
MULTIPLE ERGODIC AVERAGES IN ABELIAN GROUPS AND
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OR SHALOM

Abstract. Let G be a countable abelian group. We study ergodic averages associ-
ated with configurations of the form {ag, bg, (a + b)g} for some a, b ∈ Z. Under some
assumptions on G, we prove that the universal characteristic factor for these averages
is a factor (Definition 1.15) of a 2-step nilpotent homogeneous space (Theorem 1.18).
As an application we derive a Khintchine type recurrence result (Theorem 1.3). In
particular, we prove that for every countable abelian group G, if a, b ∈ Z are such that
aG, bG, (b− a)G and (a+ b)G are of finite index in G, then for every E ⊂ G and ε > 0
the set

{g ∈ G : d(E ∩ E − ag ∩ E − bg ∩ E − (a+ b)g) ≥ d(E)4 − ε}
is syndetic. This generalizes previous results for G = Z, G = Fωp and G =

⊕
p∈P Fp

by Bergelson Host and Kra [6], Bergelson Tao and Ziegler [8] and the author [31],
respectively.

1. Introduction

Multiple ergodic averages play an important role in ergodic Ramsey theory. In the
case of Z-actions they were used by Furstenberg [16] to prove Szemerédi’s theorem [33]
about the existence of arbitrary large arithmetic progressions in sets of positive upper
Banach density. The goal of this paper is to study the convergence and limit of some
multiple ergodic averages associated with 4-term arithmetic progressions and more gen-
eral configurations in countable abelian groups. As usual, a G-system X = (X,B, µ, Tg)
is a probability space (X,B, µ) which is regular1, together with an action of a countable
abelian group G on X by measure preserving transformations Tg : X → X. Fix a, b ∈ Z,
a Følner sequence ΦN of G and bounded functions f1, f2, f3 ∈ L∞(X), we study the
multiple ergodic averages

(1.1) Eg∈ΦNf1(Tagx)f2(Tbgx)f3(T(a+b)gx)

where Eg∈ΦN = 1
|ΦN |

∑
g∈ΦN

. The L2-convergence of these averages as N goes to infin-

ity is already known for all countable nilpotent groups (see Walsh [34]). In the case
of Z-actions, these averages were studied by Conze and Lesigne [9], [10], [11] and by
Furstenberg and Weiss [18] using the theory of characteristic factors (see Definition 1.6).

Date: September 14, 2021.
The author is supported by ERC grant ErgComNum 682150.
1meaning that X is a compact metric space, B is the completion of the σ-algebra of Borel sets, and

µ is a Borel measure.
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2 OR SHALOM

This theory were developed further by Host and Kra [22] and Ziegler [36] in order to
deduce the convergence of some multiple ergodic averages associated with Z-actions and
by Bergelson Tao and Ziegler with Fωp actions [7].
This paper is focused on one of the many applications for these structure theorems as-
sociated with the Khintchine type recurrence. For example, we begin with the following
result by Bergelson Host and Kra [6].

Theorem 1.1. Let (X,B, µ, T ) be an invertible ergodic system. Then, for any measurable
set A ∈ B and ε > 0 the set

{n ∈ Z : µ(A ∩ T−nA ∩ T−2nA ∩ T−3nA) > µ(A)4 − ε}
is syndetic2.

In [8] Bergelson Tao and Ziegler proved a counterpart to this result for Fωp -systems.
This was generalized further by the author in [31].

Theorem 1.2. Let P be a countable multiset of primes with 3 < minp∈P p and let G =⊕
p∈P Fp. Then for every ergodic G-system (X,B, µ, {Tg}g∈G), measurable set A ⊆ X

and ε > 0 the set

{g ∈ G : µ(A ∩ TgA ∩ T2gA ∩ T3gA) > µ(A)4 − ε}
is syndetic.

In this paper we generalize the above to all countable abelian groups, under the fol-
lowing conditions.

Theorem 1.3 (Khintchine type recurrence result for countable abelian groups). Let G
be a countable abelian group and fix a, b ∈ Z. If aG, bG, (a − b)G and (a + b)G are
of finite index in G, then for every ergodic G-system (X,B, µ, {Tg}g∈G), measurable set
A ∈ B and ε > 0, the set

{g ∈ G : µ(A ∩ TagA ∩ TbgA ∩ T(a+b)gA) ≥ µ(A)4 − ε}
is syndetic.

In a recent paper, Bergelson and Ferré Mortagues [5, Theorem 2.8] proved an ergodic
version of the Furstenberg correspondence principle. A direct application of the above
is the following density result.

Theorem 1.4 (Density result). Let G be a countable abelian group and a, b ∈ Z such
that aG, bG, (b−a)G and (a+b)G are of finite index. Let ΦN be any Følner sequence for

G and dΦ be the corresponding upper density. i.e. dΦ(E) = lim supN→∞
|E∩ΦN |
|ΦN |

. Then

for any set E ⊆ G and ε > 0, the set

{g ∈ G : dΦ(E ∩ E − ag ∩ E − bg ∩ E − (a+ b)g) ≥ dΦ(E)4 − ε}
is syndetic.

2Recall that a set A in a group G is syndetic if there exists a finite set C ⊆ G such that A+C = G.



ERGODIC AVERAGES AND KHINTCHINE RECURRENCE 3

Remark 1.5. The case of double recurrence. Namely that

{g ∈ G : µ(A ∩ TagA ∩ TbgA) ≥ µ(A)3 − ε}
is syndetic, is not covered in this paper. This and a more general version of double
recurrence can be found in a recent paper by Ackelsberg Bergelson and Best [1].

Roughly speaking, we say that a factor of an ergodic system X is characteristic for an
ergodic average if the limit behavior of the average can be reduced to this factor. The
assumption on the indices of aG, bG, (b− a)G and (a+ b)G in Theorem 1.3 is necessary
to ensure that the systems we study in this paper are characteristic for average (1.1). It
is an interesting question under which conditions on a and b the finite index assumptions
in Theorem 1.3 can be removed.

Definition 1.6 (Characteristic factors). Let G be a countable abelian group and let X
be an ergodic G-system. For k ∈ N and 0 6= a1, ..., ak ∈ Z, we say that a factor Y is
characteristic for the tuple (a1g, a2g, ..., akg) if for every bounded functions f1, ..., fk ∈
L∞(X) and every Følner sequence ΦN of G we have that

lim
N→∞

(
Eg∈ΦN

k∏
i=1

Taigfi − Eg∈ΦN

k∏
i=1

TaigE(fi|Y )

)
= 0

in L2, where E(fi|Y ) denotes the conditional expectation with respect to the factor Y .

Remark 1.7.

• X is a characteristic factor for any tuple.
• The mean ergodic theorem states that the trivial factor is characteristic for (g).
• It is well known that for any countable abelian group G, the Kronecker factor

(the maximal group rotation factor) is a characteristic factor for (g, 2g).
• If G = Z, then the Kronecker factor is also characteristic for (ag, bg) for any

0 6= a, b ∈ Z, and in [18] Furstenberg and Weiss proved that the Conze-Lesigne
factor is characteristic for (ag, bg, (a+ b)g). We will discuss this below.

In the case of Z-actions, Host and Kra [22] proved that characteristic factors for the
tuple (g, 2g, 3g, ..., kg) are closely related to an infinite version of the Gowers norms.

Definition 1.8 (Gowers Host Kra seminorms). Let G be a countable abelian group, let
X = (X,B, µ, {Tg}g∈G) be a G-system, let φ ∈ L∞(X), and let k ≥ 1 be an integer. The
Gowers-Host-Kra seminorm ‖φ‖Uk of order k of φ is defined recursively by the formula

‖φ‖U1 := lim
N→∞

1

|Φ1
N |
‖
∑
g∈Φ1

N

φ ◦ Tg‖L2

for k = 1, and

‖φ‖Uk := lim
N→∞

 1

|Φk
N |
∑
g∈ΦkN

‖∆gφ‖2k−1

Uk−1

1/2k
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for k ≥ 1, where ∆gφ(x) = φ(Tgx) ·φ(x) and Φ1
N , ...,Φ

k
N are arbitrary Følner sequences3.

These seminorms were first introduced in the spacial case where G = Z/NZ by Gowers
in [19] where he derived quantitative bounds for Szemerédi’s theorem [33].
The Host-Kra factors are defined by the following proposition.

Proposition 1.9. Let G be a countable abelian group, let X be an ergodic G-system,
and let k ≥ 1. Then, there exists a factor Z<k(X) of X with the property that for every
f ∈ L∞(X), ‖f‖Uk(X) = 0 if and only if E(f |Z<k(X)) = 0.

Proposition 1.9 is proved in [22, Lemma 4.3] for G = Z (see [7, Lemma A.32] for
general countable abelian groups). In the case of Z-actions, Leibman [24] showed that
the k-th Host-Kra factor coincides with the k-th Ziegler factor [36]. The latter is the
universal (minimal) characteristic factor for all the tuples (a1g, a2g, ..., akg), where 0 6=
a1, ..., ak ∈ Z are distinct. Leibman’s proof can be generalized to arbitrary countable
abelian groups, assuming that the following subgroups: (aiG)ki=1, ((ai−aj)G)1≤i 6=j≤k are
of finite index in G. Otherwise, Z<k(X) may not be a characteristic factor for the tuple
(a1g, a2g, ..., akg).

Proposition 1.9 leads to the following definition.

Definition 1.10. Let k ≥ 1 be an integer. Let G be a countable abelian group and X
be an ergodic G-system. We say that X is a system of order < k if it is isomorphic as a
G-system to its factor Z<k(X).

Remark 1.11.

• The trivial system is the only system of order < 1.
• Any ergodic group rotation is of order < 2 (see [17]). The converse is also true

(see [22]).
• Anti-example: No non-trivial weakly mixing system is of finite order.

Convention. For an ergodic G-system X, we call Z<2(X) the Kronecker factor and
Z<3(X) the C.L. factor (named after Conze and Lesigne [9], [10], [11]) and we iden-
tify Z<2(X) with a group rotation (see Definition 5.1). Similarly, if X = Z<2(X) or
X = Z<3(X), we say that X is a Kronecker system or a C.L. system, respectively.

It is well known that the Conze-Lesigne factor is an abelian extension of the Kronecker
factor by an abelian group and a C.L. cocycle. We define these notions below.

Definition 1.12 (Abelian cohomology). Let G be a countable abelian group, let X be a
G-system and let (U, ·) be a compact abelian group. A measurable function ρ : G×X →
U is called a cocycle if ρ(g + g′, x) = ρ(g, x) · ρ(g′, Tgx) for every g, g′ ∈ G and µ-almost

3All of the limits exist and are independent on the choice of the Følner sequences, see [7, Lemma
A.18].
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every x ∈ X. The abelian extension of X by the cocycle ρ is defined to be the product
space

X ×ρ U = (X × U,BX ⊗ BU , µX ⊗ µU , Sg)
together with the action Sg(x, u) = (Tgx, ρ(g, x)u). We denote this system by X ×ρ U .

We say that two cocycles ρ, ρ′ : G × X → U are (G,X,U)-cohomologous (or just
cohomologous), if there exists a measurable map F : X → U such that ρ(g, x)/ρ′(g, x) =
∆gF (x) for all g ∈ G and µ-almost every x ∈ X. It is well known that cohomologous
cocycles define isomorphic group extensions4. We let B(G,X,U) denote the group of
all coboundaries, these are functions G × X → U of the form (g, x) 7→ ∆gF (x), where
F : X → U is a measurable map.

Observe that the group U acts on the extension X ×ρ U by measure preserving trans-
formations Vu(x, v) = (x, uv). More generally, given an action of a compact abelian
group A on a system X and f : X → U is a measurable map, we define Vaf(x) = f(ax)
and ∆af(x) = Vaf(x) · f(x)−1.
Below we define the notion of a C.L. cocycle with respect to a group A.

Definition 1.13 (Conze-Lesigne cocycles). Let G be a countable abelian group and
let X be an ergodic G-system. Let U and A be compact abelian groups and suppose
that A acts on X by measure preserving transformations. We say that the cocycle
ρ : G × X → U is a C.L. cocycle with respect to A if for every a ∈ A there exist a
homomorphism ca : G→ U and a measurable map Fa : X → U such that

∆aρ(g, x) = ca(g) ·∆gF (x)

for µ-almost every x ∈ X and all g ∈ G.

In [18] Furstenberg and Weiss proved the following result.5

Theorem 1.14 (Z<3(X) is an extension of the Kronecker by a C.L. cocycle). Let
(X,B, µ, T ) be an ergodic invertible measure preserving system. Then there exist a com-
pact abelian group U and a cocycle ρ : Z<2(X) → U such that Z<3(X) = Z<2(X) ×ρ U
and for every χ ∈ Û , χ ◦ ρ is a C.L. cocycle with respect to Z<2(X).

