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Abstract

Assuming the consistency of a weakly compact cardinal above a regular
uncountable cardinal µ, we prove the consistency of the existence of a
wide µ+-Aronszajn tree, i.e. a tree of height and cardinality µ+ with no
branches of length µ+, into which every wide µ+-Aronszajn tree can be
embedded.
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1 Introduction

The topic of this paper is maximality among wide κ-Aronszajn trees, i.e. trees
of cardinality and height κ without branches of length κ. Such a tree is called
maximal if every such tree can be embedded into it. We show the consistency
of maximal trees relative to the consistency of a weakly compact cardinal. This
has been an open problem for 30 years.

Trees in this paper are partial orders in which the set of predecessors of every
element are well-ordered by the partial order, and there is a unique smallest
element. The order-type of the set of predecessors of an element of a tree is
called the height of the element, and the supremum of all heights in a tree is
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called the height of the tree. The set of elements of a fixed height is called a
level of the tree. There is a natural quasi-ordering of the class of all trees: a
tree T is below a tree T ′ if T can be monomorphically embedded into T ′. For
any class C of trees it is natural to ask if C has a maximal element T under
embeddability. Then, up to isomorphism, the class C consists just of subtrees
of T in C.

Our focus is on trees of cardinality and height κ ≥ ω1 with no branches,
i.e. linearly ordered subsets, of size κ. Following [5], we call such trees wide
κ-Aronszajn trees. Our main result (Theorem 1 below) is that it is consistent,
relative to the consistency of weakly compact cardinals, to have a maximal wide
κ-Aronszajn tree. Our proof works for any successor of a regular cardinal > ℵ0.
This result complements the fact that it is a consequence of the Generalized
Continuum Hypothesis that there are no maximal wide κ+-Aronszajn trees for
any infinite regular κ [12]. Under the stronger assumption V = L, no wide
κ+-Aronszajn tree is maximal even just for κ+-Souslin trees, for we prove in [4],
improving a result in [24], that, assuming V = L, for every κ+-Aronszajn tree
T , κ regular, there is a κ+-Souslin tree which is not embeddable into T .

If the levels of a wide κ-Aronszajn tree are of cardinality < κ, we drop
“wide” and call such trees just κ-Aronszajn, or, to be more specific, narrow
κ-Aronszajn. Furthermore, if κ = ω1, we call the trees Aronszajn, or wide
Aronszajn, respectively. For some κ there may be no κ-Aronszajn trees, and
then κ is said to have the tree property. By Kőnig’s Lemma, ω has the tree
property. No singular cardinal has the tree property for trivial reasons. An
inaccessible cardinal has the tree property if and only if it is weakly compact.

Examples of Aronszajn trees are so-called Souslin trees, which are instru-
mental in understanding, and proving the independence of, the so-called Souslin
Hypothesis i.e. the hypothesis that the order-type of the real numbers is the
unique, up to isomorphism, dense complete linear order without end-points in
which all families of disjoint non-empty open sets are countable.

Wide κ-Aronszajn trees are important in the study of model theoretic prop-
erties of uncountable structures, namely, trees can be used as a weak substitute
for ordinals when uncountable models are investigated by means of transfinite
games [12] and, more generally, in the study of generalized Baire spaces [16].
For example, the existence of a particular kind of maximal tree, a so-called
Canary Tree (see below), is equivalent, assuming CH, to the isomorphism class
of the free Abelian group of cardinality ℵ1 being ∆1

1 in the generalized Baire
Space ωω1

1 . This emphasises the importance of understanding better the global
ordering of trees, especially the existence of maximal trees.

There is no maximal countable ordinal, but if we identify ordinals with
trees without infinite branches, and consider generalized ordinals i.e. the class
Tα of trees of cardinality ℵα without branches of length ℵα, the situation is
more opaque. When α > 0, the structure of the class of such trees is much
more complicated than the structure of ordinals. For example, the structure
of T1 is highly non-linear as it is easy to construct pairs of wide (or narrow)
Aronszajn trees so that neither can be mapped even by a strict order preserving
homomorphism to the other. Furthermore, the structure is highly non-absolute.
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Several partial results are known about Tα, α > 0, [16, 17, 24, 23, 5].

The main result of this paper is:

Theorem 1. Suppose that κ is a weakly compact cardinal and µ < κ is regular
uncountable. There is a (set) forcing extension of the universe in which κ = µ+

and there is a maximal wide κ-Aronszajn tree i.e. a wide κ-Aronszajn tree T
such that any other wide κ-Aronszajn tree can be monomorphically embedded
into T .

To simplify our presentation, we will prove the theorem for the case µ = ω1

(i.e., κ = ω2). It will be apparent throughout this work that modification to an
arbitrary regular uncountable cardinal µ is straightforward (For a short discus-
sion regarding the case µ = ω, see Section 7).

This theorem further emphasises the difference between the order of trees with
no infinite branches and the class of trees with no branches of length κ > ω.

We shall now define in detail the central concepts of this paper. We have
already defined the concept of a wide κ-Aronszajn tree as well as its special
case, the (narrow) κ-Aronszajn tree, agreeing to drop κ if κ = ω1. While Aron-
szajn trees always exist, the existence of an ℵ2-Aronszajn tree is independent
of ZFC, assuming the consistency of weakly compact cardinals: Specker proved
the existence of an ℵ2-Aronszajn tree from CH [22]. Mitchell and Silver proved
the consistency of the non-existence of ℵ2-Aronszajn trees, relative to the con-
sistency of a weakly compact cardinal [18, Theorem 5.8]. They also showed
that if there are no ℵ2-Aronszajn trees, then ℵ2 is weakly compact in L. As
opposed to the case of (narrow) κ-Aronszajn trees, it is easy to construct a wide
κ-Aronszajn tree in ZFC by bundling together isolated branches of all lengths
< κ.

As discussed already, our main topic in this paper is the existence of trees
that are maximal in some specific sense. There are several ways in which two
trees T and T ′ can be compared to each other in order for the concept of
maximality to make sense. Originally the question of maximality was raised [16]
in connection with comparing trees by asking whether there is a homomorphism
from one to the other i.e. a mapping from one tree T to another T ′, that
preserves strict ordering:

t <T t
′ ⇒ f(t) <T ′ f(t′).

Note that such a mapping need not be one-one because incomparable elements
can be mapped to the same element. We follow [5] in calling such a mapping
a weak embedding1. The reason for the emergence of weak embeddings as a
way to order classes of trees is its close connection to certain games, introduced
below. While proving Theorem 1 the authors realized that they can actually
prove the consistency of the existence of a maximal tree under a stronger order,

1There was a claim in [16] that a maximal tree exists in the sense of weak embeddings in
T1 if Martin’s Axiom (MA) and 2ω > ω1 were assumed. This claim was proved wrong in [5].
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namely the order according to (monomorphic) embeddability. In the end, or-
dering trees by the existence of an embedding is very natural. From a general
mathematical perspective it can be considered even more natural than ordering
by weak embeddings.

Let us write T ≤∗ T ′ if there is an embedding (i.e. a monomorphism)
T → T ′. If T ≤∗ T ′ and T ′ ≤∗ T we write T ≡∗ T ′. Respectively, if T ≤∗ T ′
but T ′ 6≤∗ T , we write T <∗ T ′. If there is a weak embedding from T to T ′, we
write T ≤ T ′. If T ≤ T ′ and T ′ ≤ T we write T ≡ T ′. Finally, if T ≤ T ′ but
T ′ 6≤ T , we write T < T ′. Of course, T ≤∗ T ′ implies T ≤ T ′.

If Bα is the tree of descending chains of elements of α, ordered by end-
extension, then α ≤ β if and only if Bα ≤ Bβ . Thus in the class of trees without
infinite branches the weak embedding order reflects the received ordering of the
class of all ordinal numbers. Again, we may ask, whether there is a maximal tree
under the weaker ordering ≤ in the class of all Aronszajn trees. If we assume
MAℵ1 , then no wide Aronszajn tree is ≤-above all Aronszajn trees [5, 23].
Similarly, if V = L, then for every wide Aronszajn tree T there is a Souslin tree
S such that S 6≤ T [24].

We may now ask in two different senses whether there is a maximal tree in
a given class of trees:

The Maximality Question: Given a class C of trees, is there a
tree T in C such that S ≤∗ T for every S ∈ C?

The Weak Maximality Question: Given a class C of trees, is
there a tree T in C such that S ≤ T for every S ∈ C?

Trivially, a positive solution to the Maximality Question gives a positive
solution to the Weak Maximality Question.

Both the full and the Weak Maximality Questions are meaningful even if the
maximal tree T is not in C but satisfies some weaker constraints. For example,
it is consistent, relative to the consistency of ZF, that CH holds and every
Aronszajn-tree is special (Jensen, [20, Theorem 8.5]). Thus in this model there
is a wide Aronszajn-tree that is ≤-above all Aronszajn-trees. However, this
tree T is (a priori) not Aronszajn, so we do not obtain a solution to the Weak
Maximality Question for the class of Aronszajn trees. Let us call a wide ℵ2-
Aronszajn-tree T special if there is f : T → ω1 such that t < t′ always implies
f(t) 6= f(t′). Consistency of a weakly compact cardinal implies the consistency
of 2ℵ0 = ℵ1 + 2ℵ1 > ℵ2+ every wide ℵ2-Aronszajn-tree is special [15]. In this
model there is a tree T ≤-above all ℵ2-Aronszajn-trees such that T has no ℵ2-
branches. Here |T | > ℵ2, so again T is not an answer to the Weak Maximality
Question for wide ℵ2-Aronszajn trees. Our Theorem 1 gives a positive solution
to the (full) Maximality Question for wide κ-Aronszajn trees, κ a successor of
a regular cardinal > ℵ0. As we see below, it is impossible to combine this with
GCH.

Both T ≤∗ T ′ and T ≤ T ′ measure in their own ways how big the trees T and
T ′ are with respect to each other. If Bω∗ denotes the tree consisting of the single
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branch of length ω, then Bα ≤ Bω∗ holds for all α but of course Bα 6≤∗ Bω∗
when α > 1. Thus Bω∗ is ≤-above a proper class of non-≡-equivalent trees.
There can be only 2|T | trees ≤∗-below a given tree T , up to ≡∗. This illustrates
the different senses in which ≤ and ≤∗ measure the bigness of trees.

A still further ordering of Aronszajn trees is the following: If T is an Aron-
szajn tree and C ⊆ ω1, then we use T � C to denote the suborder of T consisting
of nodes in T the height of which is in C. Suppose T and T ′ are Aronszajn trees.
We say that a partial map π : T → T ′ is an embedding (or an isomorphism) on
a club if there is a club C ⊆ ω1 such that π is an embedding (or respectively an
isomorphism) T � C → T ′ � C. It follows from the Proper Forcing Axiom that
any two Aronszajn trees are isomorphic on a club [1, 13].

The following useful operation on trees is due to Kurepa [14]: If T is a tree,
let σ(T ) be the tree of ascending chains in T , ordered by end-extension. For
well-founded trees this is like the successor function on ordinals in the sense that
σ(Bα) ≡ Bα+1. It is easy to see that if T is any tree, then T < σ(T ). Moreover,
if T has no branches of length κ, neither has σ(T ). So from the point of view of
lengths of branches σ(T ) is similar to T . However, it is perfectly possible that
|T [< |σ(T )|. For example, if every node in T splits, then |σ(T )| ≥ 2ω.

The σ-operation shows that if ℵ<ℵαα = ℵα, the class Tα does not have a
≤-maximal element. So in that case even the Weak Maximality Question has
a negative answer for the class Tα. In consequence, µ<µ > µ holds in the final
model of our Theorem 1.

If A ⊆ ω1 is co-stationary, let T (A) be the tree of closed increasing sequences
of elements of A. The class of such trees T (A) is an interesting subclass of trees
without uncountable branches. A tree without uncountable branches which is
of cardinality ≤ 2ω and ≤-above all such T (A) is known as a Canary Tree. The
existence of Canary Trees is independent of ZFC + GCH [17, 7]. Assuming
CH, a Canary Tree is perhaps not maximal in the entire class of trees in T1 but
it still ≤-majorises the large class of trees of the form T (A).

Trees as game clocks

We already alluded to the fact that, assuming CH, Canary Trees can be used to
show that the isomorphism class of a particular structure, in this case the free
Abelian group of cardinality ℵ1, is ∆1

1 in the generalized Baire space ωω1
1 . This

is an example of the use of trees as clocks in games in the way we now describe.
A maximal tree would represent a kind of universal clock. To see what this
means, suppose δ is an ordinal and G is a game of length δ between I and II in
which I and II produce a δ-sequence of elements of a fixed set M , alternating
moves, I starting each round. We fix a set W ⊆ Mδ and say that II wins if
the sequence played is in W . Otherwise I wins. We assume the game is closed
in the sense that if s /∈ W then there is an initial segment s′ of s such that no
extension of s′ is in W . If T is any tree (of height δ), we can define a new game
GT , a kind of approximation of G, as follows. Every time I moves in G he also
picks a node t in T in such a way that t is above all nodes he has picked during
previous rounds of G. If he cannot pick such a t then he loses. Otherwise the
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game is played as G. Clearly, if I has a winning strategy in GT , he has also in
G. The role of T in GT is to make it harder for I to win. If T is well-founded,
player I can only win GT if he can win G in finitely many moves but he does
not have to tell in advance how many moves he needs in order to win. If T has
no branches of length δ, player I can only win GT if he can win G in < δ moves
but, again, he does not have to tell in advance how long δ′-sequence, δ′ < δ, of
moves he needs in order to win. He can change his mind about this during the
game.

