

abelian groups, but we will not need to establish this fact here.

In the case of non-classical polynomials on a finite-dimensional vector

space Fn
2

over the field of two elements, we have an explicit description of

such polynomials:

Lemma A.23 (Explicit description of polynomials). Let n ≥ 0 and d ≥ 0.

Then a function P : Fn
2
→ T is of degree at most d if and only if it takes the

form

P(x1, . . . , xn) = α +

d
∑

k=1

∑

1≤i1<···<ik≤n

ci1 ,...,ik |xi1 | . . . |xik |

2d+1−k
mod 1
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for all x1, . . . , xn ∈ F2 and some 0 ≤ α < 1 and some integers 0 ≤ ci1,...,ik <

2d+1−k, where |x| ≔ 1x=1. The coefficients α and ci1 ,...,ik are uniquely deter-

mined. Indeed we have

α = P(0) mod 1

and
ci1 ,...,ik

2d+1−k
= ∂i1 . . . ∂ik P(0) mod 1.

Proof. This follows from [23, Lemma 1.7(iii)], with the latter identities fol-

lowing from a routine calculation. There is an analogous classification of

polynomials in other characteristics than 2, but we will only need the char-

acteristic two theory here. �

One quick corollary of this lemma is the exact roots property

(61) Polyd(Fn
2) = 2 · Polyd+1(Fn

2)

for all d ≥ 0, refining Proposition A.22 in this case; thus, every polynomial

P of degree d can be expressed in the form P = 2Q for some polynomial Q

of degree d + 1, and conversely if Q is of degree d + 1 then 2Q is of degree

d; see [23, Lemma 1.7(v)]. In a similar spirit, we have

Lemma A.24 (Inverting 1 + T e). Let n ≥ 1, let e be a non-zero vector in

F
n
2
, let d ∈ Z, and let P : Fn

2
→ T be a a polynomial of degree at most d

with ∂eP = 0. Then one can write P = (1 + T e)Q where Q : Fn
2
→ T is a

polynomial of degree at most d + 1.

Proof. If d < 0 then P vanishes and we can simply take Q = 0. Hence

we may assume d ≥ 0. Applying a change of variables we may assume

e = en is the final generator of Fn
2
. By [23, Lemma 1.7(iii)] we can write the

en-invariant polynomial P explicitly as

P(x1, . . . , xn) = α +

d
∑

k=1

∑

1≤i1<···<ik≤n−1

ci1 ,...,ik |xi1 | . . . |xik |

2d+1−k
mod 1

for all x1, . . . , xn ∈ F2 and some 0 ≤ α < 1 and some integers 0 ≤ ci1 ,...,ik <

2d+1−k, where |x| = 1x=1. We then define Q(x1, . . . , xn) explicitly by the

formula

Q(x1, . . . , xn) =
α

2
+

d
∑

k=1

∑

1≤i1<···<ik≤n−1

ci1 ,...,ik |xi1 | . . . |xik ||xn|

2d+1−k
mod 1.
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From [23, Lemma 1.7(iii)] again, Q is a polynomial of degree at most d+1,

and the identity P = (1 + T e)Q follows from direct calculation. �

We will use the following stability property for polynomials on nilspaces,

which we phrase in the setting of finite nilspaces as this is all we will need

here.

Theorem A.25 (Stability of polynomials). For every k ≥ 0 and ε > 0 there

exists δ > 0 such that if X is a finite ergodic nilspace, and φ : X → T is a

function such that
∣

∣

∣

∣

∣

∣

∣

∣

e



















∑

ω∈{0,1}k+1

(−1)k+1−|ω|φ(xω)



















− 1

∣

∣

∣

∣

∣

∣

∣

∣

≤ δ

for at least 1 − δ of the k + 1-cubes (xω)ω∈{0,1}k+1 in X, then there exists a

polynomial P ∈ Polyk(X) such that

Ex∈X |e(φ(x)) − e(P(x))| ≤ ε.