1.1. The Conze-Lesigne factor as a factor of a nilpotent system. We briefly and
informally explain how the methods we use in the proof of Theorem 1.3 differ from the
previous cases for Z and

⊕
p∈P Fp (Theorem 1.1 and Theorem 1.2).

The main difficulty in the proof of these theorems is to show that the Conze-Lesgine
factor admits some nilpotent structure. This nilpotent structure leads to a convenient
formula for the limit of average (1.1), which can be used to derive the recurrence result.

4The isomorphism is given by (x, u) 7→ (x, F (x)u).
5Furstenberg and Weiss proved this result under the assumption that X is normal. Host and Kra

[22, Lemma 6.2] gave another proof without this assumption. We also note that the same proof holds
for G-systems where G is a countable abelian group.
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In the generality of countable abelian groups we only managed to give partial results
in this direction. More specifically, we show that for any ergodic system (X,G) there
exists an extension (Y,H) (Definition 1.15) such that the C.L. factor of Y has the struc-
ture of a 2-step nilpotent homogeneous space6. As usual, we reduce the study of the
limit of average (1.1) to the case where the functions are measurable with respect to the
Conze-Lesigne factor Z<3(X) (Theorem 2.3). The main difference is that now we have
to pull everything up to the extension Z<3(Y ). Using the nilpotent structure of Z<3(Y )
we derive a formula for the limit of some multiple ergodic averages (Theorem 6.1). This
formula is used to deduce the Khintchine type recurrence result in Theorem 1.3.

We begin by introducing a notion of an extension outside of the category of G-systems.
Observe, that for a G-system X = (X,B, µ, Tg) and a countable abelian group H with a
surjective homomorphism ϕ : H → G there exists a natural H-action on X by Sh = Tϕ(h).
This leads to the following definition:

Definition 1.15 (Extensions). Let G and H be countable abelian groups. We say that
the system Y = (Y, (Sh)h∈H) is an extension of (X, (Tg)g∈G) if there exists a surjective
homomorphism ϕ : H → G and a factor map π : Y → X such that π ◦Sh = Tϕ(h) ◦ π for
all h ∈ H.

Example 1.16. Let G = Z/2Z act on the space X = {−1, 1} by Tgx = xg and let
H = Z/4Z act on Y = {−1,−i, i, 1} by Shy = yh. Then, the system (Y,H) defines an
extension of (X,G) with respect to the homomorphism

ϕ : H → G

ϕ(h) = h mod 2

and the factor map π : Y → X, π(y) = y2.

In particular, we see from this example that the family of ergodic H-extensions can
be larger than the family of ergodic G-extensions (there is no ergodic G-action on Y ).
In example 1.23 below we see another advantage of these extensions.

The following group was studied by Conze and Lesigne [9], [10], [11] and generalized
by Host and Kra [22] for systems of order < k, for any k ∈ N (see Definition A.3).

Definition 1.17 (The homogeneous group). Let G be a countable abelian group, let X
be a C.L. G-system and write X = Z<2(X) ×ρ U for some compact abelian group U .
For every s ∈ Z<2(X) and F : Z<2(X)→ U , let Ss,F ∈ Z<2(X)nM(Z<2(X), U) be the
measure preserving transformation Ss,F (z, u) = (sz, F (z)u). The C.L. group is given by

G(X) = {Ss,F ∈ Z<2(X)nM(Z<2(X), U) : ∃c : G→ U such that ∆sρ = c ·∆F}
with the natural multiplication Ss,f ◦ St,h = Sst,hVtf .

6We also give a structure theorem for the Conze-Lesgine factor as a double co-set (see Theorem 1.21),
but we do not use this result in the proof of the Khintchine recurrence.
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Equipped with the topology of convergence in measure G(X) is a 2-step nilpotent lo-
cally compact polish group.

Our main result is the following structure theorem.

Theorem 1.18 (Structure Theorem). Let G be a countable abelian group and let X
be an ergodic G-system. Then, there exist an extension (Y,H) and a 2-step nilpotent
locally compact polish group G which acts transitively on Z<3(Y ) by measure preserving
transformations. Moreover, we can take G = G(Z<3(Y )) as in Definition 1.17.

The moreover part in Theorem 1.18 plays an important role in the proof of the Khint-
chine type recurrence (Theorem 1.3). More specifically, it is used in the proof of the
limit formula for some multiple ergodic averages (Theorem 6.1), see Remark 6.5 for
more details.

Remark 1.19. In [30], Rudolph gave an example of an invertible measure preserving
system (X,T ) of order < 3 (i.e. X = Z<3(X)) which is not isomorphic to a 2-step
nilpotent homogeneous space. In this paper we show that one can avoid such examples
by assuming that the group of eigenfunctions of X is divisible (see Theorem 4.1). In
Theorem 3.17 we show that every ergodic G-system X admits an extension with that
property.

The remark below contains important facts about the structure of Z<3(Y ) as a homo-
geneous space. All of the properties in this remark are proved in the proof of Theorem
4.1.

Remark 1.20. In the settings of Theorem 1.18, the system Z<3(Y ) is isomorphic to the
G-system (G(Z<3(Y ))/Γ,B, µ, Rg) where Γ is the stabilizer of some x0 ∈ Z<3(Y0), B is the
Borel σ-algebra and µ the Haar measure7. Moreover, Γ is a totally disconnected closed co-
compact subgroup of G(Z<3(Y )) and there exists a homomorphism φ : G→ G(Z<3(Y ))
such that the action Rg is given by left multiplication by φ(g).

The factor map π : Y → X, induces a factor π̃ : Z<3(Y )→ Z<3(X) and the following
diagram commutes.

(X ,G ) (Y ,H)

(Z<3(X ),G ) (Z<3(Y ),H) ∼= (G/Γ,H)

π

πX3 πY3

π̃

7This measure exists because locally compact nilpotent groups are uni-modular.
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Theorem 1.18 shows that every ergodic C.L. system admits an extension with nilpotent
structure. Below we prove a structure theorem for the C.L. factor itself (without passing
to an extension).8

Theorem 1.21 (C.L. systems are double co-sets). Let G be a countable abelian group
and let X be an ergodic G-system. There exists a 2-step nilpotent locally compact polish
group G, a compact totally disconnected subgroup K ≤ G and a closed totally discon-
nected subgroup Γ ≤ G such that Z<3(X) ∼= K\G/Γ where G acts on K\G/Γ through a
homomorphism ϕ : G→ G whose image commutes with K.

A system (X,G) is called a k-step nilsystem if it is isomorphic to a homogeneous
space G/Γ where G is a k-step nilpotent Lie group, Γ is a discrete co-compact subgroup
and there exists a homomorphism φ : G → G such that g ∈ G acts on X by a left
multiplication by φ(g). In [9], [10], [11] Conze and Lesigne proved that the C.L. factor of
an ergodic Z-system is isomorphic to an inverse limit of 2-step nilsystems. Host and Kra
[22] and Ziegler [36] generalized this result by showing that for every k ∈ N, a Z-system
of order < k + 1 is an inverse limit of k-step nilsystems. Let (G/Γ, Ra) be a k-step
Z-nilsystem where Ra is a left translation by some a ∈ G. We denote by µG the Haar
measure on G. For every 1 ≤ r ≤ k + 1 let Gr be the closed subgroup generated by the
commutators of length r in G and let mr denote the Haar-measure on the quotient space
Gr/Γr where Γr = Γ ∩ Gr. In [35] Ziegler proved the following limit formula.

Theorem 1.22. Let X = (G/Γ, T ) be a connected simply connected k-step nilsystem and
let f1, ..., fk+1 ∈ L∞(X). Then for µG-almost every x ∈ G we have

lim
N→∞

N−1∑
n=0

k+1∏
i=1

T infi(xΓ) =

∫
G/Γ

∫
G2/Γ2

...

∫
Gk/Γk

k+1∏
i=1

fi(x ·
i∏

j=1

y
(ij)
j Γ)

k+1∏
i=1

dmi(yiΓi).

Then, in [6] Bergelson Host and Kra generalized this result for non-connected nilsys-
tems which satisfy that G is generated by its connected component and a.
In [7] Bergelson Tao and Ziegler studied the structure of the universal characteristic
factors associated with Fωp -actions. They showed that any ergodic Fωp -system has the

structure of a Weyl system9 and proved a similar limit formula for multiple ergodic aver-
ages associated with this group [8]. Any Weyl system of order < k+ 1 has the structure
of a k-step nilpotent homogeneous space. This structure theorem was generalized by the
author [31] for

⊕
p∈P Fp-systems in the special case k = 2 and in [32] for general k ∈ N.

8I thank Yonatan Gutman who informed me that double cosets may be relevant in this work.
9A Weyl system is a tower of abelian extensions of the trivial system where the cocycles are phase

polynomials (see Definition 3.1).
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A key component in the proof of Theorem 1.18 is a result about the (point) spectrum
of the G action as a unitary operator on L2(X). Let k ≥ 1. We say that a measurable
function P : X → S1 is a phase polynomial of degree < k if for any g1, ..., gk ∈ G we have
∆g1 ...∆gkP = 1 and write P<k(X,S

1) for the group of all phase polynomials of degree
< k. The k-th spectrum of X is defined to be the group

Speck(X) = {λ : Gk → S1 : ∃P ∈ P<k+1(X,S1) s.t. ∀g1, ..., gk, λ(g1, ..., gk) = ∆g1 ...∆gkP}.
In Theorem 3.16 below we show that for any ergodic system (X,G) there exists an
extension (Y,H) such that for every element in λ ∈ Speck(X) and n ∈ N there is an
n-th root for the corresponding element in Speck(Y ). In the special case where k = 1,
we show (Theorem 3.17) that P<2(Y, S1) is a divisible group. The following example
illustrates this phenomenon in a simple case.

Example 1.23. Let (X,G) and (Y,H) be as in Example 1.16.
The vector space of eigenfunctions of X is spanned by the constant 1 and the embedding
χ : X → S1, χ(x) = x. This finite group {1, χ}, under pointwise multiplication, is not
divisible. For instance, because there is no square root for χ. On the other hand, let
χ ◦ π be the lift of χ to Y . We see that the eigenfunction τ : Y → S1, τ(x) = x is a
square root of χ ◦ π.
This process can be iterated infinitely many times using inverse limits. The result is an
extension of X with a divisible group of eigenfunctions into S1. We do this in detail in
section 3 (see also Example 3.18).

If (Y,H) is a Conze-Lesigne system with a divisible 1-spectrum, then G(Y ) acts tran-
sitively on Y (Theorem 4.1). It is natural to ask whether the same holds for systems of
higher order.

Question. Let k ≥ 3, let G be a countable abelian group, and let (X,G) be an ergodic
system such that Spec1(X), ..., Speck−1(X) are divisible. Is it true that Z<k+1(X) has the
structure of a k-step nilpotent homogeneous space? More specifically, is it true that the
Host-Kra group G(X) (Definition A.3) acts transitively on X?

Acknowledgment I would like to thank my adviser Prof. Tamar Ziegler for many
valuable discussions and suggestions.

2. The Conze-Lesigne factor is characteristic

In this section we prove that under the assumptions in Theorem 1.3, the C.L. factor
is a characteristic factor for the tuple (ag, bg, (a + b)g). Our main tool is the van der
Corput lemma, (see e.g. [4]).

Lemma 2.1 (van der Corput lemma). Let H be a Hilbert space and G be an amenable
group. Then, for every Følner sequence ΦN and any bounded sequence {xg}g∈G ⊆ H we
have: If limN→∞ Eg∈ΦN 〈xg+h, xg〉 exists for every h ∈ G and there exists M ∈ R such
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that for any Følner sequence ΨH ,

(2.1) lim sup
H→∞

|Eg∈ΨH lim
N→∞

Eg∈ΦN 〈xg+h, xg〉 | ≤M.

Then,

lim sup
N→∞

‖Eg∈ΦNxg‖2 ≤M.

In particular, if limH→∞ Eg∈ΨH limN→∞ Eg∈ΦN 〈xg+h, xg〉 = 0, then limN→∞ Eg∈ΦNxg = 0.

Proof. Let ε > 0 be arbitrary. By the properties of a Følner sequence, we have that for
sufficiently large N and H,

‖Eg∈ΦNxg − Eh∈ΦHEg∈ΦNxg+h‖ < ε.

We use o(ε) to denote a positive quantity that goes to 0 as ε→ 0. Since xg is bounded,
the triangle inequality gives

‖Eg∈ΦNxg‖2 ≤ Eg∈ΦN‖Eh∈ΦHxg+h‖2 + o(ε).

Then, the right hand side becomes

Eg∈ΦNEh∈ΦHEh′∈ΦH 〈xg+h, xg+h′〉+ o(ε).