The following implications are immediate:

1. If II has a winning strategy in GT ′ and T ≤ T ′, then II has a winning
strategy in GT .

2. If I has a winning strategy in GT and T ≤ T ′, then I has a winning
strategy in GT ′ .

3. If II has a winning strategy in GT and I has a winning strategy in GT ′ ,
then T ≤ T ′.

These implications emphasise the role of maximal trees for the games GT .
Let us see how this works, first on a general level and then more specifically.
Let CG be the class of trees T such that II has a winning strategy in GT . If II
has a winning strategy even in the non-approximated game G, the class CG is
simply the class of all trees. The other extreme is that CG = ∅, which happens if
W = ∅. Suppose S is ≤-above all trees in CG. Then σ(S) /∈ CG. So, maximality
of the tree gives us negative information about winning strategies of II. Let
C′G be the possibly bigger class of trees T such that I does not have a winning
strategy in GT . Again, C′G may be the class of all trees and it is also possible
that C′G = ∅. Suppose S′ is ≤-above all trees in C′G. Then σ(S′) /∈ C′G i.e. I
has a winning strategy in Gσ(S′). So, maximality of the tree gives us positive
information about winning strategies of I.

A particular closed game of interest in this connection is the transfinite EF-
game. Suppose M and N are models of the same vocabulary, |M | = |N | = δ
and M � N . Let τ be the canonical enumeration strategy (i.e. I enumerates

M ∪N) of I in the EF-game EFδ(M,N) of length δ on M and N such that both
players are allowed to play a sequence of < |δ| elements at a time. Because we
assume M � N , τ is a winning strategy of I. The pairs (T, T ′), T ≤ T ′, of trees

such that Player II has a winning strategy in EFδ(M,N)T but Player I has a
winning strategy in EFδ(M,N)T ′ give information about how far or close M
and N are from being isomorphic. Such pairs outline a kind of boundary where
advantage in the game EFδ(M,N) moves from Player II to Player I. Every tree
with a branch of length δ is above the boundary. If δ = ω, the boundary is (up
to ≡) exactly one tree, namely Bα for some (unique) countable ordinal α. If
δ > ω, the boundary may be quite wide. Let us assume δ = ω1. If the first
order theory of M is classifiable in the sense of stability theory, the boundary
lies between well-founded trees and non-well-founded trees [19]. In the opposite
case the boundary may be quite high in the class of trees without uncountable
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branches. For models of size ℵ1 of unstable theories it is above any tree in T1,
if CH is assumed [11].

Open Question: Are there, for every tree T ∈ T1 non-isomorphic
models M and N of cardinality ℵ1 such that Player II has a winning
strategy in EFω1(M,N)T ?

A positive answer is known only for the extremely simple trees which consist
of countable branches bunched together at the root [21]. A positive answer
follows also from CH [11]. If there is a weakly maximal tree T in T1, solving the
above question for T gives automatically a positive answer for all trees in T1.

The analogue of the Scott height of a countable model in this context is the
following, introduced in [11]: A tree T without branches of length ωα is called a
universal non-equivalence tree for a model M of cardinality ℵα if for all models
N of cardinality ℵα in the same vocabulary, if M � N , then Player I has a
winning strategy in EFωα(M,N)T . For example, a Canary Tree is (if it exists)
a universal non-equivalence tree for the free Abelian group of cardinality ℵ1. A
tree T without branches of length ωα is called a universal equivalence tree for
a model M of cardinality ℵα if for all models N of cardinality ℵα in the same
vocabulary, if Player II has a winning strategy in EFωα(M,N)T , then M ∼= N .
If α = 0, every countable model has a universal non-equivalence tree Bα+1 and
a universal equivalence tree Bα, where α is the Scott height of the model. For
uncountable models the existence of such universal trees depends on stability
theoretic properties of the first order theory of the model [11, 8, 9, 10]. By and
large, models whose first order theory is unstable have no universal equivalence
tree [11]. Models whose first order theory is superstable, NOTOP and OTOP,
have a universal equivalence tree [11].

This paper continues in spirit [4] but is self-contained and can be read with-
out knowledge of [4]. Our main result improves the main result of [4] by extend-
ing the maximality from narrow κ-Aronszajn trees to wide κ-Aronszajn trees.
This leaves still open the possibility of having a narrow κ-Aronszajn tree which
is maximal with respect to wide κ-Aronszajn trees under strict order preserving
homomorphisms.

An outline of the paper

After some preliminaries in Section 2, we use in Section 3 a weakly compact
cardinal κ to force a wide ℵ2-Aronszajn tree T by Levy-collapsing κ to ℵ2. The
tree T is the tree that will be the desired maximal tree in the final model. The
levels of T are sufficiently collapse-generic to permit the wide ℵ2-Aronszajn trees
arising in the construction to be embedded into T . We then define in Section 4 a
σ-closed countable support iteration of length ℵ3 of forcing with side conditions
designed by means of an appropriate book-keeping to force for every wide ℵ2-
Aronszajn tree S an embedding S → T . Naturally, we have to make sure ℵ2

is not collapsed during this forcing. Section 5 is devoted to showing that our
iterated forcing has the right kind of strong properness to guarantee the κ+-
chain condition and thereby the preservation of ℵ2. We have to also make sure
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that our tree T will not acquire a long branch during the iteration. This is
shown in Section 6. Theorem 1 is then proved. We conclude this work with a
short open problems section 7.

Our methodology: Pairwise strong properness

When we want to get the consistency of the existence of a maximal wide κ-
Aronszajn tree, we face the challenges of preserving κ, and of showing that
the intended universal tree does not obtain a cofinal branch by the iteration.
We deal with the former challenge by maintaining that the forcing is strongly
proper with respect to sufficiently many structures of cardinality ω1. Proper
forcing methods involving specializing Aronszajn trees has been used in [3].
The transition to wide trees and tree embeddings requires the development of a
new type of argument for maintaining strong properness, which is developed in
Section 5 of this paper. In addition, having no cofinal branch is a typical example
of a second order property of an object that is supposed to be preserved under
the iteration.

The concept that turned out to be useful for this is the following strength-
ening of the notion of strongly generic conditions.

Definition 2. A forcing notion P is said to be pairwise strongly proper with
respect to the structure M if there is an M residue function p 7→ [p]M such that
if [p]M = [q]M and w ∈M ∩ P, w ≤ [p]M , then there are p′ ≤ p, w and q′ ≤ q, w
such that [p′]M = [q′]M .

In Section 6 we further develop this notion, prove it is satisfied by our itera-
tion, and use it to prove that our universal tree remains Aronszajn in the final
generic extension.

To secure these properties we introduce a forcing with certain special fea-
tures:

• The original object we intend to be universal is highly generic. Specifically,
a key requirement of each individual poset is that it whenever it maps a
node s at level α < κ of a given tree S to a node t in the intended universal
tree then the (collapse induced) local branch bt below t is mutually generic
from the generic information the local branch bs below s.

• We make use of substructures M as “side-conditions” to guide the gener-
ically constructed embeddings. It is crucial that the chosen structures
reflect second order assertions about the objects involved in the forcing.
The existence of such structures requires the involvement of large cardi-
nals.

We adopt the following general schema for proving the consistency of the
existence of a universal object of cardinality κ in a class of structures satisfying
some second order sentence Φ. The scheme consists of:

1. Force an object A intended to be the universal object for the property Φ.
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2. By dovetailing, iterate forcings which embed each individual structure
satisfying Φ into A.

3. Show that the iteration is proper (or strongly proper) so that we do not
collapse the relevant cardinals.

4. Show that A satisfies Φ after the iteration by proving the iteration satisfies
a certain variation of the pairwise strong properness property.

2 Preliminaries

Trees: Preliminaries

A tree (T,<T ) is a partial ordered set with a minimal element and with the
property that for every t ∈ T , the set of its<T -predecessors bt = {t̄ ∈ T | t̄ <T t}
is well-ordered by <T . We refer to bt as the branch below t. For an ordinal α, the
α-th level of T , denoted Levα(T ) is the set of all t ∈ T so that bt has ordertype
α in <T . The union

⋃
α′<α Levα′(T ) is denoted by T<α. The height of the tree

T is the minimal κ such that Levκ(T ) = ∅. Let T be a tree of height κ. We
say that T is narrow if |Levα(T )| < κ for every α < κ. Otherwise, we say T
is wide. A subset b ⊆ T is a cofinal branch if it is well ordered by <T and has
order-type κ. We say that T is κ-Aronszajn if it has no cofinal branches. If M is
a transitive set that is closed under the tree order <T , and t ∈ T \M , we define
the exit node eT (t,M) of t from M to be the <T -minimal node e ∈ bt∪{t} that
does not belong to M .

Weakly compact cardinals: Preliminaries

A cardinal κ is weakly compact if for every B ⊆ Vκ and every Π1
1 statement ψ

of (Vκ,∈, B) the set

Aψ = {α < κ | (Vα,∈, B ∩ Vα) |= ψ}

is nonempty. It follows from the definition that the collection of sets

{Aψ | ψ(Vκ,∈, B) |= ψ, ψ is Π1
1 and B ⊆ Vκ}

generates a κ-complete normal filter on κ, denoted by FWC .

Definition 3. (Reflecting sequence of structures and associated function)
Let θ ≥ κ++ be a regular cardinal and <θ a well-ordering of Hθ. For every
P ∈ Hθ we define the reflecting sequence of P ,

~MP = 〈MP
α | α ∈ dom( ~MP )〉

to consist of all Skolem-hull substructuresMP
α of the formMP

α = Hull(Hθ,∈,<θ,P )(α)
with the following properties:

• MP
α ∩ Vκ = Vα,
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• for every Q ⊆ Vκ in MP
α and a Π1

1 statement of (Vκ,∈, Q), if (Vκ,∈, Q) |= ψ
then (Vα,∈, Q ∩ Vα) |= ψ.

It follows from a standard argument that dom( ~MP ) belongs FWC for every
P ∈ Hθ.

Levy Collapse: Preliminaries

Let P = Coll(ω1, < κ) be the Levy-collapse poset. Conditions p ∈ P are count-
able partial functions p : ω1×κ→ κ with the property that p(ν, α) < α for every
(ν, α) ∈ dom(p). Let G ⊆ P be a generic filter. For each α < κ let fGα : ω1 → α
be given by fGα (ν) = α′ iff there is p ∈ G and p(ν, α) = α′. We refer to fGα
as the collapse generic surjection from ω1 onto α that is derived from G. By a
well-known argument, P is isomorphic to any number τ ≤ κ of copies of itself.
Fix an isomorphism between P and κ× κ× κ copies of itself,

P ∼=
∏

(η,β,α)∈κ3

P(η, β, α)

i.e., P(η, β, α) = Coll(ω1, < κ) for all η, β, α ∈ κ. The isomorphism breaks a
generic filter G ⊆ Coll(ω1, < κ) to mutually generic filters

〈G(η, β, α) | (η, β, α) ∈ κ3〉,

G(η, β, α) ⊆ P(η, β, α). For each τ < κ, let

fG(η,β,α)
τ : ω1 → τ

denote the collapse generic surjection from ω1 to τ , derived from G(η, β, α).

Let κ be a cardinal and X be a set of cardinality κ (e.g., κ3 = κ× κ× κ). We
say that two functions h, h′ : X → κ disagree almost everywhere if

|{x ∈ X | h(x) = h′(x)}| < κ.

3 Building the Wide Tree T

In this section, we construct a wide tree T in a collapse generic extension V [G],
G ⊆ Coll(ω1, < κ). This will be the maximal tree in the final model.

We want to define a wide tree T that will provide very generic branches over
any small part of it. Our forcing iteration for embedding trees on κ into T will
have to deal with κ+ many trees 〈Sη|η < κ+〉. Ideally, each Sη will have its
own part of T into which it will be embedded. This cannot be accommodated
because T is supposed to be of size κ. So the next best thing is to associate
with each of the η < κ+ a function hη which for level α < κ picks a part of the
tree T into which the α’th level of Sη is to be embedded, such that for η 6= η′

the parts associated with Sη and Sη′ are eventually disjoint. So the α’th level
of T will be made up of κ parts according to the value of hη outside α.
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For this reason, we construct the wide tree T to be a union of wide trees Th,
for functions h : κ → κ in V , where each Th is continuously constructed from
h in the sense that for every α < κ, Th<α will be determined from h � α and
therefore also denoted Th�α .

Fix an enumeration 〈gγ | γ < κ〉 of <κκ.
A key ingredient of the construction of the tree Th is that its local branches are
generically independent. More precisely, considering all α < κ of uncountable
cofinality, and t ∈ Levα(Th), their associated branches bt = {t′ ∈ Th<α | t′ <Th
t} are generically independent of each other in the sense that the parts of the
collapse generic filter G that is required to determine their identity are inde-
pendent. To do this, we associate to each node t ∈ Levα(Th) four parameters
(α, β, γ, δ) ∈ κ4 called the collapse index of t and use them to determine a
segment of G that will define bt.