Proof. This is a special case of [5, Theorem 4.2] (with Y the compact

nilspace Dk(T) with metric d(x, y) ≔ |e(x) − e(y)|), noting that for a fi-

nite ergodic nilspace we can use the uniform probability measure on Cn(X)

as a Haar measure on that space. �

A.4. p-homogeneous nilspaces. The following definition was introduced

in [4]:

Definition A.26 (p-homogeneity). [4, Definitions 1.2, 3.1] Let p be a prime.

A nilspace X is said to be p-homogeneous if, whenever n ≥ 0 and f : D1(Zn)→

X is a nilspace morphism, then the periodization f̃ : D1(Fn
p) → X, defined

by restricting f to {0, . . . , p − 1}n and then extending periodically, is also a

nilspace morphism.

A nilspace X is said to be weakly p-homogeneous if, for every n-cube

(xω)ω∈{0,1}n ∈ Cn(X) for some n ≥ 0, there exists a nilspace morphism

f̃ : D1(Fn
p) → X such that f̃ (ω) = xω for all ω ∈ {0, 1}n (viewing {0, 1}n

as a subset of Fn
p).

In [4, Remark 3.3] it is noted that p-homogeneity implies weak p-homogeneity,

and that the two concepts are equivalent when p = 2. In [4, Question 3.4] it

is posed as an open question whether these two concepts are equivalent for
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p > 2; we do not address this question here. From this remark, we see that

X is 2-homogeneous (or equivalently, weakly 2-homogeneous), if and only

if we have a bijection

(62) Cn(X) ≡ Hom�(D
1(Fn

2)→ X)

for any n ≥ 0, where we identify maps from Fn
2

to X with tuples in X{0,1}
n

by

identifying {0, 1}n with Fn
2
. From this identification we obtain the following

consequence:

Lemma A.27 (Preserving 2-homogeneity). Let k ≥ 0, let X be a 2-homogeneous

k-step nilspace, and let X ⋊
(k)
ρ Z be a degree k skew product of that nilspace

with an elementary abelian 2-group Z. Then X ⋊
(k)
ρ Z is 2-homogeneous if

and only if, for any n ≥ 0, every nilspace morphism φ : D1(Fn
2
) → X has a

lift φ̃ : D1(Fn
2
) → X ⋊

(k)
ρ Z, thus φ̃ is a nilspace morphism with φ = π ◦ φ̃,

where π : X ⋊
(k)
ρ Z → X is the factor map.

Remark A.28. There is an analogue of this result for general p, but it is

more difficult to prove; see [4, Proposition 3.12].

Proof. We first prove the “only if” direction. Suppose that X ⋊
(k)
ρ Z is 2-

homogeneous, and φ : D1(Fn
2
)→ X is a nilspace morphism. By (62) for the

2-homogeneous nilspace X, we may view φ as an n-cube on X, which has a

lift to an n-cube on X ⋊
(k)
ρ Z by Proposition A.9. Applying (62) again to the

2-homogeneous nilspace X ⋊
(k)
ρ Z, we obtain the claim.

Now we prove the “if” direction. Let n ≥ 0, and let ((xω, zω))ω∈{0,1}n ∈

Cn(X ⋊
(k)
ρ Z) be an n-cube in X ⋊

(k)
ρ Z. We would like to interpret this n-cube

as a nilspace morphism from Fn
2

to X⋊
(k)
ρ Z. As X is already 2-homogeneous,

we know that the n-cube (xω)ω∈{0,1}n can already be identified with a nilspace

morphism φ from Fn
2

to X, which by hypothesis can be lifted to a nilspace

morphism φ̃ from Fn
2

to X ⋊
(k)
ρ Z. In particular, we can write

(63) φ̃(ω) = (xω, zω + P(ω))

for all ω ∈ {0, 1}n and some map P : Fn
2
→ Z (identifying {0, 1}n with Fn

2
).