We make a change of variables and change the order of summation.

Eh′∈ΦHEh∈ΦHEg∈ΦN+h′ 〈xg+h−h′ , xg〉+ o(ε).

As ΦN is a Følner sequence, taking a limit as N → ∞ we get that for sufficiently large
H, the above equals to

Eh′∈ΦHEh∈ΦHγh−h′ + o(ε).

Making a change of variables again this becomes

(2.2) Eh′∈ΦHEh∈ΦH+h′γh + o(ε).

Let ε1 > 0, and suppose by contradiction that there exists a subsequence Hk −→
k→∞

∞
such that for every k, ∣∣∣Eh′∈ΦHk

Eh∈ΦHk+h′
γh

∣∣∣ > M + ε1.

Then we can find h′k ∈ ΦHK such that∣∣∣Eh∈ΦHk+h′
k

γh

∣∣∣ > M + ε1.

However, Ψk = ΦHk+h′k
is a Følner sequence and we have a contradiction to (2.1). There-

fore the lim supH→∞ of (2.2) is bounded above by M + o(ε). As ε > 0 is arbitrary the
claim follows. �

The first application of this lemma is the following result of Furstenberg and Weiss
[18].
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Lemma 2.2 (The Kronecker factor is characteristic for double averages). Let G be a
countable abelian group and let X be an ergodic G-system. Suppose that a, b ∈ Z are
such that aG, bG and (b − a)G are of index da, db and db−a in G, respectively. Fix
f1, f2 ∈ L∞(X) with ‖f1‖∞, ‖f2‖∞ ≤ 1 and let xg = Tagf1 ·Tbgf2. Then limN→∞ Eg∈ΦNxg
exists and ∥∥∥ lim

N→∞
Eg∈ΦNxg

∥∥∥2

L2(X)
≤ db−a ·min{da · ‖f1‖U2(X), db · ‖f2‖U2(X)}

in L2 for every Følner sequence ΦN of G.

Proof. We follow the argument in [18]. Set xg = Tagf1 · Tbgf2 then,

〈xg+h, xg〉 =

∫
X

Tag+ahf1 · Tbg+bhf2 · Tagf 1 · Tbgf 2dµ.

Since Tag is measure preserving we have,

lim
N→∞

Eg∈ΦN 〈xg+h, xg〉 = lim
N→∞

Eg∈ΦN

∫
X

∆ahf1 · T(b−a)g∆bhf2dµ.

By the mean ergodic theorem the limit exists and equals to

(2.3)

∫
X

∆ahf1Pb−a(∆bhf2)dµ

where Pb−a is the projection to the (b− a)G-invariant functions. If (b− a)G is ergodic,
then this equals to ∫

X

∆ahf1dµ ·
∫
X

∆bhf2dµ.

The limit of the average of this in absolute value

lim sup
H→∞

Eh∈ΦN

∣∣∣∣∫
X

∆ahf1dµ ·
∫
X

∆bhf2dµ

∣∣∣∣
is bounded by min{da · ‖f1‖U2·, db · ‖f2‖U2} and the claim follows by the van der corput
lemma. If (b − a)G is not ergodic, then since (b − a)G is of index db−a in G there
are at most db−a ergodic components. In particular, we can find a partition of X to

(b− a)G-invariant sets, X =
⋃db−a
i=1 Ai such that Pb−a is an integral operator with kernel∑db−a

i=1 1Ai(x)1Ai(y). We conclude that (2.3) equals to∫
X

∫
X

f 1(x) · f 2(y) · Tahf1(x) · Tbhf2(y)

db−a∑
i=1

1Ai(x)1Ai(y)dµ(x)dµ(y).

Taking another average on h over any Følner sequence ΨH and applying the mean ergodic
theorem for the action of Tah × Tbh, the limit of the above becomes

(2.4)

∫
X

∫
X

f 1(x) · f 2(y)

db−a∑
i=1

H(x, y)1Ai(x)1Ai(y)dµ(x)dµ(y)
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for some bounded Tah×Tbh-invariant function H(x, y). It is classical that every Tah×Tbh-
invariant function can be written by sums of all products of da eigenfunctions in x and db
eigenfunctions in y. Since 1Ai(x) is T(b−a)h-invariant, it is a sum of db−a eigenfunctions.
Let Z be the Kronecker factor, we conclude that the term in equation (2.4) is bounded
by the minimum between db−a · da ·maxχ∈Ẑ | 〈f1, χ〉 | and db−a · db ·maxχ∈Ẑ | 〈f2, χ〉 |.
Since the U2-norm bounds the maximal Fourier coefficient the claim follows. To see this
let f ∈ L2(X) be any function. We can decompose f with respect to the orthogonal
projection E(·|Z) and write f =

∑
χ∈Ẑ 〈f, χ〉 · χ+ f ′, then

‖f‖4
U2 = ‖E(f |Z)‖4

U2 =
∑
χ∈Ẑ

| 〈f, χ〉 |4 ≥ max
χ∈Ẑ
| 〈f, χ〉 |4.

This clearly implies that ‖f‖U2 ≥ maxχ∈Ẑ | 〈f, χ〉 |, and therefore, the van der Corput
lemma gives the promised inequality.
It is left to show that the limit exists. By linearity we can reduce matters to the Kro-
necker factor. For i = 1, 2 let f̃i = E(fi|Z). Then, by approximating f̃1, f̃2 by linear
combinations of eigenfunctions direct computation gives,

lim
N→∞

Eg∈ΦNTagf̃1(x) · Tbgf̃2(x) =

∫
Z

f̃1(xya)f̃2(xyb)dµZ(y)

in L2, where here we abuse notation and view f̃1 and f̃2 as functions on Z. This completes
the proof. �

Now, we generalize this for the tuple (ag, bg, (a+ b)g).

Proposition 2.3 (Z<3(X) is characteristic for triple averages). Let a, b ∈ Z and G be as
in Theorem 1.3 and let X be an ergodic G-system. Let f1, f2, f3 ∈ L∞(X) and for every

i = 1, 2, 3 let f̃i = E(fi|Z<3(X)). Then, assuming that the following limits exist in L2,
we have

lim
N→∞

Eg∈ΦNTagf1Tbgf2T(a+b)gf3 = lim
N→∞

Eg∈ΦNTagf̃1Tbgf̃2T(a+b)gf̃3.

Proof. Let da, db, db−a and da+b denote the indices of aG, bG, (b− a)G and (a+ b)G in G,
respectively and let f1, f2, f3 ∈ L∞(X). By linearity it is enough to show that if either

f̃1, f̃2 or f̃3 is zero, then

lim
N→∞

Eg∈ΦNTagf1Tbgf2T(a+b)gf3 = 0.

By the symmetry of the equation we can assume without loss of generality that f̃3 = 0.
Moreover, if we divide each function by a constant we can also assume that ‖f1‖∞, ‖f2‖∞
and ‖f3‖∞ are bounded by 1. Set xg = Tagf1 · Tbgf2 · T(a+b)gf3, then for every g, h ∈ G
and N ∈ N we have,

Eg∈ΦN 〈xg+h, xg〉 = Eg∈ΦN

∫
X

Tag+ahf1 · Tbg+bhf2 · T(a+b)(g+h)f3 · Tagf 1 · Tbgf 2 · T(a+b)gf 3dµ.
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Since Tag is measure preserving the above equals to

Eg∈ΦN

∫
X

∆ahf1 · T(b−a)g∆bhf2 · Tbg∆(a+b)hf3dµ.

By the previous lemma this average converges in L2. Observe that by the Cauchy-
Schwartz inequality and since ‖f1‖∞ ≤ 1, the absolute value of the above is smaller or
equal to ∥∥Eg∈ΦNT(b−a)g∆bhf2 · Tbg∆(a+b)hf3

∥∥
L2 .

By the previous lemma, the limit as N → ∞ is bounded by the square root of d2
a ·∥∥∆(a+b)hf3

∥∥2

U2(X)
. Since ‖ · ‖U3(X) is a seminorm, we conclude that for every Følner

sequence ΨH ,

lim
H→∞

Eh∈ΨH

∥∥∆(a+b)hf3

∥∥2

U2(X)
≤ da+b · ‖f‖4

U3(X).

Therefore, ∣∣∣ lim
H→∞

Eh∈ΨH lim
N→∞

Eg∈ΦN 〈xg+h, xg〉
∣∣∣ ≤ da · da+b · ‖f3‖2

U3 = 0

and by the van der Corput lemma the claim follows. �

3. Generalized spectrum

Let G be a countable abelian group, (X,G) an ergodic G-system and k ≥ 1. In this
section we construct an extension (Y,H) with the property that every phase polynomial
p : X → S1 of degree < k admits a phase polynomial n-th root q : Y → S1 such that
qn = p ◦ π for every n ∈ N where π : Y → X is the factor map. We begin with some
definitions. First, we generalize the definition of a phase polynomial to functions taking
values in an arbitrary compact abelian group.

Definition 3.1 (Phase polynomials). Let X be an ergodic G-system, let k ≥ 0 and let
U be a compact abelian group. We say that a function P : X → U is a phase polynomial
of degree < k if for every g1, ..., gk ∈ G we have that ∆g1 ...∆gkP = 1U . We let P<k(X,U)
denote the group of phase polynomials P : X → U of degree < k.

Bergelson Tao and Ziegler proved that up to constant multiplication, there are at
most countably many phase polynomials in P<k(X,S

1). In other words, the quotient
P<k(X,S

1)/P<1(X,S1) is a countable (discrete) group.10

Lemma 3.2 (Separation Lemma). [7, Lemma C.1] Let X be an ergodic G-system, let
k ≥ 1, and let φ, ψ ∈ P<k(X,S1) be such that φ/ψ is non-constant. Then ‖φ−ψ‖L2(X) ≥√

2/2k−2.

We also recall the following proposition from Appendix A.

Proposition 3.3. Let G be a countable abelian group and k,m ≥ 1. Let X be an ergodic
G-system of order < k and let P : X → S1 a phase polynomial of degree < m. Then

10This assertion follows from the lemma below and the fact that L2(X) is separable.



14 OR SHALOM

• X is an abelian extension of Z<k−1(X) by a compact abelian group U .
• For every u ∈ U , ∆uP is a phase polynomial of degree < max{0,m− k + 1}. In

particular, P is measurable with respect to Z<m(X).
• If p : G×X → U is a phase polynomial cocycle of degree < k, then X ×p U is a

system of order < k.

Spectrum: The (point) spectrum of a G-system X is the group of eigenvalues of the
G action on L2(X). We generalize this notion below.

Definition 3.4 (Generalized spectrum). Let X be an ergodic G-system and 1 ≤ k ∈ N.
We define the k-th spectrum of X by

Speck(X) = {λ : Gk → S1 : ∃P ∈ P<k+1(X,S1) s.t. ∀g1, ..., gk, λ(g1, ..., gk) = ∆g1 ...∆gkP}.
We are particularly interested in the case where this group is divisible.

Proposition 3.5 (Definition and properties of divisible groups). A group (H, ·) is said
to be divisible if for every h ∈ H and 1 ≤ n ∈ N there exists g ∈ H with gn = h. Divisible
groups are injective in the category of discrete abelian groups. Namely, if H ≤ G are
discrete abelian groups and H is divisible, then G ∼= H ⊕G/H.

Given two abelian groups H and G and an inclusion ı : H ↪→ G, we say that H is
divisible in G if for every n ∈ N and h ∈ H there exists g ∈ G with ı(h) = n · g. This
gives rise to the following definition of divisible systems.

Definition 3.6 (Divisible systems). Let G be a countable abelian group, let X be an
ergodic G-system, and let k ≥ 2. We say that X is k-divisible if Spec1(X), ..., Speck−1(X)
are divisible. Similarly, if (Y,H) is an extension of X, then X is k-divisible in Y if for
every 1 ≤ i ≤ k − 1, Speci(X) is divisible in Speci(Y ) with respect to the natural
inclusion.11

If X is k-divisible, then the group of phase polynomials of degree < k is divisible. In
fact, we prove the following stronger result.

Theorem 3.7 (k-Divisible implies that P<k(X,S
1) is divisible). Let G be a countable

abelian group and k ≥ 2. If X is a k-divisible and ergodic G-system, then for every d ≤ k
the group P<d(X,S

1) is divisible.

Proof. We prove the claim by induction on d. For d = 1, P<1(X,S1) ∼= S1 and the
claim follows. Let 2 ≤ d ≤ k and suppose that the claim has already been proven
for smaller values of d. Fix P ∈ P<d(X,S

1) and a natural number n ∈ N and let
λ(g1, ..., gd−1) = ∆g1 ...∆gd−1

P . Then, by assumption there exists γ ∈ Specd−1(X) with
γn = λ. Let Q ∈ P<d(X,S1) be such that γ(g1, ..., gd−1) = ∆g1 ...∆gd−1

Q. Then

∆g1 ...∆gd−1
Qn = ∆g1 ...∆gd−1

P.