We can now give the construction of the wide tree Th ∈ V [G] for a function
h : κ→ κ in V . The domain of Th is the set of triples {(α, ν, h � α) | α, ν < κ},
where α is the identifier of the level

Levα(Th) = {(α, ν, h � α | ν < κ},

and h � α is an indicator of the function part that has been used to construct
the tree up to and including level α.

Convention 4. When there is no risk of confusing the identity of the function
h, we shall omit the third index of nodes in Th and identify the domain of Th

with κ× κ, and Th<α with α× κ.

The ordering <Th is constructed level-by-level and makes use of a fixed
isomorphisms between P = Coll(ω1, < κ) and κ3 many copies of itself,∏

(α,β,γ)∈κ3

P(α, β, γ)

with the conventions given in Section 2 above.
We maintain an inductive assumption that the restriction of <Th to Th<α

depends only on the part h � α (namely, if h1 � α = h2 � α then Th1
<α = Th2

<α)
and that it belongs to the intermediate extension V [G � α×κ×κ], generic over
V for the partial product poset

P � (α× κ× κ) =
∏

(α′,β,γ)∈α×κ2

P(α′, β, γ).

Suppose that <Th� α× κ has been defined for some α < κ.

If α = α′ + 1 is a successor ordinal then we define the new level α of Th by
adding κ many successive nodes above each t′ ∈ {α′} × κ = Levα′(T

h). We use
a pairing bijection 〈, 〉 : κ× κ→ κ to enumerate the κ× κ nodes at level α in a

11



κ enumeration identified with {α} × κ.

Suppose that α < κ is a limit ordinal. To define the extension of <Th to
(α + 1)× κ it suffices to assign each t ∈ {α} × κ a cofinal branch bt ⊆ Th<α, as
we can then define t′ <Th t if and only if t′ ∈ bt.

If Cof(α) = ω and 〈αn | n < ω〉 is an increasing cofinal sequence in α, then
each cofinal branch b ⊆ Th<α is determined by its ω-subseqence 〈b(αn) | n <
ω〉 ∈ (α × κ)ω. As |(α × κ)ω| = κ, we enumerate all cofinal branches in Th<α,
〈b′ν | ν < κ〉, and for t = (α, ν) ∈ {α} × κ, define bt = b′ν .

Suppose that α < κ is a limit ordinal of uncountable cofinality. The following
definition will be used to define the cofinal branches b ⊆ Th<α that will be
extended to nodes at level α.

Definition 5. Suppose that T ′ is a σ-closed normal tree on α× β, f : ω1 → δ
with δ ≥ α · β and for every µ < δ, f−1(µ) ⊆ ω1 is unbounded.

1. Define the branch bf ⊆ T ′ determined by f to be the sequence 〈ti | i < ω1〉
defined as follows.

To define t0 we look at the minimal j < ω1 for which f(j) < δ is of the
form f(j) = α · β0 + α0 < α · β. We then set t0 = (α0, β0).

Suppose that 〈ti | i < i∗〉 has been defined. If i∗ is a limit ordinal then
ti∗ is the limit of the countable sequence 〈ti | i < i∗〉. Otherwise i∗ =
i + 1. Define ti∗ = (α∗, β∗) by looking at j∗ < ω1 minimal such that
f(j∗) = α · β∗ +α∗ < α · β, and ti <T ′ (α∗, β∗) for all i < i∗. We then set
ti∗ = (α∗, β∗).

2. If q = f � ν : ν → δ is an initial segment of f , then q naturally determines
an initial sequence 〈ti | i ≤ iq〉 of bf which has a maximal element tiq .
We denote the last node tiq by πq(b

f ) and call it the projection of bf
determined by q.

The next two lemmas follows from a standard density argument and the defini-
tion of cofinal branches bf (5).

Lemma 6. If f : ω1 → δ is a Coll(ω1, δ)-generic over a model V ′ that has T ′

then bf ⊆ T ′ is a cofinal branch i§n T ′.

Lemma 7. Suppose that T ′ ∈ V ′. Let Q =
∏
n<ω Coll(ω1, δn) be the product

of collapse posets with all δn ≥ α · β. Let 〈ḟn | n < ω〉 be the Q-name for the
sequence of generic collapse functions fn : ω1 → δn, and 〈ḃfn | n < ω〉 be the
corresponding names of generic cofinal branches bfn in T ′.

For every condition ~q = 〈qn | n < ω〉 ∈ Q and a sequence of nodes 〈tn | n <
ω〉 in T ′ such that πqn(ḃfn) <T ′ tn, there is some ~q∗ = 〈q∗n | n < ω〉 extending ~q

so that πq∗n(ḃfn) = tn for each n.
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We shall use Definition 5 to determine the branches bt for t ∈ Levα(Th)
by choosing subtrees T ′ of Th<α and using collapse generic functions f to form
branches bf through T ′. In this setup, T ′ belongs to the intermediate extension
V ′ of V by P′ = P � α× κ× κ. This means that the tree projection maps π̇p(t)
from definition 5 will be P′-names of nodes in Th<α. We make the following
observation about the nature of the construction that follows from this setup.

Lemma 8. Suppose that T ′ is P′-name of a tree on α × β for some poset P′,
δ ≥ α · β is an ordinal, and ḟ is a Coll(ω, δ)-name for the generic collapse. Let
bf be the P′ × Coll(ω1, δ)-name for the associated generic branch through T ′,
and q 7→ π̇q(b

f ) denote the P′-name for the projection assignment to conditions
q ∈ Coll(ω, δ). Suppose that (p′, q) ∈ P′ × Coll(ω, δ) is such that for some
t∗ ∈ T ′,

p′ P′ π̇q(b
f ) = ť∗.

For every t′ ∈ T ′ there is an extension q′ ≤ q such that

p′ P′ if t′ >T ′ ť
∗ then πq′(b

f ) = t′.

We use definition 5 above to define the branches bt for t ∈ Levα(Th).

Definition 9. Call a quadruple (α, β, γ, δ) ∈ κ4 valid for Levα(Th) if the
following conditions hold:

• The subset α× β of Th<α is closed under <Th ,2

• δ ≥ α · β, and

• gγ = h � (α+ 1).3

To each valid quadruple (α, β, γ, δ), the function f = f
G(α,β,γ)
δ : ω1 → δ

satisfies the assumption of Lemma 6 with respect to the tree T ′ = α×β ⊆ Th<α.
Since the tree ordering on Th<α is assumed to be defined in V ′ = V [G � α×κ×κ]

and f
G(α,β,γ)
δ is Coll(ω1, δ) generic over V ′, it follows from Lemma 6 that the

branch bf
G(α,β,γ)
δ is cofinal in Th<α.

It is clear that the set of valid quadruples for Levα(Th) has size κ. Let 〈(αν , βν , γν , δν) |
ν < κ〉 be a definable enumeration of all valid quadruples for Levα(Th).

Definition 10. (Collapse index and Collapse height)
Define for each node t = (α, ν, h � α) ∈ Levα(Th) its collapse-index to be

(αν , βν , γν , δν), its associated function ft = f
G(αν ,βν ,γν)
δν

, and set bt = bft . The
collapse height of t is the triple (αν , βν , δν).

Therefore given t = (α, ν, h � α) ∈ Th of collapse height (α, β, δ), one can
derive its collapse-index (α, β, γ, δ) as gγ = h � (α+ 1).

2I.e., Th � (α× β) is a subtree of Th<α.
3gγ is the γ-th function in the enumeration 〈gγ | γ < κ〉 of <κκ.
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Remark 11. The assignment of t ∈ T to its collapse index (α, β, γ, δ) ∈ κ4 is
injective. Indeed, if t = (α, ν, h � α) then γ recovers h � α as gγ = h � (α +
1), and the valid sequence (α, β, γ, δ) recovers ν as the index (αν , βν , γν , δν) =

(α, β, γ, δ) in the enumeration of all sequences which are valid for Th�α<α .

This concludes the construction of the tree Th. We state a number of basic
properties of Th that follow from its construction. The first is an immediate
consequence of our level-by-level definition of Th.

Lemma 12. Suppose that Mα ≺ (Hκ++ , h) is an elementary substructure with
ωMα ⊆Mα and Mα ∩ κ = α is a regular cardinal, then

P ∩Mα =
∏

(α′,β′,γ′)∈α3

P(α′, β′, γ′) ∩ Vα

is a regular subforcing of P, and Th∩Mα is forced to be equivalent to a (P∩Mα)-
name of a subtree of Th.

Let t ∈ Levα(Th) be of collapse index (α, β, γ, δ). Then bt is a cofinal branch
in the subtree Th � (α × β) whose order is defined in the intermediate generic
extension V ′ = V [G � α×κ×κ]. Working in V ′, definition 5 allows us to assign
each q ∈ P(α, β, γ) for which dom(q � {δ} = {i ∈ ω1 | (δ, i) ∈ dom(q)} < ω1 a
node πq(t) ∈ Th � (α × β) which is the maximal node forced by q to be in bt.
Back in V , πq(t) is a P � (α× κ× κ)-name for a node in Th<α that is decided on
a dense open set.

Definition 13. For each node t ∈ Levα(Th) with collapse index (α, β, γ, δ), let
D(t) ⊆ P be the set of conditions p so that p � α×κ×κ decides the name of the
node π̇q(t) ∈ Th<α where q = p � {(α, β, γ)} × κ. Being decided by p, we denote
it by πp(t).

Recall that our construction of Th as limit stages of countable cofinality add
a node about every cofinal increasing sequence of nodes. It follows from our
construction of a tree Th satisfies that that It is straightforward to verify that
for each t ∈ Th, the projection πp(t) is defined for almost every p ∈ P.

Lemma 14. D(t) is dense and σ-closed for each t ∈ Th.

The following is straightforward application of Lemma 8 to countably many
mutually generic branches.

Lemma 15. Suppose that 〈tn | n < ω〉 is a sequence of nodes in Th so that
for each n < ω, tn is of collapse index (αn, βn, γn, δn). For every condition
p ∈

⋂
nD(tn) and a sequence of nodes 〈t′n | n < ω〉 such that for each n < ω,

t′n ∈ Th � (αn×βn). There is an extension p′ ≤ p, with the following properties:

1. p′ and p are equal, except maybe at the collapse indices (αn, βn, γn, δn) of
the points tn.

2. for every q ≤Thn p′, if q  π̇p(tn) ≤Thn t′n then q  t′n ≤Thn π̇q(tn).
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Taking another step, we form a stronger version of Lemma 15 that allows the
nodes tn to come from possibly different trees Thi , under the assumption that
distinct functions hi 6= hj disagree almost everywhere (i.e., agree only on a
bounded set in κ). We formulate the statement in a specific way that best fits
our later proofs (Specifically, in Lemma 49).

Lemma 16. Let H ⊆ κκ be a countable set of functions that pairwise disagree
almost everywhere. Suppose that 〈tn | n < ω〉 is a sequence of nodes so that
each tn is an exit node from a structure Mn ≺ (Hκ++ , H) with ωMn ⊆Mn, and
that the collapse-index (αn, βn, γn, δn) of tn is outside Mn.
For every sequence of nodes 〈t′n | n < ω〉 such that t′n ∈ Thn ∩Mn for some
hn ∈ H, and for each n < ω, there is an extension p′ ≤ p with the property that

1. p′ and p are equal, except maybe at the collapse indices (αn, βn, γn, δn) of
the points tn.

2. for every q ≤Thn p′, if q  πp(tn) ≤Thn t′n then q  t′n ≤Thn πq(tn).

4 The embedding poset

We fix in V a sequence of bijections ~ψ = 〈ψτ | τ < κ+〉, such that for each τ ,
ψτ : κ → τ is a bijection. We also fix a sequence of functions 〈hτ | τ < κ+〉,
hτ : κ→ κ, which are pairwise almost everywhere disagree.

Definition 17. We say that a set a ⊆ κ+ is α-closed with respect to ~ψ for some
α < κ if ψδ“α ⊆ a for every δ ∈ a.

We are going to define by induction a sequence of forcing notions Pτ for
τ < κ+, together with Pτ -names of wide trees Sτ ⊆ κ × κ and sequences of
structures ~Mτ = 〈Mτ

α : α ∈ dom( ~Mτ )〉. This is our iteration for the proof of
Theorem 1.

