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Abstract. The goal of this paper is to generalize, refine, and improve results on large
intersections from [BHK05, ABB21]. We show that ifG is a countable abelian group and
φ,ψ : G→ G are homomorphisms such that at least two of the three subgroups φ(G),
ψ(G), and (ψ − φ)(G) have finite index in G, then {φ,ψ} has the large intersections
property. That is, for any ergodic measure preserving system X = (X,X , µ, (Tg)g∈G),
any A ∈ X , and any ε > 0, the set

{g ∈ G : µ(A ∩ T−1
φ(g)A ∩ T−1

ψ(g)A) > µ(A)3 − ε}

is syndetic (Theorem 1.11). Moreover, in the special case where φ(g) = ag and ψ(g) =
bg for a, b ∈ Z, we show that we only need one of the groups aG, bG, or (b− a)G to be
of finite index in G (Theorem 1.13), and we show that the property fails in general if
all three groups are of infinite index (Theorem 1.14).

One particularly interesting case is where G = (Q>0, ·) and φ(g) = g, ψ(g) = g2,
which leads to a multiplicative version for the Khintchine-type recurrence result in
[BHK05]. We also completely characterize the pairs of homomorphisms φ,ψ that have
the large intersections property when G = Z2.

The proofs of our main results rely on analysis of the structure of the universal
characteristic factor for the multiple ergodic averages

1

|ΦN |
∑
g∈ΦN

Tφ(g)f1 · Tψ(g)f2.

In the case where G is finitely-generated, the characteristic factor for such averages is
the Kronecker factor. In this paper, we study actions of groups that are not necessarily
finitely-generated, showing in particular that, by passing to an extension of X, one
can describe the characteristic factor in terms of the Conze–Lesigne factor and the
σ-algebras of φ(G) and ψ(G) invariant functions (Theorem 4.10).
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1. Introduction

Let (G,+) be a countable abelian group. A probability measure-preserving G-system,
or simply G-system for short, is a quadruple X = (X,X , µ, (Tg)g∈G) where (X,X , µ) is
a standard Borel probability space (that is, up to isomorphism of measure spaces, X is
a compact metric space, X is the Borel σ-algebra, and µ is a regular Borel probability
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measure) and Tg : X → X, g ∈ G, are measure-preserving transformations such that
Tg+h = Tg ◦ Th for every g, h ∈ G and T0 = Id. The transformation Tg : X → X
gives rise to a unitary operator on L2(µ), which we also denote by Tg, given by the
formula Tgf(x) = f(Tgx). We say that a G-system is ergodic if the only measurable
(Tg)g∈G-invariant functions are the constant functions.

1.1. Khintchine-type recurrence and the large intersections property. The start-
ing point for the study of recurrence in ergodic theory is the Poincaré recurrence theorem,
which states that, for any measure-preserving system (X,X , µ, T ) and any set A ∈ X
with µ(A) > 0, there exists n ∈ N such that µ(A ∩ T−nA) > 0.
Khintchine’s recurrence theorem strengthens and enhances Poincaré’s recurrence the-

orem by improving on the size of the intersections and the size of the set of return
times.

Theorem 1.1 (Khintchine’s recurrence theorem [Kh35]). For any measure-preserving
system (X,X , µ, T ), any A ∈ X , and any ε > 0, the set{

n ∈ N : µ
(
A ∩ T−nA

)
> µ(A)2 − ε

}
has bounded gaps.

Khintchine’s recurrence theorem easily extends to general semigroups, where the ap-
propriate counterpart of “bounded gaps” is the notion of syndeticity. In this paper, we
deal with recurrence in countable abelian groups. A subset A of a countable discrete
abelian group G is said to be syndetic if there exists a finite set F ⊆ G such that
A+ F = {a+ f : a ∈ A, f ∈ F} = G.

It is natural to ask if recurrence theorems other than Poincaré’s recurrence theorem
also have Khintchine-type enhancements. For instance, it follows from the IP Szemerédi
theorem of Furstenberg and Katznelson [FK85] and also from [Au16, Theorem B] that, for
any abelian group G, any k ∈ N, and any family of homomorphisms φ1, . . . , φk : G→ G,
the following holds: if (X,X , µ, (Tg)g∈G) is a G-system and A ∈ X has µ(A) > 0, then
the set {

g ∈ G : µ
(
A ∩ T−1

φ1(g)
A ∩ · · · ∩ T−1

φk(g)
A
)
> 0
}

is syndetic.1 With the goal of Khintchine-type enhancements in mind, this motivates the
following definition:

Definition 1.2. A family of homomorphisms φ1, . . . , φk : G→ G has the large intersec-
tions property if the following holds: for any ergodic G-system (X,X , µ, (Tg)g∈G), any
A ∈ X and any ε > 0, the set{

g ∈ G : µ
(
A ∩ T−1

φ1(g)
A ∩ · · · ∩ T−1

φk(g)
A
)
> µ(A)k+1 − ε

}
1In fact, this set is an IP∗ set, which is a stronger notion of largeness that we do not address in this

paper; see [FK85].
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is syndetic.

The large intersections property is closely related to the phenomenon of popular dif-
ferences in combinatorics; see, e.g., [SSZ21, Ber21, M21, BSST21, AB21].

Determining which families of homomorphisms have the large intersections property is
a challenging problem with many surprising features. In the case G = Z and φi(n) = in,
the problem was resolved in [BHK05].

Theorem 1.3 ([BHK05], Theorems 1.2 and 1.3). The family {n, 2n, . . . , kn} has the
large intersections property in Z if and only if k ≤ 3.

Later work of Frantzikinakis and of Donoso, Le, Moreira, and Sun generalized this
picture for arbitrary homomorphisms Z → Z, which take the form n 7→ an for some
a ∈ Z.
Theorem 1.4 ([F08], special case of Theorem C; [DLMS21], Theorem 1.5).

(1) For any a, b ∈ Z, the families {an, bn} and {an, bn, (a + b)n} have the large
intersections property (in Z).

(2) For any k ≥ 4 and any distinct and nonzero integers a1, . . . , ak ∈ Z, the family
{a1n, . . . , akn} does not have the large intersections property (in Z).

Remark 1.5. Finitary combinatorial work of [SSZ21, Theorem 1.6] suggests that the
family {a1n, a2n, a3n} has the large intersections property if and only if ai + aj = ak for
some permutation {i, j, k} of {1, 2, 3}.

In [BTZ10], Khintchine-type recurrence results are established in the infinitely-generated
torsion groups G =

⊕∞
n=1 Z/pZ.

Theorem 1.6 ([BTZ10], Theorems 1.12 and 1.13).

(1) Fix a prime p > 2. If c1, c2 ∈ Z/pZ are distinct and nonzero, then {c1g, c2g} has
the large intersections property in G =

⊕∞
n=1 Z/pZ.

(2) Fix a prime p > 3. If c1, c2 ∈ Z/pZ are distinct and nonzero and c1 + c2 ̸= 0,
then {c1g, c2g, (c1+c2)g} has the large intersections property in G =

⊕∞
n=1 Z/pZ.

Remark 1.7. It is conjectured in [BTZ10, Conjecture 1.14] that, if c1, c2, c3 ∈ Z/pZ are
distinct and nonzero and ci + cj ̸= ck for every permutation {i, j, k} of {1, 2, 3}, then
{c1g, c2g, c3g} does not have the large intersections property in G =

⊕∞
n=1 Z/pZ.

Khintchine-type recurrence in general abelian groups was addressed in [ABB21] and
[S21]. For 3-point linear configurations, the following was shown in [ABB21]:

Theorem 1.8 ([ABB21], Theorem 1.10). Let G be a countable discrete abelian group.
Let φ, ψ : G → G be homomorphisms. If all three of the subgroups φ(G), ψ(G), and
(ψ − φ)(G) have finite index in G, then {φ, ψ} has the large intersections property.
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Remark 1.9. Earlier work of Chu demonstrates that at least some finite index condition
is necessary for large intersections. Namely, it follows from [C11, Theorem 1.2] that the
pair {(n, 0), (0, n)}, does not have the large intersections property in Z2; see [ABB21,
Example 10.2].

For more restricted 4-point configurations, the following result was shown in [ABB21]
and independently in [S21]:

Theorem 1.10 ([ABB21], Theorem 1.11; [S21], Theorem 1.3). Let G be a countable
discrete abelian group. Let a, b ∈ Z be distinct, nonzero integers such that all four of the
subgroups aG, bG, (a+ b)G, and (b−a)G have finite index in G. Then {ag, bg, (a+ b)g}
has the large intersections property.

1.2. Main results. In this paper, we refine the understanding of Khintchine-type recur-
rence for 3-point configurations in abelian groups and make substantial progress towards
characterizing the pairs of homomorphisms φ, ψ : G → G that have the large intersec-
tions property.

Our first result shows that the large intersections property holds for any pair of ho-
momorphisms {φ, ψ} so long as at least two of the three subgroups in Theorem 1.8 have
finite index in G. In particular, this shows that [ABB21, Conjecture 10.1] is false.

Theorem 1.11. Let G be a countable discrete abelian group. Let φ, ψ : G → G be
homomorphisms such that at least two of the three subgroups φ(G), ψ(G) and (ψ−φ)(G)
have finite index in G. Then for any ergodic G-system (X,X , µ, (Tg)g∈G), any A ∈ X ,
and any ε > 0, the set{

g ∈ G : µ
(
A ∩ T−1

φ(g)A ∩ T−1
ψ(g)A

)
> µ(A)3 − ε

}
is syndetic.

As mentioned above (see Remark 1.9), the work of Chu [C11] provides a counterex-
ample to the large intersections property when all three subgroups φ(G), ψ(G), and
(ψ − φ)(G) have infinite index in G. In this paper, we give additional counterexamples
for the group G =

⊕∞
n=1 Z with homomorphisms g 7→ ag and g 7→ bg for some a, b ∈ Z;

see Theorem 1.14 below. A natural question to ask, then, is what happens when only
one of the subgroups φ(G), ψ(G), or (ψ − φ)(G) has finite index. Namely:

Question 1.12. Let G be a countable abelian group, and let φ : G → G, ψ : G → G
be homomorphisms such that at least one of the subgroups φ(G), ψ(G), or (ψ − φ)(G)
has finite index in G. Is it true that, for any ergodic G-system (X,X , µ, (Tg)g∈G), any
A ∈ X , and any ε > 0, the set{

g ∈ G : µ
(
A ∩ T−1

φ(g)A ∩ T−1
ψ(g)A

)
> µ(A)3 − ε

}
is syndetic?
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Note that, by symmetry, it is enough to provide an answer to Question 1.12 under the
assumption that (ψ − φ)(G) has finite index. Indeed, suppose ψ(G) has finite index in
G. Then since (Tg)g∈G is a measure-preserving action, we have the identity

µ
(
A ∩ T−1

φ(g)A ∩ T−1
ψ(g)A

)
= µ

(
A ∩ T−1

−φ(g)A ∩ T−1
(ψ−φ)(g)A

)
Hence, the pair {φ, ψ} has the large intersections property if and only if

{
φ̃, ψ̃

}
has

the large intersections property, where φ̃ = −φ and ψ̃ = ψ − φ. Moreover, we have

(ψ̃− φ̃)(G) = ψ(G), which is of finite index. A similar argument applies when φ(G) has
finite index.

When G = Z2, we can use additional tools from linear algebra to classify all pairs of
homomorphisms φ and ψ, which allows us to answer Question 1.12 affirmatively in this
setting. In fact, we can give a precise description of the optimal size of intersections for all
3-point configurations in Z2; see Subsection 1.4 below. However, our results rely heavily
on properties of 2×2 matrices, and it appears that the full generality of Question 1.12 for
general abelian groups and general homomoprhisms is out of reach without developing
new techniques.

On the other hand, in the special case φ(g) = ag and ψ(g) = bg for a, b ∈ Z, we answer
Question 1.12 affirmatively:

Theorem 1.13. Let G be a countable abelian group. Let a, b ∈ Z be integers such that
(b − a)G has finite index in G. Then for any ergodic G-system (X,X , µ, (Tg)g∈G), any
A ∈ X , and any ε > 0, the set{

g ∈ G : µ
(
A ∩ T−1

ag A ∩ T−1
bg A

)
> µ(A)3 − ε

}
is syndetic.

We also show that the assumption that (b− a)G has finite index in G is necessary. To
see this, we prove the following result:

Theorem 1.14. Let G =
⊕∞

n=1 Z. Let l ∈ N. There exists P = P (l) such that, for
any a, b ∈ N with p | gcd(a, b) for some prime p ≥ P , there is an ergodic G-system
(X,X , µ, (Tg)g∈G) and a set A ∈ X with µ(A) > 0 such that

µ(A ∩ T−1
ag A ∩ T−1

bg A) ≤ µ(A)l

for every g ̸= 0.

Question 1.15. Can p in the statement of Theorem 1.14 be replaced by any natural
number?

1.3. Applications to geometric progressions and other multiplicative patterns.
One particularly interesting corollary of Theorem 1.13 is a multiplicative version of The-
orem 1.3. Consider the group G = (Q>0, ·). This is a multiplicative counterpart of
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(Z,+). Using an ergodic version of the Furstenberg correspondence principle (see [BF21,
Theorem 2.8]) we deduce the following result:

Theorem 1.16. Let E ⊆ Q>0 be a set of positive multiplicative upper Banach density
and let k ∈ Z. Then for any ε > 0, the sets{

q ∈ Q>0 : d
∗
mult

(
E ∩ q−kE ∩ q−(k+1)E

)
> d∗mult(E)

3 − ε
}

(1.1)

and {
q ∈ Q>0 : d

∗
mult

(
E ∩ q−1E ∩ q−kE

)
> d∗mult(E)

3 − ε
}

(1.2)

are syndetic.

Remark 1.17. The special case where k = 1 in (1.1) or k = 2 in (1.2) is related to the
existence of length three geometric progressions in sets of positive multiplicative density.
Heuristically, if E were a random set, where each positive rational number q ∈ Q>0 is
independently chosen to be inside E with probability α, then the expected number of
geometric progressions of length three and quotient q would be α3. Now fix any set E
with d∗mult(E) = α. Choosing ε sufficiently small, our result implies that E contains
almost as many geometric progressions with quotient q as a random set with the same
density, α, for a syndetic set of quotients.

Theorem 1.14 shows that, if n and m share a large prime factor, then {qn, qm} does
not have the large intersections property in (Q>0, ·). What happens in the case that
n and m are coprime is an interesting question that we are unable to answer with our
current methods:

Question 1.18. Suppose n,m ∈ N are coprime. Does the pair {qn, qm} have the large
intersections property in (Q>0, ·)?

Since every Z-action can be lifted to a (Q>0, ·)-action (indeed, (Q>0, ·) is torsion-free,
so Z embeds as a subgroup), we see from Theorem 1.3 above that {q, q2, . . . , qk} does
not have the large intersections property for k ≥ 4. However, we can still ask about
geometric progressions of length 4.

Question 1.19. Does the triple {q, q2, q3} have the large intersections property in (Q>0, ·)?

For a discussion of where our methods come up short for answering Questions 1.18
and 1.19, see Subsection 2.7 below.

1.3.1. Patterns in (N, ·). In Section 8, we transfer Theorems 1.11 and 1.13 to the setting
of cancellative abelian semigroups. As a consequence, we obtain the following result
about geometric configurations in the multiplicative integers:

Theorem 1.20. Let E ⊆ N be a set of positive multiplicative upper Banach density, and
let k ∈ Z. Then for any ε > 0, the sets{

m ∈ N : d∗mult

(
E ∩ E/mk ∩ E/mk+1

)
> d∗mult(E)

3 − ε
}
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and {
m ∈ N : d∗mult

(
E ∩ E/m ∩ E/mk

)
> d∗mult(E)

3 − ε
}

are (multiplicatively) syndetic in (N, ·).

1.4. Applications to patterns in Z2. When G = Z2, we are able to give a complete
picture of the phenomenon of large intersections for 3-point matrix patterns, i.e. patterns
of the form {x⃗, x⃗+M1n⃗, x⃗+M2n⃗}, where x⃗, n⃗ ∈ Z2 and M1,M2 are 2× 2 matrices with
integer entries. (Note that any homomorphism φ : Z2 → Z2 can be expressed as a 2× 2
matrix with integer entries, so matrix patterns capture all possible configurations in Z2

that can be described within the framework of group homomorphisms.)

Following [BHK05], we say that the syndetic supremum of a bounded real-valued Z2-
sequence (an,m)(n,m)∈Z2 is the quantity

synd-sup(n,m)∈Z2an,m := sup
{
a ∈ R :

{
(n,m) ∈ Z2 : an,m > a

}
is syndetic in Z2

}
.

For 2 × 2 integer matrices M1 and M2 and α ∈ (0, 1), we define the ergodic popular
difference density by

epddM1,M2
(α) := inf synd-supn⃗∈Z2µ

(
A ∩ T−1

M1n⃗
A ∩ T−1

M2n⃗
A
)
,

where the infimum is taken over all ergodic Z2-systems (X,X , µ, (Tn⃗)n⃗∈Z2) and sets A ∈
X with µ(A) = α. This can be seen as an ergodic-theoretic analogue to the popular
difference density defined in [SSZ21]. It is natural to ask if epdd(α) coincides with the
finitary combinatorial quantity pdd(α). Standard tools for translating between ergodic
theory and combinatorics, such as Furstenberg’s correspondence principle, are insufficient
for resolving this question, and we do not know the answer in general. However, in special
cases where pdd(α) is known, it is in agreement with the values of epdd(α) displayed
in Table 1.1 below, and we suspect that pdd(α) = epdd(α) in the remaining cases;
see Subsection 7.3 below for additional remarks on (combinatorial) popular difference
densities for matrix patterns in Z2.
Theorem 1.11 provides a sufficient condition on the matrices M1 and M2 to guar-

antee that epddM1,M2
(α) ≥ α3 for α ∈ (0, 1). We now seek to describe the quantity

epddM1,M2
(α) for any pair of 2 × 2 integer matrices M1 and M2. Table 1.1 summarizes

ergodic popular difference densities for all 3-point matrix configurations in Z2. (For
matrices M1,M2, we let r(M1,M2) be a list of the ranks of M1, M2, and M2 −M1 in
decreasing order.)

The cases r(M1,M2) = (2, 2, 2) and r(M1,M2) = (2, 2, 1) are covered directly by
[ABB21, Theorem 1.10] and Theorem 1.11 respectively. Indeed, a matrix M has full
rank if and only if the subgroup M(Z2) ⊆ Z2 has finite index. More precisely,

[Z2 :M(Z2)] =

{
|det(M)| , if det(M) ̸= 0;

∞, if det(M) = 0.
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r(M1,M2) other conditions epddM1,M2
(α) reason

(2, 2, 2) - α3 [ABB21, Theorem 1.10]
(2, 2, 1) - α3 Theorem 1.11
(2, 1, 1) - α3 “Fubini” for UC - lim [BL15]

(1, 1, 1) [M1,M2] = 0 < αc log(1/α) Behrend-type construction [Beh46, BHK05]
(1, 1, 1) [M1,M2] ̸= 0, “row-like” α3 “Fubini” for UC - lim [BL15]

(1, 1, 1) [M1,M2] ̸= 0, “column-like” α4−o(1) [C11, Theorem 1.1],
[DS18, Theorem 1.2]

Table 1.1. Ergodic popular difference densities for 3-point matrix pat-
terns in Z2.

The remaining cases are proved in Section 7.

1.5. Preliminary remarks on characteristic factors. In this paper, we approach
multiple recurrence problems by determining and utilizing the so-called characteristic
factors, which are the factors that are responsible for the limiting behavior of the quantity

µ
(
A ∩ T−1

φ(g)A ∩ T−1
ψ(g)A

)
in ergodic G-systems (see Subsection 2.2 for a discussion of factors in general and Defi-
nition 3.3 for a definition of characteristic factors). For Z-actions, there are two different
approaches to characteristic factors for linear averages, developed independently by Host
and Kra [HK05] and by Ziegler [Zie07], giving rise to factors that coincide. However,
in the context of G-actions, where G is an arbitrary (non-finitely generated) countable
abelian group, the Host–Kra factors and Ziegler factors may differ; see Subsection 2.6
below for more details.

Our work thus leads to the general open question of how the Host–Kra factors are
related to the actual characteristic factors of the corresponding multiple ergodic averages
(the Ziegler factors). Discerning the relationship between the Host–Kra factors and the
Ziegler factors may lead to a better understanding of the quantities

µ(A ∩ T−1
φ1(g)

A ∩ ... ∩ T−1
φk(g)

A),

whereX = (X,X , µ, (Tg)g∈G) is aG-system, A ∈ X , and φi : G→ G are homomorphisms
or, more generally, polynomial maps.

1.6. Structure of the paper. The paper is organized as follows. In Section 2, we
introduce notation and conventions that we use throughout the paper.

Proofs of the main results appear in Sections 3–6. First, in Section 3, we establish
characteristic factors for the multiple ergodic averages

UC - lim
g∈G

Tφ(g)f1 · Tψ(g)f2
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when (ψ − φ)(G) has finite index in G and prove Theorem 1.11. Then, in Section 4, we
use an extension trick to simplify the characteristic factors, and in Section 5 prove a new
limit formula for the extension system, leading to a proof of Theorem 1.13. Finally, we
prove Theorem 1.14 in Section 6.

The final two sections contain applications of the main results. Using Theorem 1.11
together with additional tools from [ABB21, BHK05, BL15, C11, DS18], we compute
ergodic popular difference densities for three-point matrix patterns in Z2. In Section
8, we extend the main results (Theorems 1.11 and 1.13) to the setting of cancellative
abelian semigroups.

Acknowledgements The third author is supported by ERC grant ErgComNum 682150,
and ISF grant 2112/20

2. Preliminaries

The goal of this section is to introduce some notations and objects that will play an
important role in this paper. Throughout this section we let G denote an arbitrary
countable abelian group and X = (X,X , µ, (Tg)g∈G) a G-system.