11Let λ ∈ Speci(X), then there exists a phase polynomial P : X → S1 such that ∆g1 ...∆giP =
λ(g1, ..., gi). The natural inclusion is the map which sends λ to the element (h1, ..., hi) 7→ ∆h1 ...∆hiP ◦π
where π : Y → X is the factor map.
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We see that P/Qn is a phase polynomial of degree < d−1. By induction hypothesis there
exists Q′ ∈ P<d−1(X,S1) with Q′n = P/Qn and therefore P = (QQ′)n, as required. �

The following proposition will play an important role in the proof of Theorem 1.18.

Proposition 3.8 (Reducing C.L. equations to the circle). Let k ≥ 2 and let X be a
k-divisible and ergodic G-system. Let ρ : G×X → U be a cocycle into a compact abelian
group U and suppose that for every χ ∈ Û there exists a phase polynomial qχ : G×X → U
of degree < k − 1 and a measurable map Fχ : X → U such that χ ◦ ρ = qχ ·∆Fχ. Then,
there exists a phase polynomial q : G×X → U and a measurable map F : X → U such
that ρ = q ·∆F .

We note that the proposition above fails if the system is not k-divisible. We give an
example: Let X = (R/Z, α) be an irrational rotation on the torus and let ρ : R/Z→ C2

be the cocycle ρ(x) = e
(
−α

2
+ {x+α}

2
− {x}

2

)
where {x} is the fractional part of x and

e(y) := e2πiy. Observe, that as a cocycle into S1, ρ is cohomologous to the constant
e(−α

2
), but not as a cocycle into C2. To see that, let assume by contradiction that

ρ = c · ∆F where c ∈ C2 and F : X → C2. Then, c · e
(
α
2

)
is an eigenvalue for the

eigenfunction e
(
{x}
2

)
· F (x). This is a contradiction, because the eigenvalues of X are

{e(nα) : n ∈ Z}.
Proof of Proposition 3.8. Let ρ : G×X → U be as in the proposition and let K be the
group of all pairs (χ, F ) for which the equation in the claim holds. Namely,

K = {(χ, F ) ∈ Û ×M(X,S1) : ∃q ∈ P<k−1(G,X, S1) s.t. χ ◦ ρ = c ·∆F}.
K is a closed subgroup of the abelian group Û ×M(X,S1). Moreover, it is easy to see
that ker p ∼= P<k(X,S

1) and by the assumptions in the proposition, it follows that the

projection p : K → Û is onto. Therefore, by Theorem B.5, K is a locally compact abelian
group and we have a short exact sequence

(3.1) 1→ P<k(X,S
1)→ K → Û → 1.

By ergodicity P<1(X,S1) ∼= S1. Let A = P<k(X,S
1)/P<1(X,S1). Then, by quotienting

out P<1(X,S1) in (3.1) we conclude that

(3.2) 1→ A→ K/S1 → Û → 1

is a short exact sequence. Since Û and A are discrete (by Lemma 3.2), we deduce that
so is K/S1. Moreover, by Theorem 3.7 the group A is divisible. Therefore, Proposition
3.5 implies that

K/S1 ∼= A× Û .
Since the circle S1 is injective in the category of locally compact abelian groups, the
above implies that K ∼= P<k(X,S

1) × Û . Thus, we can find a Borel cross section (see

Definition B.3) χ 7→ (χ, Fχ) such that χ 7→ Fχ is a homomorphism and for every χ ∈ Û ,
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χ ◦ ρ = qχ · Fχ for some phase polynomial qχ : G × X → S1 of degree < k − 1. It
follows that χ 7→ qχ is also a homomorphism and so, by the Pontryagin duality theorem
there exists a measurable map F : X → U and a phase polynomial of degree < k − 1,
q : G × X → U such that Fχ = χ ◦ F and χ ◦ q = qχ. Since the characters separate
points, we conclude that ρ = q ·∆F , as required. �

Observe that every countable abelian group is a factor of a group with divisible dual
(say Zω). Therefore for the sake of the proof of Theorem 1.18, it is enough to assume
that the group G has a divisible dual (equivalently, that G is torsion free, see Proposition
3.11).
Let k ≥ 1, then every element λ ∈ Speck(X) is a multilinear map (i.e. a homomorphism
in every coordinate) from Gk to S1. More formally we have the following definition.

Definition 3.9 (Multilinear maps). Let G be a countable abelian group, let X be a
G-system, and let m ≥ 1. We say that λ : Gm → S1 is a multilinear map if for every
1 ≤ i ≤ m, g1, ..., gm ∈ G and g′i ∈ G we have

λ(g1, ..., gi · g′i, ..., gm) = λ(g1, ..., gi, ..., gm) · λ(g1, ..., g
′
i, ..., gm).

We denote by MLm(G,S1) the group of multilinear maps Gm → S1. We say that a
multilinear map λ is symmetric if it is invariant to the permutations of coordinates and
let SMLm(G,S1) denote the group of symmetric multilinear maps.

The groups MLm(G,S1) and SMLm(G,S1) are the Pontryagin dual of the tensor prod-
uct and symmetric tensor product of m copies of G, respectively.

Definition 3.10 (Tensor products). Let G be a countable abelian group. The m-tensor
product of G is a group G⊗m satisfying the following universal property: There exists a
multilinear map12 ı : Gm → G⊗m such that for every multilinear map λ ∈ MLm(G,S1)
there exists a homomorphism ϕλ : G⊗m → S1 such that λ = ϕλ ◦ ı. Similarly one can
define the symmetric tensor product G⊗symm.

Note that the tensor product and symmetric tensor product always exist and unique
up to isomorphism. We recall some basic results about topological groups.

Proposition 3.11. [20, Corollary 8.5, page 377] Let G be a countable (discrete) abelian

group. Then Ĝ is divisible if and only if G is torsion free.

The following result will play a significant role in our argument.

Proposition 3.12. Let G be a countable torsion free abelian group. Then for every
m ≥ 1, SMLm(G,S1) is a divisible group.

Proof. By Proposition 3.11, it is enough to show that G⊗symm is torsion free. We start
with the case where G is finitely generated. Since G is torsion free, it is isomorphic to
Zd for some d ∈ N. It is easy to see that G⊗symm is a free quotient of G⊗m ∼= Zdm and

12It is common to denote the element ı(g1, ..., gm) by g1 ⊗ ...⊗ gm.
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the claim follows. Now, let G be an arbitrary countable torsion free abelian group and
assume by contradiction that there exists 0 6= g ∈ G⊗symm of finite order. It is well known
that the image of the map ı : Gm → G⊗symm generates the group G⊗symm. Therefore,
there exists g1, ..., gk ∈ Gm such that g = ϕ(g1) · ... · ϕ(gk). The coordinates of g1, ..., gk
generates a finitely generated subgroup H of G and g ∈ H⊗symm. The finitely generated
case provides a contradiction. �

We need the following result by Zimmer [37, Corollary 3.8].

Definition 3.13 (Image and minimal cocycles). Let G be a countable abelian group,
let X be a G-system, and let ρ : G × X → U be a cocycle into a compact abelian
group U . The image of ρ is defined to be the closed subgroup Uρ ≤ U generated by
{ρ(g, x) : g ∈ G, x ∈ X}. We say that ρ is minimal if it is not (G,X,U)-cohomologous
to a cocycle σ with Uσ � Uρ.

Lemma 3.14. Let X be an ergodic G-system and ρ : G × X → U be a cocycle into a
compact abelian group U . Then,

• ρ is (G,X,U)-cohomologous to a minimal cocycle.
• X×ρU is ergodic if and only if X is ergodic and ρ is minimal with image Uρ = U .

The following proposition is the main step in our argument. We show that for every
ergodicG-systemX, whereG is a torsion free countable abelian group and any symmetric
multilinear map λ : Gm → S1 there exists an extension Y such that λ ∈ Specm(Y ).

Proposition 3.15. Let G be a torsion free countable abelian group and let X be an
ergodic G-system. Let m ∈ N and suppose that (λn)n∈N ∈ SMLm(G,S1) are countably
many symmetric multilinear maps. Then, there exists an extension π : (Y,G)→ (X,G)
and phase polynomials Qn : Y → S1 of degree < m + 1 such that λn(g1, ..., gm) =
∆g1 ...∆gmQn. In other words, λn ∈ Specm(Y ) for every n ∈ N.

Proof. Let λ : Gm → (S1)N be the multilinear map whose n-th coordinate is λn. We
prove the claim by induction on m. If m = 1, then λ : G → (S1)N is a homomorphism.
Let τ : G × X → (S1)N be a minimal cocycle which is cohomologous to λ and let
F : X → (S1)N be such that λ = τ · ∆F . Let V ≤ (S1)N denote the image of τ and
consider the extension Y = X ×τ V . By Lemma 3.14 this extension is ergodic. Let
ı : V → (S1)N be the embedding of V in (S1)N and let Q(x, v) = ı(v) · F (x). Then
∆gQ(x, v) = τ · ∆F = λ(g), which clearly implies that ∆gQn = λn(g) where Qn is
the n-th coordinate of Q, as required. Let m ≥ 2 and assume inductively that the
claim has already been proven for smaller values of m. For every gm ∈ G, the map
(g1, ..., gm−1) 7→ λ(g1, ..., gm−1, gm) is an element in SMLm−1(G,S1). By the induction
hypothesis, there exists an extension X1 of X and phase polynomials Qgm of degree < m
on X1 such that

(3.3) λ(g1, ..., gm) = ∆g1 ...∆gm−1Qgm .
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In particular, for every g, g′ ∈ G we have

(3.4)
Qg+g′

QgTgQg′
∈ P<m−1(X1, S

1).

In this case we say that g 7→ Qg is quasi-cocycle of order < m−1. We claim by induction

on 1 ≤ j ≤ m, that there exist an extension Xj and phase polynomials Q
(j)
g : Xj → S1

of degree < m such that

(3.5) λ(g1, ..., gm) = ∆g1 ...∆gm−1Q
(j)
gm

and g 7→ Q
(j)
g : Xj → S1 is a quasi-cocycle of order < m − j. Set Q

(1)
g = Qg, the case

j = 1 follows immediately by (3.4). Fix j ≥ 2 and assume inductively that there exist

an extension Xj−1 and phase polynomials Q
(j−1)
g : Xj−1 → S1 such that λ(g1, ..., gm) =

∆g1 ...∆gm−1Q
(j−1)
gm and g 7→ Q

(j−1)
g is a quasi-cocycle of degree < m − j + 1. For every

g1, ..., gm−j+1 ∈ G and every g, g′ ∈ G we have

∆g1 ...∆gm−j+1

Q
(j−1)
g+g′

Q
(j−1)
g TgQ

(j−1)
g′

= 1.

Therefore, by ergodicity

k
(j−1)
g,g′ (g1, ..., gm−j) := ∆g1 ...∆gm−j

Q
(j−1)
g+g′

Q
(j−1)
g TgQ

(j−1)
g′

is a constant. The map k : G×G→ SMLm−j(G,S
1) which sends (g, g′) to the symmetric

multilinear map kg,g′ is a symmetric cocycle (as in Definition B.1). Therefore, it defines
an abelian multiplication on the set B = G × SMLm−j(G,S

1) by (g, µ) · (g′, µ′) = (g +
g′, k(g, g′) · µ · µ′). We consider the following short exact sequence

1→ SMLm−j(G,S
1)→ B → G→ 1.

By Proposition 3.12 the group SMLm−j(G,S
1) is divisible and so by Proposition B.2 we

can find a map c : G → SMLm−j(G,S
1) such that c(g+g′)

c(g)c(g′)
= k(g, g′). By the induction

hypothesis, we can pass to an extension (Xj, G) of (Xj−1, G) where we can find phase
polynomials Q′g : Xj → S1 of degree < m such that c(g)(g1, ..., gm−j) = ∆g1 ...∆gm−jQ

′
g.

Now let Q
(j)
g := Q

(j−1)
g ◦ πj/Q′g where πj : Xj → Xj−1 is the factor map. Then g 7→ Q

(j)
g

is a quasi-cocycle of order < m− j. Moreover, since Q′g are phase polynomials of degree
< m− 1, equation (3.5) holds. This completes the proof by induction. The case j = m
implies that we can choose g 7→ Qg to be a cocycle, where Qg : Xm → (S1)N are phase
polynomial of degree < m, Xm is an ergodic extension of X and equation (3.3) holds.
The rest of the proof is the same as in the case where m = 1. Namely, we can find a
minimal cocycle τ : G×Xm → V which is cohomologous to (g, x) 7→ Qg(x). By Lemma
3.14, the extension Y = Xm ×τ V is ergodic and the map Q(x, v) = v · Q(x) satisfies
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that ∆gQ = Qg. This implies that that λ(g1, ..., gm) = ∆g1 ...∆gmQ and the proof is
complete. �

We can finally prove the promised result.