Remark 18. Before giving the exact definitions, we give a brief informal de-
scription of Pτ . P0 will be equivalent to the Levy collapse forcing Coll(ω1, < κ).
For δ ≥ 1, Pδ will consists of pairs p = 〈fp, Np〉 of countable sets, so that
fp = 〈fpγ : γ ∈ supp(p)〉 is a sequence of functions, such that supp(p) ⊆ δ is
a countable set, and for each γ ∈ supp(p), fpγ is a countable partial function,

which will be forced to be order preserving from the tree Sγ to Thγ . The tree
(names) Sγ , γ < κ+ will be chosen by a book-keeping function, which is planned
to exhaust all wide trees S of a certain kind. The set Np corresponds to the
side condition part, which specifies a collection of structures M for which we
would like to secure the existence of strong generic conditions. This is realized
by having Np consists of pairs (α, aα) so that α < κ and aα ⊆ δ is a nonempty

α-closed set with respect to ~ψ of size |aα| ≤ α. The role of (α, aα) is to specify a

set of γ < δ for which we would like Mγ
α ∈ ~Mγ to have a strong generic condi-

tion (a.k.a. a master condition). For this, we add several natural requirements
to the working parts fpγ . For example, we require that nodes s ∈ dom(fpγ ) ∩Mγ

α

are mapped to fpγ (s) ∈ Thγ ∩Mγ
α .
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We proceed with the complete recursive definition of Pτ , ~Mτ , τ < κ+. The
definition will be given in steps, and require introducing a number of auxiliary
definitions and notations. The auxiliary definitions will be extensively used to
prove that Pτ has the desired properties.

To start, we fix in advance a well-order<Hκ++ ofHκ++ , as well as a book-keeping
function Ψ whose domain is the set of all posets P ∈ Hκ++ which preserve κ
and satisfy κ+.c.c, and Ψ(P) is a P-name of (wide) tree S on κ whose domain
is κ× κ.

Definition 19. (P0)
P0 is equivalent to the Levy collapse forcing. Formally, it consists of pairs
p = 〈fp, Np〉 where fp = 〈fp0 〉 is a sequence with an element fp0 ∈ Coll(ω1, < κ),
and Np = ∅.

Suppose that Pδ has been defined for every δ < τ for some 1 ≤ τ < κ+.
Before defining Pτ we list seven inductive assumptions for Pδ, δ < τ .

Inductive Assumption I: For every δ < τ , Pδ is a σ-closed poset of size
|Pδ| = κ, and Pδ ∈ Hκ++ .

For each γ < δ let Ṡγ = Ψ(Pγ) denote the Pγ-name for a wide tree with
domain κ× κ chosen by a fixed book-keeping function Ψ.

Let Aγ = 〈Hκ++ ,∈, <Hκ++ ,Ψ,Pγ , hγ , ~ψ〉. Note that Sγ = Ψ(Pγ) is definable

in this structure. Let ~Mγ = 〈Mγ
α : α ∈ dom( ~Mγ)〉 is the associated sequence of

Π1
1-elementary substructures of Aτ from Definition 3. As mentioned after the

definition, dom( ~Mγ) belongs to the weakly compact filter on κ, FWC .

Inductive Assumption II: For every δ < τ and p ∈ Pδ, p is of the form
〈fp, Np〉 where

1. fp = 〈fpγ : γ ∈ supp(p)〉, a sequence whose domain supp(p) ⊆ δ (called
the support of p) is a countable set so that

• 0 ∈ supp(p) and fp0 ∈ Coll(ω1, < κ),

• for each positive ordinal γ ∈ supp(p), fpγ : κ × κ → Thγ is a partial
countable function.

2. Np is a countable set of pairs of the form (α, aα), where aα ⊆ δ is a

nonempty α-closed set (w.r.t ~ψ) of size |aα| ≤ α. For each α there is at
most one pair (α, aα) in Np.

Definition 20. 1. Let p ∈ Pδ, δ′ < δ and M δ′

α ∈ ~Mδ′ . We say that Mδ′

α

appears in p if δ′ ∈ aα where (α, aα) ∈ Np.

2. We say that a condition p ∈ Pδ is amenable to a structure Mδ
α ∈ ~Mδ if Mδ′

α

appears in p for every δ′ ∈M δ
α ∩ δ (i.e., M δ

α ∩ δ ⊆ aα where (α, aα) ∈ Np)
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3. We say that Mδ
α is ~Mδ-reflective if M δ

α = Nδ
α ∩ Aδ for some Nδ

α ≺
(Hκ++ ,Aδ, ~Mδ).

Definition 21. For every δ < δ∗ and p ∈ Pδ∗ , define p � δ = 〈fp�δ, Np�δ〉 by

fp�δ = 〈fpγ : γ ∈ supp(p) ∩ δ〉,

and
Np�δ = {(α, aα ∩ δ) : (α, aα) ∈ Np and aα ∩ δ 6= ∅}.

Inductive Assumption III: For every δ < δ∗ < τ and p ∈ Pδ∗ , p � δ ∈ Pδ,
and for every structure M δ

α that appears in p, M δ
α is ~M δ-reflective and p � δ is

amenable to M δ
α.

Inductive Assumption IV: For every δ < τ , M δ
α ∈ ~Mδ and p ∈ Pδ ∩M δ

α,
there is an extension p′ ≤ p which is amenable to Mδ

α.

Definition 22. ( ~Mδ,Ġ(Pδ))

For each δ < τ let ~Mδ,Ġ(Pδ) be the Pδ-name of the sub-sequence of ~M δ consisting
of all Mδ

α ∈ ~Mδ which are ~Mδ-reflective and there is an M δ
α-amenable condition

p′ in the (canonical Pδ-name) generic filter Ġ(Pδ).

Lemma 23.

1. ~Mδ,Ġ(Pδ) is (forced to be) to have cardinality κ.

2. If p forces some Mδ
α to be in ~Mδ,Ġ(Pδ) then it forces Mδ′

α to be in ~M δ′,Ġ(P′δ)

for every δ′ ∈ δ ∩M δ
α.

Proof. The first part is an immediate consequence of Inductive assumption IV.
For the second item, note that for every Mδ

α ∈ ~Mδ, ψδ ∈ Mδ
α and therefore

M δ
α ∩ δ = ψδ“α. It follows that for every a which is α-closed (w.r.t ~ψ) and

δ ∈ a, one must have δ ∩Mδ
α ⊆ a. The statement of this part now follows from

Inductive Assumption III.

Inductive Assumption V: The following requirement holds for every δ′ <
δ < τ and p ∈ Pδ with δ′ ∈ supp(p):
For every s1 6= s2 ∈ dom(fpδ′) there is some s ∈ dom(fpδ′) which is forced by
p � δ′ to be the meet of s1, s2 in the tree order of Sδ′ , and fp0 ∈ Coll(ω1, < κ)
forces that fpδ′(s) is the meet in Thδ′ of fpδ′(s1) and fpδ′(s2).

Remark 24. Inductive Assumption V implies p � δ′ forces that fpδ′ is order
preserving. This follows from the simple observation that a partial function
f : S → T between two trees S, T , whose domain is closed under meets in S,
mapping those meets to the meets of the images, is order preserving.
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The next inductive assumptions describe the connection/restrictions be-
tween the “working” parts fpδ in conditions p and the “side condition” parts
M δ
α that appear in p. We start with a brief discussion before giving the precise

details.
Our main goal is to secure a strong properness property for a structure Mδ

α

that appears in a condition p. As usual, strong properness will imply that the
restriction of the generic embedding fδ to Mδ

α will be generic over M δ
α. It is

therefore natural to include a restriction saying that for every s ∈ dom(fpδ ),
s ∈M δ

α if and only if fpδ (s) ∈Mδ
α. Now, to secure this property while allowing

every node s′ ∈ Sδ to be added to the domain of an extension, we impose a
similar requirement for branches bs of nodes s ∈ dom(fpδ ). Namely, we require
that for every (s, t) ∈ fpδ , bs ⊆Mδ

α if and only if bt ⊆Mδ
α. We recall that by the

construction of our trees Thδ , for every t ∈ Thδ , the identity of β < κ for which
bt ⊆ M δ

β is determined from the collapse height (α′, β′, γ′) of t (specifically, we
need α′, β′ ≤ β).

We point out that the last restriction introduces the following additional
complication: Say, (s, t) ∈ fpδ are outside of a structure M δ

α which appears in p.
By our strong properness aspirations for Mδ

α we would like our ability to extend
the conditions fpδ ∩Mδ

α inside Mδ
α to be “independent” from considerations out-

side of M δ
α. Because of this, we are at a risk of adding a new structure Mδ

β to

the side condition part, when working inside M δ
α that will violate the branch re-

quirement coming from (s, t), which are outside of the structure. One approach
to avoid such a problem will be to add a notion of excluded intervals to the side
condition part (such as when adding a club to ω1 with finite side conditions, as
in Baumgartner, [2]) of the poset to exclude “problematic” structures Mδ

β below

Mδ
α. We take here a similar and slightly more implicit approach to avoid this

problem: We can use the function fpδ to produce excluded intervals, essentially
by mapping a node s′ ∈ M δ

β to fpδ (s′) outside of Mδ
β , but inside Mδ

α so that

this restriction appears when we move to fpδ ∩Mδ
α and excludes adding Mδ

β to
the side condition part. The last description can be seen as a motivation for
the next definition, of a refined sub-sequence ~Mδ,G(Pδ),fδ ⊆ ~Mδ,G(Pδ) given by a
partial countable function fδ.

Definition 25. ( ~Mδ,Ġ(Pδ),fδ)
Let fδ : Sδ → Tδ be a countable partial function. Define a Pδ-name for a

sub-sequence ~Mδ,Ġ(Pδ),fδ of ~Mδ,Ġ(Pδ) by having ~Mδ,Ġ(Pδ),fδ consists of all Mδ
β ∈

~Mδ,Ġ(Pδ) such that for every (s, t) ∈ fδ

1. s ∈M δ
β if and only if t ∈Mδ

β , and

2. s is an exit node from M δ
β if and only if t is an exit node from Mδ

β .

Definition 26. (βfδ(s))
For every condition p ∈ Pδ, node s ∈ Levα(Sδ) where α < κ, and partial
countable function fδ : Sδ → Tδ there is an extension q ≤ p which either
forces some value, which we denote βfδ(s), to be the minimal β < κ such that
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bs ⊆ α × β, s 6∈ Mδ
β , and Mδ

β ∈ ~Mδ,Ġ(Pδ),fδ , or else forces that such β does not
exist.

Remark 27. Given a condition p ∈ Pδ, δ′ < δ, and a node s ∈ Sδ′ , we can
extend p � δ′ to determine the minimal β < κ such that bs ⊆ β×β and s 6∈ β×β.
This makes β a natural candidate for βfδ′ (s) but not necessarily the correct one.

We might have to increase it to some β′ ≥ β since either M δ′

β does not exist,

or it does, but is not forced to be inside ~M δ,G(Pδ),fpδ′ Further extending p � δ′

there is no problem determining whether there is β′ < κ so that bs ⊆ β′ × β′,
s 6∈ β′ × β′, and (if exists) determine the minimal such β′.

Definition 28. For every δ < τ and s ∈ Sδ, we define a Pδ-name of a structure

Ms
1 to be Mδ

β which is the first in ~Mδ,Ġ(Pδ) so that s ∈M δ
β .

Definition 29. (s-knowledgeable conditions)
Let δ′ < δ. We say that a condition q ∈ Pδ′ is s-knowledgeable (or knowledgeable
about s) for some s ∈ Sδ′ with respect to a partial countable function fδ′ : Sδ′ →
Tδ′ , if

• q decides the identity of Ms
1 ,

• q decides if βfδ′ (s) exists, and if so, determines its value.

Let p ∈ Pδ+1, s ∈ dom(fpδ ), and pδ(s) = t. Suppose (η, δ) ∈ Np. Let
M = Mδ+1

η . Suppose that s is an exit node of M . Hence t is an exit node from
M . Let β be minimal such that b(s) ⊆ α × β. Note that β ≤ η. We require
that the “slice” of t is β. (We assume that p � δ determined β.)

Claim: If M∗ ∈M such that s is an exit node of M∗ then t is an exit node
from M∗.

β ⊆M∗, otherwise s can not be an exit node from it because b(s) is cofinal
in α× β. t /∈M∗ because M∗ ⊆M and t 6∈M . b(t) ⊆ α× β, hence b(t) ⊆M∗.

Inductive Assumption VI: For every p ∈ Pδ and s ∈ dom(fpδ′) for some
δ′ < δ then

1. p � δ′ to be s-knowledgeable with respect to fpδ′ , and if p � δ′ forces

β = βfp
δ′

(s) exists then Mδ′

β appears in p.

2. Suppose that M δ′

α appears in p, then

• s ∈Mδ′

α if and only if fpδ′(s) ∈Mδ′

α

• s is an exit node from Mδ′

α if and only if fpδ′(s) is.

and β < κ such that (β, aβ) ∈ Np and δ′ ∈ aβ we have p � δ′  Mδ′

β ∈
~Mδ,Ġ(Pδ),fpδ′ .

Inductive Assumption VII: For every p ∈ Pδ and s ∈ dom(fpδ′) for some
δ′ < δ, the collapse-index (α, β, γ, δ) of fpδ′(s) is forced by p � δ′ to satisfy the
following requirements:
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1. α is the level of s,

2. β = βfp
δ′

(s) if exists, and

3. γ > (Ms
1 ∩ κ).

We are ready to define Pτ . We split the definition between the case τ is a
limit ordinal, and τ = δ + 1 is a successor ordinal.