2.1. Uniform Cesàro limits. The large intersection property of a family {φ1, . . . , φk}
is related to the limit behavior of the multiple ergodic averages

1

|ΦN |
∑
g∈ΦN

k∏
i=1

Tφi(g)fi,(2.1)

where (ΦN)N∈N is a Følner sequence2 in G and f1, . . . , fk ∈ L∞(µ). By [Au16] and
[Z-K16], the quantity (2.1) converges in L2(µ) as N → ∞, and the limit is independent
of the choice of Følner sequence (ΦN)N∈N. For more concise notation, we define the
uniform Cesàro limit x = UC - limg∈G xg if

1
|ΦN |

∑
g∈ΦN xg → x for every Følner sequence

(ΦN)N∈N in G.
One crucial tool for handling uniform Cesàro limits is the following version of the van

der Corput differencing trick:

Lemma 2.1 (van der Corput Lemma, cf. [ABB21], Lemma 2.2). Let H be a Hilbert space
and G an amenable group. Let (ug)g∈G be a bounded sequence in H. If UC - limg∈G ⟨ug+h, ug⟩
exists for every h ∈ G, and

UC - lim
h∈G

UC - lim
g∈G

⟨ug+h, ug⟩ = 0

then,
UC - lim

g∈G
ug = 0

strongly.

2A sequence (ΦN )N∈N of finite subsets of G is a Følner sequence if, for any x ∈ G, |(ΦN+x)△ΦN |
|ΦN | → 0

as N → ∞.



KHINTCHINE-TYPE RECURRENCE FOR 3-POINT CONFIGURATIONS 11

Another useful tool for computing uniform Cesàro limits is the following “Fubini”
trick, which we use extensively in Section 7:

Lemma 2.2 ([BL15], special case of Lemma 1.1). Let G and H be countable discrete
amenable groups, and let (vh,g)(h,g)∈H×G be a bounded sequence. Suppose

UC - lim
(h,g)∈H×G

vh,g

exists, and for every g ∈ G,
UC - lim

h∈H
vh,g

exists. Then

UC - lim
g∈G

UC - lim
h∈H

vh,g = UC - lim
(h,g)∈H×G

vh,g.

2.2. Factors. A factor of X is a G-system Y = (Y,Y , ν, (Sg)g∈G) together with a mea-
surable map π : X → Y such that π∗µ = ν and π ◦ Tg = Sg ◦ π for all g ∈ G. There is a
natural one-to-one correspondence between factors and (Tg)g∈G-invariant sub-σ-algebras
of X . Throughout the paper, we freely move between the system Y and the σ-algebra
π−1(Y) and refer to both of them as factors of X. Given f ∈ L2(µ) we denote by E(f |Y)
the conditional expectation of f with respect to the σ-algebra π−1(Y). We say that f is
measurable with respect to Y if f = E(f |Y).

2.3. Factor of invariant sets. Let X = (X,X , µ, (Tg)g∈G) be a G-system. We write
IG(X) for the sub-σ-algebra of G-invariant sets. We say that X is ergodic if IG(X) is
the σ-algebra comprised of null and co-null subsets of (X,X , µ). For a subgroup H ≤ G,
we denote by IH(X) the sub-σ-algebra of H-invariant sets. Given a homomorphism
φ : G→ G, it is convenient to denote by Iφ(X) the σ-algebra Iφ(G)(X).

2.4. Host–Kra factors. The Gowers–Host–Kra seminorms are an ergodic-theoretic ver-
sion of the uniformity norms introduced by Gowers in [G01]. These seminorms were first
introduced by Host and Kra in [HK05] in the case of ergodic Z-systems and then gen-
eralized by Chu, Frantzikinakis, and Host to Z-systems that are not necessarily ergodic
in [CFH11]. In [BTZ10, Appendix A], a general theory of Gower–Host–Kra seminorms
is developed for (not necesssarily ergodic) G-systems, where G is an arbitrary countable
abelian group.

Definition 2.3. Let G be a countable abelian group, and let X = (X,X , µ, (Tg)g∈G)
be a G-system. Let f ∈ L∞(X), and let k ≥ 1 be an integer. The Gowers–Host–Kra
seminorm ∥f∥Uk(G) of order k of f is defined recursively by the formula

∥f∥U1(G) := ∥E(ϕ|IG(X))∥L2

for k = 1, and

∥f∥Uk(G) := UC - lim
g∈G

(
∥∆gf∥2

k−1

Uk−1

)1/2k
for k > 1, where ∆gf(x) = f(Tgx) · f(x).
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In [BTZ10, Appendix A], it is shown that the Gower–Host–Kra seminorms for general
G-systems are indeed seminorms. Moreover, these seminorms correspond to factors of
X.

Proposition 2.4 (Existence and uniqueness of the universal characteristic factors,
cf. [BTZ10], Proposition 1.10). Let G be a countable abelian group, let X be a G-
system, and let k ≥ 0. There exists a unique (up to isomorphism) factor Zk(X) =(
Zk(X),Zk(X), µk, (T

(k)
g )g∈G

)
of X with the property that for every f ∈ L∞(X), ∥f∥Uk+1(X) =

0 if and only if E(f |Zk(X)) = 0.

The factors Zk guaranteed by Proposition 2.4 are called the Host–Kra factors of X.
Let X = (X,X , µ, (Tg)g∈G) be a G-system. Then, Z0(X) is the same as the σ-algebra

IG(X). In particular if X is ergodic, then Z0(X) is trivial. In the literature, Z1(X) is
often called the Kronecker factor, and Z2(X) the Conze–Lesigne or quasi-affine factor
of X.

We summarize some basic results about the Host–Kra factors.

Theorem 2.5. Let G be a countable abelian group, and let X = (X,X , µ, (Tg)g∈G) be a
ergodic G-system. Then,

(i) For every k ≥ 1, Zk−1(X) ⪯ Zk(X). In other words, Zk−1(X) is a factor of
Zk(X). In particular, I(X) ⪯ Zk(X) for every k ≥ 0.

(ii) The Kronecker factor of X is isomorphic to a rotation on a compact abelian group.
Namely, there exists a homomorphism α : G → Z into a compact abelian group
(Z,+) such that Z1(X) is isomorphic to (Z, (Rg)g∈G), where Rgz = z + α(g).

(iii) For every k ≥ 1, if X is ergodic, then Zk(X) is an extension of Zk−1(X) by a
compact abelian group (H,+) and a cocycle ρ : G × Zk−1(X) → H. Namely,

Zk(X) = Zk−1(X)×H as measure spaces, and the action is given by T
(k)
g (z, h) =

(T
(k−1)
g z, h+ ρ(g, z)).

Proof. The proof of (i) is an immediate consequence of the monotonicity of the seminorms
(see [HK05, Corollary 4.4]). The proof of (ii) and (iii) in the generality of arbitrary
countable abelian groups can be found in [ABB21, Lemma 2.4], and [ABB21, Theorem
5.3]3. □

2.5. Joins and meets of factors. Let G be a countable abelian group, let X =
(X,X , µ, (Tg)g∈G) be a G-system, and let φ, ψ : G→ G be arbitrary homomorphisms.

(1) Let Z1
φ(X), or just Zφ(X), denote the σ-algebra of the Kronecker factor of X

with respect to the action of φ(G). That is, the σ-algebra of the factor Z1
φ(X)

obtained by applying Proposition 2.4 for the G-system (X,X , µ, (Tφ(g))g∈G) and
k = 1. More generally, let H be a subgroup of G and k ≥ 1, we let Zk

H(X) denote

3The proof in [ABB21] applies to a special class of systems, called normal systems, and it is shown
that every system has a normal extension. However, passing to a normal extension is not necessary; see
[HK05, Proposition 6.3].
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the σ-algebra of the k-th Host–Kra factor ZkH(X) with respect to the action of
H.

(2) Let A, A1,A2 be σ-algebras on X. Then,
• We write A ⪯ X if the σ-algebra A is a sub-σ-algebra of X .
• We let A1 ∨ A2 denote the join of A1 and A2, i.e. the σ-algebra generated
by A1 and A2 in X .

• We let A1 ∧ A2 denote the meet of A1 and A2, i.e. the maximal σ-algebra
which is also a sub σ-algebra of A1 and A2.

• We say that A1 and A2 are µ-independent if their meet is trivial modulo
µ-null sets.

• More generally, we say that A1 and A2 are relatively independent over the
σ-algebra A if A1 ∧ A2 ⪯ A.

(3) We let Iφ,ψ(X) denote the meet of Iφ(X) and Iψ(X) and Zφ,ψ(X) the meet of
Zφ(X) and Zψ(X). We let Zφ,ψ(X) denote the factor of X which corresponds to
the σ-algebra Zφ,ψ(X).

The next two lemmas give convenient alternative descriptions of independent and
relatively independent σ-algebras. These results are classical and can be found, e.g., in
[Zim76, Proposition 1.4]; we provide short proofs for the convenience of the reader.

Proposition 2.6 (Independent σ-algebras). Let X = (X,X , µ) be a probability space.
Two σ-algebras A1 and A2 on X are independent if and only if the following equivalent
conditions hold:

(i) Any function f ∈ L∞(X) measurable with respect to A1 and A2 simultaneously is
a constant µ-almost everywhere.

(ii) If f is measurable with respect to A1 and g is measurable with respect to A2, then∫
X

f · g dµ =

∫
X

f dµ ·
∫
X

g dµ.

Proof. The first definition of independence above is clearly equivalent to (i). We prove
the equivalence between (i) and (ii).

(i)⇒ (ii).∫
X

f · g dµ =

∫
X

E(f |A2) · g dµ =

∫
X

E(f |A2) dµ ·
∫
X

g dµ =

∫
X

f dµ ·
∫
X

g dµ.

For (ii)⇒ (i), let f̃ = f −
∫
fdµ. Then,

∥f̃∥2L2(µ) =

∫
|f̃ |2 dµ =

∣∣∣∣∫
X

f̃ dµ

∣∣∣∣2 = 0.

We conclude that f =
∫
fdµ. □
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Proposition 2.7 (Relatively independent σ-algebras). Let X = (X,X , µ) be a prob-
ability space. Let A1,A2 be two σ-algebras on X and let A be a third σ-algebra such
that A ⪯ A1 ∧ A2. Then, A1 and A2 are relatively independent with respect to A if the
following equivalent conditions hold:

(i) Any function f ∈ L∞(X) measurable with respect to A1 and A2 simultaneously, is
measurable with respect to A.

(ii) If f is measurable with respect to A1 and g is measurable with respect to A2, then

E(fg|A) = E(f |A) · E(g|A).

Proof. Condition (i) is equivalent to the definition of relative independence above. There-
fore it is enough to prove the equivalence of (i) and (ii).

(i)⇒(ii). We have E(fg|A1) = f ·E(g|A1) = f ·E(g|A) where the last equality follows
from (i). Now by taking the conditional expectation over A we have

E(fg|A) = E(f |A) · E(g|A).

(ii)⇒ (i). Let f̃ = f − E(f |A). Then E(|f̃ |2|A) = E(f̃ |A)2 = 0. In particular∫
|f̃ |2dµ = 0, thus f = E(f |A). □

2.6. Ziegler factors. Let X = (X,X , µ, T ) be an invertible ergodic measure preserving
system and f1, ..., fk ∈ L∞(X), k ≥ 0. The convergence of the multiple ergodic averages

1

N

N−1∑
n=0

k∏
i=0

T infi(2.2)

in L2(µ) for general k was established by Host and Kra [HK05] and independently, though
somewhat later, by Ziegler [Zie07].

Host and Kra proved convergence by showing that the averages (2.2) are controlled
by the Gowers–Host–Kra seminorms defined above. This reduces the general conver-
gence problem to convergence under the additional assumption that each function fi is
measurable with respect to the Host–Kra factor.

Ziegler, on the other hand, studied the universal (minimal) characteristic factors for
the multiple ergodic averages

1

N

N−1∑
n=0

k∏
i=0

T ainfi

where a1, ..., ak ∈ Z are distinct and non-zero. These are the minimal factors Zk(X) such
that

lim
N→∞

1

N

N−1∑
n=0

k∏
i=0

T ainfi = 0
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whenever E(fi|Zk(X)) = 0 for some i.

In [B06, Appendix A], Leibman proved that, for Z-systems, the factors studied by Host
and Kra coincide with the factors studied by Ziegler, thus giving these factors the name
Host–Kra–Ziegler factors. Using Følner sequences in order to define averages, one can
generalize the above to arbitrary countable abelian groups (or even more generally, to
amenable groups). However, in the setting of general abelian groups, Host–Kra factors
may no longer coincide with Ziegler factors. We give a very simple example. Let p be a
prime number and Fp be the group with p elements. We denote by F∞

p the direct sum
of countably many copies of Fp. In [BTZ10], it is shown that there are many non-trivial
ergodic F∞

p -systems with non-trivial Host–Kra factors Zk(X) for any k ≥ 0. However,
the only characteristic factor for the average

UC - lim
g∈G

Tgf1 · ... · Tpgfp

is X . Indeed, since Tpg = Id, the average is non-zero for every fp ̸= 0, assuming that
f1 = ... = fp−1 = 1 (say). To overcome this technicality one may restrict to the case where
k < p, but the situation is not that simple for arbitrary countable abelian groups, and
in general Host–Kra factors may not coincide with the universal characteristic (Ziegler)
factors.

This phenomenon was not studied previously in the literature, but it plays an im-
portant role in this paper. More specifically, we study how the Host–Kra factor Z1(X),
which coincides with the classical Kronecker factor, is related to the Ziegler factor Z1(X)
for arbitrary countable abelian groups, i.e. the universal characteristic factor for the av-
erage

UC - lim
g∈G

Tgf1T2gf2,

where f1, f2 ∈ L∞(µ). One of our main tools is a result which asserts, roughly speaking,
that by adding eigenfunctions to the system X, one has that the Ziegler factor Z1(X)
is generated by the Host–Kra factor Z1(X) and the σ-algebra of 2G-invariant functions.
We also give an example that illustrates the necessity of adding eigenfunctions to the
system (see Example 4.1).

2.7. Seminorms for multiplicative configurations. We now give a brief explanation
of where our methods come up short of fully answering Questions 1.18 and 1.19. As
discussed above, our approach to the large intersections property is to study families
of seminorms and their corresponding characteristic factors. However, in the case of
Question 1.18 and Question 1.19, these seminorms have somewhat exotic behavior.

For example, Question 1.18 is related to the averages

UC - lim
q∈Q>0

f1(Tqnx)f2(Tqmx)(2.3)
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for some ergodic (Q>0, ·)-system. An application of the van der Corput lemma (Lemma
2.1) shows that (2.3) is equal to zero if

UC - lim
q∈Q>0

∣∣∣∣∫ ∆qmf1 · E(∆qmf2|Iqn−m(X)) dµ

∣∣∣∣ = 0.

If the action of Tqn−m , q ∈ (Q>0, ·), were ergodic (e.g. if n = m + 1), then the above
expression is manageable as we will see in this paper. Presumably, if n and m are
coprime, then this expression may also be manageable, but we do not see how.

Question 1.19 is related to the average

(2.4) UC - lim
q∈Q>0

Tqf1Tq2f2Tq3f3.

Using the van der Corput lemma, the Cauchy–Schwarz inequality and then the van der
Corput lemma again, we see that the average (2.4) is zero if

UC - lim
q1∈Q>0

∣∣∣∣UC - lim
q2∈Q>0

∫
∆q21

∆q32
f3 dµ

∣∣∣∣ = 0

If in the expression above we had q21, q
2
2, or q

3
1, q

3
2, then this expression would be related

the Gowers–Host–Kra seminorm of f3 with respect to the action of all squares or cubes
of (Q>0, ·). The above quantity is therefore some combination of the two. Again, pre-
sumably, the fact that 2 and 3 are coprime may be useful to analyse these seminorms.
Studying the structure of these new peculiar seminorms is an interesting problem that
we do not pursue in this paper.

3. Theorem 1.11

We first give a brief overview of the proof of Theorem 1.11. Let X = (X,X , µ, (Tg)g∈G)
be an ergodic G-system, and let φ, ψ : G → G be arbitrary homomorphisms such that
(ψ − φ)(G) has finite index in G. The key component in the proof of Theorem 1.11 is
the analysis of the limit behavior of the multiple ergodic averages

(3.1) UC - lim
g∈G

f1(Tφ(g)x) · f2(Tψ(g)x)

for f1, f2 ∈ L∞(X). Standard arguments using the van der Corput lemma (Proposition
3.5) show that

UC - lim
g∈G

f1(Tφ(g)x) · f2(Tψ(g)x) =

UC - lim
g∈G

E(f1|Zφ(X))(Tφ(g)(x))E(f2|Zψ(X))(Tψ(g)(x))
(3.2)

where Zφ(X) and Zψ(X) are the σ-algebras of the Kronecker factors of X with respect
to the actions of φ(G) and ψ(G), respectively (see Subsection 2.5).

In Theorem 1.11, we assume furthermore that φ(G) has finite index in G. In this case,
the factor Zφ(X) coincides with Z1

G(X), the Kronecker factor of X with respect to the
action of G (see Lemma 3.6). Our main observation is that one can replace Zψ(X) in
(3.2) with a smaller factor. As an illustration, we give the following example:
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Example 3.1. Consider the additive group G =
⊕∞

j=1 Z/4Z. We use i ∈ C to denote
the square root of −1, and for every natural number n ∈ N, we let Cn denote the group

of roots of unity of degree n. We define an action of G on X =
(∏

j∈NC4

)
× C2 by

Tg(x, y) =

(
(igjxj)j∈N, y ·

∏
j∈N

(x
2gj
j · ig2j−gj)

)
where x = (x1, x2, ...) ∈

∏
j∈NC4 and g = (g1, g2, ...) is any representation of g in⊕∞

j=1 Z/4Z. The system (X, (Tg)g∈G) is a group extension of its Kronecker factor

ZG(X) =
∏

j∈NC4 by the cocycle

σ : G×
∏
j∈N

C4 → C2,

σ(g,x) =
∏
j∈N

(x
2gj
j · ig2j−gj).

Let ψ(g) = 2g. We observe that the function f(x, y) = y is orthogonal to L2(Z1(X)).
On the other hand we have

T2gf(x, y) = σ(2g,x) · y =
∏
j∈N

(x
4gj
j · i4g2j−2gj) · y =

∏
j∈N

(−1)gjy =
∏
j∈N

(−1)gjf(x, y).

In other words, f is an eigenfunction with respect to the action of ψ(G) on X with
eigenvalue λ(2g) =

∏
j∈N(−1)gj . Therefore, f is measurable with respect to Zψ(X), and

we see that Z1(X) ̸= Zψ(X). Now let φ(g) = g. We claim that f does not contribute
to (3.1). Namely, we have that

UC - lim
g∈G

Tgf1T2gf = 0

for every bounded function f1. Indeed, by (3.2), it is enough to check this equality in
the case where f1 is an eigenfunction with respect to the action of G. Let χ(g) be the
eigenvalue of f1 we see that

UC - lim
g∈G

Tgf1T2gf = f1 · f · UC - lim
g∈G

χ(g) · λ(2g).

The eigenfunctions of X take the form h(x, y) =
∏n

i=1 x
li
i for some n ∈ N and l1, ..., ln ∈

{0, 1, 2, 3}. Therefore, g 7→ χ(g)λ(2g) is a non-trivial characters of G and so

UC - lim
g∈G

χ(g)λ(2g) = 0.

Remark 3.2. In the example above, the factor Z1(X) is isomorphic to
∏

j∈NC4 equipped

with the action T
(1)
g x = (igj · xj)j∈N, while Z2(X) = X. On the other hand, for the 2G-

system (X, (Tg)g∈2G), we have Z1
2G(X) = X.
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Example 3.1 suggests that a ψ(G)-eigenfunction contributes to (3.1) if and only if its
eigenvalue coincides with an eigenvalue of the G-action. In practice, we use a result of
Frantzikinakis and Host [FH18] to decompose f2 into a linear combination of eigenfunc-
tions (see Proposition 3.12). However, since the action of ψ(G) may not be ergodic,
we have to include in our analysis the case where the ψ(G)-eigenvalue, λ(ψ(g)), is not a

constant in X, but rather, a ψ(G)-invariant function. We let Z̃ψ(X) be the sub σ-algebra

of Zψ(X) generated by all the ψ(G)-eigenfunctions with eigenvalues λ(ψ(·), x) : X → Ĝ
that coincide with an eigenvalue with respect to the G-action for µ-a.e. x ∈ X. We show

that one can replace Zψ(X) with Z̃ψ(X) in (3.2). After replacing Zψ(X) by Z̃ψ(X),
the remainder of the proof of Theorem 1.11 follows by modifying previous arguments
used for deducing Khintchine-type recurrence from knowledge of relevant characteristic
factors (see, e.g., [ABB21, Section 8]).

3.1. Characteristic factors. We start with a definition of characteristic factors (cf.
[FW96, Section 3]).

Definition 3.3. Let G be a countable abelian group, let φ, ψ : G → G be arbi-
trary homomorphisms, and let X = (X,X , µ, (Tg)g∈G) be a G-system. A factor Y =
(Y,Y , ν, (Sg)g∈G) of X is called a partial characteristic factor for the pair (φ, ψ) with
respect to φ if

UC - lim
g∈G

Tφ(g)f1Tψ(g)f2 = UC - lim
g∈G

Tφ(g)E(f1|Y)Tψ(g)f2

for every f1, f2 ∈ L∞(X). We define a partial characteristic factor with respect to ψ
similarly, and say that Y is a characteristic factor if it is a partial characteristic factor
with respect to both φ and ψ, i.e.

UC - lim
g∈G

Tφ(g)f1Tψ(g)f2 = UC - lim
g∈G

Tφ(g)E(f1|Y)Tψ(g)E(f2|Y)

for every f1, f2 ∈ L∞(X).

In other words, a factor of a measure preserving system X = (X,X , µ, (Tg)g∈G) is
a characteristic factor for a certain multiple ergodic average, if the study of the limit
behavior of the average can be reduce to this factor. The following easy lemma is related
to the well known result of Furstenberg which asserts that a system X = (X,X , µ, T ) is
weakly mixing if and only if the Kronecker factor, Z1(X), is trivial.

Lemma 3.4. Let X = (X,X , µ, (Tg)g∈G) be a G-system, let φ : G → G be a homomor-
phism and let f ∈ L2(X). If E(f |Zφ(X)) = 0, then for every h ∈ L2(X) we have

UC - lim
g∈G

∣∣∣∣∫
X

Tφ(g)f · h dµ
∣∣∣∣ = 0.

Proof. Assume E(f | Zφ(X)) = 0. Then by Proposition 2.4, ∥f∥U2(φ(G)) = 0. That is,

UC - lim
g∈G

∣∣∣∣∫
X

∆φ(g)fdµ

∣∣∣∣ = 0.
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Since UC - limg∈G |ag| = 0 ⇐⇒ UC - limg∈G a
2
g = 0 for every bounded complex-valued

sequence g 7→ ag, we have

UC - lim
g∈G

∫
X×X

(
Tφ(g) × Tφ(g)

)
f ⊗ f · f ⊗ f d(µ× µ) = 0.