Since ((xω, zω))ω∈{0,1}n ∈ Cn(X ⋊
(k)
ρ Z) is an n-cube, we have from (53) that

∑

ω∈{0,1}k+1

(−1)k+1−|ω|zι(ω) = ρ((xι(ω))ω∈{0,1}k+1)
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whenever ι : {0, 1}k+1 → {0, 1}n is a k + 1-dimensional face of {0, 1}n. As

(φ̃(ω))ω∈{0,1}n is also an n-cube, the same statement is true with zω replaced

by zω + P(ω). Subtracting, we conclude that
∑

ω∈{0,1}k+1

(−1)k+1−|ω|P(ι(ω)) = 0

for all k + 1-dimensional faces. Equivalently, we have

∂ei1
. . . ∂eik+1

P = 0

whenever 1 ≤ i1 < · · · < ik+1 ≤ n, where e1, . . . , en is the standard basis of

F
n
2
. For any i = 1, . . . , n, we have

∂ei
∂ei
= ∂2ei

− 2∂ei
= −2∂ei

since 2ei = 0 (cf. (4)); since Z is assumed to be an elementary abelian

2-group, we thus also have

∂ei1
. . . ∂eik+1

P = 0

whenever two of the i1, . . . , ik+1 are equal. We conclude that P ∈ Polyk(Fn
2
→

Z).

Now let (aω)ω∈{0,1}k+1 ∈ Ck+1(D1(Fn
2
)) be a k+1-cube in Fn

2
(with the degree

1 filtration). As φ̃ is a nilspace morphism, (φ̃(aω))ω∈{0,1}k+1 is a k + 1-cube in

X ⋊
(k)
ρ Z, which in particular implies from (63) that

∑

ω∈{0,1}k+1

(−1)k+1−|ω|(zaω + P(aω)) = ρ((xaω)ω∈{0,1}k+1).

Since P is a polynomial, we also have
∑

ω∈{0,1}k+1

(−1)k+1−|ω|P(aω) = 0;

subtracting, we conclude that
∑

ω∈{0,1}k+1

(−1)k+1−|ω|zaω = ρ((xaω)ω∈{0,1}k+1).

As a consequence, we see that (xaω , zaω)ω∈{0,1}k+1 is a k + 1-cube in X ⋊
(k)
ρ Z.

Thus the map a 7→ (xa, za) preserves k + 1-cubes, and is thus a nilspace

morphism from D1(Fn
2
) to X ⋊

(k)
ρ Z thanks to Lemma A.5. This gives the

claim. �

Finally, we remark that the notion of p-homogeneity greatly simplifies in

the case of ergodic filtered abelian groups:
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Proposition A.29 (p-homogeneous filtered abelian groups). Let G be a fil-

tered ergodic abelian group, and p a prime. Then G is p-homogeneous if

and only if p ·Gi ≤ Gi+1 for all i ≥ 1.

Proof. See [4, Theorem 1.4]. In fact the ergodicity hypothesis can be dropped

here, but we will not need to use this fact. �

Appendix B. Deducing the strong inverse conjecture from the BTZ

conjecture

We now prove Theorem 1.5, by refining the correspondence principle

argument used in [23]. Our arguments here follow [23] fairly closely, and

familiarity with that argument will be assumed here.

Fix p, k, η, ε(); all quantities below are permitted to depend on these pa-

rameters. Suppose for contradiction that Conjecture 1.2 was true, but Con-

jecture 1.3 failed for the indicated choice of η, ε(). Without loss of gen-

erality we may assume ε(m) ≤ 1
m

(for instance). Then for every M, there

exists G = Fn
p for some n = nM and a function f = fM : G → D with

‖ f ‖Uk+1(G) ≥ η, such that if h1, . . . , hM ∈ G are chosen independently and

uniformly at random, then with probability greater than 1/2, there does not

exist 1 ≤ m ≤ M and P ∈ Polyk(G) and a function F : CF
M
p → C of Lipschitz

constant at most M, such that

|Ex∈G f (x)e(−P(x))| ≥
1

m

and

|Ex∈Ge(P(x)) − F(( f (x +

M
∑

i=1

aihi))(a1 ,...,aM)∈FM
p

)| ≤ ε(m).

We use the following construction of a sampling sequence from [23]:

Proposition B.1 (Existence of accurate sampling sequence). Let ε0 > 0.