Definition 30. (Pτ for a limit ordinal τ)
Conditions p ∈ Pτ are all pairs 〈fp, Np〉 which satisfy the following requirements:

• fp = 〈fpδ : δ ∈ supp(p)〉 is a sequence with supp(p) ⊆ τ is countable and
0 ∈ supp(p),

• Np is a countable set of pairs (α, a) satisfying α < κ and a ∈ [τ ]≤α

nonempty and (~ψ, α)-closed,

• For every δ < τ , p � δ belongs to Pδ.

A condition p′ ∈ Pτ extends p, denoted p′ ≤ p, iff p′ � δ ≤Pδ p � δ for all
δ < τ .

Definition 31. (Pτ for a successor ordinal τ)
Suppose that τ = δ + 1 is a successor ordinal. Pτ = Pδ+1 consists of all pairs
p = 〈fp, Np〉 which satisfy the following conditions:

• fp = 〈fpδ : δ ∈ supp(p)〉 is a sequence with supp(p) ⊆ δ + 1 is countable
and 0 ∈ supp(p),

• Np is a countable set of pairs (α, a) satisfying α < κ and a ∈ [τ ]≤α

nonempty and (~ψ, α)-closed, and whenever δ ∈ a, M δ
α ∈ ~M δ exists,

• p � δ is a condition in Pδ,

• If δ ∈ supp(p) then p � δ forces the statements in V,VI, and VII from
inductive assumptions, having δ′ is replaced with δ.

A condition p′ ∈ Pδ+1 extends p if it satisfies the following requirements:

1. p′ � δ ≤Pδ p � δ,

2. fpδ ⊆ f
p′

δ ,

3. for every (a, α) ∈ Np there is some a′ ⊇ a such that (a′, α) ∈ Np′ .4

Lemma 32. Pτ satisfies inductive assumptions I-VII.

4Equivalently, every Mδ′
α that appears in p appears in p′.
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Proof. Assumption I: It is clear that |Pτ | has size κ and is σ-closed.

Assumption II: The structural assumptions of conditions p ∈ Pτ are immedi-
ate consequences of the definition of Pτ .

Assumption III: The fact that p � δ ∈ Pδ for every p ∈ Pτ and δ < τ is
immediate from the definition of Pτ .

Assumption IV: Let p ∈ Pτ ∩ Mτ
α for some Mτ

α ∈ ~Mτ . Take a = ψτ“α.

Then a is α closed since ~ψ ∈ Mτ
α . Let p′ = 〈fp′ , Np′〉 where fp

′
= fp and

Np′ = Np ∪ {(α, a)}. The fact that p′ is a condition follows from the fact that
p ∈ Mτ

α . This means that items 3,4 from IA V are not challenged by adding
(a, α) to Np. It is clear that p′ is amenable for Mτ

α .

Assumptions V,VI,VII: If τ is limit then IA V,VI,VII are immediate. Sup-
pose τ = δ+1 is a successor ordinal. The fact that V,VI, and VII hold at δ′ < δ
follows from the fact p � δ ∈ Pδ. The fact that V,VI,VII hold at δ follows from
the definition of Pδ+1.

Remark 33. Let p ∈ Pτ be a condition. Suppose that s′ ∈ dom(fpδ ) for some
δ ∈ supp(p), and s ∈ Sδ are such that

• p � δ decides the meet of s, s′ in Sδ, denoted by m(s, s′) ∈ Sδ

• m(s, s′) ∈ Levᾱ(Sδ) for some ᾱ < κ

• The collapse part fp0 of p determines the identity of a unique node below
fpδ (s′) at level ᾱ to be some t̄ ∈ Levᾱ(T ).

Although the assumptions do not imply m(s, s′) belongs to dom(fp
′

δ ) as we do
not assume s does. However, the image fqδ (m(s, s′)) of m(s, s′) in all possible
extensions q of p with m(s, s′) ∈ dom(fqδ ) is already decided by p to be t̄. We
call t̄ the implicit image of the meet m(s, s′) of s, s′ as determined by p, and
denote it by t(s, s′) or tp(s, s

′).

Traces and simple amalgamations

We end this section with definitions of operations that attempt to capture small
pieces of conditions p ∈ Pτ , and join those pieces together (possibly pieces
from different conditions). These are given by traces to structures, and simple
amalgamations, respectively. The two operations need not produce conditions in
general, but as we will show, they do under quite natural additional assumptions.

For a condition p ∈ Pτ and a structure M = Mτ
α ∈ ~Mτ the trace of p to M ,

denoted [p]M , is meant to capture all the information p has which is relevant to
M .

Definition 34. Let p ∈ Pτ for some τ < κ+ and M ≺ (Hκ++ ,∈ Pτ , ~ψ). The
trace of p = 〈f,N〉 to M , is the pair [p]M = 〈f̄ , N̄〉 where
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• dom(f̄) = M ∩ dom(f),

• for every γ ∈ dom(f̄), f̄γ = fγ ∩M ,

• N̄ consists of pairs (α, ā) for which there is some a such that (α, a) ∈ N ,
α ∈M , and ā = a ∩M is nonempty.5

It is not true in general that [p]M is a condition in Pτ . For example, it is
possible that the trace part [p � δ]M = [p]M � δ does not decide the meet of
nodes s1 6= s2 for s1, s2 ∈ dom(f̄δ). Our main argument below shows that when
p is amenable to M , then [p]M is a condition in Pτ ∩M . Moreover, in the next
section we introduce a property of a condition p begin super-nice with respect
to M and prove it implies that [p]M is a residue of p (see Definitions 40 and 42).

Next, we define the simple amalgamation operation of two conditions p, p′.
Given two conditions p, p′ ∈ Pτ , the natural attempt to find a common extension
q to p, p′ involves taking coordinate-wise unions of the “working parts” and the
“side condition” parts. The result, which need not be a condition, is called the
simple amalgamation of p, p′.

Definition 35. (Simple Amalgamations)
The simple amalgamation of conditions p = 〈f,N〉 and p′ = 〈f ′, N ′〉 is the pair
〈f∗, N∗〉 defined by

• dom(f∗) = dom(f) ∪ dom(f ′)

• for each δ ∈ dom(f∗), f∗δ = fδ ∪ f ′δ (with fδ or f ′δ taken to be empty in
the case they do not exist)

• (α∗, a∗) ∈ N∗ if and only if there is either a so that (α∗, a) ∈ N or a′ so
that (α∗, a′) ∈ N ′, and then a∗ = a ∪ a′ (with a or a′ taken to be empty
in the case they do not exist)

It is clear that if q is an extension of p, p′ then, with the above notation,
f∗δ ⊆ fqδ for every δ ∈ dom(f∗), and for every (α∗, a∗) ∈ N∗ there is b ⊇ a∗

with (α∗, b) ∈ Nq. However, the simple amalgamation (f∗, N∗) need not be a
condition even when p, p′ are compatible. This is because given that the simple
amalgamation of p, p′ up to some coordinate δ < τ forms a condition in Pδ
(this is clearly the case for δ = 0) it need not decide the meets in Sδ of nodes

s ∈ dom(fpδ ) with nodes s′ ∈ dom(fp
′

δ ), or the exit node of some s′ ∈ dom(fp
′

δ )
with all side condition structures M δ

α that appear in p, and vice versa.
In a very simple case where p′ ∈ Pδ extends an initial segment p � δ of p, it

is an immediate consequence of the definition that the simple amalgamation is
a condition.

Lemma 36. Suppose that p ∈ Pτ , and p′ ∈ Pδ extends p � δ for some δ < τ .
Then the simple amalgamation of p, p′ belongs to Pτ

5Since ~ψ ∈M and a is α-closed, then so is (α, ā).
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To establish the main preservation properties of Pτ (e.g., preservation of κ)
will make use of another criterion for when the simple amalgamation of p, p′ is
a condition.

Definition 37. (Local extensions with projections)
Let p, p′ ∈ Pτ . We say that p′ is a local extension of p with projections if for
every δ ∈ supp(p) ∩ supp(p′) we have

1. (δ = 0) fp0 and fp
′

0 are compatible in Coll(ω1, < κ).

2. (δ > 0) for every s′ ∈ dom(fp
′

δ ) \ dom(fpδ ) and s ∈ dom(fpδ ) \ dom(fp
′

δ )

there is a connecting node s̃ ∈ dom(fpδ ) ∩ dom(fp
′

δ ) ∩Mδ
α for some Mδ

α

which appears in both p and p′, such that

(a) (p′ extends p in M δ
α) The model M δ

α appears in both p and p′ and

[p′ � δ]Mδ
α
≤ [p � δ]Mδ

α

(b) (s̃ is a local projection of s in Mδ
α)

p � δ  s̃ ≤Sδ s

and
LevSδ(s̃) ≥ LevSδ(s

′).

Therefore, any extension of p, p′ will force the meet of s′, s to be the meet
of s′, s̃ as determined by p′.

3. (δ > 0) for every model M δ
α′ that appears in p′ but not in p. and s ∈

dom(fpδ ) \dom(fp
′

δ ) there are a model Mδ
α, α > α′, which appears in both

p and p′, and s̃ ∈ dom(fpδ ) ∩ dom(fp
′

δ ) ∩M δ
α such that

(a) [p′ � δ]Mδ
α
≤ [p � δ]Mδ

α

(b)
p � δ  s̃ <Sδ s

and
p′ � δ  s̃ is an exit node from M δ

α′

Therefore, any extension of p, p′ will force the exit node of s from M δ
α′ to

be s̃, as it is determined by p′.

4. (δ > 0) if a model Mδ
α′ appears in p but not in p′ then fp

′

δ ⊆Mδ
α′ .

The word “projections” refers to the nodes s̃ in the definition, which faith-
fully connect the information from p down to the relevant parts of p′ inside M δ

α.
As an immediate consequence of the definitions of simple amalgamations and
local extensions with connections we conclude
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Lemma 38. If p, p′ ∈ Pτ are such that p′ is a local extension of p with projec-
tions then the simple amalgamation of p, p′ is a condition in Pτ which extends
both p, p′.

Proof. One proves by induction on δ ≤ τ that the simple amalgamation of
p � δ and p′ � δ in Pδ is a condition in Pδ. v For δ = 0 this is an immediate
consequence of item 1 in Definition 37. Limit stages δ ≤ τ immediately follow
from the definition of the poset Pδ. Suppose δ + 1 ≤ τ is a successor ordinal.
Denote the simple amalgamation of p � δ and p′ � δ by q. We assume q ∈ Pδ
by induction, and want to show that the simple amalgamation of p � δ + 1 and
p′ � δ+1 is a condition as well. Let q′ = (f ′, N ′) denote the simple amalgamation
of p � δ+1 and p′ � δ+1. Obviously q′ � δ = q. In order to verify q is a condition
it suffices to check assumptions I-VII as part of the definition of conditions in
Pδ+1. Assumption I-IV are immediate. Assumptions VI.1 and VII is also clear

as all nodes s ∈ dom(f ′δ) belong to dom(fpδ ) or dom(fp
′

δ ) and so, the relevant
information to be determined is decided by either p � δ or p′ � δ, and hence by
q. We are left with verifying Assumptions V and VI.2. Assumption V requires
that dom(f ′δ) is closed under meets in Sδ and that f ′δ maps these meets to the
meets in Tδ of the images. Let s, s′ ∈ dom(f ′δ), if s, s′ ∈ dom(fpδ ) or s, s′ ∈
dom(fpδ then the result is immediate. Suppose that s ∈ dom(fpδ ) \ dom(fp

′

δ )

and s′ ∈ dom(fp
′

δ ) \ dom(fpδ ). By the assumption of the Lemma and part 2 of

Definition 37 there is a connecting node s̃ ∈M δ
α ∩dom(fpδ )∩dom(fp

′

δ ) for some

M δ
α which appears in both p and p′. Let s̄ ∈ dom(fp

′

δ ) be the meet of s′ and
s̃ (as decided by p′ � δ). It follows from the properties of s̃ listed in part 2 of
Definition 37 that q forces s̄ to be the meet of s′ and s, and similarly that that

f ′δ(s̄) is the meet of fpδ (s) >T f
p
δ (s̃) = fp

′

δ (s̃), and fp
′

δ (s′).
Moving to Assumption VI.2, it suffices to check that for every structure Mδ

α′

that appears in exactly one of the conditions p, p′ and a node s 6∈ Mδ
α′ which

appears in the domain of the other condition, then the exit node e of s from
M δ
α′ is decided by q, it belongs to dom(f ′δ) and its image f ′δ(e) is forced to be

the exit node of f ′δ(s) from M δ
α′ . First, we note that this cannot happen if Mδ

α′

appears in p but not in p′, since property 4 in Definition 37, says that in such

a case fp
′

δ ⊆ Mδ
α′ . Hence no s ∈ dom(fp

′

δ ) can be outside Mδ
α′ . Suppose now

that M δ
α′ appears in p′ but not in p and s ∈ dom(fpδ ) \Mδ

α′ . By property 3 of

37 there is a “connecting” node s̃ ∈ dom(fpδ ) ∩ dom(fp
′

δ ) ∩Mδ
α for some M δ

α,
α > α′, that appears in both p and p′, is forced by p to be below s, and is forced
by p′ � δ to be an exit node from Mδ

α′ . It follows that p forces f ′δ(s̃) <T f
′
δ(s),

and that p′ � δ forces that f ′δ(s̃) is an exit node from Mδ
α. Hence, the common

extension q of p � δ and p′ � δ forces that s̃ is the exit node of s from Mδ
α′ , and

that its image f ′δ(s̃) is the exit node of f ′δ(s) from Mδ
α′ .