The mean ergodic theorem implies that∫
X2

E(f ⊗ f |Iφ×φ(X ×X)) · f ⊗ f d(µ× µ) = 0

and E(f ⊗ f |Iφ×φ(X ×X)) = 0. Therefore, for every h ∈ L2(X) we have,

UC - lim
g∈G

(∫
X

Tφ(g)f · h dµ
)2

=

∫
X2

E(f ⊗ f |Iφ×φ(X ×X)) · h⊗ h dµ× µ = 0

which implies that

UC - lim
g∈G

∣∣∣∣∫
X

Tφ(g)f · h dµ
∣∣∣∣ = 0

as required. □

Using the van der Corput lemma (Lemma 2.1), we show that Zφ(X) and Zψ(X) are
partial characteristic factors for the pair (φ, ψ) with respect to φ and ψ respectively.

Proposition 3.5. Let X = (X,X , µ, (Tg)g∈G) be an ergodic G-system. Let φ, ψ : G→ G
be homomorphisms such that (ψ − φ)(G) has finite index in G. Then for any f1, f2 ∈
L∞(µ), one has

UC - lim
g∈G

Tφ(g)f1 · Tψ(g)f2 = UC - lim
g∈G

Tφ(g)E(f1|Zφ(X)) · Tψ(g)E(f2|Zψ(X))

in L2(µ).

Proof. We follow the argument of Furstenberg and Weiss [FW96]. By linearity and
symmetry, it is enough to show that

UC - lim
g∈G

Tφ(g)f1 · Tψ(g)f2 = 0

whenever E(f1|Zφ(X)) = 0. Dividing through by a constant, we may assume that
∥fi∥∞ ≤ 1 for i = 1, 2.

We use the van der Corput lemma with ug = Tφ(g)f1 · Tψ(g)f2. For every g, h ∈ G, we
have

⟨ug+h, ug⟩ =
∫
X

Tφ(g+h)f1 · Tψ(g+h)f2 · Tφ(g)f1 · Tψ(g)f2 dµ.(3.3)

Since the measure µ is Tφ(g)-invariant, (3.3) is equal to∫
X

Tφ(h)f1 · f1 · T(ψ−φ)(g)
(
Tψ(h)f1 · f2

)
dµ.
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Hence, by the mean ergodic theorem we have

UC - lim
g∈G

⟨ug+h, ug⟩ =
∫
X

Tφ(h)f1 · f1 · E(Tψ(h)f2 · f2|Iψ−φ(X)).

Since H := (ψ − φ)(G) has finite index in G and the action of G on X is ergodic, we

can find a partition X =
⋃l
i=1Ai to H-invariant sets, where l is at most the index of H

in G. Since f2 is bounded by 1,∣∣∣∣UC - lim
g∈G

⟨ug+h, ug⟩
∣∣∣∣ ≤ k∑

i=1

∣∣∣∣∫
X

Tφ(h)f1 · f1 · 1Ai dµ
∣∣∣∣ .

Now, since E(f1|Zφ(X)) = 0, Lemma 3.4 implies that UC - limh∈G
∣∣∫
X
Tφ(h)f1 · f1 · 1Aidµ

∣∣ =
0, for every 1 ≤ i ≤ k. The van der Corput lemma (Lemma 2.1) then implies that

UC - lim
g∈G

Tφ(g)f1 · Tψ(g)f2 = 0,

and this completes the proof. □

In [B06, Appendix A], Leibman proved the following result in the special case where
G = Z. For the sake of completeness, we give a proof for arbitrary countable abelian G
in Appendix A.

Lemma 3.6. Let (X,X , µ, (Tg)g∈G) be a G-system and let H ≤ G be a subgroup of finite
index. Then for every k ≥ 1, one has Zk

H(X) = Zk
G(X).

In particular, if φ(G) has finite index in G, then the factor Zφ(X) coincides with
Z(X).

Corollary 3.7. Let G be a countable abelian group, let X = (X,X , µ, (Tg)g∈G) be a G-
system and let φ, ψ : G→ G be arbitrary homomorphisms such that φ(G) and (ψ−φ)(G)
have finite index in G. Then, for any bounded functions f1, f2 ∈ L∞(X),

UC - lim
g∈G

Tφ(g)f1 · Tψ(g)f2 = UC - lim
g∈G

Tφ(g)E(f1|Z(X)) · Tψ(g)E(f2|Zψ(X)).

Let G be a countable abelian group and X = (X,X , µ, (Tg)g∈G) be an ergodic G-
system. By Theorem 2.5(ii), the Kronecker factor of X, Z1(X), is isomorphic to an
ergodic rotation. Therefore, it is convenient to identify the Kronecker factor with the
system Z = (Z, α), where Z is a compact abelian group and α : G → Z is a homomor-
phism such that T 1

g z = z + αg, where T
1 is the G-action on Z. The following corollary

of Proposition 3.5 will be useful later on in this paper.

Proposition 3.8. Let X = (X,X , µ, (Tg)g∈G) be an ergodic G-system with Kronecker
factor Z = (Z, α). Let φ, ψ : G→ G be homomorphisms such that (ψ − φ)(G) has finite
index in G. Then for any f0, f1, f2 ∈ L∞(µ) and any continuous function η : Z2 → C,
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we have

UC - lim
g∈G

η
(
αφ(g), αψ(g)

) ∫
X

f0 · Tφ(g)f1 · Tψ(g)f2 dµ

= UC - lim
g∈G

η
(
αφ(g), αψ(g)

) ∫
X

f0 · Tφ(g)E(f1|Zφ(X)) · Tψ(g)E(f2|Zψ(X)) dµ.

Proof. By the Stone–Weierstrass theorem and linearity, we may assume η(u, v) = λ1(u)λ2(v)

for some characters λ1, λ2 ∈ Ẑ. Let π : X → Z be the factor map, and let χi := λi ◦ π.
Note that Tgχi = λi(αg)χi, so χi is a G-eigenfunction with eigenvalue λi ◦ α.
Now set

h0 := χ1χ2f0,

h1 := χ1f1,

h2 := χ2f2.

Since χ1 and χ2 are measurable with respect to the Kronecker factor Z(X), which is a
sub-σ-algebra of Zφ(X) and Zψ(X), we have the identities

E(h1|Zφ(X)) = χ1 · E(f1|Zφ(X)),

E(h2|Zφ(X)) = χ2 · E(f2|Zφ(X)).

Thus, applying Proposition 3.5 for the functions h1, h2 and integrating against h0, we
have

UC - lim
g∈G

η
(
αφ(g), αψ(g)

) ∫
X

f0 · Tφ(g)f1 · Tψ(g)f2 dµ

= UC - lim
g∈G

∫
X

h0 · Tφ(g)h1 · Tψ(g)h2 dµ

= UC - lim
g∈G

∫
X

h0 · Tφ(g)E(h1|Zφ(X)) · Tψ(g)E(h2|Zψ(X)) dµ

= UC - lim
g∈G

η
(
αφ(g), αψ(g)

) ∫
X

f0 · Tφ(g)E(f1|Zφ(X)) · Tψ(g)E(f2|Zψ(X)) dµ.

□

In the next section we will study the factor Zψ(X) further.

3.2. Relative orthonormal basis. Let G be a countable abelian group, and let X =
(X,X , µ, (Tg)g∈G) be a G-system. Under the assumption that the system is ergodic, it is
well known that the factor Z1(X) admits an orthonormal basis of eigenfunctions. The
following example demonstrates that this may fail for non-ergodic systems.
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Example 3.9. Let S1 = {z ∈ C : |z| = 1}. Consider X = S1 × S1 equipped with the
Borel σ-algebra, the Haar probability measure µ, and the measure-preserving transfor-
mation T (x, y) = (x, y · x). Any function f ∈ L2(X) takes the form

f(x, y) =
∑
n,m∈N

an,mx
nym

for some an,m ∈ C with

(3.4)
∑
n,m∈N

|an,m|2 <∞.

Now suppose that there exists some constant c ∈ S1 such that Tf(x, y) = c · f(x, y)
for µ-a.e. (x, y) ∈ S1 × S1. By the uniqueness of the Fourier series we deduce that

an+m,m = c · an,m
for every n,m ∈ N. If m ̸= 0, this is a contradiction to (3.4) unless an,m = 0. We
conclude that f is an eigenfunction if and only if it is independent of the y coordinate.
In particular L2(X) is not generated by the eigenfunctions of X.
On the other hand, the functions {xn}n∈N are invariant and therefore measurable with

respect to Z1(X). Moreover, the functions {ym}n∈N satisfy ∆n(y
m) = T n(ym) · y−m =

xn·m, which is an invariant function. Hence, ym is also measurable with respect to Z1(X).
We thus conclude that X coincides with Z1(X).

In order to handle non-ergodic systems, Frantzikinakis and Host [FH18] came up with
the following definition.

Definition 3.10. Let H be a countable abelian group acting on a probability space
(X,X , µ, (Th)h∈H). A relative orthonormal system is a countable family (ϕj)j∈N belonging
to L2(µ) such that

(i) E(|ϕj| |IH(X)) has value 0 or 1 µ-a.e. for every j ∈ N;
(ii) E(ϕjϕk|IH(X)) = 0 µ-a.e. for all j, k ∈ N with j ̸= k.

The family (ϕj)j∈N is also a relative orthonormal basis if it also satisfies
(iii) The linear space spanned by the set of functions

{ϕjψ : j ∈ N, ψ ∈ L∞(µ) is H-invariant}

is dense in L2(µ).

We also give a definition of eigenfunctions that applies to non-ergodic systems.

Definition 3.11 (H-eigenfunctions). Let H be a countable abelian group and X =
(X,X , µ, (Th)h∈H) be an H-system. We say that f : X → C is an H-eigenfunction if

there exists an H-invariant function λ : X → Ĥ such that Thf(x) = λ(x, h) · f(x) for all
h ∈ H and µ-a.e. x ∈ X. In this case we also say that λ is the eigenvalue of f .



KHINTCHINE-TYPE RECURRENCE FOR 3-POINT CONFIGURATIONS 23

Note that under the assumption that the H-action is ergodic, this definition coincides
with the standard definition of an eigenfunction. Observe moreover that the functions
{ym}m∈N from Example 3.9 are eigenfunctions according to this definition.
Frantzikinakis and Host proved the following result:

Theorem 3.12 ([FH18], Theorem 5.2). Let X = (X,X , µ,H) be an H-system. Then
ZH(X) admits a relative orthonormal basis of eigenfunctions.

The proof of Theorem 3.12 is given for Z-actions in [FH18], but the same argument
can be easily generalized for arbitrary group actions.

3.3. Proof of Theorem 1.11. In this subsection, we prove Theorem 1.11. Example
3.1 is a good example to have in mind while reading this section.

Let X = (X,X , µ, (Tg)g∈G) be an ergodic G-system, and let Z = (Z, α) be the Kro-
necker factor of X. Let A ∈ X and f = 1A. We can write

fc := E(f |Z(X)) =
∑
i∈N

aiζi

where {ζi}i∈N is an orthonormal basis of eigenfunctions and ai ∈ C. Moreover, using
Theorem 3.12,

fψ := E(fψ|Zψ(X)) =
∑
i∈N

biξi,

where {ξi}i∈N is a relative orthonormal basis of ψ(G)-eigenfunctions and bi = E(f ·
ξi|Iψ(X)) are ψ(G)-invariant functions.
Choose N1 ∈ N sufficiently large so that∥∥∥∥∥fc −

N1∑
i=1

aiζi

∥∥∥∥∥
2

<
ε

8

and ∥∥∥∥∥fψ −

(
N1∑
i=1

biξi

)∥∥∥∥∥
2

<
ε

8
.

For each j ∈ N, the function ξj is a ψ(G)-eigenfunction, so we can write ξj
(
Tψ(g)x

)
=

µj(x, ψ(g))ξj(x) for some ψ(G)-invariant function µj : X → ψ̂(G). The group Z is

compact, so Ẑ is countable and we can write Ẑ =
⋃
n∈N Fn, where F1 ⊆ F2 ⊆ · · · are

finite sets. Let

Cn :=
{
g 7→ χ1(αφ(g))χ2(αψ(g)) : χ1, χ2 ∈ Fn

}
,
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and let C =
⋃
n∈NCn. Finally, let

Ej,n :=
{
x ∈ X : µj(x, ·) ∈ Cn ∪

(
Ĝ \ C

)}
.

Note that the complement of Ej,n consists of all x ∈ X such that µj(x, ·) belongs to a
finite set. Since µj is measurable, we conclude that so is the complement of Ej,n. Hence,
Ej,n are measurable. Since

⋃∞
n=1Ej,n = X for every j ∈ N, there exists sufficiently large

N2 ∈ N such that

(∫
X\Ej,N2

|bjξj|2 dµ

)1/2

<
ε

16N1

.

for j = 1, . . . , N1. Then, let N ≥ max{N1, N2} such that: if Tgζi = χ(αg)ζi for some
i = 1, . . . , N1, then χ ∈ FN .

Now let B0 ∈ Z be a small neighborhood of 0 in Z such that if z ∈ B0 and χ ∈ FN ,
then

|χ(z)− 1| < ε

16N
.

Let η0 : Z → [0,∞) be a continuous function supported on B0 normalized so that

UC - lim
g∈G

η0(αφ(g))η0(αψ(g)) = 1.

Put η(u, v) := η0(u)η0(v). Then by Proposition 3.8, we have

UC - lim
g∈G

η
(
αφ(g), αψ(g)

)
µ
(
A ∩ T−1

φ(g)A ∩ T−1
ψ(g)A

)
= UC - lim

g∈G
η
(
αφ(g), αψ(g)

) ∫
X

f · Tφ(g)fc · Tψ(g)fψ dµ

=

∫
X

f · UC - lim
g∈G

η0(αφ(g))Tφ(g)fc · η0(αψ(g))Tψ(g)fψ dµ.
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From the definition of B0, if αφ(g) ∈ B0, then
∥∥Tφ(g)ζi − ζi

∥∥
∞ < ε

16N
for i = 1, . . . , N1.

Hence, for every g ∈ G, since η0 is supported on B0, we have

∥∥η0(αφ(g))Tφ(g)fc − η0(αφ(g))fc
∥∥
2
≤

∥∥∥∥∥η0(αφ(g))
(
Tφ(g)fc −

N1∑
i=1

aiTφ(g)ζi

)∥∥∥∥∥
2

+

∥∥∥∥∥η0(αφ(g))
(

N1∑
i=1

aiTφ(g)ζi −
N1∑
i=1

aiζi

)∥∥∥∥∥
2

+

∥∥∥∥∥η0(αφ(g))
(

N1∑
i=1

aiζi − fc

)∥∥∥∥∥
2

≤ η0(αφ(g))

(∥∥∥∥∥fc −
N1∑
i=1

aiζi

∥∥∥∥∥
2

+N1
ε

16N
+

∥∥∥∥∥fc −
N1∑
i=1

aiζi

∥∥∥∥∥
2

)

< η0(αφ(g))
(ε
8
+

ε

16
+
ε

8

)
=

5ε

16
η0(αφ(g)).

Therefore,∣∣∣∣∫
X

f · η0(αφ(g))Tφ(g)fc · η0(αψ(g))Tψ(g)fψ dµ−
∫
X

fc · f · η
(
αφ(g), αψ(g)

)
Tψ(g)fψ dµ

∣∣∣∣
=

∣∣∣∣∫
X

f · η0(αψ(g))Tψ(g)fψ ·
(
η0(αφ(g))Tφ(g)fc − η0(αφ(g))fc

)
dµ

∣∣∣∣
≤ η0(αψ(g))

∥∥η0(αφ(g))Tφ(g)fc − η0(αφ(g))fc
∥∥
1

<
5ε

16
η
(
αφ(g), αψ(g)

)
.

Taking a Cesàro average, we have the inequality

UC - lim
g∈G

η
(
αφ(g), αψ(g)

)
µ
(
A ∩ T−1

φ(g)A ∩ T−1
ψ(g)A

)
>

∫
X

fc · f · UC - lim
g∈G

η
(
αφ(g), αψ(g)

)
Tψ(g)fψ dµ− 5ε

16
.(3.5)

Now we estimate the average

UC - lim
g∈G

η
(
αφ(g), αψ(g)

)
Tψ(g)fψ.

First, for each i = 1, . . . , N1, we have

∥∥η0(αψ(g)) (Tψ(g)(biξi)− biξi
)∥∥

∞ =
∥∥bi · η0(αψ(g)) (Tψ(g)ξi − ξi

)∥∥
∞ <

ε

16N
η0(αψ(g)).
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Next, let 1 ≤ j ≤ N1. Write Tψ(g)(bjξj) = bjµj(x, ψ(g))ψj. If µj(x, ·) /∈ C, then for any

χ1, χ2 ∈ Ẑ, the character g 7→ χ1(αφ(g))χ2(αψ(g))µj(x, ψ(g)) is nontrivial, so

UC - lim
g∈G

χ1(αφ(g))χ2(αψ(g))µj(x, ψ(g)) = 0.

Hence, by the Stone–Weierstrass theorem,

UC - lim
g∈G

η
(
αφ(g), αψ(g)

)
µj(x, ψ(g)) = 0.

Therefore,

UC - lim
g∈G

η
(
αφ(g), αψ(g)

)
Tψ(g)fψ = UC - lim

g∈G
η
(
αφ(g), αψ(g)

)
Tψ(g)f̃ψ,

where f̃ψ = E(f |Z̃ψ(X)) and Z̃ψ(X) is the factor generated by ψ(G)-eigenfunctions
whose eigenvalues come from C. Note that

f̃ψ =
∑
i∈N

biξ̃i,

where

ξ̃j(x) =

{
ξj(x), µj(x, ·) ∈ C;

0, µj(x, ·) /∈ C.

We note that since C is at most countable, χ̃j is measurable. Moreover,

f̃ψ −
N1∑
i=1

biξ̃i = E(f −
N1∑
i=1

biξi|Z̃ψ(X)),

so ∥∥∥∥∥f̃ψ −
N1∑
i=1

biξ̃i

∥∥∥∥∥
2

<
ε

8
.

If x ∈ Ej,N , then we must have µj(x, ·) ∈ CN . That is, µj(x, ψ(g)) = χ1(αφ(g))χ2(αψ(g))
for some χ1, χ2 ∈ FN . Thus,∣∣η (αφ(g), αψ(g)) (µj(x, ψ(g))− 1)

∣∣ = ∣∣η (αφ(g), αψ(g)) (χ1(αφ(g))χ2(αψ(g))− 1
)∣∣

=
∣∣η (αφ(g), αψ(g)) (χ1(αφ(g))χ2(αψ(g))− χ2(αψ(g))

)∣∣
+
∣∣η (αφ(g), αψ(g)) (χ2(αψ(g))− 1

)∣∣
< η

(
αφ(g), αψ(g)

) ( ε

16N
+

ε

16N

)
=

ε

8N
η
(
αφ(g), αψ(g)

)
.
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Therefore,∥∥η (αφ(g), αψ(g)) (Tψ(g)(bj ξ̃j)− bj ξ̃j

)∥∥∥2
2

=

∫
X

∣∣∣η (αφ(g), αψ(g)) (Tψ(g)(bj ξ̃j)− bj ξ̃j

)∣∣∣2 dµ

=

∫
X

∣∣∣bj(x)ξ̃j(x)∣∣∣2 ∣∣η (αφ(g), αψ(g)) (µj(x, ψ(g))− 1)
∣∣2 dµ(x)

≤ η
(
αφ(g), αψ(g)

)2(∫
Ej,N

( ε

8N

)2 ∣∣∣bj ξ̃j∣∣∣2 dµ+ 4

∫
X\Ej,N

∣∣∣bj ξ̃j∣∣∣2 dµ

)

≤ η
(
αφ(g), αψ(g)

)2(( ε

8N

)2
+ 4

(
ε

16N1

)2
)

≤ 2

(
ε

8N1

η
(
αφ(g), αψ(g)

))2

Putting together our estimates, we have∥∥∥∥UC - lim
g∈G

η
(
αφ(g), αψ(g)

)
Tψ(g)fψ − f̃ψ

∥∥∥
2

=

∥∥∥∥UC - lim
g∈G

η
(
αφ(g), αψ(g)

)
Tψ(g)f̃ψ − f̃ψ

∥∥∥∥
2

≤

∥∥∥∥∥UC - lim
g∈G

η
(
αφ(g), αψ(g)

)
Tψ(g)f̃ψ − Tψ(g)

N1∑
i=1

biξ̃i

∥∥∥∥∥
2

+

∥∥∥∥∥UC - lim
g∈G

N1∑
i=1

η
(
αφ(g), αψ(g)

) (
Tψ(g)(biξ̃i)− bj ξ̃j

)∥∥∥∥∥
2

+

∥∥∥∥∥
N1∑
i=1

biξ̃i − f̃ψ

∥∥∥∥∥
2

<
ε

8
+N1

√
2ε

8N1

+
ε

8
≤ (2

√
2 + 5)ε

16
<
ε

2
.

Substituting back into (3.5), we have

UC - lim
g∈G

η
(
αφ(g), αψ(g)

)
µ
(
A ∩ T−1

φ(g)A ∩ T−1
ψ(g)A

)
>

∫
X

fc · f · f̃ψ dµ− 13ε

16

≥ µ(A)3 − 13ε

16
.(3.6)

Since UC - limg∈G η
(
αφ(g), αψ(g)

)
= 1, it follows that the set{

g ∈ G : µ
(
A ∩ T−1

φ(g)A ∩ T−1
ψ(g)A

)
> µ(A)3 − ε

}
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is syndetic in G. If not, there exists a Følner sequence (ΦN)N∈N such that µ(A∩T−1
φ(g)A∩

T−1
ψ(g)A) ≤ µ(A)3 − ε for every g ∈

⋃
N∈N ΦN . But then,

UC - lim
g∈G

η
(
αφ(g), αψ(g)

)
µ
(
A ∩ T−1

φ(g)A ∩ T−1
ψ(g)A

)
≤ µ(A)3 − ε

which contradicts the inequality (3.6).