Then there exists a sequence of scales

0 = H0 < H1 < . . .

such that for any G = Fn
p and f : G → D, if v1, v2, v3, · · · ∈ G are chosen

uniformly and independently at random, then with probability at least 1−ε0,

the following “accurate sampling” statement holds: for every sequence

0 ≤ r0 < r1 < r2 < · · · < rk+1
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and every Lipschitz F : D{0,1}
k+1×F

r0
p → C, we have

Ex∈G |F f ,r0,...,rk+1
(x) − F f (x)| ≤

‖F‖Lip

r1

where

F f ,r0,...,rk+1
(x) ≔ E

~a1∈F
Hr1
p ,...,~ak+1∈F

Hrk+1
p

F(( f (x + ω · u + ~b · ~v0))
ω∈{0,1}k+1,~b∈F

Hr0
p

)

with

u ≔ (~a1 · ~v1, . . . , ~ak+1 · ~vk+1); ~v j ≔ (v1, . . . , vHr j
), j = 0, . . . , k + 1

and

F f ,r0
(x) ≔ Eh1,...,hk+1∈GF(( f (x + ω · h + ~b · ~v0))

ω∈{0,1}k+1,~b∈F
Hr0
p

)

where h ≔ (h1, . . . , hk+1).

Proof. See [1, Proposition 3.13] (with some mild relabeling, for instance

replacing k by k + 1). In that proposition the sampling property was only

asserted to hold with positive probability, but an inspection of the proof

shows that it can be established with probability at least 1− ε0 for any fixed

ε0 > 0. �

For each M, we apply the above proposition with ε0 = 1/2, n = nM, and

f = fM to conclude that the claimed accurate sampling property holds for

randomly chosen v1, v2, · · · ∈ F
n
p with probability at least 1/2. By combining

this with the construction of fM, we conclude that there exists (determinis-

tic) vi = vi,M ∈ F
n
p for all i ≥ 1 with the accurate sampling property, and

also the property that there does not exist 1 ≤ m ≤ M, P ∈ Polyk(G) and a

function F : CF
M
p → C of Lipschitz constant at most M, such that

|Ex∈G f (x)e(−P(x))| ≥
1

m

and

|Ex∈Ge(P(x)) − F(( f (x +

M
∑

i=1

aivi))(a1 ,...,aM)∈FM
p
)| ≤ ε(m).

We fix this data for each M. Following [23], we now introduce the univer-

sal Furstenberg space X ≔ DF
ω
p of functions ζ : Fωp → D with the product

σ-algebra and shift action

T hζ(x) ≔ ζ(x + h).
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As in [23, §4], for each M, the above data generate an invariant probability

measure µM on X by the formula

µM ≔ Ex∈F
nM
p
δζM,x

where ζM,x ∈ X is given by the formula

ζM,x((ai)
∞
i=1) ≔ fM(x +

∞
∑

i=1

aivi,M).

By Prokhorov’s theorem, we may restrict M to a subsequence and assume

that µM converges weakly to an invariant probability measure µ. Henceforth

X is understood to be endowed with µ.

Let f∞ : X →D be the coordinate function

f∞(ζ) ≔ ζ(0).

As noted in [23, (4.3)], we have the identity
∫

X

F(T~a1
f∞, . . . , T~al

f∞) dµM

= Ex∈F
nM
p

F















fM















x +

∞
∑

i=1

a1,ivi,M















, . . . , fM















x +

∞
∑

i=1

al,ivi,M





























(64)

for any l,m ≥ 1, any ~a j = (a j,i)
∞
i=1 ∈ F

ω
p for j = 1, . . . , l, and any continuous

function F : Dℓ → C. This allows us to pass back and forth between integral

expressions on X (using the measure µM) and combinatorial averages on

F
nM
p .

In [23, Lemma 4.2], it is shown that the σ-algebra of X is generated by

f∞ and its shifts. By [23, Lemma 4.3] the identity (64) was used to show

that X is an ergodic Fωp -system; from [23, Lemma 4.4] this identity was also

used to show that

‖ f∞‖Uk+1(X) ≥ η.