The last lemma will play a key role in the proof that for a condition p ∈ Pτ
which is super-nice with respect to some M , if w ∈ M ∩ Pτ extends [p]M then
p, w are compatible.
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5 Strong Properness

We commence by recalling the usual definition of strong properness:

Definition 39. A condition p ∈ P is strongly proper with respect to a model
M ≺ (Hθ,∈,P) (for some sufficiently large θ) if p forces that Ġ ∩M is a V -
generic filter for P ∩M . We say that P is strongly proper with respect to a
stationary class T of models M , if for every M ∈ T and q ∈ M ∩ P, q has an
extension p ∈ P which is strongly proper with respect to M .

This definition is equivalent to the definition of a strong master condition in
Neeman and Gilton [6]. We will use the following notion of residue function to
prove strong properness results for our poset.

Definition 40. Let p ∈ P and M ≺ (Hθ,∈,P). A residue function for M over
p is a function r : D → M ∩ P, where D ⊆ P/p is dense below p and for every
q ∈ D and w ∈M ∩ P such that w ≤ r(q), w and q are compatible in P.

Lemma 41. If p,M are as above, and r : D → P∩M is a residue function for
M over p, then p is strongly proper with respect to M .

See Proposition 1.7 in [6] for details.
For appropriate conditions p ∈ Pτ and M , our residue function to M will be

given by a natural trace [p]M operator. We introduce the notion of a super-nice
conditions with respect to a structure M , and prove that when p is super-nice
with respect to M then [p]M is a residue of p in M .

Definition 42.

1. We say that p ∈ Pτ nicely projects to a structure Mτ
β if it satisfies the

following requirements:

• For every δ ∈Mδ
β ∩ supp(p) and s′ ∈ dom(fpδ ) which is outside of M δ

β

there exists some s ∈ dom(fpδ ) such that p � δ forces s to be an exit
node from Mδ

β and s ≤Sδ s′.
• fp0 ∈ D(t) for every t ∈

⋃
δ∈supp(p) rng(fpδ ) (see Definition 13 for the

σ-closed dense set D(t))

• For every δ ∈Mτ
β ∩ supp(p) and s ∈ dom(fpδ ) which is forced by p � δ

to be an exit node from Mδ
β , then t̄ = πfp0 (fpδ (s)) is of sufficiently

high level so that it does not belong to Mδ
β for any β < βp(s) (see

Definition 26 for βp(s)), and either

(a) (t̄ has a preimage)
there is some s̄ ∈ dom(fpδ ) ∩Mτ

β such that p � δ  s̄ <Sδ s and

fpδ (s̄) = t̄, or

(b) (bt̄ has cofinal preimages)6

there is a sequence of nodes 〈s̄n〉n ⊆ dom(fpδ ) ∩Mτ
β such that

p � δ forces it is increasing in Sδ, bounded by s, and the images
by fpδ are cofinal in t̄.

6This option was added to make sure that the set of nicely projects conditions is σ-closed.
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2. Let p ∈ Pτ be a condition which satisfies that for every δ ∈ supp(p)\1 and
s ∈ dom(fpδ ), the condition p � δ decides the identity of Ms

1 In particular,
p � δ is Ms

1 -amenable. We define E(p,Mτ
α) to be the countable set of

pairs (δ,Mδ
β) obtained by starting with the singleton {(τ,Mτ

α)} and closing

under the following operation: Given (γ,Mγ
β ) in our set, and δ, s such that

δ ∈ Mγ
β ∩ γ and s ∈ dom(fpδ ) is forced by p � δ to be an exit node from

Mδ
β , we add (δ,Ms

1 ).

3. p is super-nice with respect to Mτ
α if it satisfies the assumption needed to

define E(p,Mτ
α), and for every (δ,Mδ

β) ∈ E(p,Mτ
α), p � δ nicely projects

to Mδ
β . The set of super-nice conditions p ∈ Pτ with respect to Mτ

α is
denoted by Dτ (Mτ

α).

Remark 43. It follows from the definition of E(p,Mτ
α) that for every pair

(δ,Mδ
β) ∈ E(p,Mτ

α) that is not the initial one (τ,Mτ
β ), then Mτ

α, δ < τ and Mδ
β

is (forced by p � δ) to be a successor structure in the sequence ~M δ,Ġ(Pδ). This
observation together with the fact that for every δ′ ∈ M δ

β ∩ δ, M δ′

β is a limit

structure in the sequence ~Mδ′,Ġ(Pδ′ ), imply that for all (δ′,Mδ′

β′) ∈ E(p,Mτ
α) we

must have that β 6= β′.

Lemma 44. Let τ < κ+ be such that for every δ < τ and M δ
α which is ~M δ-

reflective. Suppose that

• the set Dδ(M
δ
α) is σ-closed and dense below every condition amenable to

Mδ
α,

• for every p ∈ Dδ(M
δ
α), [p]Mδ

α
∈ Pδ∩Mδ

α and every w ∈M δ
α with w ≤ [p]Mδ

α

is compatible with p.

Then

1. (Node Density) for every p ∈ Pτ , δ < τ , and s ∈ Sδ, there is an extension
p′ ≤ p with s ∈ dom(fpδ ).

2. (Super-nice density for ~Mτ ) For every Mτ
α ∈ ~Mτ , the set Dτ (Mτ

α) is
σ-closed and dense below every condition amenable to Mτ

α.

3. For every condition p ∈ Dτ (Mτ
α), [p]Mτ

α
∈ Pτ ∩Mτ

α is a condition.

Proof. Starting with the node density assertion, let p ∈ Pτ and s ∈ Sδ, δ < τ .
We would like to extend p and add s to dom(fpδ ). The idea is to extend p � δ
to make it s-knowledgeable, and choose the image fδ(s) accordingly. We have
to make sure that the decision is compatible with Assumption VI in the sense
that for every Mδ

α which appears in p, if s ∈Mδ
α then so is our choice for fδ(s).

Let α < κ be minimal such that M δ
α appears in p and s ∈Mδ

α. Recall that this

implies M δ
α is ~Mδ-reflective. Namely, that there is some Nδ

α ≺ (Hκ++ , ~Mδ) so
that Nδ

α ∩ Aδ = Mδ
α.
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Claim 45. There is an extension w ∈ Pδ ∩ Nδ
α of [p � δ]Mδ

α
which decides the

identity of Ms
1 ∈ ~M δ.

Proof. Working inside Nδ
α, we can apply Lemma 23 to find an extension w0 of

[p � δ]Mδ
α

which determines the minimal β such that s ∈M δ
β and Mδ

β ∈ ~Mδ,G(Pδ).

We then extend repeatedly and find conditions wn ∈ Nδ
α which determines the

first ω-many successors of Mδ
β = Ms

1 in ~M δ,G(Pδ). Since Pδ is σ-closed, the

sequence has a limit w ∈ Nδ
α with the desired property.

Taking w ≤ [p � δ]Mδ
α

as in the claim, the assumptions of the lemma guar-
antee there is a common extension r of w and p � δ. Let q be the simple
amalgamation of r and p. By Lemma 36 it is a common extension of both.
Next, by extending q � δ we may assume it determines if there exists some
β < κ with the following properties:

• Mδ
β belongs to ~Mδ,G(Pδ),

• s is an exit node from M δ
β (i.e., bs ⊆Mδ

β , and s 6∈Mδ
β),

• for every s′ ∈ dom(fpδ ) ∩Mβ
δ , f(s′) ∈M δ

β ,

• for every s′ ∈ dom(fpδ ) \M δ
β , f(eSδ(s

′,Mδ
β)) = eThδ (fpδ (s′),Mδ

β).

Moreover, if such β exists then we can assume q � δ determines the identity of
the minimal such β. If exists, then by its first property, q � δ is amenable to M δ

β ,

which means there is (β, b) ∈ Nq so that δ∩Mδ
β ⊆ b. It further follows from the

last two listed assumptions of Mδ
β that M δ

β can be added to the side condition
part of q. Let q′ ≤ q be obtained by replacing (β, b) in Nq with (β, b ∪ {δ}).
Then Mδ

β appears in q′.

As s ∈ Mδ
α then such β < κ (if exists) has to be below α. By further

extending q′ we may assume that q′ � δ determines the following information
regarding bs:

1. all meets m(s, s′) of s and s′ ∈ dom(fqδ ),

2. the determined images t(s, s′) of each m(s, s′) using the values fpδ (s′) (see
Remark 33).

3. the exit nodes e(s,Mδ
β) of s from each Mδ

γ that appears in p, and s 6∈M δ
γ .

The nodes in {t(s, s′) | s′ ∈ dom(fpδ )} are (forced to be) pairwise compatible in
Thδ . Moreover, if β exists then all nodes m(s, s′) must belong to Mδ

β , and since

Mδ
β appears in q′, their images t(s, s′) must also belong to Mδ

β .
Let α∗ be the level of s, and β∗ be either β if it exists, or otherwise, some

β∗ < α above all β′ < α so that M δ
β′ appears in p. Clearly, α∗, β∗ ∈ M δ

α. Now
pick τ < α above both α∗ ·β∗ and (κ∩Ms

1 ), and so that q′ does not provide any

information regarding the collapse generic function f
G(α∗,β∗,γ∗)
τ , where γ∗ =

hδ(α
∗, β∗, τ). Let t ∈ Thδ be the node of collapse-index (α∗, β∗, γ∗, τ) and
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therefore, of collapse height (α∗, β∗, τ). Since (α∗, β∗, τ) and hδ are in Mδ
α then

so is t. By the construction of Thδ , the branch bt is cofinal in Thδ∩(α∗×β∗), and

therefore cofinal in Thδ ∩Mδ
β if β exists. Given the tree ordering of Th

δ ∩Mδ
β ,

q′ does not provide any information regarding the collapse generic function

f
G(α∗,β∗,η∗)
τ , which determines bt, we can extend the collapse part fq0 as in

Lemma 15, to a collapse condition f∗ so that it forces the following information
about bt:

1. t(s, s′) ∈ bt for all s′ ∈ dom(fpδ ),

2. For every e = e(s,Mδ
β) as above, if its level is αe then bt(αe) ∈ Thδ is an

exit node from Mδ
β .

Let q∗ be obtained from q by taking fq
∗

0 = f∗, and fq
∗

δ = fqδ ∪ {(s, t)}. q∗ is
a condition. Indeed, the last listed properties of bt guarantee it satisfies require-
ments V, V I for δ, and our choice of t to be of collapse index (α∗, β∗, τ) guar-

antees that q∗ satisfies requirement V II. Therefore q∗ ≤ p has s ∈ dom(fq
∗

δ ).

Next, we prove the second assertion of Dτ (Mτ
α) being dense below every con-

dition p which is amenable to Mτ
α . Since Pτ is σ-closed one can use a standard

bookkeeping argument and the node-density assertion to construct an extension
p′ of p such that

• fp0 ∈ D(t) for all (s, t) ∈ fpδ for some δ < τ , and moreover, t̄ = πfp0 (t)

is sufficiently high so that it does not belong to any M δ
β for which p is

amenable to, with β < βp(s).

• for every structure Mδ
β that appears in p, and s ∈ dom(fpδ ) \M δ

β , p′ � δ

determines the exit node e = eSδ(s,M
δ
β) and e ∈ dom(fp

′

δ ).

These two items take care of the first two bullets in the definition of super-
nice conditions, 42. To construct p′ which further satisfies item (b) of the
last clause in the definition, one has to further maintain that for every pair

(δ,Mδ
β) ∈ E(p′,Mτ

α), p′ nicely projects from Mδ
β . Namely, if (s, t) ∈ fp

′

δ and

s is an exit node from Mδ
β , then there is a sequence of nodes 〈s̄n | n < ω〉 ∈

dom(fp
′

δ ) ∩M δ
β below s such that their images fp

′

δ (s̄n), n < ω are forced to be
cofinal in π

fp
′

0

(t). To achieve this, consider a single step of the construction.

Given (s, t) ∈ dom(fpδ ) with s an exit node from some relevant Mδ
β . We define a

decreasing sequence of conditions 〈qn | n < ω〉 below q0 = p � δ, whose collapse
parts are all in D(t). Let t̄0 = πq0(t) and denote its level by ᾱ0. Extend q0

to q1 that determines the unique node s̄0 ∈ bs ∩ Levᾱ0
(Sδ), which is the only

possible candidate for the pre-image of t̄0. We need to make sure that the
pair (s̄0, t̄0) can be added to fpδ . The addition can potentially be in conflict
with the requirement that for every Mδ

β that appears in p, s̄0 ∈ Mδ
β if and

only if t̄0 ∈ M δ
β . Having t̄0 = t̄, our assumption about t̄ being sufficiently
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high, shows that the only relevant structure Mδ
β is the one with β = βp(s)

(if exists). In this case p � δ  bs, bt ⊆ M δ
β . This guarantees the desired

requirement. We may assume that the extension q1 of q0 increases the projection
of t. Namely, t̄1 = πq1(t) >T t̄0. We can repeat the construction once more
to find an extension q2 ∈ D(t) of q1 which determines a preimage s̄1 ∈ bs for
t̄1. By proceeding in this fashion ω-many times, and dovetailing, we produce
the desired sequence 〈qn | n < ω〉 extending p � δ, and finally take p′ to be
the simple amalgamation of ∪n<ωqn, and p. This takes care a single pair (s, t)
in fpδ for some δ < τ . We repeat this process for all pairs (s′, t′) ∈ dom(fpδ )
by similarly extending p′ � δ. These stages could potentially “step over” each
other, and harm the result done for other pairs such as (s, t), but we can go
back to each harmed pair at a later stage to repair it cofinally many times in
the process.