4. Extensions

As we have observed in Subsection 3.3, the partial characteristic factors obtained in
Proposition 3.5 are not the minimal characteristic factors. For example, in Subsection

3.3 we proved that one can replace Zψ(X) with the smaller factor Z̃ψ(X). In this section
we develop an extension trick that will be used to further simplify the characteristic
factors. These results will be useful in the proof of Theorem 1.13, where φ(G) is no
longer assumed to have finite index in G. In the example below we illustrate our main
result in the simpler case where φ(g) = g, ψ(g) = 2g. The following example is based
on Example 3.1.

Example 4.1. Let G =
⊕∞

j=1 Z/4Z and let X =
(∏

j∈NC4

)
×C2×C2, where the action

of g ∈ G on X is given by

Tg(x, x∞, y) =

(
(igjxj)j∈N, x∞ ·

∞∏
k=1

(−1)gk , y ·
∏
j∈N

(x
2gj
j · ig2j−gj)

)
(4.1)

for x = (x1, x2, . . . ) ∈
∏

j∈NC4, x∞ ∈ C2, and y ∈ C2. Note that for g = (g1, g2, . . . ) ∈ G,

only finitely many of the coordinates gj ∈ Z/4Z are nonzero, so (4.1) is well-defined.
As in Example 3.1, the function f(x, x∞, y) = y is a 2G-eigenfunction with eigenvalue

2g 7→
∏∞

j=1(−1)gj . However, this time f may have a non-trivial contribution for the

average. Indeed, if we let f1(x, x∞, y) = x∞, then f1 is a G-eigenfunction with eigenvalue
g 7→

∏∞
k=1(−1)gk and

UC - lim
g∈G

Tgf1(x, x∞, y)T2gf(x, x∞, y) = x∞ · y

is nonzero. Let φ(g) = g and ψ(g) = 2g. The above computation shows that f is

measurable with respect to Z̃ψ where Z̃ψ is defined in Subsection 3.3. As a result we

deduce that Z(X) ∨ Iψ(X) ≺ Z̃ψ(X) is a strict inclusion.
Consider the homomorphism λ : G → S1, λ(g) =

∏∞
j=1 i

gj , and observe that λ(2g) =∏∞
j=1(−1)gi is the eigenvalue of f2. We extend X to a new system X̃, where λ is an

eigenvalue. Let X̃ =
(∏

j∈NC4

)
× C4 × C2, and let the action of g ∈ G on X̃ be given

by

Sg(x, x∞, y) =

(
(igjxj)j∈N, λ(g)x∞, y ·

∏
j∈N

(x
2gj
j · ig2j−gj)

)



KHINTCHINE-TYPE RECURRENCE FOR 3-POINT CONFIGURATIONS 29

for x = (x1, x2, . . . ) ∈
∏

j∈NC4, x∞ ∈ C4, and y ∈ C2. It is easy to see that X̃ =

(X̃, (Sg)g∈G) is an extension of X with respect to the factor map π(x, x∞, y) = (x, x2∞, y).

Observe that now the function h(x, x∞, y) = x∞ on X̃ is an eigenfunction with eigenvalue

λ and we deduce that h · f ◦ π is a 2G-invariant function on X̃. This means that f ◦ π
is measurable with respect to the σ-algebra Z̃(X̃) ∨ Iψ(X̃). In fact, one can show that

now we have an equality Z(X) ∨ Iψ(X̃) = Z̃ψ(X̃).

The main result in this section is the following theorem.

Theorem 4.2. Let X = (X,X , µ, (Tg)g∈G) be an ergodic G-system, and let C be a

countable subgroup of Ĝ. Let φ, ψ : G → G be homomorphisms. There exists an ergodic

extension X̃ of X with the following property: for any χ ∈ C, there exist G-eigenvalues

λ, µ of X̃ such that λ(φ(g)) = µ(ψ(g)) = χ(g).

We will use the following elementary group-theoretic lemma, which is a special case
of [R90, Theorem 2.1.4].

Lemma 4.3. Let G be a countable discrete abelian group, and let H ≤ G be a subgroup.

Then every character λ ∈ Ĥ has a lift λ̃ ∈ Ĝ such that λ̃(h) = λ(h) for every h ∈ H.

The fact that X̃ in Theorem 4.2 is ergodic will be important in our proof. In prepartion

for proving that X̃ is ergodic, we need the following defintion.

Definition 4.4. Let (X,G) be an ergodic system and U a compact abelian group. A
cocycle is a measurable map ρ : G ×X → U satisfying ρ(g + g′, x) = ρ(g, x) · ρ(g′, Tgx)
for every g, g′ ∈ G and µ-a.e. x ∈ X. Two cocycles ρ, ρ′ : G × X → U are said to be
cohomologous if there exists a measurable map F : X → U such that ρ(g, x) ·ρ′(g, x)−1 =
∆gF (x) for all g ∈ G and µ-a.e. x ∈ X. We let Vρ denote the minimal closed subgroup
generated by {ρ(g, x) : g ∈ G, x ∈ X}. The cocycle ρ is said to be minimal if it is not
cohomologous to any cocycle ρ′ with Vρ′ ≨ Vρ.

In [Zim76], Zimmer proved that every cocycle is cohomologous to a minimal cocycle
and established the following criterion for ergodicity.

Lemma 4.5 ([Zim76], Corollary 3.8). Let X = (X,X , µ, (Tg)g∈G) be an ergodic G-
system, U a compact abelian group, and ρ : G × X → U a cocycle. Then, X ×ρ U is
ergodic if and only if ρ is minimal and U = Uρ.

We are now set to prove Theorem 4.2.

Proof of Theorem 4.2. Let {χi : i ∈ N} be an enumerations of the elements in C. By

Lemma 4.3, we deduce that for every i ∈ N, there exist homomorphisms χφi , χ
ψ
i : G→ S1

such that χφi (φ(g)) = χψi (ψ(g)) = χi(g). Let I = N × {φ, ψ} and let χ̃ : G → (S1)I be

the homomorphism whose (i, φ)-coordinate is χφi and (j, ψ)-coordinate is χψj for every

i, j ∈ N. By Zimmer’s theory, there exists a minimal cocycle ρ : G ×X → (S1)I which
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is cohomologous to χ̃, where the latter is viewed as a G × X → (S1)I function that is
independent on x ∈ X. This means that there exists a measurable map F : X → (S1)I

such that ρg = χ̃(g) ·∆gF . Let V be the image of ρ, then by Lemma 4.5, X̃ = X ×ρ V is
ergodic. Now, for every coordinate t ∈ I, consider the projection map πt : (S

1)I → S1.
By restricting πt to V , we get a homomorphism τt : V → S1. Then, the function
ϕi,φ(x, v) := τi,φ(v)·πi,φF (x) is an eigenfunction with eigenvalue ∆gϕi,φ(x, v) = χφi (g) and

ϕj,ψ(x, v) = τj,ψ(v) · πj,ψF (x) is an eigenfunction with eigenvalue ∆gϕj,ψ(x, v) = χψj (g).
This completes the proof. □

4.1. Characteristic factors related to Theorem 1.13. The goal of this subsection
is to prove a stronger version of Proposition 3.5 and Proposition 3.8 with smaller charac-
teristic factors. We will use the above extension theorem in order to express these char-
acteristic factors in terms of Zφ,ψ(X) and the invariant σ-algebras, Iφ(X) and Iψ(X).
Then, using a result of Tao and Ziegler (see Theorem 4.8 below), we will reduce matters
further to studying the Conze–Lesigne factor Z2(X) with respect to the action of G,
which is already well understood for arbitrary countable abelian groups (see [ABB21],
[S21]).

We start with a lemma.

Lemma 4.6. Let X = (X,X , µ, (Tg)g∈G) be an ergodic G-system. Let Iφ×ψ(X × X)
denote the σ-algebra of (Tφ(g) × Tψ(g))g∈G-invariant sets in X ×X. Then,

Iφ×ψ(X ×X) ⪯ Zφ(X)×Zψ(X).

Proof. Let f1, f2 ∈ L∞(X) be arbitrary functions and f(x, y) = f1(x)f2(y). Then, by
the mean ergodic theorem we have that

E(f |Iφ×ψ(X ×X))(x, y) = UC - lim
g∈G

Tφ(g)f1(x) · Tψ(g)f2(y)

in L2(µ× µ). By van der Corput lemma, E(f |Iφ×ψ(X ×X)) = 0 if

UC - lim
h∈G

∣∣∣∣UC - lim
g∈G

∫
X×X

Tφ(g+h)f1(x) · Tψ(g+h)f2(y) · Tφ(g)f1(x) · Tψ(g)f2(y)d(µ× µ)(x, y)

∣∣∣∣ = 0.

Since φ(G)× ψ(G) is measure-preserving the above is equal to

UC - lim
h∈G

(∣∣∣∣∫
X

∆φ(h)f1(x)dµ(x)

∣∣∣∣)(∣∣∣∣∫
X

∆ψ(h)f2(y)dµ(y)

∣∣∣∣)
which by the Cauchy–Schwarz inequality is bounded above by(

∥f1∥U2(φ(G)) · ∥f2∥U2(ψ(G))

)1/2
.

We deduce that if E(f |Zφ(X) × Zψ(X)) = 0, then E (f |Iφ×ψ(X ×X)) = 0. Since
linear combinations of functions of the form f1 ⊗ f2 with f1, f2 ∈ L∞(X) are dense in
L∞(X ×X) we deduce that the same holds for every bounded function on X ×X, and
this completes the proof. □
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Using Theorem 4.2 we can now prove the following useful result.

Lemma 4.7. Let G be a countable abelian group, and let X = (X,X , µ, (Tg)g∈G) be an
ergodic G-system. Suppose that φ, ψ : G → G are arbitrary homomorphisms such that

(ψ − φ)(G) has finite index in G. Then there exists an ergodic extension X̃ of X such
that

π−1(Iφ×ψ(X)) ⪯
(
Z(X̃) ∨ Iφ(X̃)

)
⊗
(
Z(X̃) ∨ Iψ(X̃)

)
.

Proof. Let {ζi}i∈N be a relative orthonormal basis of eigenfunctions for Zφ(X) and {ξi}i∈N
be the same for Zψ(X). For every i, j ∈ N, let λi : φ(G)×X → C and µj : ψ(G)×X → C
denote the eigenvalues of ζi and ξj respectively. Our goal is to study the functions
f ∈ L∞(X2) which are (Tφ(g) × Tψ(g))g∈G-invariant. By Lemma 4.6, we can write any
such function as

f(x, y) =
∑
i,j∈N

ci,j(x, y)ζi(x)ξj(y)

where ci,j is a φ(G)×ψ(G)-invariant function. Since f is Tφ(g)×Tψ(g)-invariant we deduce
that

ci,j(x, y)λi(φ(g), x)µj(ψ(g), y) = ci,j(x, y).

Hypothetically, if ci,j was a constant, then unless it is zero (and then can be removed
from the summation), the equation above implies that λi(φ(g), ·) = µj(ψ(g), ·) = χ(g)

for some character χ ∈ Ĝ. In this special case we can apply Theorem 4.2 in order to find
an extension where λi and µj are eigenvalues. This means that we can express the lift

of ζi ⊗ ξj to X̃ as a product of a tensor product of G-eigenfunctions (whose eigenvalues
are λi and µj) and a φ(G)× ψ(G)-invariant function, which completes the proof in this
special case. Below we generalize the above to arbitrary ci,j.

Let Ci,j = {(x, y) ∈ X ×X : ci,j(x, y) ̸= 0}. Then λi(φ(g), x)µj(ψ(g), y) = 1 for every
(x, y) ∈ Ci,j and all g ∈ G. Hence, g 7→ λi(φ(g), x) and g 7→ µj(ψ(g), y) are equal to the

same character χ ∈ Ĝ for all (x, y) ∈ Ci,j. Now, for every χ ∈ Ĝ we let

Jχ = {(i, j) ∈ N2 : (µ× µ)({(x, y) ∈ X ×X : ∀g λi(φ(g), x) = µj(ψ(g), y) = χ(g)} > 0}
and set

C := {χ ∈ Ĝ : Jχ ̸= ∅} and J :=
⋃
χ∈C

Jχ.

Our first observation is that

(4.2) f(x, y) =
∑

(i,j)∈J

ci,j(x, y)ζi(x)ξj(y).

Indeed, if (i, j) ̸∈ J , then for every χ, (i, j) ̸∈ Jχ, but then from the computation above
µ(Ci,j) = 0 and ci,j = 0 for (µ× µ)-a.e. (x, y) ∈ X ×X.
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Claim. The set C is at most countable.

Proof of the claim. We use the fact that in a probability space there can be at most
countably many disjoint sets of positive measure. Assume by contradiction that C is
uncountable. Since there are only countably many (i, j) ∈ N2, we deduce that there

exists some (i0, j0) which belongs to Jχ for all χ in an uncountable subset of Ĝ. But
since the sets

{(x, y) ∈ X ×X : ∀g ∈ G, λi(φ(g), x) = µj(ψ(g), y) = χ(g)}
are disjoint for different χ’s and of positive measure, we obtain a contradiction. This
proves the claim.

Now we return to the proof of the lemma. Since C is at most countable, we can apply

Theorem 4.2. We see that there exists an ergodic extension π : X̃ → X, such that for
every χ ∈ C, there exist G-eigenvalues χφ, χψ : G → S1 with χφ(φ(g)) = χ(g) and

χψ(ψ(g)) = χ(g). Let mφ
χ,m

ψ
χ : X̃ → S1 be the corresponding eigenfunctions. Now fix

some (i, j) ∈ J and let χ ∈ C be such that λi(φ(g), x) = µj(ψ(g), y) = χ(g) whenever

ci,j(x, y) ̸= 0. We deduce that (ci,j · ζi ⊗ ξj) ◦ π · mφ
χ ⊗mψ

χ is a φ(G) × ψ(G)-invariant
function. Since ci,j is also φ(G)×ψ(G)-invariant, we deduce by equation (4.2) that f ◦π
is a linear combination of products of eigenfunctions mφ

χ ⊗mψ
χ and some φ(G)× ψ(G)-

invariant functions. Equivalently, the lift of f to X̃ × X̃ is measurable with respect to
the σ-algebra (

Z1(X̃) ∨ Iφ(X̃)
)
⊗
(
Z1(X̃) ∨ Iψ(X̃)

)
as required. □

The following result of Tao and Ziegler plays in important role in our work.

Theorem 4.8 ([TZ16], Theorem 1.19). Let G be a countable abelian group, and let
X = (X,X , µ, (Tg)g∈G) be a G-system. Let H1, H2 be two subgroups of G, and denote by
H1 +H2 the subgroup of G generated by H1 and H2. Then for every d1, d2 ∈ N, one has

Zd1
H1
(X) ∧ Zd2

H2
(X) ⪯ Zd1+d2

H1+H2
(X).

In particular, by setting d1 = d2 = 1 and using Lemma 3.6 we deduce:

Lemma 4.9. Let G be a countable abelian group and (X,X , µ, (Tg)g∈G) be a G-system,
and let φ, ψ : G → G be homomorphisms such that (ψ − φ)(G) has finite index in G.
Then, Zφ,ψ(X) ⪯ Z2

G(X).

We combine this with the results in Section 3 to deduce the following version of
Theorem 3.5.

Theorem 4.10. Let G be a countable abelian group and X = (X,X , µ, (Tg)g∈G) be an
ergodic G-system. Suppose that φ, ψ : G → G are arbitrary homomorphisms such that
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(ψ−φ)(G) has finite index in G. Then for any f0, f1, f2 ∈ L∞(µ) there exists an ergodic

extension π : (X̃, µ̃) → (X,µ) such that

UC - lim
g∈G

∫
X̃

f̃0 · Tφ(g)f̃1 · Tψ(g)f̃2 dµ̃ =

UC - lim
g∈G

∫
X̃

f̃0 · Tφ(g)E(f̃1|Z2
G(X̃) ∨ Iφ(X̃)) · Tψ(g)E(f̃2|Z2

G(X̃) ∨ Iψ(X̃)) dµ̃

in L2(X̃), where f̃i := fi ◦ π denotes the lift of fi to the extension X̃.

Recall that the factors Zφ(X) and Zψ(X) are relatively independent over Zφ,ψ(X).
To put this fact to use, we need to introduce a construction known as a fiber product:

Definition 4.11 (The fiber product over a factor.). For i = 1, 2, letYi = (Yi,Yi, µi, (S(i)
g )g∈G)

be G-systems. Suppose that Y = (Y,Y , ν, (Sg)g∈G) is a common factor and let πi : Yi →
Y , i = 1, 2 denote the factor maps. The fiber product of Y1 and Y2 over Y is the system

Y1 ×Y Y2 =
(
Y1 ×Y Y2,Y1 ⊗ Y2, µ1 ×Y µ2, (S

(1)
g × S

(2)
g )g∈G

)
, where

Y1 ×Y Y2 = {(y1, y2) ∈ Y1 × Y2 : π1(y1) = π2(y2)}
and

µ1 ×Y µ2 =

∫
Y

µ1,y × µ2,ydν(y),

where

µi =

∫
Y

µi,ydν(y)

is the disintegration of the measure µi over Y for i = 1, 2.

We will use the following result from [Zim76]:

Theorem 4.12. Let G be a countable abelian group, and let X = (X,X , µ, (Tg)g∈G) be

a G-system. Let Y1 = (Y1,A1, µ1, (T
(1)
g )g∈G) and Y2 = (Y2,A2, µ2, (T

(2)
g )g∈G) be two

factors of X with factor maps πi : X → Yi for i = 1, 2, and let Y = (Y, ν) be their meet.
Then, the σ-algebra A1 ∨ A2 corresponds to the fiber product Y1 ×Y Y2.

Remark 4.13. In particular, Theorem 4.12 implies that Y1×YY2 is a factor of X. We
note that Zimmer also proved the other direction, namely that two factors Y1 and Y2 are
relatively independent over a third factor Y if and only if the fiber product Y1 ×Y Y2 is
a factor of X; see [Zim76, Proposition 1.5].

We also need the following result:

Theorem 4.14 (cf. [HK05], Proposition 4.6). Let π : (Y,Y , ν, (Sg)g∈G) → (X,X , µ, (Tg)g∈G)
be a factor map between G-systems and let k ≥ 1. Then, π−1(Zk(X)) = Zk(Y )∧π−1(X ).

Host and Kra proved Theorem 4.14 for Z-actions, but the argument extends easily to
arbitrary countable abelian groups.

We now have all the requisite tools to prove Theorem 4.10.



34 E. ACKELSBERG, V. BERGELSON, AND O. SHALOM

Proof of Theorem 4.10. By the previous result we see that if f0, f1 or f2 are orthogonal to
functions measurable with respect to the σ-algebra Zφ(X) ∨ Zψ(X), then the averages
above are zero. Therefore, by Theorem 4.12, the factor Zφ(X) ×Zφ,ψ(X) Zψ(X) is a
characteristic factor. We may therefore assume without loss of generality that X =
Zφ(X) ×Zφ,ψ(X) Zψ(X). For the sake of simplicity of notations we write µφ,ψ for the
measure µZφ(X)×Zφ,ψ(X)µZψ(X) on Zφ(X)×Zφ,ψ(X)Zψ(X). By linearity it is suffices to prove

the theorem in the case where f1 = fφ1 ⊗f
ψ
1 and f2 = fφ2 ⊗f

ψ
2 for some fφ1 , f

φ
2 : Zφ(X) → C

and fψ1 , f
ψ
2 : Zψ(X) → C. Then,

UC - lim
g∈G

∫
X

f0Tφ(g)f1 · Tψ(g)f2 dµ

= UC - lim
g∈G

∫
Zφ(X)×Zψ(X)

f0 · Tφ(g)
(
fφ1 ⊗ fψ1

)
· Tψ(g)

(
fφ2 ⊗ fψ2

)
dµφ,ψ(4.3)

By Proposition 3.5, (4.3) is equal to

UC - lim
g∈G

∫
Zφ(X)×Zψ(X)

f0(x, y) · Tφ(g)
(
fφ1 · E(fψ1 |Zφ,ψ(X))

)
(x) · Tψ(g)

(
E(fφ2 |Zφ,ψ(X)) · fψ2

)
(y)dµφ,ψ(x, y).

(4.4)

Note that we used the fact that E(h|Zφ,ψ(X))(x) = E(h|Zφ,ψ(X))(y) for µφ,ψ a.e. x, y.
By the mean ergodic theorem, applied to the transformation Tφ × Tψ, the limit (4.4)
converges to∫

Zφ(X)×Zψ(X)

f0 · E
((

fφ1 · E(fψ1 |Zφ,ψ(X))⊗ E(fφ2 |Zφ,ψ(X)) · fψ2
) ∣∣∣∣Iφ×ψ(X)

)
dµφ,ψ

By Lemma 4.7, we can find an ergodic extension π : X̃ → X such that π−1 (Iφ×ψ(X))

is a sub-σ-algebra of
(
Z(X̃) ∨ Iφ(X̃)

)
⊗
(
Z(X̃) ∨ Iψ(X̃)

)
. Now, by applying the same

argument as above with f̃0, f̃1 and f̃2 instead of f0, f1 and f2, and using Theorem 4.14

in order to replace π−1(Zφ,ψ(X)) with Zφ,ψ(X̃) we deduce that:

UC - lim
g∈G

∫
X̃

f̃0Tφ(g)f̃1 · Tψ(g)f̃2 dµ =∫
X̃

f̃0 · E
((

f̃φ1 · E(f̃ψ1 |Zφ,ψ(X̃))⊗ E(f̃φ2 |Zφ,ψ(X̃)) · f̃ψ2
) ∣∣∣∣π−1 (Iφ×ψ(X))

)
dµ̃φ,ψ,

(4.5)

where µ̃φ,ψ is the lift of µφ,ψ to X̃.
We return to the proof of the theorem. By linearity it is enough to show that if

E(f̃1|Z2
G(X̃)∨Iφ(X̃)) = 0 or E(f̃2|Z2

G(X̃)∨Iψ(X̃)) = 0, then (4.5) is zero. By symmetry

and Lemma 4.9, we may assume without loss of generality that E(f̃1|Zφ,ψ(X̃)∨Iφ(X̃)) =

0. Since Zφ(X̃),Zψ(X̃) are relatively independent over Zφ,ψ(X̃), they are also relatively
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independent over the larger σ-algebra Zφ,ψ(X̃)∨Iφ(X̃). We deduce, by Proposition 2.7,
that

(4.6) E(f̃φ1 |Zφ,ψ(X̃) ∨ Iφ(X̃)) · E(f̃ψ1 |Zφ,ψ(X̃) ∨ Iφ(X̃)) = 0.