Theorem 3.16. Let G be a torsion free countable abelian group and k ≥ 2. Then for
every ergodic system (X,G) there exists an extension (Y,G), such that X is k-divisible
in Y .

Proof. Let X be as in the theorem. Fix k ∈ N, and let Spec(X) =
⋃k−1
i=1 Speci(X).

For every 1 ≤ i ≤ k − 1, every λ ∈ Speci(Xl), and every n ∈ N choose an n-th root
λn ∈ SMLi(G,S

1) for λ (which exists, by Proposition 3.12). Then, by Proposition 3.15,
we can find an extension Y such that {λn : λ ∈ Spec(X), n ∈ N} belongs to Spec(Y ).
This completes the proof. �

As a corollary we conclude the following stronger result for k = 2.

Theorem 3.17. Let G be a torsion free countable abelian group. Then every ergodic
G-system X is a factor of a 2-divisible system.

Proof. Let X be as in the theorem. Applying theorem 3.16 iteratively we obtain an
increasing sequence of extensions (Xn, G) with the property that Spec1(Xn) is divisible in
Spec1(Xn+1). Let Y be the inverse limit of Xn and recall that the factor map π : Y → Xn

induces factors πn : Z<2(Y )→ Z<2(Xn) for every n ∈ N. It is classical (see [18, Lemma
8.1]) that Z<2(Y ) is an inverse limit of the sequence

...→ Z<2(Xn)→ Z<2(Xn−1)→ ...→ Z<2(X1)→ Z<2(X).

Let f be an eigenfunction of Y , then for every n ∈ N and g ∈ G we have

TgE(f |Z<2(Xn)) = E(Tgf |Z<2(Xn)) = λgE(f |Z<2(Xn)).

In particular, if E(f |Z<2(Xn)) 6= 0, then f is measurable with respect to Z<2(Xn).
Therefore, for sufficiently large n, ∆gf ∈ Spec1(Xn). Since Spec1(Xn) is divisible in
Spec1(Y ) this completes the proof. �

We give an example of the theorem above in a simple case. For the sake of simplicity,
we will not construct a divisible extension of our initial system X, but instead we will
define an extension Y where P<2(Y, S1) is divisible by 2 (i.e. it contains all of its square
roots.).

Example 3.18. Let X = (R/Z, α) be an irrational rotation Tx = x + α, α ∈ R\Q.
The maps {x 7→ e(nx) : n ∈ N} form an orthonormal basis of eigenfunctions for T :
L2(X)→ L2(X) (recall that e(y) := e2πiy). It follows that P<2(X,S1) = {x 7→ c · e(nx) :
c ∈ S1, n ∈ Z} ∼= S1 × Z is not a divisible group. Let α1 = α

2
and consider the new

irrational rotation X1 = (R/Z, α1). We note that X1 is isomorphic to a group extension
of X by C2 and the cocycle τ(x) = α1 · F (x + α) · F (x)−1 where F is any measurable
map with F 2(x) = x and the isomorphism X ×τ U → X1 is given by (x, u) 7→ u · F (x).
We follow this procedure and construct a system of extensions Xn. Namely, for every
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n ≥ 2, let αn = α/2n and Xn = (R/Z, αn) be the irrational rotation by αn. The map
πn : Xn → Xn−1, πn(x) = x2 is a factor map and the sequence (Xn, πn) has an inverse
limit which we denote by Y . As topological groups, the inverse limit of Xn is isomorphic
to the solenoid (R × Z2)/Z where Z2 = {(z1, z2, ...) ∈ (R/Z)N : 2 · zi = zi−1∀i≥2} are
the 2-adic integers and the group Z is embedded in R × Z2 by sending 1 to (1, (ωn))
where ωn = 1

2n
. Under this identification, the action on Y is given by the rotation

R(α,~0) where ~0 is the zero element in (Z2,+). The factor map π′n : Y → Xn is given

by (x, ~z) 7→ x
2n
− zn. The Pontryagin dual of the solenoid Y is isomorphic to the group

Z[1
2
] = { a

2n
: a ∈ Z, n ∈ N} and the group P<2(Y, S1) ∼= S1 ⊕ Z[1

2
] is divisible by 2. In

other words, every element in P<2(Y, S1) has a square root in that group.

4. Divisible C.L. systems are homogeneous

We prove Theorem 1.18. By Theorem 3.17 it is enough to show the following result.

Theorem 4.1 (Divisible C.L. systems are homogeneous). Let G be a countable group
and let X be an ergodic 2-divisible G-system. Then the action of G(Z<3(X)) on Z<3(X)
is transitive.

We prove Theorem 4.1 and the properties mentioned in Remark 1.20.

Proof. Let X be as in the Theorem. By Proposition A.11, we can write Z<3(X) =
Z<2(X)×ρ U for some compact abelian group U and a cocycle ρ : G×Z<2(X)→ U . As

usual we identify Z<2(X) with a compact abelian group Z. Let χ ∈ Û be a character
and s ∈ Z, then by Proposition A.11 again, we can find a character cs(χ) : G → S1

and a measurable map Fs(χ) : Z → S1 such that ∆sχ ◦ ρ = cs(χ) ·∆Fs(χ). Since X is
2-divisible, Proposition 3.8 implies that for every s ∈ Z there exists a measurable map
Fs : Z → U such that Ss,Fs ∈ G(Z<3(X)) (see Definition 1.17). Since the transformations
S1,u for u ∈ S1 are also in G(Z<3(X)) the action of this group on X is transitive. This
completes the proof of Theorem 1.18. Now, let x0 = (1, 1) ∈ Z×U and Γ be the stabilizer
of x0 under the action of G(X). Then,

Γ = {S1,F : F ∈ Hom(Z,U)}
is a totally disconnected closed subgroup of G(Z<3(X)). By Theorem B.4, the projection
map p : G(Z<3(X)) → G(Z<3(X))/Γ is open and by Theorem B.6, Z<3(X) is home-
omorphic to G(Z<3(X))/Γ. It follows that Z<3(X) is isomorphic to G(Z<3(X))/Γ as
G-systems, where the action of g ∈ G on G(Z<3(X))/Γ is given by left multiplication by
Sg,ρ(g,·). �

We now prove Theorem 1.21.

Proof. Let X be as in the theorem and write Z<3(X) = Z×ρU where Z is the Kronecker

factor and ρ : G × Z → U is a cocycle into a compact abelian group U . Let (Z̃,H)
be an extension of (Z,G) with divisible dual (as in Theorem 3.17). Let π : Z̃ → Z
be the quotient map and K := kerπ. Let q : Z → Z̃ be a Borel cross section. The
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map ϕ : Z̃ → Z × K, z 7→ (π(z), z · q ◦ π(z)−1) is a measure-theoretical bijection. Let
τ : H × Z̃ → K be the cocycle

τ(h, z) =
Thz · q ◦ π(Thz)

z · q ◦ π(z)−1

where Th denotes the action of h ∈ H on Z̃. Observe that τ is invariant to translations
by K and so it induces a cocycle τ ′ : H×Z → K and Z̃ ∼= Z×τ ′K. It will be convenient
to modify the group G from Theorem 1.18. Let

G = {(s, k, F ) ∈ Z ×K ×M(Z̃, U) : ∃cs : H → U such that ∆sτ
′(h, π(z)) = ∆hF (z)}

and equip G with the multiplication (s, k, F ) · (s′, k′, F ′) = (ss′, kk′, FVq(s)·kF
′). We de-

fine a topology on G by letting a sequence (sn, kn, Fn) converge to (s, k, F ) if sn → s in
Z, kn → k in K and Fn → F in measure. With this topology and multiplication G is
a 2-step nilpotent polish group. Recall that in the proof of Theorem 1.18 we show that
the projection G → Z̃ is onto. In particular, it follows that G acts transitively on X×K.
Now, let Γ = {1} × {1} × Hom(Z̃ → U) and let ϕ : G → G be the homomorphism
ϕ(g) = (Tg1, 1, ρ(g, π(·)) where Tg : Z → Z denote the action of G on Z. Since ρ ◦ π
is invariant to translations by K, we have that ϕ(G) commutes with K. Moreover, the
action of g ∈ G on Z<3(X) corresponds to multiplication by ϕ(g) under the homeomor-
phism Z<3(X) ∼= K\G/Γ.

It is left to show that K is totally disconnected. We recall the relevant part in the
proof of Theorem 3.17. For every χ ∈ Ẑ and n ∈ N we find a homomorphism λn ∈ Ĝ
such that λnn(g) = ∆gχ. Then, we let λ : G→ (S1)N be the homomorphism whose n-th
coordinate is λn. Let τ be a minimal cocycle which is cohomologous to λ and V1 be its
image. Then, as in the proof of Proposition 3.15, we let Z1 = Z ×τ V1. We first prove
that V1 is totally disconnected. Let Fn : Z → S1 be any measurable map with F n

n = χ,
then λn ·∆Fn takes values in Cn. Let F : Z → (S1)N be the map whose n-th coordinate is
Fn then λ ·∆F takes values in

∏
nCn, which is totally disconnected. Since τ is minimal,

V1 is a closed subgroup of
∏

nCn and therefore totally disconnected. Now, we continue
this process. In each step we construct a Kronecker system Zm as an extension of Zm−1

by a totally disconnected group Vm−1. The group Z̃ is the inverse limit of the sequence
Zm. It follows that K is the inverse limit of Vm. Since Vm is totally disconnected for
every m ∈ N, we conclude that so is K. �

4.1. Simple homogeneous spaces. For completeness we show that any system with
a nilpotent homogeneous structure as in Theorem 1.18 is an inverse limit of simpler
homogeneous spaces in which the stabilizer Γ is a discrete subgroup. We will not use
this result.

Definition 4.2. Let G be a countable abelian group and let (X,G) be a C.L. system.
We say that X is a simple homogeneous space if the C.L. group (Definition 1.17) acts
transitively on X and the stabilizer of any x0 ∈ X is a discrete subgroup.
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Proposition 4.3. Let G be a countable abelian group and let (X,G) be a C.L. system.
If G(X) acts transitively on X then X is an inverse limit of simple homogeneous spaces.

Proof. Let X as in the proposition and write X = Z ×ρ U where Z = Z<2(X) is the
Kronecker factor. By Gleason-Yamabe theorem we can find a decreasing sequence of
closed subgroups Kn ≤ U such that

⋂
n∈NKn = {1} and the quotients Ln = U/Kn are

Lie groups. Let πn : U → Ln be the projection map and let Xn = Z ×πn◦ρ Ln. Since
G(X) acts transitively on X, we have that for every s ∈ Z, there exists a measurable
map F : Z → U such that ∆sρ = c ·∆F . Observe that if Ss,F ∈ G(X) and ∆sρ = c ·∆F
for some c : G → U , then ∆sπn ◦ ρ = πn ◦ c ·∆πn ◦ F and Ss,πn◦F ∈ G(Xn). As S1,uKn

belongs to G(Xn), we conclude that the action of G(Xn) on Xn is transitive. Fix any
x0 ∈ Xn, then the stabilizer Γn of x0 is homeomorphic to the discrete group hom(Z,Un).
Since X is an inverse limit of Xn, the claim follows. �

5. The structure of a nilpotent system

Let G be a countable abelian group and X be a C.L. ergodic G-system such that the
action of G(X) on X is transitive. Write X = G(X)/Γ(X) where Γ(X) the stabilizer of
some x0 ∈ X. We recall the definition of a group rotation.

Definition 5.1. Let G be a countable abelian group. We say that a G-system X is
a group rotation if it is isomorphic to a compact abelian group K and there exists a
homomorphism ϕ : G→ K such Tgk = ϕ(g)k for every g ∈ G and k ∈ K.

It is well known (see [13, Theorem 6.1]) that the Kronecker factor is the maximal
group rotation.

Theorem 5.2 (Maximal property of the Kronecker factor). Let G be a countable abelian
group and X be a G-system. Then any group rotation factor Y of X is a factor of
Z<2(X).

Recall that any C.L. system can be written as X = Z ×ρ U where Z is the Kronecker
factor, U is a compact abelian group and ρ : G×Z → U is a cocycle (Proposition A.11).
The following lemma plays an important role in the proof of the limit formula (Theorem
6.1 below). We show that if G(X) acts transitively on X is transitive, then it is possible
to express the groups Z and U in terms of the homogeneous group G(X), its commutator
G(X)2 and the stabilizer Γ(X).