Moving to the third assertion of the lemma. Given p ∈ Dτ (Mτ
α) we would

like to show that [p]Mτ
α

is a condition in Pτ . Having that [p � δ]Mδ
α
∈ Pδ for

every δ ∈ Mτ
α ∩ τ , it suffices to verify the assertion for the case τ = δ + 1 is

a successor ordinal. In this case, one has to verify that [p]Mδ+1
α

satisfies the
requirements in assumptions V,VI, and VII regarding decisions for pairs (s, t) ∈
fpδ ∩Mδ+1

α and structures Mδ
β , β < α that appear in p. Having p ∈ Dδ+1(M δ+1

α )

implies p � δ ∈ Dδ(M
δ
α), which by our assumption, implies that Pδ ∩Mδ+1

α is
a regular sub-forcing of Pδ/(p � δ). It follows that all decisions about nodes
s ∈ dom(fδp )∩M δ+1

α , including (i) the meets, (ii) their exit nodes from every Mδ
β

that appears in p, (iii) the identity of Ms
1 , and (iv) βp(s), which are determined

by p � δ, must already be determined by the trace [p � δ]Mδ
α

. Otherwise, there

will be an extension w ∈ Pδ ∩ M δ+1
α which gives incompatible information.

But such a condition w could not be compatible with p � δ, contradicting the
inductive assumption of the lemma for δ.

Proposition 46. Suppose Mτ
α ∈ ~Mτ and q ∈ Pτ is amenable to Mτ

α. The
function which takes p ∈ Dτ (Mτ

α) to [p]Mτ
α

is a residue function to Mτ
α over q.

Corollary 47.

1. By proposition 46 every condition q ∈ Pτ which is amenable to Mτ
α is

strongly proper with respect to Mτ
α. In particular, Pτ ∩Mτ

α is a regular
subforcing of Pτ/q

2. For every condition q ∈ Dτ (Mτ
α), [q]Mτ

α
forces that q belongs to the quo-

tient forcing Pτ/(Pτ ∩Mτ
α).

Before proving Proposition 46 we make some preparations.
Given a condition p ∈ Dτ (Mτ

α) as in the statement of the proposition, and
an extension w ≤ [p]Mτ

α
, the goal of the proof is to find a common extension of w

and p. Taking the simple amalgamation of w and p will not work in general. The
main part of the argument is based on an inductive construction that results in
an extension p′ of w which is shown to locally extend p with projections. We
then finish by applying Lemma 38.
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To carry the inductive construction we formulate a technical generalization
of the strong properness statement. We commence with the relevant definitions:

Definition 48.

1. Let τ < κ+. A τ -sequence is a countable sequence 〈(τi,Mτi
αi) | i < ν〉 of

pairs where each τi ≤ τ and

• αi < αj for i < j < ν,

• for i < j < ν, if τi < τj then τi ∈M
τj
αj .

2. Suppose that 〈(τi,Mτi
αi) | i < ν〉 is a τ -sequence, and let p ∈ Pτ so that

p � τi ∈ Dτi(M
τi
αi) for all i < ν.

Define the p-closure of 〈(τi,Mτi
αi) | i < ν〉 to be the τ -sequence obtained

by adding all pairs from the sets E(p � τi,Mτi
αi). The ordering of the

extended sequence is the unique one which makes it a τ -sequence.

3. Let p ∈ Pτ . A pair of countable sequences 〈(τi,Mτi
αi) | i < ν〉 and 〈qi | i <

ν〉 is a p-Multi-Extension, p-M.E. in short, if it satisfies

(a) p � τi ∈ Dτi(M
τi
αi) for every i < ν,

(b) for each i < ν, qi ∈ Pτi ∩Mτi
αi , q

i ≤ [p � τi]Mτi
αi

.

(c) 〈(τi,Mτi
αi) | i < ν〉 is a τ -sequence and an initial segment of its p-

closure,

(d) for every i < j < ν, letting τ̄ = min(τi, τj), then qj � τ̄ ≤ qi � τ̄
(e) for every i < ν and s ∈ dom(fpτi) ∩ M

τi
αi , q

i decides the following
information about bs:

• the meet m(s, s′) in Sτi for every s′ ∈ dom(fq
j

τi ) for some j < i.

• the implicit image t(s, s′) (forced to be below fq
i

τj (s′)) of m(s, s′)
(as described in Remark 33).

• the exit node e(s,Mτi
β ) for every structure Mτi

β which appears in

qj for some j < i.

4. The simple amalgamation of a sequence of conditions 〈qi | i < ν〉 is the
pair (f,N) defined by

• dom(f) =
⋃
i<ν supp(qi).

• for each δ ∈ dom(f), fδ =
⋃
{fq

i

δ | i < ν and δ ∈ supp(qi)}.
• for each α < κ, the set N includes a pair (α, aα) if and only if there

is some pair (α, a′) in
⋃
iN

qi , in which case aα is taken to be the
union of all such a′.

Lemma 49.
For every p ∈ Pτ and p-M.E. pair of sequences 〈(τi,Mτi

αi) | i < ν〉 and 〈qi | i < ν〉
there is a condition q ∈ Pτ such that q ≤ p and for each i < ν, q � τi ≤ qi.
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Proof. The proof is by induction on pairs (τ, α) (with the usual lexicographic
ordering) where α < κ is minimal so that α ≥ ∪i<ναi, and p ∈Mτ

α .
Let 〈(τj ,M

τj
αj ) | j < ν∗〉 be the p-closure of 〈(τi,Mτi

αi) | i < ν〉. By the
assumption, the p-closure is an end extension of 〈(τi,Mτi

αi) | i < ν〉. Moreover,
it follows from the definition of super-nice conditions and the fact p � τi ∈
Dτi(M

τi
αi) for all i < ν that p � τj ∈ Dτj (M

τj
αj ) for all j < ν∗.

Our next step is to extend the corresponding sequence of conditions 〈qi | i < ν〉
to a sequence 〈qj | j < ν∗〉, so that 〈(τj ,M

τj
αj ) | j < ν∗〉 and 〈qj | j < ν∗〉 are

p-M.E. Suppose that 〈qj | j < η〉 has been defined for some ν ≤ η < ν∗, such
that 〈(τj ,M

τj
αj ) | j < η〉 and 〈qj | j < η〉 are p-M.E. We define qη in four steps

that go through auxiliary conditions qη,0, qη,1, and qη,2. The entire construction
happens inside M

τη
αη .

(qη,0) Let qη,0 = [p � τη]Mτη
αη

. Also, denote for each j < η, τηj = min(τj , τη). It

follows from the definition of a p-M.E. pair and the fact p � τj ∈ Dτj (M
τj
αj )

for all j < η, that the pair of sequences 〈(τηj ,M
τηj
αj ) | j < η〉, 〈qj � τηj | j <

η〉 is qη,0-M.E.

(qη,1) To obtain qη,1, we extend the collapse part of qη,0 to make decisions about
nodes in T that fit relevant decisions about meets and exit nodes in various
trees Sδ, which were made by previous conditions qj , j < η, according
to property 3(e) in the definition of M.E sequences. More precisely, let
〈sn | n < M〉n<M , M ≤ ω enumerate all nodes s for which there is j < η
such that

– τj ≤ τη, and s ∈ dom(fpτj ), such that j is minimal for which s ∈Mτj
αj

– η < ν∗ is minimal such that fpτj (s) ∈M
τη
αη .

For each n < M , denote its relevant j < η for sn by jn, and the image
fpτj (sn) by tn.

By the assumption of 〈(τηj ,M
τηj
αj ) | j < η〉, 〈qj � τηj | j < η〉 being qη,0-M.E.

It follows from property 3(e) that for each n < M , qjn � τηjn decides the

meets m(sn, s
′) of sn and every s′ ∈ dom(fq

i

τjn
), i < jn, as well as their

implicit images t(sn, s
′), and the exit nodes e(s,M

τjn
β ), whenever M

τjn
β

appears in qi � τηi for some i < jn.

For each n < N , let s∗n ∈M
τjn
β , be the fpτjn -preimage of the collapse pro-

jection πfp0 (tn).7 s∗n is (forced to be) compatible with all meets m(sn, s
′)

and exit nodes e(sn,M
τjn
β ) mentioned above, as all are forced to be below

sn in their tree order. Hence, their implicit images t(sn, s
′) are forced to

7s∗n exists by the definition of super-nice conditions and since p � γη ∈ Dγη (M
γη
αη ) (specif-

ically that p nicely projects).
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be compatible with the tree projection πfp0 (tn).

For each exit node e(sn,M
τj
β ) let αn(M

τj
β ) be its level in Sτj . Note that

αn(M
τj
β ) < αj .

Also, for each n < M , let (αn, βn, δn) be the collapse index of tn. Since
(sn, tn) ∈ fpτj , then p � τj forces bsn ⊆ αn × βn.

In particular, all relevant meetsm(sn, s
′) and relevant exit nodes e(sn,M

τj
β )

belong to αn × βn. If βp(sn) exists, then βn = βp(sn) which means that
p is M

τj
βn

amenable, and therefore so is qη,0. This, in turn, implies that
the implicit images t(sn, s

′) of m(sn, s
′), as well as the exist node levels

αn(M
τj
β ) are all in M

τj
βn

. Similarly, for each n < M , the collapse-based

projection πfqη,0 (tn) belongs to M
τj
βn

.

We apply Lemma 16 with fq
η,0

0 in the role of p, countably many times,
to guarantee that each btn “climbs” correctly through the implicit images
t(sn, s

′) and through exit nodes from relevant structures M
τj
β at the cor-

rect level αn(M
τj
β ). By the Lemma there is a collapse extension f ′ of fq

η,0

0

(f ′ in the role of p′ in the Lemma) so that for each n < M , the extension

f = f ′ ∪ (
⋃
j<η f

qj

0 ) of f ′ (in the role of q in the Lemma) satisfies that for
each n < ω, πf (tn) extends (in T ) all the relevant meet images t(sn, s

′),
and its exist node from each relevant M

τj
β is at the correct level αn(M

τj
β ).

Let qη,1 be the extension of qη,0 obtained by replacing the collapse part

fq
η,0

0 with f ′. The minimality assumption for η, being minimal such that
M

γη
αη is the first structure that sees the node tn, implies that we can take

f ′ and thus qη,1 to satisfy

[qη,1 � τj ]Mτj
αj

= [qη,0 � τj ]Mτj
αj

for all j < η.

Hence 〈(τηj , αj) | j < η〉 and 〈qj � τηj | j < η〉 is qη,1-M.E. as well.

(qη,2) Still working inside the structure M
τη
αη , We want to apply the inductive

assumption of the Lemma, with respect to the qη,1 ∈ Pτη and the qη,1-
M.E. pair of sequences. This is possible since (τη, αη) <lex (τ, α). Let
qη,2 ∈Mτη

αη be the resulting condition. In particular we have that

1. qη,2 extends [p � τη]Mτη
αη

and qj � τη for every j < η.

2. The collapse part fq
η,2
0 extends f ′ ∪ (

⋃
j<η f

qj

0 ), and therefore forces
that for each n < M , btn contains the implicit images t(sn, s

′) of
relevant meets, and the exit node of btn from relevant structure M

τj
β ,

are at the correct levels αn(M
τj
β ).

(qη) Finally, working inside M
τη
αη , we take an extension of qη,2 which determines

the following information:
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– The meets of all pairs of nodes m(s, s′) where s ∈ dom(fpτη ), M
τη
αη =

Ms
1 , and s′ ∈

⋃
i<j dom(fq

i

τη )

– The implicit images t(s, s′) of m(s, s′) (see Remark 33).

– The exit node of s from every structure M
τη
β , β < αη, for which some

qi, i < η is amenable to and s∗ ∈ Mτη
β where s∗ is the fpτη preimage

of the projection πfp0 (t), t = fpδ (s).

It is clear from the construction that the sequences 〈(γj ,M
γj
βj

) | j < η+ 1〉
and 〈qj | j < η + 1〉 constitute a p-M.E..

This concludes the construction of the extended sequence 〈qj | j < ν∗〉. The
construction guarantees the resulting sequences are p-M.E.. Being a p-M.E.,
it is easily seen that the simple amalgamation of the memeber of the sequence
〈qj | j < ν∗〉 is a condition r ∈ Pτ (i.e., see Lemma 36).