Claim. E(f̃ψ1 |Zφ,ψ(X̃) ∨ Iφ(X̃)) = E(f̃ψ1 |Zφ,ψ(X̃)).

Proof of the claim. Zφ,ψ(X̃) ∨ Iφ(X̃) is a factor of Zφ(X̃). By Theorem 4.14, f̃ψ1 is

measurable with respect to Zψ(X̃) and this and Zφ(X̃) are relatively independent over

Zφ,ψ(X̃), so the claim follows.

Equation (4.6) and the claim imply that

f̃φ1 · E(f̃ψ1 |Zφ,ψ(X̃)) =
(
f̃φ1 − E(f̃1

φ
|Zφ,ψ(X̃) ∨ Iφ(X̃))

)
E(f̃ψ1 |Zφ,ψ(X̃))

is orthogonal to all functions measurable with respect to Zφ,ψ(X̃) ∨ Iφ(X̃) and so it is

also orthogonal to those measurable with respect to Z(X̃)∨Iφ(X̃). Since π−1(Iφ×ψ(X))

is a sub σ-algebra of
(
Z(X̃) ∨ Iφ(X̃)

)
⊗
(
Z(X̃) ∨ Iψ(X̃)

)
, this implies that (4.5) is

equal to zero as required. □

As a corollary we also have the following stronger counterpart of Proposition 3.8.

Corollary 4.15. In the settings of Theorem 4.10. Let η : Z(X̃) → C be a continuous

function and f0, f1, f2 ∈ L∞(X). Let αg denote the rotation of g ∈ G on Z(X̃). If
a, b ∈ Z are coprime, then

UC - lim
g∈G

η(αg)

∫
X̃

f̃0 · Tagf̃1 · Tbgf̃2 dµ̃ =

UC - lim
g∈G

η(αg)

∫
X̃

f̃0 · TagE(f̃1|Z2
G(X̃) ∨ Ia(X̃)) · TbgE(f̃2|Z2

G(X̃) ∨ Ib(X̃)) dµ̃

where f̃i = fi ◦ π is the lift of fi to X̃ for i = 0, 1, 2.

Proof. Since η is measurable with respect to Z(X̃), it is a linear combination of charac-
ters. Therefore, it is enough to prove the equality in the special case where η itself is a
character. Then, since a and b are coprime we can find t, s ∈ Z such that ta + sb = 1.

Set h0 = f̃0 · η−(t+s), h1 = f̃1 · ηs and h2 = f̃2 · ηt. Arguing as in Theorem 4.10, we have

UC - lim
g∈G

∫
X̃

h0 · Tagh1 · Tbgh2 dµ̃ =

UC - lim
g∈G

∫
X̃

h0 · TagE(h1|Z2
G(X̃) ∨ Ia(X̃)) · TbgE(h2|Z2

G(X̃) ∨ Ib(X̃)) dµ̃.(4.7)

Now since η is measurable with respect to Z(X̃), it is also measurable with respect to

Z2
G(X̃) ∨ Ia(X̃) and Z2

G(X̃) ∨ Ib(X̃), so the claim follows by rewriting hi in terms of η

and f̃i on both sides of the equation (4.7). □
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5. A limit formula for {ag, bg}

Let G be a countable abelian group and X = (X,X , µ, (Tg)g∈G) be an ergodic G-
system. In this section we restrict ourselves to the homomorphisms φ(g) = ag, ψ(g) = bg
where a, b ∈ Z. By Theorem 4.10, we see that it is enough to analyse the ergodic average

UC - lim
g∈G

Tagf1 · Tbgf2(5.1)

in the case where X is a Conze–Lesigne system (i.e. X = Z2(X)).
Under certain assumptions on a and b, two different (but related) formulas were ob-

tained previously in [ABB21] and in [S21] (see Theorems 5.1 and 5.2 below). Neither of
the previously-obtained formulas is sufficient for our purposes, so we prove a new one in
this section.

5.1. Previous limit formulas. Assuming all of the subgroups aG, bG, (a + b)G, and
(b−a)G have finite index in G, a limit formula was obtained in [ABB21] for the multiple
ergodic averages (5.1) by analysing a Mackey group associated to the abelian extension
corresponding to the Conze–Lesigne factor. (The relevant terminology is defined in
the next subsection.) For compact groups Z and H, let M(Z,H) denote the space of
measruable functions f : Z → H equipped with the topology of convergence in measure
(with respect to the Haar probability measure).

Theorem 5.1 ([ABB21], Theorem 7.1). Let G be a countable abelian group. Let a, b ∈ Z
such that aG, bG, (a + b)G, and (b− a)G have finite index in G. Let k′1 = −ab(a + b),

k′2 = ab(a + b) and k′3 = −ab(b − a). Set D = gcd(k′1, k
′
2, k

′
3) and ki =

k′i
D

for i = 1, 2, 3.

Let c1, c2, c3 ∈ Z so that
∑3

i=1 kici = 1. Let X = Z×σH be as in Theorem 2.5(iii). There
is a functions ψ : Z × Z → H such that ψ(0, z) = 0 for every z ∈ Z and t 7→ ψ(t, ·) is a
continuous map from Z to M(Z,H), and for every f1, f2, f3 ∈ L∞(µ),

UC - lim
g∈G

f1(Tagx)f2(Tbgx)f3(T(a+b)gx) =

∫
Z×H2

3∏
i=1

fi(z+ait, h+diu+a
2
i v+ciψ(t, z) du dv dt,

in L2(µ), where x = (z, h) ∈ Z ×H, and a1 = a, a2 = b, a3 = a+ b.

Assuming that (b− a) is even, the last author proved the following result.

Theorem 5.2 ([S21], Corollary 6.2). Let G be a countable abelian group. Let a, b ∈ Z be
such that (b− a) is even and (b− a)G has finite index in G. Let X = (X,X , µ, (Tg)g∈G)
be an ergodic G-system such that X = Z2(X). Then, there exists an ergodic extension π :
Y → X which is isomorphic to a 2-step nilpotent coset system4 and for every f1, f2, f3 ∈

4The exact definition is given in [S21]. We do not use this notion elsewhere in the paper.
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L∞(X),

UC - lim
g∈G

f̃1(TagyΓ)f2(TbgyΓ)f3(T(a+b)gyΓ) =∫
G/Γ

∫
G2

f̃1(yy
a
1y
(a2)
2 )f̃2(yy

b
1y
(b2)
2 Γ)f̃3(yy

a+bΓ
1 y

(a+b2 )
2 Γ) dµG2(y2) dµG/Γ(yΓ).

The above formula fails if b− a is odd; see [S21, Example 6.3].
Observe that in the formulas in Theorems 5.1 and 5.2, we can take f3 ≡ 1 and get a

limit formula for the averages we are interested in. However, for the sake of our argument
we need a limit formula for every a, b ∈ Z regardless of the indices of the subgroups aG,
bG, and (a± b)G and the parity of b− a. Below we remove the finite index assumptions
in Theorem 5.1.

5.2. Mackey group. LetG be a countable abelian group, and letX = (X,X , µ, (Tg)g∈G)
be an ergodic G-system. Suppose that X = Z2(X), then by Theorem 2.5 we can write
X = Z ×σ H, where Z = (Z, α) is the Kronecker factor, H is a compact abelian group,
and σ : G× Z → H is a cocycle.
We now define a Mackey group associated to the cocycle σ. Let

W = W (a, b) := {(z + at, z + bt) : z, t ∈ Z} ,
and define Sgw = (w1 + αag, w2 + αbg) for g ∈ G, w = (w1, w2) ∈ W . Let σ̃g(w) :=
(σag(w1), σbg(w2)). Then the Mackey group M = M(a, b) is the closed subgroup of H
with annihilator given by

M⊥ :=
{
χ̃ ∈ Ĥ2 : χ̃ ◦ σ̃ is a coboundary over (W,S)

}
.

We will show that the Mackey group is a product of subgroups of H. For c ∈ Z, let
Mc ≤ H be the closed subgroup with annihilator

M⊥
c :=

{
χ ∈ Ĥ : (g, z) 7→ χ (σcg(z)) is a coboundary over (Z, α)

}
.

Proposition 5.3. Let a, b ∈ Z be coprime, and let M = M(a, b) be the Mackey group.
Then M =Ma ×Mb.

The proof of Proposition 5.3 relies heavily on results from [ABB21, Section 7], which
we restate here for ease of reference.

5.3. Cocycle identities. The following result gives a convenient characterization of
coboundaries. (Recall that a cocycle ρ : G × Z → S1 is a coboundary if ρg = ∆gF for
some measurable function F : Z → S1.)

Proposition 5.4 ([ABB21], Proposition 7.12). Let Z be a Kronecker system and ρ :
G× Z → S1 a cocycle. The following are equivalent:

(i) ρ is a coboundary;
(ii) for any sequence (gn)n∈N in G with αgn → 0 in Z, we have ρgn(z) → 1 in L2(Z).
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The next proposition gives three equivalent characterizations of Conze–Lesigne (or
quasi-affine) cocycles.

Proposition 5.5 ([ABB21], Proposition 7.15). Let Z be an ergodic Kronecker system
and ρ : G× Z → S1 a cocycle. The following are equivalent:

(i) for any sequence (gn)n∈N in G with αgn → 0 in Z, there is a sequence (ωn)n∈N of
affine functions such that ωnρgn(z) → 1 in L2(Z);

(ii) for every t ∈ Z,

ρg(z + t)

ρg(z)

is cohomologous to a character;
(iii) there is a Borel set A ⊆ Z with mZ(A) > 0 such that

ρg(z + t)

ρg(z)

is cohomologous to a character for every t ∈ A.

Lemma 5.6 ([ABB21], Lemma 7.19). Let Z be an ergodic Kronecker system and ρ :
G × Z → S1 a cocycle. Suppose (αgn) converges (to 0) in Z, and ωn(z) = cnλn(z) are
affine functions such that (ωnρgn) converges (to 1) in L2(Z). Then for every a ∈ N,

canλn

((
a

2

)
αgn

)
λan(z)ρagn(z)

converges (to 1) in L2(Z).

Lemma 5.7 ([ABB21], Lemma 7.23). Let Z×σH be an ergodic Conze–Lesigne G-system.
Suppose a ∈ Z and aG has finite index in G. Then aH = H.

Lemma 5.8 ([ABB21], Lemma 7.25). Let Z be a compact abelian group. Let c1, c2 ∈ S1

and λ1, λ2 ∈ Ẑ. If λ1 ̸= λ2, then

∥c1λ1 − c2λ2∥L2(Z) =
√
2.

5.4. Proof of Proposition 5.3. We will prove Proposition 5.3 via the next three lem-
mas. Rather than proving directly that M = Ma ×Mb, we will instead show the dual
identity M⊥ =M⊥

a ×M⊥
b . First, we show M⊥

a ×M⊥
b ⊆M⊥:

Lemma 5.9. In the setup of Proposition 5.3, M⊥
a ×M⊥

b ⊆M⊥.

Proof. Let χ1 ∈ M⊥
a and χ2 ∈ M⊥

b . We want to show χ̃ = χ1 ⊗ χ2 ∈ M⊥. Let (gn)n∈N
be a sequence in G such that (αagn , αbgn) → 0 in W . By Proposition 5.4, it suffices to
show

χ̃ ◦ σ̃gn(w) → 1(5.2)
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in L2(W ). Now, since a and b are coprime, we have αgn → 0 in Z. Since χ1 ∈ M⊥
a , it

follows that

χ1 (σagn(z)) → 1(5.3)

in L2(Z) by Proposition 5.4. Similarly,

χ2 (σbgn(z)) → 1(5.4)

in L2(Z). Combining (5.3) and (5.4), we have

χ1 (σagn(z + at))χ2 (σbgn(z + bt)) → 1

in L2(Z × Z). That is, (5.2) holds. □

Before establishing the reverse inclusion, M⊥ ⊆ M⊥
a × M⊥

b , we need the following
result:

Lemma 5.10. In the setup of Proposition 5.3,

M⊥ ⊆
{
χ1 ⊗ χ2 ∈ Ĥ2 : χa1 = χb2 = 1

}
Proof. Let χ̃ = χ1⊗χ2 ∈M⊥. By the argument in the proof of [ABB21, Theorem 7.26],

we have χa1χ
b
2 = χa

2

1 χ
b2

2 = 1. Therefore,

χ
a(b−a)
1 = χab1 χ

−a2
1 =

(
χa1χ

b
2

)b (
χa

2

1 χ
b2

2

)−1

= 1.

By assumption, (b − a)G has finite index in G. It follows that Ĥ does not contain
any (b − a)-torsion elements (see Lemma 5.7), so χa1 = 1. We immediately deduce
χb2 = χ−a

1 = 1 as well. □

Now we can complete the proof of Proposition 5.3:

Lemma 5.11. In the setup of Proposition 5.3, M⊥ ⊆M⊥
a ×M⊥

b .

Proof. Let χ̃ = χ1⊗χ2 ∈M⊥. We want to show χ1 ∈M⊥
a and χ2 ∈M⊥

b . For notational
convenience, let a1 = a and a2 = b. Let (gn)n∈N be a sequence in G such that αgn → 0
in Z. By Proposition 5.4, it suffices to show

χi (σaign(z)) → 1(5.5)

in L2(Z) for i = 1, 2.
Now, (αagn , αbgn) → 0 in W , so

χ̃ ◦ σ̃gn(w) → 1(5.6)
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in L2(W ) by Proposition 5.4. Moreover, since χi ◦σ is a Conze–Lesigne cocycle, we have

ci,nλi,n(z)χi (σgn(z)) → 1(5.7)

in L2(Z) for some sequences (ci,n)n∈N in S1 and (λi,n)n∈N in Ẑ (see Proposition 5.5).
It follows by Lemma 5.6 that

caii,nλ
(ai2 )
i,n (αgn)λ

a
i,n(z)χi (σaign(z)) → 1(5.8)

in L2(Z). On the other hand, by Lemma 5.10, we have χaii = 1, so raising (5.7) to the
ai-th power gives

caii,nλ
ai
i,n(z) → 1

in L2(Z). Hence, by Lemma 5.8, λaii,n = 1 for all sufficiently large n, and caii,n → 1.
Therefore, (5.8) simplifies to

di,nχi (σaign(z)) → 1(5.9)

in L2(Z), where di,n = λ
(ai2 )
i,n (αgn).

The numbers a and b are coprime, so at least one of them is odd. Without loss of

generality, assume a is odd. Then a divides
(
a
2

)
, so λ

(a2)
1,n = 1. Hence, d1,n = 1 for all large

n, so (5.5) follows from (5.9) for i = 1. It remains to show (5.5) holds for i = 2.
Combining the identities (5.9) for i = 1, 2 and using d1,n = 1, we have

d2,nχ1 (σagn(z + at))χ2 (σbgn(z + bt)) → 1

in L2(Z × Z). That is,

d2,nχ̃ ◦ σ̃gn(w) → 1

in L2(W ). Comparing with (5.6), this implies d2,n → 1. Therefore, (5.5) follows from
(5.9) for i = 2. □

5.5. Limit formula. With the help of Proposition 5.3, we will now prove a limit formula
for the averages UC - limg∈G Tagf1Tbgf2. We need to define one more object related to the
cocycle σ before stating the limit formula. For a compact space K, let M(Z,K) denote
the space of measurable functions Z → K equipped with the topology of convergence in
measure.

Proposition 5.12. Let X = Z ×σ H be an ergodic Conze–Lesigne system. Let c ∈ Z.
There exists a function ψc : Z × Z → H/Mc such that
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(1) for every g ∈ G,

ψc(αg, z) ≡ σcg(z) (mod Mc),

and
(2) the map Z ∋ t 7→ ψc(t, ·) ∈ M(Z,H/Mc) is continuous.

In order to prove Proposition 5.12, we use the following characterization of convergence
in measure:

Lemma 5.13 ([ABB21], 7.28). Let (fn)n∈N be a sequence of functions in M(Z,H). Then

fn → f in M(Z,H) if and only if χ ◦ fn → χ ◦ f in L2(Z) for every character χ ∈ Ĥ.

Proof of Proposition 5.12. Given a sequence (gn)n∈N in G such that (αgn)n∈N is conver-
gent in Z, we want to show that the sequence

(σcgn(z))n∈N

converges in M(Z,H/Mc). Equivalently, by Lemma 5.13, we must show that

(χ (σcgn(z)))n∈N

converges in L2(Z) for every χ ∈ Ĥ/Mc =M⊥
c .

Let χ ∈ M⊥
a . By the definition of Mc, the cocycle χ (σcg(z)) is a coboundary over

(Z, α). Hence, by Proposition 5.4, there is a continuous map t 7→ φ(t, ·) ∈ L2(Z) such
that φ(αg, z) = χ (σcg(z)). Therefore,

χ (σcgn(z)) → φ(t, z)

in L2(Z), where t = limn→∞ αgn ∈ Z. □

By the Kuratowski and Ryll-Nardzewski measurable selection theorem (see [Sri98,
Section 5.2]), there exists a measurable map ιa : H/Ma → H such that πa(ιa(x)) = x,
where πa is the canonical projection πa : H → H/Ma. Let ψ1 = ιa ◦ ψa and ψ2 = ιb ◦ ψb.
We can now state and prove a general limit formula for Conze–Lesigne systems:

Theorem 5.14. Let X = Z ×σ H be an ergodic Conze–Lesigne system. Let a, b ∈ Z.
Let M =M(a, b) =Ma ×Mb. Then for any f1, f2 ∈ L∞(µ), we have

UC - lim
g∈G

f1(Tag(z, x))f2(Tbg(z, x))

=

∫
Z×Ma×Mb

f1(z + at, x+ u+ ψ1(t, z))f2(z + bt, x+ v + ψ2(t, z)) dt du dv(5.10)

in L2(Z ×H).
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Remark 5.15. We have defined the functions ψi by lifting ψa and ψb to the group H
from H/Ma and H/Mb respectively. If ψ′

1 is another functions with πa(ψ
′
1) = ψa, then

for any t, z ∈ Z, we have ψ′
1(t, z) − ψ1(t, z) ∈ Ma. Since the Haar measure on Ma is

invariant under shifts coming from Ma, the expression on the right hand side of (5.10)
is unchanged when ψ1 is replaced by ψ′

1. The same is true for replacing ψ2 by ψ′
2, so it

does not matter which lifts of ψa and ψb we choose.

Proof. For notational convenience, let ψ = (ψ1, ψ2) : Z × Z → H2, and let mM denote
the Haar measure on the Mackey group M =Ma ×Mb.

It suffices to prove the formula (5.10) for functions of the form fi(z, x) = ωi(z)χi(x)

with ωi ∈ L∞(Z) and χi ∈ Ĥ. In this case, the right hand side of (5.10) is equal to∫
Z

ω1(z + at)ω2(z + bt)χ1(x)χ2(x)χ̃(ψ(t, z)) dt

∫
M

χ̃ dmM ,

where χ̃ = χ1 ⊗ χ2 ∈ Ĥ2.
We now consider two cases. First, if χ̃ /∈ M⊥, then

∫
M
χ̃ dmM = 0, so the right hand

side of (5.10) is equal to zero. Moreover, for every λ ∈ M⊥ and almost every z, t ∈ Z,
we have∫
H2

f1(z + at, x)f2(z + bt, y)λ(x, y) dx dy = ω1(z + at)ω2(z + bt)

∫
H2

χ̃(x, y)λ(x, y) = 0.

Therefore, the left hand side of (5.10) is also zero (see [ABB21, Proposition 7.10]).

Now suppose χ̃ ∈M⊥ so that
∫
M
χ̃ dmM = 1. For g ∈ G and (z, x) ∈ Z ×H, we can

write

f1(Tag(z, x))f2(Tbg(z, x)) = ω1(z + αag)ω2(z + αbg)χ1(x)χ2(x)χ̃(σag(z), σbg(z)).

Thus, letting

φt(z, x) := ω1(z + at)ω2(z + bt)χ1(x)χ2(x)χ̃(ψ(t, z)),

we have

f1(Tag(z, x))f2(Tbg(z, x)) = φαg(z, x).

By Proposition 5.12, the map Z ∋ t 7→ φt ∈ L2(Z × H) is continuous. Therefore, for
any ξ ∈ L2(Z ×H), since the system (Z, α) is uniquely ergodic, we have

UC - lim
g∈G

〈
φαg , ξ

〉
=

∫
Z

⟨φt, ξ⟩ dt.

That is

UC - lim
g∈G

φαg(z, x) =

∫
Z

φt(z, x) dt(5.11)
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weakly in L2(Z ×H). By more general results on norm convergence on multiple ergodic
averages (see [Au16, Z-K16]), it follows that (5.11) holds strongly. The right hand side
of (5.10) is also equal to

∫
Z
φt(z, x) dt, so the formula (5.10) holds when χ̃ ∈M⊥. □

5.6. Proof of Theorem 1.13. We first prove the theorem in the special case where a
and b are coprime.

Let f = 1A. By Theorem 4.15, there is an extension X̃ of X such that

UC - lim
g∈G

η(αg)

∫
X̃

f̃ · Tagf̃ · Tbgf̃ dµ̃

= UC - lim
g∈G

η(αg)

∫
X̃

f̃ · TagE(f̃ |Z2
G(X̃)) ∨ Ia(X̃)) · TagE(f̃ |Z2

G(X̃) ∨ Ib(X̃)) dµ̃,

where f̃ is the lift of f to X̃. For notational convenience, let f̃a := E(f̃ |Z2
G(X̃))∨Ia(X̃))

and f̃b := E(f̃ |Z2
G(X̃) ∨ Ib(X̃)). We can therefore write

f̃a =
∑
i∈N

cihi,

f̃b =
∑
j∈N

djkj,

where each ci is aG-invariant, dj is bG-invariant, and hi, kj are Z2
G(X̃)-measurable. By

Theorem 2.5(iii), we can write Z2
G(X̃) = Z̃×σ H. Then by Theorem 5.14,

UC - lim
g∈G

η(αg) µ
(
A ∩ T−1

ag A ∩ T−1
bg A

)
= UC - lim

g∈G
η(αg)

∫
X̃

f̃ · Tagf̃a · Tagf̃b dµ̃

=
∑
i,j∈N

∫
X̃

cidj f̃ · UC - lim
g∈G

η(αg) Taghi · Tbgkj dµ̃

=
∑
i,j∈N

∫
X̃×Z×Ma×Mb

ci(x)dj(x)f̃(x)η(t)hi (πZ(x) + at, πH(x) + u+ ψ1(t, z))

kj (πZ(x) + bt, πH(x) + v + ψ2(t, z)) dµ̃(x) dt du dv,

where (πZ(x), πH(x)) ∈ Z ×H is the projection of x ∈ X̃ onto the Conze–Lesigne factor
Z × H. By choosing η : Z → [0,∞) concentrated on a small neighborhood of 0 (as in
the proof of Theorem 1.11; see Subsection 3.3), it remains to show the inequality:

∑
i,j

∫
X̃×Ma×Mb

ci(x)dj(x)f̃(x)hi (πZ(x), πH(x) + u) kj (πZ(x), πH(x) + v) dµ̃(x) du dv ≥ µ(A)3.