Lemma 5.3. Let G be a countable abelian group and X = Z ×ρ U be an ergodic C.L.
G-system where Z is the Kronecker factor and suppose that the action of G(X) on X
is transitive. If G is an open subgroup of G(X) which contains the embedding of G in
G(X), then Z ∼= G/G2Γ and U ∼= G2 where Γ := Γ(X) ∩ G and G2 is the closed subgroup
generated by the commutators {[a, b] : a, b ∈ G}13.

13where [a, b] = a−1b−1ab as usual.



ERGODIC AVERAGES AND KHINTCHINE RECURRENCE 23

Proof. First we prove that G/Γ ∼= G(X)/Γ(X) as measure spaces. To see this observe that
the projection p : G(X)→ G(X)/Γ(X) is an open map (Theorem B.4). Therefore, p(G)
is a G invariant open (and closed) subset of G(X)/Γ(X), hence by ergodicity p(G) = X.
We conclude that the map gΓ 7→ gΓ(X) from G/Γ to G(X)/Γ(X) is an isomorphism.
In particular, there exists a factor map π : G/Γ → Z. Direct computation shows that
G2 acts trivially on Z and π factors through G2. By Lemma 5.2, π : G/G2Γ → Z is an
isomorphism, hence Z ∼= G/G2Γ.
Let p : G(X) → Z be the projection map Ss,F 7→ s. The group p(G) is an open and
closed G-invariant subgroup of Z and so by ergodicity p(G) = Z. Choose a Borel cross
section s 7→ Ss,Fs as in Theorem B.4. We have,

[Sg,σ(g), Ss,Fs ] = S1,∆sσ
∆Fs

and ∆sσ
∆gFs

is a constant in U . We identify G2 with the closed subgroup generated by

these constants. Suppose by contradiction that G2 � U , then there exists a non-trivial
character χ : U → S1 such that ∆sχ◦σ = ∆χ◦Fs. Theorem A.5 implies that factor Y =
Z×χ◦σχ(U) is isomorphic to a group rotation and Theorem 5.2 provides a contradiction.

�

We need the following weaker notion of divisibility.

Definition 5.4. Let U be an abelian group and n ∈ N. We denote by Un := {un : u ∈ U}
and say that U is n-divisible if Un = U .

As a corollary of the previous lemma we conclude:

Corollary 5.5. Let G be a countable abelian group and a, b ∈ Z as in Theorem 1.3. Let
(X,G) be an ergodic C.L. system and suppose that G(X) acts transitively on X. Then
the commutator subgroup G(X)2 is a, b and (b± a)-divisible.

Proof. By the previous lemma, we can write X = Z ×σ U where U = G(X)2. Fix a
number m ∈ {a, b, b± a} and suppose by contradiction that U is not m-divisible. Then,
U/Um is non-trivial and so, since the characters separate points, there exists a non-trivial
character χ : U → Cm. Let s 7→ Ss,Fs be a Borel cross section from Z to G(X) and let
cs : G→ S1 such that ∆sχ ◦ ρ = cs ·∆Fs.
Observe that cms ∈ B1(G,X, S1) is an eigenvalue. Since mG is of finite index in G, the set
{cs : s ∈ Z} is at most countable. Thus, the group Z ′ = {s ∈ Z : ∆sχ◦ρ ∈ B1(G,X, S1)}
is a G-invariant open subgroup of Z and by ergodicity, Z ′ = Z. As before, Theorem
A.5 implies that the extension by χ ◦ ρ is a group rotation and Theorem 5.2 provides a
contradiction. �

Remark 5.6. In the previous corollary, since at least one of a, b, a+ b is even, the group
G(X)2 is automatically 2-divisible.
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6. Limit formula and pointwise convergence

We prove the following pointwise convergence for some multiple ergodic averages on a
2-step homogeneous space where the homogeneous group is the C.L. group (Definition
1.17).

Theorem 6.1 (Limit formula). Let X = G/Γ be an ergodic C.L. G-system, where G is
the C.L. group and suppose that G2 is 2-divisible. Let µG2 denote the Haar measure on
G2. Then for every k ∈ N, f1, f2, ..., fk ∈ L∞(X) and µ-almost every x ∈ X we have,

lim
N→∞

Eg∈ΦN

k∏
i=1

Tigfi(x) =

∫
G/Γ

∫
G2

k∏
i=1

fi(xy
i
1y

(i2)
2 )dµG2(y2)dµ(y1)

(6.1)

with the abuse of notation that f(x) = f(xΓ).

As a corollary we conclude the following result.

Corollary 6.2. Let a, b ∈ Z. In the settings of Theorem 6.1, choose k = a + b, let
h1, h2, h3 ∈ L∞(X) be any bounded functions and set fa = h1, fb = h2, fa+b = h3 and
fi = 1 for all i 6= a, b, a+ b. Then, for µ-almost every x ∈ X we have,

lim
N→∞

Eg∈ΦN Tagh1(x)Tbgh2(x)T(a+b)gh3(x) =∫
G/Γ

∫
G2

h1(xya1y
(a2)
2 )h2(xyb1y

(b2)
2 )h3(xya+b

1 y
(a+b

2 )
2 )dµG2(y2)dµ(y1).

(6.2)

Note that the assumption that G2 is 2-divisible in Theorem 6.1 is necessary. We give
a counterexample in the case where this assumption is removed.

Example 6.3. Let G = Fω2 be the countable direct sum of the field F2 = {0, 1}. The
map g 7→ eπig defines an embedding of G in the infinite direct product Z =

∏ω
n=1 C2,

where C2 = {−1, 1} is a discrete group under multiplication. This embedding gives rise
to an action of G on Z by Tgz = eπig · z and the system (Z,G) is an ergodic Kronecker

system. Let σ : Fωp ×
∏ω

n=1C2 → C2 be the cocycle σ(g, x) =
∏∞

i=1 x
gi
i · (−1)(

gi
2 ).

The system X = Z ×σ C2 is an ergodic G-system.14 Since σ is a phase polynomial
of degree < 2, it is not hard to show that X = G(X)/Γ where G(X) is the Host-

Kra group of X and Γ = {S1,p : p ∈ Ẑ}. Moreover G(X)2 = C2 is not a 2-divisible
group. Now let k = 2, f1 = 1 and f2(x, y) = y. Since, every element of G is of order

2, the integral in equation (6.1) equals to
∫
C2
u(2

2)ydµC2(u) = 0. On the other hand

limN→∞Eg∈ΦNTgf1(x, y) ·T2gf2(x, y) = y. Thus, equation (6.1) fails. Note that a similar

14To prove ergodicity one can express any measurable bounded function as f(x, y) =∑
χ∈Ẑ,τ∈Ĉ2

aχ,τχ(x)τ(y). If f is invariant one can use the uniqueness of the Fourier series to deduce

that aχ,τ = 0 unless χ and τ are the trivial characters.
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example where 2 is replaced by any odd integer n, will not give a counterexample for
(6.1), because odd n’s divide

(
n
2

)
.

In order to prove Theorem 6.1, we follow an argument by Bergelson Host and Kra [6].
Let,

ı : G × G × G2 → Gk+1,

ı(g, g1, g2) = (g, gg1, gg
2
1g2, ..., gg

k
1g

(k2)
2 ).

We denote by G̃ the image of ı. In [23] Leibman proved that G̃ is a 2-step nilpotent
group. The subgroup Γ̃ = ı(Γ × Γ × {e}) is a closed subgroup of G̃ and the quotient
space X̃ = G̃/Γ̃ is compact. Let µ̃ be the Haar measure on this space. We define an action
of G×G on (X̃, µ̃) by left multiplication with g4 := (g, g, ..., g) and g? = (1, g, g2, ..., gk),
where g is identified with the measure-preserving transformation Tg : X → X in G(X).
In Lemma 6.8 below we prove that this action is uniquely ergodic. Assuming this for
now, we fix x ∈ X and consider the compact polish space

X̃x := {(x1, x2, .., xk) ∈ Xk : (x, x1, x2, ..., xk) ∈ X̃}.

Bergelson Host and Kra showed that the group G̃? = {(g1, g
2
1g2, ..., g

k
1g

(k2)
2 ) : g1 ∈ G, g2 ∈

G2} acts transitively on this space and X̃x
∼= G̃?/Γ̃? where Γ̃? = {(γ, γ2, ..., γk) : γ ∈ Γ}.

Observe that since ı is injective, it induces an isomorphism of G-systems, ı̃ : G/Γ×G2 →
X̃x where the action of G on G × G2 is given by Tg(y1, y2) = (g[g, x]y1, [g, y1]y2).

We continue assuming that the action of G×G on X̃ is uniquely ergodic. Let µ̃x be the
Haar measure on X̃x, Bergelson Host and Kra [6] proved:

Lemma 6.4.

µ̃ =

∫
X

δx ⊗ µ̃xdµ(x).

We can now prove Theorem 6.1.

Proof. Since continuous functions are dense in L∞(X), it is enough to prove the theorem
for continuous f1, f2, ..., fk. Let F : G/Γk → C, F (x1, x2, ..., xk) = f1(x1)·f2(x2)·...·fk(xk),
we can write average (6.1) as

Eg∈ΦN (Tg × T2g × ...× Tkg)F (x, x, ..., x).

Recall that every element in the orbit of (x, x, ..., x) with respect to the transformation
Tg × T2g × ... × Tkg belongs to X̃x. Thus, by the pointwise ergodic theorem average
(6.1) converges pointwise everywhere to a function φ(x) on X. Let f be any continuous
function on X. Then,∫

f(x)φ(x)dµ(x) = lim
N→∞

∫
Eg∈ΦNf(x) ·

k∏
i=1

fi(Tigx)dµ(x).
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Since µ is G-invariant, the above equals to

(6.3) lim
N→∞

∫
Eg,h∈ΦNf(Thx)

k∏
i=1

fi(Tig+hx)dµ(x).

Recall that we assume that the action of G × G by Tg? and Th4 is uniquely ergodic.

Since (x, x, ..., x) belongs to G̃/Γ̃, we conclude by the pointwise ergodic theorem that
(6.3) converges everywhere to∫

X̃

f(x0)
k∏
i=1

f(xi)dµ̃(x0, x1, ..., xk)

which by Lemma 6.4 equals to∫
X

f(x)

(∫
X̃x

k∏
i=1

fi(xi)dµ̃x(x1, ..., xk)

)
dµ(x).

As this holds for every continuous function f , we conclude that

φ(x) =

∫
X̃x

k∏
i=1

fi(xi)dµ̃x(x1, ..., xk) =

∫
G/Γ

∫
G2

f1(xy1)f2(xy2
1y2)·...·f3(xyk1y

(k2)
2 )dµG2(y2)dµ(y1)

for µG-a.e. x ∈ G, as required. �

By Parry [28] an ergodic action on G̃/Γ̃ is uniquely ergodic (see also a proof by Leibman
[25, Theorem 2.19] that holds in this generality). Therefore, in order to complete the
proof of Theorem 6.1 it is left to prove that the action of G×G is ergodic.

Remark 6.5. A key component in the argument of Bergelson Host and Kra [6] is a result
of Green [19] which was generalized by Leibman [25] to nilsystems (G/Γ, Ra) satisfying
the property that G is generated by its connected component and a. This result asserts
that the action of Ra on G/Γ is ergodic if and only if the induced action of Ra on G/G2Γ is
ergodic. Unfortunately, the connected component of G̃ and the transformations (g4)g∈G
and (g?)g∈G may not generate G̃. The main observation in our proof is that one can still

apply Green’s theorem for the nilsystem G̃/Γ̃ if the group G is the C.L. group (Definition
1.17). Lemma 5.3 plays an important role in the proof of this observation.

The following lemma is a corollary of Lemma 5.3.

Lemma 6.6. Let G̃ as in the proof of Theorem 6.1. If V ≤ G̃ is an open subgroup which
contains g4 and g? for all g ∈ G, then

V2 = {(g, gg1, gg
2
1g2, ..., gg

k
1g

(k2)
2 ) : g, g1, g2 ∈ G2}.

Proof. Let ı : G × G ×G2 → G̃ be as in the proof of Theorem 6.1. Let L,L′ ≤ G be open
subgroups such that L × L′ × {e} ≤ i−1(V ). Since g4 ∈ V we can assume that g ∈ L
and since g? ∈ V that g ∈ L′. By shrinking L,L′, we may assume that g ∈ L = L′. By
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Lemma 5.3 we have that L2 = G2. Let g, g1, g2 ∈ G2:
For every s1, s2 ∈ L, (s1, s1, ..., s1) and (s2, s2, ..., s2) belong to V and therefore

(g, g, ..., g) ∈ V2.

For every t1, t2 ∈ L, we have that (t1, t1, ..., t1) and (e, t2, t
2
2, ..., t

k
2) belong to V . Since

the commutator is a bilinear map, we conclude that

(e, g1, g
2
1, ..., g

k
1) ∈ V2.