Applying the hypothesis that Conjecture 1.2 held, we can find P ∈ Polyk(X)

and some m such that
∣

∣

∣

∣

∣

∫

X

f∞e(−P) dµ

∣

∣

∣

∣

∣

>
3

m

(say). Let c : R+ → R+ be a decreasing function to be chosen later (de-

pending on k, p) such that c(ε) → 0 decays to zero sufficiently rapidly as

ε→ 0. Then, as X is generated by f∞ and its shifts, we see that there exists
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a natural number M0 and shifts ~b1, . . . , ~bM0
inFωp , and a Lipschitz function

F : DM0 → D of Lipschitz constant at most M0 such that

(65)

∫

X

|e(P) − F(T~b1
f∞, . . . , T~bM0

f∞)| dµ < c(ε(m))

so in particular by the triangle inequality (if c decays rapidly enough)
∣

∣

∣

∣

∣

∫

X

f∞F(T~b1
f∞, . . . , T~bM0

f∞) dµ

∣

∣

∣

∣

∣

>
2

m
.

By vague convergence we thus have
∣

∣

∣

∣

∣

∫

X

f∞F(T~b1
f∞, . . . , T~bM0

f∞) dµM

∣

∣

∣

∣

∣

≥
2

m
.

for arbitrarily large M (in particular we can assume M > M0,m). Applying

(64), we conclude that

(66)

∣

∣

∣

∣

∣

∣

∣

Ex∈F
nM
p

f∞(x)F( fM(x +

∞
∑

i=1

b1,ivi,M), . . . , fM(x +

∞
∑

i=1

bM0,ivi,M)

∣

∣

∣

∣

∣

∣

∣

≥
2

m
.

Now let r1 be sufficiently large depending on M0, ~b1, . . . , ~bM0
, and c(ε(m)),

and set r j ≔ r1 + j − 1 for j = 2, . . . , k + 1. Using the triangle inequality as

in the argument after [23, (4.5)], we conclude from (65) that

E
~a1∈F

Hr1
p ,...,~ak+1∈F

Hrk+1
p

∫

X

|∆~a1
. . .∆~ak+1

F(T~b1
f∞, . . . , T~bM0

f∞)−1| dµM ≪ c(ε(m))

for all sufficiently large M along the indicated subsequence, where we use

X ≪ Y to denote the estimate X ≤ CY for some C depending only on

p, k, and we use the notation ∆a f (x) ≔ f (x + a) f (x). Continuing the argu-

ment after [23, [(4.5)], we can use (64) and the accurate sampling sequence

property to conclude (for r1 large enough) that

Ex,h1,...,hk+1∈F
nM
p

∣

∣

∣

∣

∣

∣

∣

∆h1
. . .∆hk+1

F















fM















x +

∞
∑

i=1

b1,ivi,M















, . . . , fM















x +

∞
∑

i=1

bM0,ivi,M





























− 1

∣

∣

∣

∣

∣

∣

∣

≪ c(ε(m))

where the operators ∆h are applied in the x variable. Applying [23, Lemma

4.5] (or [5, Theorem 4.2]), and assuming that the function c decays suffi-

ciently rapidly, we may find a polynomial PM ∈ Polyk(FnM
p ) such that

Ex∈F
nM
p

∣

∣

∣

∣

∣

∣

∣

F















fM















x +

∞
∑

i=1

b1,ivi,M















, . . . , fM















x +

∞
∑

i=1

bM0 ,ivi,M





























− e(PM(x))

∣

∣

∣

∣

∣

∣

∣

≤ ε(m)
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From this, (66), and the triangle inequality (recalling that ε(m) ≤ 1/m) we

conclude that

|Ex∈F
nM
p

f∞(x)e(−PM(x))| >
1

m
.

But this contradicts the construction of the sampling sequence vi,M. This

concludes the proof of Theorem 1.5.
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[7] W. T. Gowers and L. Milićević. A quantitative inverse theorem for the u4 norm over

finite fields, 2017.
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