(5.12)
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LetW1 be the σ-algebra generated by functions f ∈ L∞(Z×H) such that f(z, x+y) =
f(z, x) for every y ∈ Ma. Similarly, let W2 be the σ-algebra generated by functions
f ∈ L∞(Z × H) such that f(z, x + y) = f(z, x) for every y ∈ Mb. Then the left hand
side of (5.12) is equal to∫

X̃

f̃ · E(f̃ |W1 ∨ Ia) · E(f̃ |W2 ∨ Ib) dµ̃.(5.13)

By [C11, Lemma 1.6], the quantity (5.13) is bounded below by
(∫

X̃
f̃ dµ̃

)3
= µ(A)3,

so (5.12) holds.

Now suppose a, b ∈ Z are arbitrary integers and write a = a′ · d and b = b′ · d where
d = gcd(a, b) and a′, b′ are coprime. Since (b − a)G has finite index in G we deduce
that so does dG. Therefore, we can find finitely many ergodic dG-invariant measures
{µi}li=1 such that µ = 1

l

∑l
i=1 µi and all of the systems Xi = (X,X , µi, dG) admit the

same Kronecker factor. By the argument above, we can find a suitable η satisfying:

UC - lim
g∈dG

η(αg)µi(A ∩ T−1
a′gA ∩ T−1

b′gA) > µi(A)
3 − ε

for all i = 1, ..., l, and UC - limg∈dG η(αg) = 1. Therefore, by Jensen’s inequality we have

UC - lim
g∈dG

η(αg)µ(A ∩ T−1
a′gA ∩ T−1

b′gA) > µ(A)3 − ε.

As in the proof of Theorem 1.11, we conclude that

{g ∈ dG : µ(A ∩ T−1
a′gA ∩ T−1

b′gA) > µ(A)3 − ε}
is syndetic. Since dG has finite index in G, this implies that

{g ∈ G : µ(A ∩ T−1
ag A ∩ T−1

bg A) > µ(A)3 − ε}
is syndetic, as required. □

6. Proof of Theorem 1.14

In this section, we prove Theorem 1.14, restated here for the convenience of the reader:

Theorem 6.1 (Theorem 1.14). Let G =
⊕∞

n=1 Z. Let l ∈ N. There exists P = P (l)
such that, for any a, b ∈ N with p | gcd(a, b) for some prime p ≥ P , there is an ergodic
G-system (X,X , µ, (Tg)g∈G) and a set A ∈ X with µ(A) > 0 such that

µ(A ∩ T−1
ag A ∩ T−1

bg A) ≤ µ(A)l

for every g ̸= 0.

Rather than constructing a
⊕∞

n=1 Z-system directly, we will instead construct a
⊕∞

n=1 Z/p2Z-
system. Since

⊕∞
n=1 Z/p2Z is a quotient of

⊕∞
n=1 Z, the system we construct can be lifted

to an ergodic
⊕∞

n=1 Z-system. Hence, Theorem 1.14 follows from:
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Theorem 6.2. For any a, b, l ∈ N, there exists a prime p (sufficiently large), an ergodic⊕∞
n=1 Z/p2Z-system X =

(
X,X , µ, (Tg)g∈⊕∞

n=1 Z/p2Z
)
, and a set A ∈ X with µ(A) > 0

such that

µ(A ∩ T−1
pagA ∩ T−1

pbgA) ≤ µ(A)l

for every g ̸= 0.

The proof of Theorem 6.2 is based on the following result of Behrend [Beh46].

Theorem 6.3. Let a, b ∈ N be distinct and non-zero. There is an absolute constant
c > 0 such that: for every N ∈ N, there is a subset B ⊆ {0, 1, ..., N − 1} such that

|B| > N · e−c
√

log(N) and B contains no configurations of the form {n, n + am, n + bm}
for m ̸= 0.

For every prime number p, let Cp = {z ∈ C : zp = 1} denote the group of all roots of
unity of order p and let ωp = e2πi/p be the first p-th root of unity in C. The following is
an immediate corollary of Behrend’s theorem.

Lemma 6.4. Let a, b ∈ N be distinct, then for every l, there exists a sufficiently large

prime p and a subset B ⊆ Cp of size |B| > p1−
1
l−1 which contains no configurations of

the form {y, y · xa, y · xb} for x ̸= 1.

Throughout this section, we let Tp := CN
p and Gp :=

⊕
i∈I Z/pZ.

We start by giving a proof that the large intersection property fails for non-ergodic
systems.

Lemma 6.5. Let a, b ∈ Z be distinct and nonzero. For every L ∈ N, there is a P = P (L),
such that for every prime p ≥ P , there is a Gp-system (X,X , µ, (Tg)g∈Gp) such that, for
every l ≤ L, there is a measurable set A = A(l) with µ(A) > 0 and

µ(A ∩ TagA ∩ TbgA) ≤ µ(A)l

for every g ̸= 0.

This result was previously established in [ABB21, Proposition 10.11], but we give a
different proof that will be useful later on.

Proof. Let p be a prime number and let Xp = Tp × Cp. We equip Xp with the Borel
σ-algebra, the Haar measure µ, and the action of Gp by

Tg(x, u) = (x,
∞∏
i=1

xgii u).
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Now fix a subset B ⊆ Cp which avoids configurations of the form {y, y·xa, y·xb} whenever
x ̸= 1, and let A = Tp ×B. It is easy to see that µ(A) = |B|

p
and we have

µ(A ∩ TagA ∩ TbgA) =
∫
T 2
p

1B(y)1B

(
y
∏
i∈I

xagi

)
1B

(
y
∏
i∈I

xbgi

)
dxdy =

∫
T 2
p

1B(y)1B

y ·
 ∏

{i : gi ̸=0}

xi

a 1B

y ·
 ∏

{i : gi ̸=0}

xi

b
 dxdy =

µT 2
p


(y, x) ∈ T 2

p :

y, y ·
 ∏

{i : gi ̸=0}

xi

a

, y ·

 ∏
{i : gi ̸=0}

xi

b
 ⊂ B


 .

But,

{
y, y ·

(∏
{i : gi ̸=0} xi

)a
, y ·

(∏
{i : gi ̸=0} xi

)b}
⊂ B if and only if

∏
{i : gi ̸=0} xi = 1.

Since g ̸= 0, we deduce that µ(A ∩ TagA ∩ TbgA) = |B|
p2

= pl−2

|B|l−1µ(A)
l. Now, choose P

sufficiently large for which there exists a set B with |B| > p1−
1
l−1 (Lemma 6.4). Then

µ(A ∩ TagA ∩ TbgA) < µ(A)l as required. □

Roughly speaking, the idea in this section is to construct an ergodic p-th root for the
system above.

We fix some P sufficiently large as in Lemma 6.5, and let p > P be a prime number.
For convenience of notations we let ω = e2πi/p and η = e2πi/p

2
. We define an action of

G =
⊕

n∈N Z/p2Z on T by setting Sgx = ζ(g)x, where ζ(g) = (ηpgi)i∈N = (ωgi)i∈N. Since
the image of ζ is dense in T , the action is ergodic.

Now, we extend this action to the product space X = T × Cp2 . Let φ : Cp → Cp2 be
the map

φ(e
2πix
p ) = e

2πi|x|p
p2

where |x|p = x mod p. Then φ is a cross-section of the canonical projection Cp2 → Cp
and we have that φ(x)p = x, and φ(ω) = η. Our goal is to define an action (Tg)g∈G on
X such that Tpg(t, u) = (t,

∏
i∈N t

pgi
i · u).

We do so in two steps. We define an action T ′
g on X which satisfies that T ′

ei
(t, u) =

(Seit, φ(ti)u), for every i ∈ N, where ei ∈
⊕∞

n=1 Z/pnZ is the i-th unit vector. Writing
g =

∑
i∈N giei and using the group law, we get the following action:

(6.1) T ′
g(t, u) =

(
Sgt,

∞∏
j=1

gj−1∏
k=0

φ(ωktj) · u

)
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where an empty product
∏−1

k=0 xk is equal to 1.
Unfortunately, this action is not what we are looking for. Indeed,

(T ′
ej
)p(t, u) = (t,

p−1∏
k=0

φ(ωk · tj)u) = (t, tj · η(
p
2) · u).

To fix that we let ξ = ω
1−p
2 be a p-th root of η(

p
2) and change the action accordingly:

(6.2) Tg(t, u) =

(
Sgt,

∞∏
j=1

(
gj−1∏
k=0

φ(ωktj) · ξgj
)

· u

)
.

Lemma 6.6. For every t ∈ T , u ∈ Cp2 and g ∈ G we have

(6.3) Tpg(t, u) = (t, tpgu).

Proof. The proof is a direct computation. Indeed, it suffices to prove that (6.3) holds for
g = ej for every j ∈ N. Let j ∈ N be arbitrary. Since ω is of order p, Spgt = t. As for
the second coordinate observe that

p−1∏
k=0

φ(ωktj) · ξp = ξp · η(
p
2) · tj = tj.

The first equality follows because the product is independent on tj and always equals to

φ(ω) · ... · φ(ωp−1) = η(
p
2), and the last equality follows from the definition of ξ. This

completes the proof of the lemma. □

The main difficulty in the proof is showing that this action is ergodic.

Lemma 6.7. The action (6.2) on X is ergodic.

Proof. We use Zimmer criterion for ergodicity (Lemma 4.5). Since the action of G
on T is ergodic, it is enough to show that the cocycle σ : G × T → Cp2 , σ(g, t) =∏∞

i=1

∏gj−1
k=0 φ(ω

ktj) is minimal. Since Cp is the largest proper subgroup of Cp2 , it is
enough to show that σ is not cohomologous to a cocycle taking values in Cp. Suppose
by contradiction that there exists a cocycle τ : T → Cp cohomologous to σ. Since

τ p = 1, we deduce that σ(g, t)p =
∏∞

i=1 ω
(gi2 )tgii ξ

pgi is a coboundary. Therefore, there
exists F : T → S1 such that

(6.4) σp(g, t) =
F (Sgt)

F (t)

for every g ∈ G and t ∈ T . Observe that for every g, h ∈ G, ∆hσ
p(g, t) is a constant

in t. Therefore, by (6.4), ∆h1∆h2F is a constant for every h1, h2 ∈ G. Let s ∈ T and

define ∆sF (x) = F (sx)
F (x)

. We claim that ∆sF (x) is an eigenfunction. Let g1, g2 ∈ G,

then ∆g1∆g2∆sF (x) = ∆s∆g1∆g2F (x) = 1. Hence, by ergodicity ∆g2∆sF is constant
and ∆sF is an eigenfunction for every s ∈ Z. Recall that translations by s ∈ Z are
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continuous with respect to the L2-norm. In particular, there exists an open subgroup
U ≤ T such that

(6.5) ∥∆sF − 1∥L2(µT ) <
√
2.

By ergodicity, the multiplicity of each eigenvalue is 1. Since eigenfunctions with different
eigenvalues are orthogonal, it follows that ∆sF is a constant for all s ∈ U . Otherwise,
∆sF is orthogonal to 1 and then

∥∆sF − 1∥2L2(µT ) = ∥∆sF∥2L2 + ∥1∥2L2 = 2

which contradicts (6.5). Now, choose g ∈ G such that
∏∞

i=1 ω
gi ∈ U (such g must exist

by density). Then if we take s = ωg, equation (6.4) implies that σp(g, ·) is a constant.
As σp(g, t) clearly depends on t, this is a contradiction. □

We now complete the proof of Theorem 6.2. Let B ⊆ Cp be as in Lemma 6.4. Let

π : Cp2 → Cp be the map πi(x) = xp1 and let A = T × B̃ where B̃ = π−1(B). Then

µX(A) =
|B|
p
, and as in the proof of Lemma 6.5,

µX(A ∩ TapgA ∩ TbpgA) =
|B|
p2

=
pl−2

|B|l−1
µX(A)

l < µX(A)
l.

This completes the proof. □

7. 3-point configurations in Z2

In this section, we establish ergodic popular difference densities for all 3-point matrix
patterns in Z2. The results are summarized in Table 1.1 in the introduction.

7.1. Ergodic popular difference densities when r(M1,M2) = (2, 1, 1). The follow-
ing Theorem gives an affirmative answer to Question 1.12 for the group G = Z2:

Theorem 7.1. Suppose M1 and M2 are 2× 2 matrices such that r(M1,M2) = (2, 1, 1).
Then for any α ∈ (0, 1), epddM1,M2

(α) = α3.

An example of the configurations handled by Theorem 7.1 is the class of all axis-aligned
right triangles in Z2, {(a, b), (a + n, b), (a, b + m)}, which corresponds to the choice of
matrices

M1 =

(
1 0
0 0

)
and M2 =

(
0 0
0 1

)
.

Proof of Theorem 7.1. Without loss of generality, we may assume rk(M1) = rk(M2) = 1
and rk(M2 −M1) = 2. Indeed, if rk(M1) = 2, we may rearrange the expression

µ
(
A ∩ T−1

M1n⃗
A ∩ T−1

M2n⃗
A
)
= µ

(
A ∩ T−1

(M1−M2)n⃗
A ∩ T−1

−M2n⃗
A
)

and the new matrices N1 =M1 −M2 and N2 = −M2 satisfy the desired conditions.
We now break the proof into two cases depending on the diagonalizability of M1 and

M2. Note that, since Mi has rank 1, its characteristic polynomial is of the form x(x− a)
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for some a ∈ Z. Hence, if Mi has a nonzero eigenvalue, then it has an integer eigenvalue
(in this case, equal to a) and is diagonalizable.

Case 1: M1 or M2 has a nonzero eigenvalue.
Without loss of generality, we may assume that M1 has a nonzero eigenvalue and is

therefore diagonalizable. Hence, there is a nonsingular 2×2 integer matrix P , an integer
a ∈ Z, and a rank 1 matrix N2 with integer entries such that

M1P = P

(
a 0
0 0

)
, M2P = PN2, and rk

(
N2 −

(
a 0
0 0

))
= 2.

It is straightforward to check that, in order to satisfy the constraints on rank, N2 must
be of the form

N2 =

(
cd c
bd b

)
with b ̸= 0. By changing to the basis

(
1
−d

)
,
(
0
1

)
, we may further assume d = 0.

Suppose (X,X , µ, (Tn⃗)n⃗∈Z2) is a measure-preserving Z2-system (we do not need to
assume that the system is ergodic here), and let A ∈ X with µ(A) = α. Define a new
Z2-action by Sn⃗ := TPn⃗. Then

UC - lim
n⃗∈Z2

µ
(
A ∩ T−1

M1Pn⃗
A ∩ T−1

M2Pn⃗
A
)
= UC - lim

n⃗∈Z2
µ
(
A ∩ S−1

(an1,0)
A ∩ S−1

(cn2,bn2)
A
)
.

Now put S1 := S(a,0) and S2 := S(c,b). By Lemma 2.2 and the mean ergodic theorem, we
have

UC - lim
n⃗∈Z2

µ
(
A ∩ T−1

M1Pn⃗
A ∩ T−1

M2Pn⃗
A
)
= UC - lim

n2∈Z
UC - lim

n1∈Z
µ
(
A ∩ S−n1

1 A ∩ S−n2
2 A

)
=

∫
X

1A · E(1A | I(S1)) · E(1A | I(S2))

≥ α3.

Therefore, for any ε > 0, the set

Rε :=
{
n⃗ ∈ Z2 : µ

(
A ∩ T−1

M1Pn⃗
A ∩ T−1

M2Pn⃗
A
)
> α3 − ε

}
is syndetic. Noting that P is nonsingular, it follows that the set P (Rε) is also syndetic
in Z2. But for any m⃗ ∈ P (Rε), we have

µ
(
A ∩ T−1

M1m⃗
A ∩ T−1

M2m⃗
A
)
> α3 − ε.

This shows epddM1,M2
(α) ≥ α3.

To see the upper bound epddM1,M2
(α) ≤ α3, let (X,X , µ, (Tn⃗)n⃗∈Z2) be mixing of order

3. Then for any A ∈ X , we have µ
(
A ∩ T−1

n⃗ A ∩ T−1
m⃗ A

)
→ µ(A)3 as n⃗, m⃗, m⃗ − n⃗ → ∞.
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Let P be a nonsingular 2 × 2 matrix with integer entries and a, b, c ∈ Z with a, b ̸= 0
such that

PM1 =

(
a 0
0 0

)
P, and PM2 =

(
0 c
0 b

)
P.

The group of transformations T̃n⃗ := TPn⃗ is still mixing of order 3. Write m⃗ = Pn⃗ for
n⃗ ∈ Z2. If m1 → ∞ and m2 → ∞, then

µ
(
A ∩ T̃−1

M1n⃗
A ∩ T̃−1

M2n⃗
A
)
= µ

(
A ∩ T−1

(am1,0)
A ∩ T−1

(cm2,bm2)
A
)
→ µ(A)3.

Hence, for any ε > 0, there is a finite set F ⊆ Z such that{
n⃗ ∈ Z2 : µ

(
A ∩ T̃−1

M1n⃗
A ∩ T̃−1

M2n⃗
A
)
> µ(A)3 + ε

}
⊆
{
n⃗ ∈ Z2 : Pn⃗ ∈ (F × Z) ∪ (Z× F )

}
.

A union of finitely many lines in Z2 is not syndetic, so

synd-supn⃗∈Z2µ
(
A ∩ T̃−1

M1n⃗
A ∩ T̃−1

M2n⃗
A
)
≤ µ(A)3.

Case 2: M1 and M2 have no nonzero eigenvalues.
Since M1 has rank 1, there is a nonsingular 2× 2 integer matrix P , a nonzero integer

a ∈ Z, and a rank 1 matrix N2 with integer entries and characteristic polynomial x2 such
that

M1P = P

(
0 a
0 0

)
, M2P = PN2, and rk

(
N2 −

(
0 a
0 0

))
= 2.

Write

N2 =

(
s t
u v

)
.

Since N2 has characteristic polynomial x2, we have s+ v = 0 and sv = tu. Therefore, if
u = 0, then s = v = 0. But then

N2 −
(

0 a
0 0

)
=

(
0 t− a
0 0

)
has rank at most 1. Thus, we must have u ̸= 0. It follows that N2 can be written in the
form

N2 =

(
db −d2b
b −db

)
for some b, d with b ̸= 0. Changing to the basis

(
1
0

)
,
(
d
1

)
, we may assume d = 0 so that

N2 =

(
0 0
b 0

)
.



KHINTCHINE-TYPE RECURRENCE FOR 3-POINT CONFIGURATIONS 51

Given a Z2-system (X,X , µ, (Tn⃗)n⃗∈Z2), note that

µ
(
A ∩ T−1

N1n⃗
A ∩ T−1

N2n⃗
A
)
= µ

(
A ∩ T−1

(an2,0)
A ∩ T−1

(0,bn1)
A
)
.

Hence, replacing (n1, n2) by (n2, n1), we reduce to Case 1. □

7.2. Ergodic popular difference densities when r(M1,M2) = (1, 1, 1). For matrix
configurations with r(M1,M2) = (1, 1, 1), we must distinguish between several cases.
First, when M1 and M2 commute, a construction based on Behrend’s theorem shows
that the ergodic popular difference density decays faster than any polynomial:

Theorem 7.2. SupposeM1 andM2 are commuting 2×2 matrices such that r(M1,M2) =
(1, 1, 1). Then for any sufficiently small α ∈ (0, 1), epddM1,M2

(α) < αc log(1/α), where
c > 0 is an absolute constant.

Theorem 7.2 applies to collinear three-point configurations up to scaling and transla-
tion.

Proof of Theorem 7.2. We first distinguish between two cases depending on diagonaliz-
ability of M1 and M2.

Case 1: M1 or M2 has a nonzero eigenvalue.
Without loss of generality, assume M1 has a nonzero eigenvalue and is therefore diag-

onalizable. Since M2 and M2 −M1 are also rank 1 and commute with M1, there exists
a nonsingular 2 × 2 matrix P with integer entries and a, b ∈ Z be distinct and nonzero
such that

PM1 =

(
a 0
0 0

)
P and PM2 =

(
b 0
0 0

)
P.(7.1)

Case 2: M1 and M2 have no nonzero eigenvalues.
Using the condition r(M1,M2) = (1, 1, 1), there is a nonsingular 2×2 integer matrix P ,

a nonzero integer a ∈ Z, and a rank 1 matrix N2 with integer entries and characteristic
polynomial x2 such that

M1P = P

(
0 a
0 0

)
, M2P = PN2, and rk

(
N2 −

(
0 a
0 0

))
= 1.

Moreover, N2 commutes with the matrix

(
0 a
0 0

)
. Write

N2 =

(
s t
u v

)
.

Note that [(
0 a
0 0

)
,

(
s t
u v

)]
=

(
au a(v − s)
0 au

)
,
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so u = 0 and v = s. On the other hand, since N2 has characteristic polynomial x2, we
have s+ v = 0 and sv = tu. Hence, s = v = 0, and N2 is of the form

N2 =

(
0 b
0 0

)
with b /∈ {0, a}.

Now, replacing (n1, n2) ∈ Z2 by (n2, n1) ∈ Z2 and using the identity(
0 c
0 0

)(
n2

n1

)
=

(
c 0
0 0

)(
n1

n2

)
for c ∈ Z, we can reduce Case 2 to Case 1.

Without loss of generality, let P be a nonsingular 2 × 2 matrix with integer entries
and a, b ∈ Z distinct and nonzero such that (7.1) holds. Put d := |det(P )| ∈ N.