Finally, for every r1, r2 ∈ L, (e, r1, r
2
1, ..., r

k
1) and (e, r1

2, r
2
2, ..., r

k
2) belong to V and

(e, [r1, r2]1
2

, [r1, r2]2
2

, ..., [r1, r2]k
2

) ∈ V2.

Since (r2, r2, ...., r2) also belongs to V , (e, [r1, r2], [r1, r2]2, ..., [r1, r2]k) ∈ V2. We conclude
that

(e, [r1, r2]1
2−1, [r1, r2]2

2−2, ...., [r1, r2]k
2−k) ∈ V2

and since G2 is 2-divisible,

(e, e, g2, g
(2

1)
2 , ..., g

(k2)
2 ) ∈ V2.

Combining everything we see that V2 = {(g, gg1, gg
2
1g2, ..., gg

k
1g

(k2)
2 ) : g, g1, g2 ∈ G2} as

required. �

Corollary 6.7. The induced action of g4 and g? on G̃/G̃2Γ is ergodic.

Proof. The map ı induces a factor map G/G2Γ×G/G2Γ→ G̃/G̃2Γ. The lift of g4 and g?

in G/G2Γ× G/G2 corresponds to Tg × Tg and Id× Tg respectively. Since G/Γ is ergodic
the claim follows. �

We can finally prove the ergodicity of the action.

Lemma 6.8. The action of G×G on G̃/Γ̃ by g4 and g? is ergodic.

Proof. We follow an argument of Parry [29]. Let f : G̃/Γ̃→ S1 be an invariant function.
The compact abelian group G̃2 acts on L2(G̃/Γ̃). Therefore, we can find eigenfunctions
fλ, such that f =

∑
λ aλfλ where aλ ∈ C and λ is a character of G̃2. By the uniqueness of

the decomposition, it follows that fλ is also an eigenfunction with respect to the action
of g4 and g?. By Corollary 6.7 we can assume that fλ takes values in S1. Fix u ∈ G̃,
and let h = g4 or h = g?. Then,

fλ(uhx) = fλ([u
−1, h−1]hux) = λ([u−1, h−1])fλ(hux) = λ([u−1, h−1])chfλ(ux)

for some constant ch ∈ S1. Therefore, the function ∆ufλ(x) is an eigenfunction with
respect to the action of G×G and is invariant under the action of G̃2. By Corollary 6.7
and Lemma 3.2 the set {∆ufλ : u ∈ G̃} is countable modulo constants. It follows that
Vλ := {u ∈ G̃ : ∆ufλ is a constant} is an open subgroup. Observe that u 7→ ∆ufλ is a
homomorphism from Vλ → S1 and is therefore trivial on the commutator subgroup (Vλ)2

which by Lemma 6.6, equals to G̃2. We conclude that f is invariant under the action of
G̃2, and by Corollary 6.7 is a constant. �
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7. Proof of the Khintchine type recurrence

In this section we finish the proof of the Khintchine type recurrence (Theorem 1.3).
First, we prove a lifting lemma which allows us to replace any system (X,G) with an
extension (Y,H).

Lemma 7.1. Let G be a countable abelian group and (X,Tg) be a G-system. Let ϕ :
H → G be a surjective homomorphism and (Y, Sh) be an H-extension of X with a factor
map π : Y → X. Let ψ : G×X → C be a measurable and suppose that for every Følner
sequence ΨN of H we have that

Eh∈ΨNψ(ϕ(h), π(y))

converges in L2(Y ) as N →∞. Then the limit equals to φ◦π, where φ : X → C satisfies

φ = lim
N→∞

Eg∈ΦNψ(g, x)

for every Følner sequence ΦN of G. In particular, this limit exists in L2(X).

Note that we will apply this lemma with

ψ(g, x) = Tagf1(x) · Tbgf2(x) · T(a+b)gf3(x)

where f1, f2, f3 ∈ L∞(X) in order to deduce the converges of average (1.1), but it is
necessary to prove the result in this generality.
Let G be a countable abelian group. An invariant mean on G is an additive measure µ
on G which is invariant to translations by every g ∈ G.

Proof. Let ΦN be a Følner sequence for G. It is well known (see [14]) that there exists
an invariant mean µG on G with the property that: For every sequence ξ : G → C, if
limN→∞ Eg∈ΦN ξ(g) exists, then it equals to

∫
G
ξ(g)dµG(g). Since every (discrete) abelian

group is amenable, we can find an invariant mean on H with the property that µH(A) =
µG(ϕ(A)) for every A ≤ H. Again by a theorem of Følner, there exists a Følner sequence
ΨN on H such that if limN→∞ Eh∈ΨN ξ(ϕ(h)) exists, then it equals to

(7.1)

∫
H

ξ(ϕ(h))dµH(h) =

∫
G

ξ(g)fµG(g).

We now prove the claim in the lemma: Let ψ : G × X → C and suppose that
Eh∈ΨNψ(ϕ(h), π(y)) converges in L2(Y ). Since y 7→ ψ(ϕ(h), π(y)) are measurable with
respect to the factor X, we can find φ : G×X → C such that

lim
N→∞

Eh∈ΨNψ(ϕ(h), π(y)) = φ ◦ π.

Now let ξ(g) = ‖ψ(g, x) − φ(x)‖L2(X). By assumption, Eh∈ΨN ξ(ϕ(h)) converges to zero
as N → ∞. From this and equation (7.1) we conclude that for every Følner sequence
ΦN of G, Eg∈ΦN ξ(g) also converges to zero. This completes the proof. �

The rest of the proof follows an argument of Frantzikinakis [15].
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Proof of Theorem 1.3. Let (X,B, µ,G) be an ergodic G-system and let 0 6= a, b ∈ Z be
as in Theorem 1.3. We first prove the theorem in the case where a and b are coprime.
For every f ∈ L∞(X) let f̃ = E(f |Z<3(X)). Recall that the Kronecker factor is a group
rotation, and denote by αg ∈ Z<2(X) the rotation defined by g ∈ G. Then,
Claim: For every continuous function η : X → R+ which is measurable with respect to
the Kronecker factor (i.e. η = η̃) and f1, f2, f3 ∈ L∞(X) we have

lim
N→∞

Eg∈ΦNη(αg)Tagf1 · Tbgf2 · T(a+b)gf3 = lim
N→∞

Eg∈ΦNη(αg)Tagf̃1 · Tbgf̃2 · T(a+b)gf̃3.

Proof. By approximating η by linear combinations of eigenfunctions, we see that it is
enough to prove the claim in the case where η is a character of Ẑ. Since a and b are
coprime, we can choose s, t ∈ Z such that ηsa · ηtb = η. Since η is an eigenfunction, it
is measurable with respect to Z<3(X) and E(ηsf1|Z<3(X)) = ηsE(f1|Z<3(X)), E(ηt ·
f2|Z<3(X)) = ηtE(f2|Z<3(X)). Thus, by applying Proposition 2.3 for ηs · f1, η

t · f2 and
f3 the claim follows. �

Assume by contradiction that Theorem 1.3 fails. Then one can find ε > 0 and a Følner
sequence ΦN for G such that

(7.2) µ(A ∩ TagA ∩ TbgA ∩ T(a+b)gA) < µ(A)4 − ε
for every g ∈ ⋃N ΦN .
By Theorem 1.18, we can find a surjective homomorphism ϕ : H → G and an H-
extension (X̃,H) of (X,G) such that the factor Y = Z<3(X̃) is a C.L. system and
Y = G(Y )/Γ. Note that since every extension in the proof of Theorem 1.18 only extends
the Kronecker factor of X we have by Lemma 5.3 that G(Y )2 = G(Z<3(X))2.

Let f ∈ L∞(X), we can push-forward f̃ to a function on Z<3(X) and then let f ?

denote the pullback of this function to Y . Let ΦH
N be any Følner sequence for H.

Claim: The average

Eh∈ΦHN
η?(βh)Sahf

?
1 (y)Sbhf

?
2 (y)T(a+b)hf

?
3 (y)

converges to∫
Y

∫
G2(Y )

η?(y1)f ?1 (yya1y
(a2)
1 )f ?2 (yyb1y

(b2)
2 )f ?3 (yya+b

1 y
(a+b

2 )
2 )dµG2(Y )(y2)dµY (y1)

where βh ∈ Z<2(Y ) denotes the rotation defined by h ∈ H on the Kronecker factor of Y .

Proof. Since η is measurable with respect to the Kronecker factor, it is enough to prove
the claim in the case where η is a character of Z<2(X). As in the proof of the previous
claim we can find s and t such that ηsa · ηtb = η. Now, we can apply Corollary 6.2 with
(η?)s · f ?1 , (η?)t · f ?2 and f ?3 . This completes the proof. �

Set f1 = f2 = f3 = 1 in the claim above and apply lemma 7.1. We conclude that

(7.3) lim
N→∞

Eg∈ΦNη(αg) = lim
N→∞

Eh∈ΦHN
η?(βh) = 1.
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Now let η be arbitrary and set f = f0 = f1 = f2 = f3 = 1A, we conclude that the average

Eg∈ΦHN
η?(βh)

∫
Y

f ?(y) · Shgf ?(y) · Sbgf ?(y) · S(a+b)hf
?(y)dµY (y)

converges to∫
Y

∫
Y

∫
G(Y )2

η?(y1)f ?(y)f ?(yya1y
(a2)
1 )f ?(yyb1y

(b2)
2 )f ?(yya+b

1 y
(a+b

2 )
2 )dµG(Y )2(y2)dµY (y1)dµY (y).

This holds for every continuous function η. Since continuous functions are dense in L2,
the above holds for every bounded Z<2(X)-measurable η. Let δ > 0 and let B(G(Y )2, δ)
denote the union of all balls of radius δ with center in G(Y )2. We consider the indicator
function η = 1

µ(B(G(Y )2,δ)
· 1B(G(Y )2, δ). Since translations are continuous in L2, taking a

limit as δ → 0 the above is arbitrarily close to∫
Y

∫
G(Y )2×G(Y )2

f ?(y)f ?(yya1y
(a2)
1 )f ?(yyb1y

(b2)
2 )f ?(yya+b

1 y
(a+b

2 )
2 )dµG(Y )2×G(Y )2(y1, y2)dµY (y).

We integrate everything to get this equals to∫
Y

∫
G(Y )3

2

f ?(yy′)f ?(yy′ya1y
(a2)
2 )f ?(yy′yb1y

(b2)
2 )f ?(yy′ya+b

1 y
(a+b

2 )
2 )dµG(Y )3

2
(y′, y1, y2)dµY (y).

By Proposition B.7 we can write the above integral as∫
Y

∫
G(Y )3

2

f ?(ua+by)f ?(t · ub−ay)f ?(t · vb−ay)f ?(va+by)dµG(Y )3
2
(t, u, v)dµY (y).

This clearly equals to∫
Y

∫
G(Y )2

(∫
G(Y )2

f ?(ua+by)f ?(tub−ay)dµG(Y )2(u)

)2

dµG(Y )2(t)dµY (y).

We take the square outside and change variables, the above is greater or equal to∫
Y

∫
G(Y )2

(
f ?(ty)dmG(Y )2(t)

)4
dµY (y) =

(∫
Y

f ?(x)dµY (y)

)4

= µ(A)4.

We conclude by Lemma 7.1 that for every ε > 0, for sufficiently large N and a suitable
η we have,

(7.4) Eg∈ΦNη(ag)µ(A ∩ TagA ∩ TbgA ∩ T(a+b)gA) > µ(A)4 − ε/2.
Therefore if a and b are co-prime, equations (7.3) and (7.4) contradict equation (7.2) and
the claim follows.
Now let a and b be arbitrary non-zero integers and write a = a′d, b = b′d where a′ and
b′ are coprime. Since aG and bG are of finite index in G so is dG and so X has finitely
many ergodic components with respect fo dG with the same Kronecker factor. Choose
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η as before (the same η for all ergodic components) and let µ = 1
k

∑k
i=1 µi. Since a′, b′

are coprime by equation (7.4) we have

Eg∈ΦNη(αg)µi(A ∩ Ta′gA ∩ Tb′gA ∩ T(a′+b′)gA) > µi(A)4 − ε/2
for all 1 ≤ i ≤ k. Since E1≤i≤k(µi(A)4) ≥ µ(A)4, we conclude as before that the set

{g ∈ dG : µ(A ∩ Ta′g ∩ Tb′gA ∩ T(a′+b′)gA) > µ(A)4 − ε}
is syndetic. Since dG is of finite index in G this is equivalent to the claim in the
theorem. �

Appendix A. Abelian extensions and phase polynomials

In this section we summarize previous results related to abelian extensions and phase
polynomials.

The following proposition were proved by Host and Kra for Z-actions [22]. The same
argument holds for all countable abelian groups (for details see [1]).