Define S : T2 → T2 by S(x, y) := (x, y + x). Let R : T2 → T2 be the transformation
R(x, y) = (2x, 2y + x). Both S and R preserve the Haar probability measure µ on T2.
We claim that the (Z≥0)

2-action generated by S and R is ergodic (with respect to µ).
To see this, suppose f ∈ L2(T2) is simultaneously S- and R-invariant, and expand f as
a Fourier series

f(x, y) =
∑
n,m

cn,me(nx+my),

where e(t) := e(2πit). Then

(Sf)(x, y) =
∑
n,m

cn,me((n+m)x+my) =
∑
n,m

cn−m,me(nx+my).

Therefore, since Sf = f , we have cn,m = cn−m,m for all n,m ∈ Z. By Parseval’s identity,∑
n,m |cn,m|2 = ∥f∥22 <∞, so cn,m = 0 whenever m ̸= 0. That is, f(x, y) =

∑
n cn,0e(nx).

Now,

(Rf)(x, y) =
∑
n

cn,0e(2nx).

Hence, since Rf = f , we have c2n,0 = cn,0 for every n ∈ Z. Applying Parseval’s identity
once again, we conclude that cn,0 = 0 for n ̸= 0. Thus, f(x, y) = c0,0 is a constant
function.

Fix α ∈ (0, 1). By [BHK05, Theorem 1.3], there exists a set A ⊆ T2 with µ(A) = α
such that µ

(
A ∩ S−anA ∩ S−bnA

)
< αc log(1/α) for n ̸= 0, where c > 0 is an absolute

constant.5

5The statement of [BHK05, Theorem 1.3] only gives a bound of the form αl rather than αc log(1/α).
However, as noted in [BHK05] immediately after the statement, the construction of the set A gives
this stronger bound via Behrend’s theorem on sets without three-term arithmetic progressions [Beh46].
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Let (X,X , ν, (Tn⃗)n⃗∈Z2) be an ergodic Z2-system and B ∈ X with ν(B) = α such that

ν
(
B ∩ T−1

n⃗ B ∩ T−1
m⃗ B

)
= µ

(
A ∩ S−n1R−n2A ∩ S−m1R−m2A

)
for every n⃗, m⃗ ∈ Z × Z≥0. (Note that, because R is non-invertible, we cannot simply

take X = T2, ν = µ, B = A, and Tn⃗ = Sn1Rn2 .) Then let T̃n⃗ := TPn⃗ for n⃗ ∈ Z2.

Since [Z2 : P (Z2)] = |det(P )| = d <∞, the system
(
X,X , ν, (T̃n⃗)n⃗∈Z2

)
has at most d

ergodic components. Hence, we may write the ergodic decomposition as ν = 1
k

∑k
i=1 νi

for some k ≤ d and some measure νi. For some 1 ≤ i ≤ k, we must have νi(B) ≥ α.
Without loss of generality, we may therefore assume ν1(B) ≥ α.
Let n⃗ ∈ Z2 \ {0}. Let m⃗ = Pn⃗ ∈ Z2. Then

ν1

(
B ∩ T̃−1

M1n⃗
B ∩ T̃−1

M2n⃗
B
)
= ν1

(
B ∩ T−1

(am1,0)
B ∩ T−1

(bm1,0)
B
)

≤ d · µ
(
A ∩ S−am1A ∩ S−bm1A

)
.

Hence, if ν1

(
B ∩ T̃−1

M1n⃗
B ∩ T̃−1

M2n⃗
B
)
> d · αc log(1/α), then m1 = 0. But since P is nonsin-

gular, {
n⃗ ∈ Z2 : Pn⃗ ∈ {0} × Z

}
= Qv⃗ ∩ Z2

where v⃗ is the vector P−1
(
0
1

)
∈ Q2. Such a set is never syndetic, so epddM1,M2

(α) ≤
d ·αc log(1/α). For c′ < c and α sufficiently small, one has d ·αc log(1/α) < αc

′ log(1/α), so this
completes the proof. □

Now suppose r(M1,M2) = (1, 1, 1), and M1 and M2 do not commute. In this case,
M1 or M2 must be diagonalizable,6 so we assume without loss of generality that M1

is diagonalizable. We then distinguish between two cases, depending on the form of
M2 when M1 is diagonalized. Call the pair of matrices (M1,M2) row-like if there is a
non-singular 2× 2 matrix P with rational entries and rational numbers a, b, c ∈ Q with
a, b ̸= 0 such that

PM1P
−1 =

(
a 0
0 0

)
and PM2P

−1 =

(
c b
0 0

)
.

Additionally, [BHK05, Theorem 1.3] is only stated for the case a = 1, b = 2, but the same method works
for general a, b; see, e.g., [ABB21, Section 11].

6If neither M1 nor M2 are diagonalizable, then they both have characteristic polynomial x2. By a

change of basis, we may assume M1 is in its Jordan form M1 =

(
0 1
0 0

)
. Write M2 =

(
a b
c d

)
.

The condition rk(M2) = rk(M2−M1) = 1 implies that ad− bc = ad− (b− 1)c = 0, so c = 0 and ad = 0.

Moreover, since M2 has characteristic polynomial x2, we have a+ d = 0. Hence, M2 =

(
0 b
0 0

)
. But

then M2 commutes with M1.
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Similarly, call the pair (M1,M2) column-like if there is a non-singular 2 × 2 matrix P
with rational entries and rational numbers a, b, c ∈ Q with a, b ̸= 0 such that

PM1P
−1 =

(
a 0
0 0

)
and PM2P

−1 =

(
c 0
b 0

)
.

For row-like configurations, we can use the “Fubini” property of uniform Cesàro limits
(Lemma 2.2) to show epdd(α) = α3:

Theorem 7.3. Suppose M1 and M2 are 2 × 2 matrices with r(M1,M2) = (1, 1, 1) such
that (M1,M2) is row-like. Then for any α ∈ (0, 1), epddM1,M2

(α) = α3.

Proof. Let P be a nonsingular 2× 2 matrix with integer entries such that

M1P = P

(
a 0
0 0

)
and M2P = P

(
c b
0 0

)
.

By changing to the basis
(
b
−c

)
,
(
0
1

)
, we may assume c = 0.

Let (X,X , µ, (Tn⃗)n⃗∈Z2) be a measure-preserving system, and let A ∈ X with µ(A) =

α > 0. Define a new Z2-action by T̃n⃗ := TPn⃗, and let S := T̃(1,0). Then

µ
(
A ∩ T−1

M1Pn⃗
A ∩ T−1

M2Pn⃗
A
)
= µ

(
A ∩ S−an1A ∩ S−bn2A

)
.

Thus, by Lemma 2.2, we have

UC - lim
n⃗∈Z2

µ
(
A ∩ T−1

M1Pn⃗
A ∩ T−1

M2Pn⃗
A
)
≥ α3.

Since P is nonsingular, it follows that

synd-supn⃗∈Z2µ
(
A ∩ T−1

M1n⃗
A ∩ T−1

M2n⃗
A
)
≥ α3.

Now we will show epddM1,M2
(α) ≤ α3. Let P be a nonsingular 2 × 2 matrix with

integer entries and a, b, c ∈ Z with a, b ̸= 0 such that

PM1 =

(
a 0
0 0

)
P, and PM2 =

(
0 b
0 0

)
P.

Let (X,X , µ, S,R) be an ergodic Z2-system such that S is mixing of order 3. Define

Tn⃗ := Sn1Rn2 and T̃n⃗ := TPn⃗ for n⃗ ∈ Z2. Then for A ∈ X and m⃗ = Pn⃗ ∈ Z2, we have

µ
(
A ∩ T̃−1

M1n⃗
A ∩ T̃−1

M2n⃗
A
)
= µ

(
A ∩ S−am1A ∩ S−bm2A

)
.

Since S is mixing of order 3, given ε > 0, there exists a finite set F ⊆ Z such that{
n⃗ ∈ Z2 : µ

(
A ∩ T̃−1

M1n⃗
A ∩ T̃−1

M2n⃗
A
)
> µ(A)3 + ε

}
⊆ P−1

({
m⃗ ∈ Z2 : m1 ∈ F,m2 ∈ F, or bm2 − am1 ∈ F

})
.
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This set is a union of finitely many lines in Z2, so it is not syndetic. Hence,

synd-supn⃗∈Z2µ
(
A ∩ T̃−1

M1n⃗
A ∩ T̃−1

M2n⃗
A
)
≤ µ(A)3.

□

The prototypical column-like configuration is the class of axis-aligned isosceles right
triangles, for which it is known by previous work of Chu [C11] and Donoso and Sun
[DS18] that α4 ≤ epdd(α) ≤ α4−o(1). We prove that these bounds extend to all column-
like configurations:

Theorem 7.4. Suppose M1 and M2 are 2 × 2 matrices with r(M1,M2) = (1, 1, 1) such
that (M1,M2) is column-like. Then for any α ∈ (0, 1), epddM1,M2

(α) ≥ α4. Moreover,

for any l < 4 and all sufficiently small α (depending on l), one has epddM1,M2
(α) ≤ αl.

Proof. Let (X,X , µ, (Tn⃗)n⃗∈Z2) be an ergodic Z2-system. Since the pair (M1,M2) is
column-like, there exists a nonsingular 2 × 2 matrix P with integer entries and inte-
gers a, b, c ∈ Z with a, b ̸= 0 such that

M1P = P

(
a 0
0 0

)
and M2P = P

(
c 0
b 0

)
.

Then for any n⃗ ∈ Z2, we have

µ
(
A ∩ T−1

M1Pn⃗
A ∩ T−1

M2Pn⃗
A
)
= µ

(
A ∩ T−1

P (an1,0)
A ∩ T−1

P (cn1,bn1)
A
)
.

Letting S := TP (a,0) and R := TP (c,b), we therefore have the identity

µ
(
A ∩ T−1

M1Pn⃗
A ∩ T−1

M2Pn⃗
A
)
= µ

(
A ∩ S−n1A ∩R−n1A

)
.

Now, since T is ergodic and P is nonsingular, the Z2-action generated by S and R has
finitely many ergodic components. Thus, by [C11, Theorem 1.1],{

n ∈ Z : µ
(
A ∩ S−nA ∩R−nA

)
≥ µ(A)4

}
is syndetic in Z.7 It follows that{

n⃗ ∈ Z2 : µ
(
A ∩ T−1

M1n⃗
A ∩ T−1

M2n⃗
A
)
≥ µ(A)4

}
is syndetic in Z2. Hence, epddM1,M2

(α) ≥ α4.

Let l < 4. By [DS18, Theorem 1.2], there exists an ergodic Z2-system (X,X , µ, S,R)
and a set A ∈ X such that µ (A ∩ S−nA ∩R−nA) < µ(A)l for every n ̸= 0. Since the

7In [C11], it is assumed that the system (X,X , µ, S,R) is ergodic. However, the proof easily extends
to the case that the system has finitely many ergodic components by noting that all of the ergodic
components will have the same Kronecker factor.



56 E. ACKELSBERG, V. BERGELSON, AND O. SHALOM

pair (M1,M2) is column-like, there is a nonsingular 2× 2 matrix P with integer entries
and integers a, b, c ∈ Z with a, b ̸= 0 such that

PM1 =

(
a 0
0 0

)
P and PM2 =

(
c 0
b 0

)
P.

Define Tn⃗ := Sbn1(RaS−c)n2 , and let T̃n⃗ := TPn⃗ for n ∈ Z2. Note that
(
X,X , µ, (T̃n⃗)n⃗∈Z2

)
has finitely many ergodic components. To be more precise, the ergodic decomposition
has the form µ = 1

k

∑k
i=1 µi with k ≤ d := |ab det(P )|. Without loss of generality, we

may assume µ1(A) ≥ µ(A).
Now, for any n⃗ ̸= 0, we have

µ1

(
A ∩ T̃−1

M1n⃗
A ∩ T̃−1

M2n⃗
A
)
≤ d · µ

(
A ∩ S−abm1A ∩R−abm1A

)
where m⃗ = Pn⃗ ∈ Z2. Therefore,{
n⃗ ∈ Z2 : µ1

(
A ∩ T̃−1

M1n⃗
A ∩ T̃−1

M2n⃗
A
)
≥ d · µ1(A)

l
}
⊆
{
n⃗ ∈ Z2 : Pn⃗ ∈ {0} × Z

}
⊆ Qv⃗ ∩ Z2,

where v⃗ = P−1
(
0
1

)
∈ Q2. The set Qv⃗ ∩Z2 is not syndetic, so this shows epddM1,M2

(α) ≤
d · αl for α = µ(A). Moreover, for any l′ < l, we have the inequality d · αl < αl

′
for all

α > 0 sufficiently small. □

7.3. Finitary combinatorial consequences and open questions. There are two
cases in which our ergodic-theoretic results directly imply finitary combinatorial ana-
logues. Namely, when r(M1,M2) = (2, 1, 1) and when (M1,M2) is a row-like pair of non-
commuting matrices with r(M1,M2) = (1, 1, 1), we establish the bound epddM1,M2

(α) ≥
α3 with the help of the “Fubini” property for uniform Cesàro limits (Lemma 2.2), and
this allows us to avoid assuming that the underlying Z2-system is ergodic. For this
reason, we can obtain the following combinatorial result:

Theorem 7.5. Let M1,M2 be 2× 2 matrices with integer entries. Suppose that either

(i) r(M1,M2) = (2, 1, 1), or
(ii) r(M1,M2) = (1, 1, 1), M1 and M2 do not commute, and (M1,M2) is row-like.

Then for any α, ε > 0, there exists N0 = N0(α, ε) ∈ N such that, if N ≥ N0 and A ⊆
{1, . . . , N}2 has |A| ≥ αN2, then there exists n⃗ ∈ Z2 with M1n⃗,M2n⃗, (M2 −M1)n⃗ ̸= 0
such that ∣∣{x⃗ ∈ Z2 : {x⃗, x⃗+M1n⃗, x⃗+M2n⃗} ⊆ A

}∣∣ > (α3 − ε)N2.

Proof. Let α, ε > 0 and suppose no such N0 exists. Then there is an increasing sequence
(Nk)k∈N in N and sets Ak ⊆ {1, . . . , Nk}2 with |Ak| ≥ αN2

k such that

|Ak ∩ (Ak −M1n⃗) ∩ (Ak −M2n⃗)| ≤ (α3 − ε)N2
k

whenever M1n⃗,M2n⃗, (M2 −M1)n⃗ ̸= 0.
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For notational convenience, let Ak,0 := Z2 \ Ak and Ak,1 := Ak. By passing to a
subsequence if necessary, we may assume without loss of generality that

lim
k→∞

|(Ak,i1 − n⃗1) ∩ · · · ∩ (Ak,ir − n⃗r) ∩ {1, . . . , Nk}2|
N2
k

(7.2)

exists for all r ∈ N, n⃗1, . . . , n⃗r ∈ Z2, and i1, . . . , ir ∈ {0, 1}. Hence, we may define a

measure µ on the sequence space {0, 1}Z2
by setting

µ ({x ∈ X : x(n⃗1) = i1, . . . , x(n⃗r) = ir})

equal to the limit (7.2) and extending with the use of Kolmogorov’s extension theorem.
Since ({1, . . . , Nk}2)k∈N is a Følner sequence in Z2, the measure µ is invariant under the
shift transformations (Tn⃗x)(m⃗) := x(m⃗+ n⃗).

Let A := {x ∈ X : x(⃗0) = 1}. Then µ(A) = limk→∞
|Ak|
N2
k

≥ α. On the other hand, if

M1n⃗,M2n⃗, (M2 −M1)n⃗ ̸= 0, then

µ
(
A ∩ T−1

M1n⃗
A ∩ T−1

M2n⃗
A
)
= µ

(
{x ∈ X : x(⃗0) = x(M1n⃗) = x(M2n⃗) = 1}

)
= lim

k→∞

|Ak ∩ (Ak −M1n⃗) ∩ (Ak −M2n⃗)|
N2
k

≤ α3 − ε.

Hence,

Rε :=
{
n⃗ ∈ Z2 : µ

(
A ∩ T−1

M1n⃗
A ∩ T−1

M2n⃗
A
)
> µ(A)3 − ε

}
⊆ ker(M1) ∪ ker(M2) ∪ ker(M2 −M1).

But by the proofs of Theorems 7.1 and 7.3, Rε is a syndetic subset of Z2, so this is a
contradiction. □

For general 3-point matrix patterns in Z2, it remains an open problem to fully deter-
mine (finitary combinatorial) popular difference densities. One particularly attractive
case, which can be seen as a finitary version of Question 1.12 for the group G = Z2, is
the following:

Conjecture 7.6. Let M1 and M2 be 2 × 2 matrices with integer entries such that
M2 −M1 has full rank. Then for any α, ε > 0, there exists N0 = N0(α, ε) ∈ N such that,
if N ≥ N0 and A ⊆ {1, . . . , N}2 has cardinality |A| ≥ αN2, then there exists n⃗ ∈ Z2

with M1n⃗,M2n⃗ ̸= 0 such that∣∣{x⃗ ∈ Z2 : {x⃗, x⃗+M1n⃗, x⃗+M2n⃗} ⊆ A
}∣∣ > (α3 − ε)N2.

The special case when M1,M2, and M2 −M1 are all invertible, Conjecture 7.6 was
verified by [BSST21, Theorem 1.1]. Moreover, Theorem 7.5 shows that Conjecture 7.6
holds when M1 and M2 are both rank 1 matrices. The most interesting remaining case
is when M1 has full rank and M2 is a rank 1 matrix.
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Finally, the column-like family of configurations {(a, b), (a + n, b), (a, b + n)}, known
as corners, has been well-studied from the perspective of popular differences in finitary
combinatorics. In particular, it is known that the popular difference density for corners
is of the form α4−o(1); see [Ber21] and also [M21, FSSSZ20] for an analogous result in
a finite characteristic setting. To the authors’ knowledge, such results are not known
for general column-like matrix patterns, but we anticipate that techniques for handling
corners should apply in this generality with only minor modifications needed.

8. Khintchine-type recurrence for actions of semigroups

As a consequence of Theorem 1.13, we obtain the following combinatorial result. For
any set E ⊆ Q>0 of positive multiplicative upper Banach density d∗mult(E) > 0 and any
ε > 0, there exists q ∈ Q>0 \ {1} such that

d∗mult
(
E ∩ q−1E ∩ q−2E

)
> d∗mult(E)

3 − ε

(in fact, the set of such q is multiplicatively syndetic). More generally, for any countable
field F, any set E ⊆ F× of positive multiplicative upper Banach density d∗mult(E) > 0
and any ε > 0, the set of x ∈ F× such that

d∗mult
(
E ∩ x−1E ∩ x−2E

)
> d∗mult(E)

3 − ε

is multiplicatively syndetic.8 This is suggestive of the following problem. Let R be an
integral domain. (For example, R can be the ring Z, the ring of integers of a number
field, or the polynomial ring F[t] over a finite field F.) Given a set E ⊆ R× of positive
multiplicative upper Banach density d∗R,mult(E) > 0 and ε > 0, does there exist r ∈ R\{1}
such that

d∗R,mult
(
E ∩ E/r ∩ E/r2

)
> d∗R,mult(E)

3 − ε,

where E/r := {t ∈ R : rt ∈ E} for r ∈ R? The goal of this section is to transfer our
results into the setting of cancellative abelian semigroups in order to answer this question
affirmatively.

8.1. The group generated by a cancellative abelian semigroup. Let (S,+) be a
countable cancellative abelian semigroup. That is, S is a countable set equipped with
a commutative and associative binary operation + such that if s + t = s + r for some
r, s, t ∈ S, then t = r.

We can define a group GS as the set of formal differences {s− t : s, t ∈ S} where we
identify s− t and s′ − t′ if s + t′ = s′ + t. More formally, we may define an equivalence
relation ∼ on S2 by (s, t) ∼ (s′, t′) if s + t′ = s′ + t. Then GS is the set of equivalence
classes S2/ ∼ with the operation [(s, t)] + [(s′, t′)] := [(s+ s′, t+ t′)]. It is easy to check

8In fact, our results show that for any k ∈ N, d∗mult

(
E ∩ x−kE ∩ x−(k+1)E

)
and

d∗mult

(
E ∩ x−1E ∩ x−kE

)
can be made arbitrarily close to d∗mult(E)3 for a multiplicatively syndetic set

of x ∈ F×. On the other hand, by Theorem 1.14, there are n,m ∈ N such that d∗mult (E ∩ x−nE ∩ x−mE)
is much smaller than d∗mult(E)3 for all x ̸= 1.
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that this operation is well-defined because S is cancellative. Moreover, GS has an identity
0 := [(s, s)], and for any s, t ∈ S, we have [(s, t)] + [(t, s)] = 0. Thus, GS is a group.

8.2. Notions of largeness. For a set E ⊆ S and an element t ∈ S, let E − t := {s ∈
S : s + t ∈ E} and E + t := {s + t : s ∈ S}. The following definition summarizes
combinatorial notions of largeness that we will use, some of which are defined above in
the setting of abelian groups.

Definition 8.1. Let (S,+) be a countable cancellative abelian semigroup.

• A set E ⊆ S is syndetic if there are finitely many elements t1, . . . , tk ∈ S such
that

⋃k
i=1 (E − ti) = S.

• A set T ⊆ S is thick if for any finite set F ⊆ S, there exists t ∈ S such that
F + t ⊆ T .

• A set P ⊆ S is piecewise syndetic if there is a syndetic set E ⊆ S and a thick set
T ⊆ S such that P = E ∩ T .

• A sequence (FN)N∈N of finite subsets of S is a Følner sequence if, for any t ∈ S,

|(FN + t)△FN |
|FN |

→ 0.

• The lower Banach density of a set E ⊆ S is the quantity

d∗(E) := inf

{
lim inf
N→∞

|E ∩ FN |
|FN |

: (FN)N∈N is a Følner sequence in S

}
.

• The upper Banach density of a set E ⊆ S is the quantity

d∗(E) := sup

{
lim sup
N→∞

|E ∩ FN |
|FN |

: (FN)N∈N is a Følner sequence in S

}
.

The following is a standard characterization of syndetic and thick sets; see, e.g.
[BHM98, Section 2].

Proposition 8.2. Let (S,+) be a countable cancellative abelian semigroup.

1. E is syndetic if and only if d∗(E) > 0 if and only if E ∩ T ̸= ∅ for any thick set
T ⊆ S;

2. T is thick if and only if d∗(T ) = 1 if and only if T ∩E ̸= ∅ for any syndetic set E ⊆ S.

Lemma 8.3. Let (S,+) be a countable cancellative abelian semigroup. Then S is thick
in GS.

Proof. Let F ⊆ GS be a finite set. Write F = {si− ti : 1 ≤ i ≤ k}, where si, ti ∈ S. Put

t =
∑k

i=1 ti ∈ S. Then

F + t =

{
si +

∑
j ̸=i

tj : 1 ≤ i ≤ k

}
⊆ S.

□
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The fact that S is thick in GS is closely related to the fact that any Følner sequence
in S is also a Følner sequence in GS, from which we deduce the following density result:

Proposition 8.4. Let E ⊆ S. Then d∗S(E) = d∗GS(E).

Proof. To show the inequality d∗GS(E) ≥ d∗S(E), it suffices to show that any Følner
sequence in S is a Følner sequence in GS. Let (FN)N∈N be a Følner sequence in S, and
let x ∈ G. We want to show

|(FN + x)△FN |
|FN |

→ 0.

Write x = s− t with s, t ∈ S. Then

|(FN + x)△FN |
|FN |

=
|(FN + s)△(FN + t)|

|FN |
≤ |(FN + s)△FN |

|FN |
+

|FN△(FN + t)|
|FN |

→ 0.

Hence, (FN)N∈N is a Følner sequence in GS as claimed.

Now we show the reverse inequality d∗S(E) ≥ d∗GS(E). If d
∗
GS

(E) = 0, there is nothing
to show, so assume d∗GS(E) > 0. Let m be an invariant mean on GS such that m(E) =

d∗GS(E). Put c = m(S) ≥ m(E) > 0. Then m̃ := 1
c
m is an invariant mean on S.

Moreover, m̃(E) = 1
c
m(E) ≥ m(E) = d∗GS(E). Therefore, d

∗
S(E) ≥ m̃(E) ≥ d∗GS(E). □

Lemma 8.5. Suppose E ⊆ GS is syndetic in GS. Then E ∩ S is syndetic in S.

Proof. Let x1, . . . , xk ∈ GS such that
⋃k
i=1 (E − xi) = GS. By Lemma 8.3, S is thick, so

we may assume xi ∈ S for each i = 1, . . . , k. We claim

k⋃
i=1

((E ∩ S)− xi) ⊇ S.

It suffices to check (E ∩ S) − xi ⊇ (E − xi) ∩ S for each i = 1, . . . , k. Suppose
y ∈ (E − xi) ∩ S, and let t ∈ E such that t − xi = y. Then t = y + xi ∈ S + S ⊆ S.
Hence, y ∈ (E ∩ S)− xi as desired. □

8.3. Extending main results to actions of cancellative abelian semigroups.
Any homomorphism φ : S → S extends uniquely to a homomorphism φ̃ : GS → GS via
φ̃ (s− t) = φ(s)−φ(t). To extend our Khintchine-type results to the semigroup setting,
we need a condition on φ characterizing when φ̃(GS) has finite index in GS.

Proposition 8.6. Let (S,+) be a countable cancellative abelian semigroup. Let φ : S →
S be a homomorphism, and let φ̃ : GS → GS be the group homomorphism φ̃(s − t) :=
φ(s)− φ(t). The following are equivalent:

(i) φ(S) is a piecewise syndetic subset of S;
(ii) φ̃(GS) has finite index in GS.
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Proof. Let T := φ(S), and let H := φ̃(GS). Note that H = T − T = GT .

(i) =⇒ (ii). Suppose T is piecewise syndetic in S. Then d∗S(T ) > 0. Thus, by
Proposition 8.4, d∗GS(H) ≥ d∗GS(T ) = d∗S(T ) > 0. But in the group GS, we have the
identity

d∗GS(H) =
1

[GS : H]
,

so [GS : H] <∞.

(ii) =⇒ (i). Suppose H has finite index in GS. Then H is a syndetic subset of GS, so
H ∩ S is syndetic in S by Lemma 8.5. Moreover, by Lemma 8.3, T is a thick subset of

H. Let T̃ := T ∪ (S \H) so that T = T̃ ∩ (H ∩ S). We claim that T̃ is thick in S.
Let F ⊆ S be a finite set. Put F1 = F ∩H and F2 = F \H. Since T is a thick subset

of H, there exists x ∈ H such that F1 + x ⊆ T . Write x = s− t with s, t ∈ T ⊆ H ∩ S.
Then F1 + s = F1 + x+ t ⊆ T + t ⊆ T . Now, since s ∈ H ∩S and H is a group, we have

F2 + s ⊆ S \H. Thus, F + s = (F1 + s) ∪ (F2 + s) ⊆ T ∪ (S \H) = T̃ .

This shows that T̃ is a thick subset of S, so T = T̃ ∩ (H ∩ S) is piecewise syndetic in
S. □

Now we can extend Theorems 1.11 and 1.13 to the semigroup setting:

Theorem 8.7. Let (S,+) be a countable cancellative abelian semigroup. Let φ, ψ :
S → S be homomorphisms. If at least two of the three subsemigroups φ(S), ψ(S), and
(φ + ψ)(S) are piecewise syndetic in S, then for any set E ⊆ S with positive upper
Banach density d∗S(E) > 0 and any ε > 0, the set{

s ∈ S : d∗S (E ∩ (E − φ(s)) ∩ (E − (φ+ ψ)(s))) > d∗S(E)
3 − ε

}
is syndetic in S.

Remark 8.8. We use the pair {φ, φ+ ψ} rather than {φ, ψ} since the difference ψ − φ
is not necessarily defined as a map into S.

Proof. By Proposition 8.4, we have δ := d∗GS(E) = d∗S(E) > 0. Let φ̃ and ψ̃ be the
extensions of φ and ψ to GS. By Proposition 8.6, at least two of the subgroups φ̃(GS),

ψ̃(GS), and
(
φ̃+ ψ̃

)
(GS) have finite index in GS. Hence by Theorem 1.11, the set

R :=
{
g ∈ G : d∗GS

(
E ∩ (E − φ̃(g)) ∩

(
E −

(
φ̃+ ψ̃

)
(g)
))

> δ3 − ε
}

is syndetic in GS.
By Lemma 8.5, the set R ∩ S is syndetic S. But

R ∩ S =
{
s ∈ S : d∗S (E ∩ (E − φ(s)) ∩ (E − (φ+ ψ)(s))) > δ3 − ε

}
,

so this completes the proof. □
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Theorem 8.9. Let (S,+) be a countable cancellative abelian semigroup. Let a, b ∈ N.
If at least one of the three subsemigroups aS, bS, or (a+ b)S is piecewise syndetic in S,
then for any set E ⊆ S with positive upper Banach density d∗S(E) > 0 and any ε > 0,
the set {

s ∈ S : d∗S (E ∩ (E − as) ∩ (E − (a+ b)s)) > d∗S(E)
3 − ε

}
is syndetic in S.

Proof. The proof is identical to the proof of Theorem 8.7, except one must use Theorem
1.13 in place of Theorem 1.11. □

8.4. Two combinatorial questions. Applying Theorem 8.9 in the semigroup (N, ·),
for any E ⊆ N with positive multiplicative upper Banach density d∗mult(E) > 0, any
k ∈ N, and any ε > 0, the set of m ∈ N such that

d∗mult
(
E ∩ E/mk ∩ E/mk+1

)
> d∗mult(E)

3 − ε

is multiplicatively syndetic in N. It is natural to ask if a finitary variant of this result
holds.

Question 8.10. Let p1, p2, . . . be an enumeration of the positive prime numbers. Let
δ, ε > 0, and let k ∈ N. Does there exists N = N(k, δ, ε) ∈ N such that the following
holds: for any n ≥ N and any set A ⊆ {pr11 . . . prnn : 0 ≤ ri ≤ n} with |A| ≥ δnn, there
exists y ∈ N \ {1} such that∣∣{x ∈ N : {x, xyk, xyk+1} ⊆ A

}∣∣ > (δ3 − ε
)
nn.

Now we describe an application of Theorem 8.7. Let p1, p2, . . . and q1, q2, . . . be enu-
merations of the positive prime numbers. The map φ : N → N defined by φ (

∏n
i=1 p

ri
i ) :=∏n

i=1 q
ri
i is an automorphism of the semigroup (N, ·). Hence, by Theorem 8.7, if E ⊆ N

has positive multiplicative upper Banach density d∗mult(E) > 0 and ε > 0, then there is
a multiplicatively syndetic set of numbers y =

∏n
i=1 p

ri
i ∈ N such that

d∗mult

({
x ∈ N :

{
x, x

n∏
i=1

prii , x

n∏
i=1

qrii

}
⊆ E

})
> d∗mult(E)

3 − ε.(8.1)

The IP Szemerédi theorem of Furstenberg and Katznelson [FK85] implies that, for
any k ∈ N and any multiplicative automorphisms φ1, . . . , φk : N → N, the set of m ∈ N
such that

d∗mult (E ∩ E/φ1(m) ∩ · · · ∩ E/φk(m)) > 0

is a multiplicative IP∗ set and hence multiplicatively syndetic. It is therefore natural
to ask if a large intersections variant holds for families of more than two multiplicative
automorphisms:
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Question 8.11. Let p1, p2, . . . be the enumeration of the positive prime numbers in
increasing order. For each j ∈ N, let qj,1, qj,2, . . . be a distinct enumeration of the
positive prime numbers. For which k ∈ N does the following hold: for any E ⊆ N with
d∗mult(E) > 0 and any ε > 0, there exists y =

∏n
i=1 p

ri
i ∈ N \ {1} such that

d∗mult

({
x ∈ N :

{
x, x

n∏
i=1

qri1,i, x

n∏
i=1

qri2,i, . . . , x

n∏
i=1

qrik,i

}
⊆ E

})
> d∗mult(E)

k+1 − ε.

(8.2)

Note that (8.2) holds for k ≤ 2 (see (8.1) and the discussion above).

Appendix A. Proof of Lemma 3.6

In this section we prove Lemma 3.6, restated here for the convenience of the reader:

Lemma A.1 (Lemma 3.5). Let (X,X , µ, (Tg)g∈G) be a G-system and let H ≤ G be a
subgroup of finite index. Then for every k ≥ 1, one has Zk

H(X) = Zk
G(X).

We follow the arguments in [B06, Appendix A] and generalize them to arbitrary
countable abelian groups. We start with some background related to the Host–Kra
parallelepipeds construction.

Definition A.2. Let G be a countable abelian group, and let X = (X,X , µ, (Tg)) be

a G-system. For every k ≥ 0, we define a G-system X
[k]
G = (X [k],X [k], µ[k], (T

[k]
g )g∈G)

inductively by setting X
[0]
G = X, and X

[k+1]
G = X

[k]
G ×I(X[k]

G )
X

[k]
G where I(X [k]

G ) is the

σ-algebra of (T
[k]
g )g∈G-invariant functions.

Host and Kra proved the following result.

Theorem A.3 ([HK05], Proposition 4.7). Zk
G(X) is the minimal σ-algebra with the

property that I(X [k]) is a sub σ-algebra of (Zk
G(X))[k].

Let X =
⋃
α∈J Xα be a partition of X to G-invariant sets. Then X

[k]
G =

⋃
α∈J X

[k]
α ,

I(X [k]) =
∨
α∈J I(X

[k]
α ) and Zk

G(X) =
∨
α∈J Zk

G(Xα). Therefore, by the ergodic decom-
position, it is enough to prove Lemma 3.6 in the case where the G-action is ergodic.

The following lemma gives the easy inclusion in Lemma 3.6.

Lemma A.4. In the setting of Lemma 3.6, Zk
G(X) ⪯ Zk

H(X).

Proof. The proof is immediate by Theorem A.3 and since any (T
[k]
g )g∈G-invariant function

is also a (T
[k]
h )h∈H-invariant function. □

We need the following observation.

Lemma A.5. Let G be a countable abelian group, let X = (X,X , µ, (Tg)g∈G) be an
ergodic measure preserving G-system, and let H ≤ G be a subgroup of finite index. Then
IH(X) ⪯ ZG(X).
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Proof. The groupG/H acts ergodically by unitary transformations onH = L2(X, IH , µ|IH ).
Since G/H is a finite abelian group, the unitary representation splits into a direct sum
of one-dimensional irreducible representations. In other words, H is generated by eigen-
functions of the action of G/H, which are measurable with respect to ZG(X). This
completes the proof. □

Now we prove the k = 1 case of Lemma 3.6 under the additional assumption that the
action of H is ergodic.

Lemma A.6. Let G be countable abelian groups, and let H ≤ G be a finite index
subgroup. Let X = (X,X , µ, (Tg)g∈G) be an ergodic G-system, and suppose the action of
H is ergodic. Then ZH(X) = ZG(X).

Proof. The group G/H is finite, and therefore it is a direct product of finite cyclic groups.
In particular, we can find d ∈ N and a sequence of subgroups H0 = H ≤ H1 ≤ · · · ≤
Hd ≤ G such that G/Hd and Hi/Hi−1, 1 ≤ i ≤ d, are cyclic groups of prime order.
Using a proof by induction on d, we may assume without loss of generality that G/H
is cyclic and of prime order. Let g0 ∈ G be a representative of a generator of G/H
and l := [G : H] be a prime number. By the ergodicity of H, the σ-algebra ZH(X) is
generated by H-eigenfunctions. Hence, it is enough to show that every H-eigenfunction
f is a linear combination of G-eigenfunctions. Let λ : H → S1 be the eigenvalue of f
and observe that for any l-th root ω ∈ S1 of λ(lg0) the function

f + ω · Tg0f + ...+ ωl−1 · T(l−1)g0f

is a G-eigenfunction. Now since

f =
∑

ω∈S1 : ωl=λ(lg0)

f + ω · Tg0f + ...+ ωl−1 · T(l−1)g0f,

f is measurable with respect to ZG(X) and this completes the proof. □

Let G be a countable abelian group, and let X = (X,X , µ, (Tg)g∈G) be a G-system. If

the system X is ergodic, it follows from the definition that X
[1]
G is the Cartesian product

of X with itself, and the measure is the product measure. As a consequence of Lemma
A.6, we have:

Lemma A.7. If the action of H on X is ergodic, then

I(X [1]
H ) = I(X [1]

G ).

Proof. The inclusion I(X [1]
G ) ⪯ I(X [1]

H )) is trivial. Now let f : X × X → C be a
(Th × Th)h∈H invariant function. By Lemma A.6, we can find an orthonormal basis of
G-eigenfunctions {fi}i∈N for ZH(X). By Lemma 4.6, there exist constants ai,j ∈ C for
all i, j ∈ N such that

f(x, y) =
∞∑
i=1

ai,jfi(x)fj(y).
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Applying the H-action and using the uniqueness of the decomposition, we see that
ai,j = 0 unless i = j. In particular f is spanned by the G-invariant functions fi ⊗ fi.
Thus, f is measurable with respect to I(X2

G) and the claim follows. □

We use Lemma A.7 to prove the following:

Proposition A.8. If the action of H on X is ergodic, then for k ≥ 0, one has

I(X [k]
H ) = I(X [k]

G ) and µ
[k]
G = µ

[k]
H .

Proof. We prove the claim by induction on k. The case k = 0 is trivial.

Assume that for some k ≥ 0, I(X [k]
H ) = I(X [k]

G ) and µ
[k]
G = µ

[k]
H . It is immediate that

µ
[k+1]
G = µ

[k]
G ×I(X[k]

G )
µ
[k]
G = µ

[k]
H ×I(X[k]

H )
µ
[k]
H = µ

[k+1]
H .

By the ergodic decomposition theorem, applied with respect to the σ-algebra I(X [k]
G )

we can find a partition X
[k]
G =

⋃
α∈J Xα of X

[k]
G to (T

[k]
g )g∈G invariant sets. Let Sαg be the

restriction of T
[k]
g to the set Xα. By the induction hypothesis the action of (Sαh )h∈H on

Xα is ergodic. Hence, by Lemma A.7, we have

I(X [k+1]
H ) =

⋃
α∈J

IH(X [1]
α )) =

⋃
α∈J

IG(X [1]
α ) = I(X [k+1

G ),

as required. □

Proposition A.8 establishes Lemma 3.6 in the case where the action of H is ergodic.
Now we assume that the H-action is non-ergodic. As in the proof of Lemma A.6, we
may assume without loss of generality that G/H is cyclic of order l for some prime l.
In particular, there exists a partition X =

⋃
i∈Z/lZXi into H-invariant sets and some

g0 ∈ G such that Tg0Xi = Xi+1, i ∈ Z/lZ.
We need the following technical lemma.

Lemma A.9. Let G be a countable abelian group, and let Y = (Y,Y , ν, (Tg)g∈G) be an
ergodic G-system. Suppose that there exists some g0 ∈ G and H-invariant subsets Yi such
that Y =

⋃
i∈Z/lZ Yi, and Tg0Yi = Yi+1 for i ∈ Z/lZ. Then, Y ×IG(Y ) Y =

⋃
i,j∈Z/lZ Yi,j

where Yi,i = Yi ×IH(Yi) Yi and Tsg0 × Ttg0 is an isomorphism between Yi,i and Yi+s,i+t,
i ∈ Z/lZ.

Proof. Let A ∈ IG(Y ) be a measurable G-invariant subset of Y . For each 0 ≤ i ≤ l − 1,
Ai = A∩ Yi is an H-invariant set. In particular, A0 is H-invariant and Ai = Tig0A0. We
deduce that the mapping A 7→ A ∩ Y0 is an isomorphism between IG(Y ) and IH(Y0).
Using the ergodic decomposition we can find a partition

Y0 =
⋃
α∈I

Y0,α



66 E. ACKELSBERG, V. BERGELSON, AND O. SHALOM

of Y0 to H-invariant sets. For every α ∈ I, and i ̸= 0, let Yi,α = Tig0Y0,α and Yα =⋃
i∈Z/lZ Yi,α. Then, Y =

⋃
α∈I Yα is the ergodic decomposition of Y with respect to the

factor IG(Y ). Thus, if we let Yi,j =
⋃
α∈I Yi,α × Yj,α we have,

Y
[1]
G =

⋃
α∈I

(Yα×IG(Yα) Yα) =
⋃
α∈I

⋃
i,j∈Z/lZ

(Yi,α× Yj,α) =
⋃

i,j∈Z/lZ

⋃
α∈I

(Yi,α× Yj,α) =
⋃

i,j∈Z/lZ

Yi,j.

In particular, Yi,i =
⋃
α∈I(Yi,α × Yi,α) = Yi × Yi, as required. □

Recall that G =
⋃l−1
i=0 ig0 +H. It follows from Lemma A.9 that for i, j ∈ Z/lZ,

(Tg0 × Tg0)(Yi ×IH(Y ) Yj) = Yi+1,j+1.

Therefore, the subsets Vi =
⋃
j∈Z/lZ Yj,j+i, i ∈ Z/lZ form a partition of Y ×IG(Y ) Y into

(Tg×Tg)g∈G-invariant sets. Furthermore, Id×Tig0 is an isomorphism between V0 and Vi.

We use Lemma A.9 to show the following:

Lemma A.10. Let X = (X,X , µ, (Tg)g∈G) be an ergodic G-system. Let X =
⋃
i∈Z/lZXi

be a partition into H-invariant sets, and let g0 ∈ G be as above. Then for any k ≥ 0,

there exists a partition X
[k]
G =

⋃
j∈(Z/lZ)kWj, into (T

[k]
g )g∈G-invariant sets, such that

W0 =
⋃
i∈Z/lZ(Xi)

[k]
H and T

[k]
g0

(
(Xi)

[k]
H

)
= (Xi+1)

[k]
H . Furthermore, for every j ∈ (Z/lZ)k,

there exists an isomorphism of measure spaces τj : W0 → Wj, which in every coordinate
of X [k] is a power of Tg0.

Proof. We induct on k. The case k = 0 is trivial.
Assume that the claim holds for some k ≥ 0. Then

X
[k+1]
G = X

[k]
G ×I(X[k]

G )
X

[k]
G =

⋃
j∈(Z/lZ)k

(Wj ×I(Wj) Wj).

Fix j ∈ (Z/lZ)k. Since the isomorphism τj : W0 → Wj commutes with (T
[k]
g )g∈G,

it induces an isomorphism τj × τj : W0 ×I(W0) W0 → Wj ×I(Wj) Wj. By assumption

W0 =
⋃
i∈Z/lZ(Xi)

[k]
H and by Lemma A.9,W0×I(W0)W0 can be partitioned into (T

[k+1]
g )g∈G-

invariant sets {Vi}i∈Z/lZ such that

V0 =
⋃

i∈Z/lZ

(
(Xi)

[k]
H ×I

(
(Xi)

[k]
H

) (Xi)
[k]
H

)
=
⋃

i∈Z/lZ

(Xi)
[k+1]
H .

Moreover, V0 is isomorphic to Vj via an isomorphism whose projections are powers of

T
[k]
g0 . Since W0 is isomorphic to Wj, this completes the proof. □

We recall that it suffices to establish the proof of Lemma 3.6 in the case where the
G-action is ergodic and G/H is a cyclic group of order l for some l > 0. As before, we
find a partition X =

⋃
i∈Z/lZXi of X into H-invariant sets and some g0 ∈ G such that

Tg0(Xi) = Xi+1 for i ∈ Z/lZ.
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Proof of Lemma 3.6. Let k ≥ 0, and let {Wi}i∈(Z/lZ)k be as in Lemma A.10. Since

X0, ..., Xl−1 are disjoint (Th)h∈H-invariant subsets ofX, we have I(X [k]
H ) =

∏
i∈Z/lZ I

(
(Xi)

[k]
H

)
and Zk

H(X) =
∏

i∈Z/lZ Z
k
H(Xi). Let B be a (T

[k]
h )h∈H-invariant subset of (Xi)

[k]
H . For ev-

ery j ∈ Z/lZ, let Aj = (T
[k]
(j−i)g0)(B) and A =

⋃
j∈Z/lZAj. By definition A ⊆ W0 is a

(T
[k]
g )g∈G-invariant set. Therefore, by Theorem A.3, A ∈

(
Zk
G(X)

)[k]
. Since Xi is (T

[k]
h )-

invariant, by Lemma A.5, Xi ∈ Z1
G(X). Therefore, B = Ai = A ∩ (Xi)

[k]
H is an element

of
(
Zk
G(X)

)[k]
. Since B is arbitrary, and this holds for all i ∈ Z/lZ, we deduce that

I(X [k]
H ) ⪯ Zk

G(X). By Theorem A.3, we have Zk
H(X) ⪯ Zk

G(X). Lemma A.4 provides
the other inclusion, and this completes the proof. □
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