Proposition A.1. Let k ≥ 1, let G be a countable abelian group and let X be an ergodic
G-system. Then Z<k+1(X) is an abelian extension of Z<k(X).

It is natural to ask under which conditions an abelian extension of a system of order
< k is of order < k + 1. To answer this we need the following definitions.

Definition A.2 (Cubic measure spaces). [22, Section 3] Let G be a countable abelian
group and X = (X,B, µ,G) be a G-system. For each k ≥ 0 we define a system X [k] =

(X [k],B[k], µ[k], G[k]) where X [k] = X2k is the product of 2k copies of X, B[k] = B2k and

G[k] = G2k acting on X [k] in the obvious manner. We define the cubic measures µ[k] and
σ-algebras Ik ⊆ B[k] inductively. I0 is defined to be the σ-algebra of invariant sets in
X, and µ[0] := µ. Once µ[k] and Ik are defined, we identify X [k+1] with X [k] ×X [k] and
define µ[k+1] by the formula∫

f1(x)f2(y)dµ[k+1](x, y) =

∫
E(f1|Ik)(x)E(f2|Ik)(x)dµ[k](x).

For f1, f2 functions on X [k] and E(·|Ik) the conditional expectation, and Ik+1 being the
σ-algebra of invariant sets in X [k+1].

This leads to the following generalization of Definition 1.17.

Definition A.3 (The Host-Kra group for a system of order < k.). Let G be a countable
abelian group and k ≥ 1. We define G(X) to be the group of measure preserving
transformations t : X → X which satisfies the following property: For every l > 0, the
transformation t[l] : X [l] → X [l], t[l](xω)ω∈2k = (txω)ω∈2k , leaves the measure µ[l] invariant
and acts trivially on the invariant σ-algebra Il.
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Equipped with the topology of convergence in measure G(X) is a (k−1)-step nilpotent
locally compact polish group [22, Corollary 5.9].

The cubic measure spaces of Host and Kra also lead to the following definition.

Definition A.4 (Functions of type < k). Let G be a countable abelian group, let
X = (X,B, µ,G) be a G-system. Let k ≥ 0 and let X [k] be the cubic system associated
with X.

• For each measurable f : X → U , we define a measurable map d[k]f : X [k] → U ,

d[k]f((xw)w∈{−1,1}k) :=
∏

w∈{−1,1}k
f(xw)sgn(w)

where sgn(w) = w1 · w2 · ... · wk.
• Similarly, for each measurable ρ : G × X → U we define a measurable map
d[k]ρ : G×X [k] → U by

d[k]ρ(g, (xw)w∈{−1,1}k) :=
∏

w∈{−1,1}k
ρ(g, xw)sgn(w).

• A function ρ : G × X → U is said to be a function of type < k if d[k]ρ is a
(G,X [k], U)-coboundary.

We now answer exactly when an abelian extension of a system of order < k is of order
< k + 1.

Theorem A.5. Let k,m ≥ 1 and let G be a countable abelian group. Let (X,G) be
an ergodic G-system of order < k and ρ : G × X → U be a cocycle into some compact
abelian group U . Then,

• X ×ρ U is of order < k + 1 if and only if ρ is of type < k.
• If ρ is of type < k − 1, then X ×ρ U is of type < k.

Proof. The first claim is proved in [22, Proposition 6.4] and the second in [22, Proposition
7.6] for Z-actions. The general case follows by the same argument. �

In particular this implies that the C.L. factor of an ergodic G-system is an abelian
extension of the Kronecker factor by a cocycle of type < 2. The following definition is
closely related to the Conze-Lesigne equations in Definition 1.13.

Definition A.6 (Automorphism). Let X be a G-system. A measure-preserving trans-
formation u : X → X is called an automorphism if the induced action on L2(X) by
Vu(f) = f ◦ u commutes with the action of G.

The following result is due to Bergelson Tao and Ziegler [7, Lemma 5.3].

Lemma A.7 (Differentiation by an automorphism decreases the type). Let k,m ≥ 1,
let G be a countable abelian group, let X be an ergodic G-system, and let ρ : G×X → S1

be a cocycle of type < m. Then, for every automorphism t : X → X which preserves
Z<k(X), the cocycle ∆tρ(g, x) is of type < m−min(m, k).
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We note that Bergelson Tao and Ziegler prove the lemma above only for automor-
phisms of specific form, but the same proof shows that the claim holds in this generality.

In a similar manner we have the following version for phase polynomials.

Lemma A.8. Let k,m ≥ 1, let G be a countable abelian group, and let X be an ergodic
G system. If f : X → S1 is a phase polynomial of degree < m, then ∆tf(x) is of degree
< m−min(m, k).

Proof. This lemma is proved in the proof of [7, Lemma 8.8]. �

The following characterization of phase polynomials of degree < k is due to Bergelson
Tao and Ziegler [7, Lemma 4.3 (iii)].

Lemma A.9. Let G be a countable abelian group and X be an ergodic G-system. Then
a function f : X → S1 is a phase polynomial of degree < k if and only if d[k]f(x) = 1
for µ[k]-almost every x ∈ X [k].

It is natural to ask whether a cocycle of type < k is cohomologous to a phase poly-
nomial of degree < k. This is true for Fωp -systems [7] (at least if p > k), but wrong for
general groups (see e.g. [21] or [31, Section 9]). However in the case k = 1 we have
the following result by Moore and Schmidt [26] and Furstenberg and Weiss [18, Lemma
10.3].

Theorem A.10 (Cocycles of type < 1 are cohomologous to constants). Let G be a
countable abelian group. Let X be an ergodic G-system and ρ : G × X → S1 be a
cocycle of type < 1. Then, there exists a character c : G → S1 and a measurable map
F : X → S1 such that ρ(g, x) = c(g) · ∆gF (x), for every g ∈ G and µ-almost every
x ∈ X.

Proposition A.11. Let G be a countable abelian group. Let m, k ≥ 1, and suppose that
X is an ergodic G-system of order < k+1 and P : X → S1 a phase polynomial of degree
< m. Then the following holds.

• There exists a compact abelian group U and a cocycle ρ : G ×X → U such that
X = Z<k(X) ×ρ U . Moreover, if k = 2, then for every χ ∈ Û , χ ◦ ρ is a C.L.
cocycle with respect to Z = Z<2(X).
• Let X = Z<k(X) ×ρ U . Then for every u ∈ U , ∆uP is a phase polynomial of

degree < max{0,m− k}. In particular, P is measurable with respect to Z<m(X).
• If p : G×X → U is a phase polynomial cocycle of degree < k, then X ×p U is a

system of order < k.

Proof. The first claim follows by Theorem A.1. If k = 2, then ρ is of type < 2. Therefore,
by Lemma A.7, ∆sρ is of type < 1 for every s ∈ Z and the C.L. equation follows by
Theorem A.10.
Let P : X → S1 be as in the theorem. We prove by downward induction on l that P is
measurable with respect to Z<l(X) for every m ≤ l ≤ k+ 1. The case l = k+ 1 is trivial
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since Z<k+1(X) = X. Fix m ≤ l < k + 1 and assume inductively that P is measurable
with respect to Z<l+1(X), namely, there exists a polynomial Pl+1 : Z<l+1(X) → S1

such that P = Pl+1 ◦ πl+1, where πl+1 : X → Z<l+1(X) is the factor map. Write
Z<l+1(X) = Z<l(X) ×ρ U for some cocycle ρ. By Lemma A.8 we have that ∆uPl+1 is
of degree < m − min{m, l} = 0, hence ∆uP = 1. It follows that Pl+1 is invariant with
respect to translations by u ∈ U . In other words, P is measurable with respect to Z<l(X)
and the case l = m gives the desired result. Finally, the last claim is a direct application
of Lemma A.9 and Theorem A.1. �

Appendix B. Results about topological groups and a computation

B.1. Divisible and injective groups.

Definition B.1. Let Z and U be locally compact abelian groups. A function k : Z×Z →
U is called a cocycle if for every r, s, t ∈ Z we have

(B.1) k(rs, t) · k(r, s) = k(r, st) · k(s, t).

Moreover, a cocycle is symmetric if

(B.2) k(s, t) = k(t, s)

for every s, t ∈ Z.

Proposition B.2. Let Z and U be locally compact abelian groups and let k : Z×Z → U
be a symmetric cocycle. If one of the following holds

• U is a torus. Or,
• U,Z are discrete and U is divisible.

Then there exists a continuous function ϕ : Z → U such that k(s, t) = ϕ(st)
ϕ(s)ϕ(t)

.

Proof. Without loss of generality we may assume that k(1, 1) = 1U . From equation (B.1)
we see that k(1, t) = k(t, 1) = 1U for all t ∈ Z. The cocycle k induces a multiplication
on the set K = Z ×U by (s, u) · (t, v) = (st, k(s, t)uv). Equations (B.1) and (B.2) imply
that K is an abelian group. Observe, that we have a short exact sequence

1→ U
ι→ K

p→ Z → 1

where ι(u) = (1, u) and p(z, u) = z. By the assumptions in the claim the short exact
sequence splits. Therefore, there exists an homomorphism q : Z → K with p(q(z)) = z.
Let ϕ : Z → U be such that q(z) = (z, ϕ(z)). Since q is a homomorphism, the claim
follows. �

B.2. Polish spaces and group actions. Polish groups and polish spaces (homoge-
neous spaces in particular) play an important role in this paper.
Below we summarize some important results.

We start with the definition of a Borel cross section.
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Definition B.3. Let K be a quotient of a topological group G and let q : G → K be
the quotient map. A Borel cross section for q is a Borel measurable map s : K → G
satisfying that q ◦ s : K → K is the identity map.

Theorem B.4 (The open mapping Theorem). [3, Chapter 1] Let G and H be Polish
groups and let p : G → H be a surjective continuous homomorphism. Then p is open and
there exists a Borel cross section s : H → G such that p ◦ s = Id.

This theorem leads to the following results about quotient spaces.

Theorem B.5. Let G be a polish group and let H be a closed normal subgroup of G.
Then G is locally compact (resp. compact) if and only if H and G/H are locally compact
(resp. compact).

Theorem B.6. [12] If G is a locally compact polish group which acts transitively on a
compact metric space X. Then for any x ∈ X the stabilizer Γ = {g ∈ G : gx = x} is a
closed subgroup of G and X is homeomorphic to G/Γ.

B.3. A computation. We will need the following computation for the Khintchine re-
currence.

Proposition B.7. Let a, b ∈ Z be coprime and U be a compact abelian group. Suppose
that U is a, b, a+ b and b− a divisible. Then the sets

A = {(g, gga1g
(a2)
2 , ggb1g

(b2)
2 , gga+b

1 g
(a+b

2 )
2 ) : g, g1, g2 ∈ U}

and
B = {(ua+b, t · ub−a, tvb−a, va+b) ∈ U4 : u, t, v ∈ U}

are equal.

Proof. We first prove that A ⊆ B. To see this fix any g, g1, g2 ∈ U . Let s ∈ U be
such that s2 = g2. Choose u ∈ U such that ua+b = g and set v = ug1s

a+b−1 and

t = gga1g
(a2)
2 · ua−b. Clearly, va+b = gga+b

1 g
(a+b

2 )
2 and it left to show that

gga1g
(a2)
2 · ua−b · vb−a = ggb1g

(b2)
2 .

We substitute v = ug1s
a+b−1 above and get

gb−a1 s(a+b−1)(b−a) = gb−a1 g
(b2)−(a2)
2 .

Since either (a+ b− 1) or b− a is even, we get that the equality holds.

As for the second inclusion fix any u, t, v ∈ U . Set g = ua+b and for every g2 ∈ U
choose s = s(g2) such that s2 = g2 and set g1 = vu−1s1−a−b. It is left to find g2 such that
the following equations hold{

ua+b · (vu−1s1−a−b)asa
2−a = t · ub−a

ua+b · (vu−1s1−a−b)bsb
2−b = t · vb−a
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Rearranging the equations we get,

sab = t−1 · (uv)a.

Since U is a and b divisible, there is a solution for s and we can take g2 = s2. �
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[5] V. Bergelson and A. Ferré Moragues. An ergodic correspondence principle, invariant means and

applications. Israel J. Math., to appear. arXiv:2003:03029.
[6] V. Bergelson, B. Host and B. Kra, Multiple recurrence and nilsequences, (with an appendix by I.

Ruzsa), Invent. Math. 160, no. 2, 261-303 (2005).
[7] V. Bergelson, T. Tao and T. Ziegler, An Inverse Theorem for The Uniformity Seminorms Associated

with The Action of F∞p , Geom. Funct. Anal. 19, No. 6, 1539-1596 (2010).
[8] V. Bergelson, T. Tao, and T. Ziegler. Multiple recurrence and convergence results associated to Fωp -

actions. Journal d’Analyse Mathematiqué, 127:329–378, (2015).
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