We need to make two last extensions to r in order to get a desired condition
p′ which will be a local extension of p with projections. We first extend r to a
condition r1, obtained by extending the collapse part of r in the same way qη,1

is constructed from qη,0 above, with respect to the entire sequence 〈qj | j < ν∗〉.
Then, finally, let p′ ≤ r1 obtained by adding to each function fr

1

δ , δ < τ the
pairs (s̄, t̄) where either

• s̄ is forced to be a relevant meet s̄ = m(s, s′), by some qj at a stage j < ν∗,
and t̄ = t(s, s′) is the implicit image determined in a later stage η > j (or
at the very end, by r1) and forced by qη,2 (or r1) to be the meet of fpτj (s)

and fq
i

τj (s′) for some i < ν∗.

• s̄ is forced to be an exit node e(s,M
τj
β ) from a relevant structure M

τj
β by

some qj at stage j, and its level in Sτj to be α(M
τj
β ), and t̄ is the node

forced by a later stage η > j (or at the very end by r1) to be the node
on bt, t = fpτj (s), at the same level α(M

τj
β ). By construction this node is

forced by qη,2 to be an exit node from the M
τj
β .

We claim that p′ is a local extension p with projections (Definition 37). Let

s ∈ dom(fpδ ) \ dom(fp
′

δ ) and s′ ∈ dom(fp
′

δ ) \ dom(fpδ ) for some δ < τ . There
is some j < ν∗ so that s′ ∈ Mτj

αj . Having p � τj ∈ Dτj (M
τj
αj ) it follows there is

some s̃ ∈ dom(fpδ ) so that

p � δ  s̃ <Sδ s, and

p � δ is an exit node from Mτj
αj .

By the choice of structures in the enriched sequence, there is some η > j so that
M

τη
αη = M1

s̃ . In particular δ = τη. By construction we have that [p′ � τη]
M
τj
αj

≤
qη ≤ [p � τη]Mτη

αη
, and qη determines the meet of s̃ and s′. In particular,
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LevSδ(s̃) > LevSδ(s
′). This concludes the verification of the first clause of

Definition 37. The proof of the second clause follows in a similar fashion.
Having p′ being a local extension of p with projections, we conclude (Lemma

38) that the simple amalgamation of p and p′ is a condition, which clearly
extends p and each qi, i < τ .

We can now prove Proposition 46.

Proof. (Proposition 46)
Let p ∈ Dτ (Mτ

α). To show that [p]Mτ
α

is a residue for p, we need to verify that
it is compatible with every condition w ∈ Pτ ∩Mτ

α which extends [p]Mτ
α

. This
is an immediate consequence of the previous Lemma with the p-M.E. pair of
sequences of length ν = 1 with (τ0,M

τ0
α0

) = (τ,Mτ
α), and q0 = w.

Theorem 50.
Let Pκ+ =

⋃
τ<κ+ Pτ .

1. Pκ+ is κ+.c.c

2. σ-closed and thus, does not collapse ω1.

3. It collapses all cardinals between ω1 and κ.

4. Pκ+ does not collapse κ

5. 2ℵ1 = κ+.

6. For each τ < κ+, the τ -th wide-tree Sτ chosen by the book-keeping function
Ψ embeds into T . In particular, if Ψ covers all Pτ names of wide trees on
κ for all τ < κ+, then T is a maximal wide tree in the generic extension.

Proof.

1. This is a standard consequence of the fact that each Pτ , τ < κ+ has size
κ, and that there is a stationary set of τ < κ+ for which Pτ is a direct
limit of Pδ, δ < τ (the set of all limit τ < κ+ of uncountable cofinality).

2. Immediate from the fact each Pτ , τ < κ+ is σ-closed (inductive assumption
I).

3. Immediate. As Pκ+ embeds P0 = Coll(ω1, < κ).

4. This follows from the fact that Pκ+ is κ+.c.c, and from the strong proper-
ness of all Pτ , τ < κ+, for structures of size ℵ1.

5. For every τ < κ+, the poset Pτ+1 introduces a tree embedding fτ : Sτ →
Thτ , so that for every structure Mτ+1

α ∈ ~Mτ+1,G(Pτ+1), fτ � Mτ+1
α is

generic over V [G(Pτ )] and introduces an embedding of Sτ ∩ Mτ+1
α to

Thτ ∩Mτ+1
α , which is a new subset of Mτ+1

α of size ℵ1.

6. Immediate by the construction of the posets Pτ , τ < κ+.
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6 No new branches

In this section, we prove that if all chosen wide-trees Sτ are wide Aronszajn
trees, then T does not get a cofinal branch, and so can become a universal wide
Aronszajn tree on κ = ℵ2. We start with a lemma.

Lemma 51. Let Mτ
α ,M

τ
β ∈ ~Mτ , α < β. Suppose that p ∈ Dτ (Mτ

β ) ∩Dτ (Mτ
α).

Let Gα ⊆ Pτ ∩Mτ
α be generic over V with [p]Mτ

α
∈ Gα.

1. The quotient Pτ/Gα has a σ-closed dense subset.

2. For every w ∈ (Pτ/Gα) ∩Mτ
β [Gα] with w ≤ [p]Mτ

β
, there is a common

extension q ≤Pτ/Gα w, p, such that q ∈ Dτ (Mτ
β ).

Proof.

1. The quotient is σ-closed with respect to conditions in Dτ (Mτ
α). This is an

immediate consequence of the fact that Dτ (Mτ
α) is σ-closed dense below

p, of Proposition 46, and the fact that the trace map p 7→ [p]Mτ
α

respects
countable joins.

2. Let p ∈ Dτ (Mτ
α) ∩ Dτ (Mτ

β ), p ∈ Pτ/Gα and w ≤ [p]Mτ
β

, w ∈ Pτ/Gα,

w ∈Mτ
β [Gα]. By extending w we may assume that it belongs to Dτ (Mτ

α),
and therefore that [w]Mτ

α
forces that w belongs to the quotient Pτ/Gα.

Suppose towards contradiction that there exists an extension r ∈ Mτ
β of

w which is incompatible with p in the quotient forcing Pτ/Gα.

This means that in V , there is w′ ≤ [w]Mτ
α

, w′ ∈ Pτ ∩Mτ
α , which forces

that r and p are incompatible as conditions of the quotient forcing, over
an extension by Pτ ∩Mτ

α . By strong properness (Proposition 46) with
respect to Mτ

α , r and w′ are compatible by some r′ ∈Mτ
β . Since r′ ≤ r ≤

w ≤ [p]Mτ
β

we can apply strong properness again with respect to Mτ
β and

conclude that r′ and p are compatible by some q ∈ Dτ (Mτ
β ) ∩ Dτ (Mτ

α).
But now [q]Mτ

α
extends w′ and forces contradictory information.

Lemma 52. Let Mτ
α ,M

τ
β ∈ ~Mτ , α < β, and p ∈ Dτ (Mτ

β )∩Dτ (Mτ
α). Suppose

that qL, qR ∈ Dτ (Mτ
α)∩Mτ

β are two extensions of [p]Mτ
β

which satisfy [qL]Mτ
α

=

[qR]Mτ
α

, and DL, DR ∈ Mτ
β are two dense open sets in Pτ . Then there are

pL, pR ∈ Pτ that satisfy:
pL, pR ≤ p,

pL ≤ qL and pL ∈ DL ∩Dτ (Mτ
α),

pR ≤ qR and pR ∈ DR ∩Dτ (Mτ
α),

[pL]Mτ
α

= [pR]Mτ
α
.
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Proof. Let Gα ⊆ Pτ∩Mτ
α be a generic filter over V with [qL]Mτ

α
∈ Gα. Therefore

qL, qR, p belong to the quotient forcing Pτ/Gα. We define two sequences 〈qL,n〉n
of extensions of qL and p, and 〈qR,n〉n of extensions of qR and p. qL,0 is obtained
by applying Lemma 51 in the quotient forcing Pτ/Gα for p and qL. We may
also take qL,0 ∈ DL. Therefore qL,0 extends qL, p and has [qL,0]Mτ

α
∈ Gα. We

similarly take qR,0 ∈ DR to extend qR, p and satisfy [qR,0]Mτ
α
∈ Gα.

Let r0 ∈ Gα be a common extension of [qL,0]Mτ
α

and [qR,0]Mτ
α

. Since
qL,0, qR,0 belong to the quotient forcing Pτ/Gα ∩Mτ

β [Gα] they have common

extensions qL,1,qR,1 ∈ Pτ/Gα ∩Mτ
β [Gα] so that [qL,0]Mτ

α
, [qR,0]Mτ

α
≤ r0. Let

r1 ∈ Gα be a common extension of the two.
Repeating this process ω-many times, we can secure that for each n, qL,n+1 ≤

qL,n, qR,n+1 ≤ qR,n, [qL,n+1]Mτ
α
≤ [qR,n]Mτ

α
, and [qR,n+1]Mτ

α
≤ [qL,n]Mτ

α
.

Going back to V , the sequences 〈qL,n〉n, 〈qR,n〉n are in V , since Pτ ∩Mτ
α

is σ-closed. It is clear from the constructing that the limit conditions pL of
〈qL,n | n < ω〉 and pR of 〈qR,n | n < ω〉 satisfy the desired properties.

Lemma 53.
Let p ∈ Pτ and α < κ such that p ∈ Dτ (Mτ

α). Suppose that 〈(τi,Mτi
αi) | i < ν〉

is a τ -sequence with α0 > α, and 〈qi,L | i < ν〉, 〈qi,R | i < ν〉 are two sequences
of conditions that satisfy

• 〈(τi,Mτi
αi) | i < ν〉 and 〈qi,Z | i < ν〉 form a p-M.E. for Z ∈ {L,R},

• for each i < ν, [qi,L]Mτi
α

= [qi,R]Mτi
α

.

Then there are conditions pL, pR that extend p and satisfy

1. [pL]Mτ
α

= [pR]Mτ
α

, and

2. for Z ∈ {L,R} and i < ν, pZ � τi ≤ qi,Z .

Proof. The proof follows from a straightforward modification of the proof of
Lemma 49 by applying it in parallel to the sequences 〈qi,L | i < ν〉 and 〈qi,R |
i < ν〉, and construct corresponding sequences 〈qj,L | j < ν∗〉 and 〈qj,R | j <
ν∗〉, while maintaining the property [qj,L]

M
γj
α

= qj,R]
M
γj
α

along the way. This
modification is achieved by using Lemma 52 at each step of the construction in
which a decision about meets of nodes of exit nodes made in the construction
of qη,1, qη,2 and qη in the proof of Lemma 49.

Theorem 54. Suppose that the book-keeping function Ψ picks each Sτ , a Pτ -
names for (wide) κ-Aronszajn tree. Then for every τ < κ+, no cofinal branches
are added to the wide tree T by Pτ .

Proof. Assume that Pτ introduces a cofinal branch to T . Fix a Pτ -name ḃ which
is minimal in the well ordering of Hκ++ for which there is a condition q ∈ Pτ
forcing that it is a cofinal branch in T . It follows that every structure in the
sequence ~Mτ contains ḃ and q.

Let α be any ordinal in dom( ~Mτ ). Fix p ∈ Dτ (Mτ
α) such that p forces

ḃ(α) = t for some t ∈ T . We consider two case:
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Case 1: t is not in the range of any fpδ for δ ∈ supp(p) ∩Mτ
α .

We can extend the collapse part fp0 of p, in the component relevant to t to
get two extensions fL0 , f

R
0 of fp0 , such that πfL0 (t) = tL and πfR0 (t) = tR

such that tL 6= tR on the same level β < α. Let pL, pR be the extensions of
p obtained by extending fp0 to fL0 and fR0 respectively. Since the collapse
index map t∗ ∈ T 7→ (αt∗ , βt∗ , γt∗ , δt∗) is injective (see Remark 11), it
follows from the case assumption that collapse index of t is distinct from
those of points that appear in range of fpδ \Mτ

α , δ ∈ Mτ
α ∩ α. We can

therefore assume that fL0 , f
R
0 satisfy fL0 ∩Mτ

α = fR0 ∩Mτ
α , and fL0 \Mτ

α

and fR0 \Mτ
α agree everywhere, except at (αt, βt, γt, δt, εt). This, in turn,

implies that the resulting conditions pL, pR are in Dτ (Mτ
α) and [pL]Mτ

α
=

[pR]Mτ
α

. Denote the common trace by w.

Pτ∩Mτ
α is a complete subforcing of Pτ/p and ḃ ∈Mτ

α there is w′ ∈ Pτ∩Mτ
α

extending w such that w′  ḃ(β) = t̄ for some t̄ of level β. By Proposition
46 w′ is compatible with both pL and pR, but then it follows that t̄ is
equal to both tL tR, which is contradiction.

Case 2: t is in the range of fpδ for some δ ∈ supp(p)∩Mτ
α . Such δ has to be

unique since for every δ1 6= δ2 in Mτ
α ∩ τ , the almost everywhere different

function hδ1 , hδ2 must disagree outside of Mτ
α . Say fpδ (s) = t. Sδ is forced

by Pδ to be an Aronszajn tree. Since δ ∈ Mτ
α and p ∈ Dτ (Mτ

α), Pδ ∩Mδ
α

is a complete subforcing of Pδ/p. Moreover, Ṡδ ∈ Mτ
α and Mτ

α reflects
every Π1

1 statement which has parameters in Mτ
α . Let Gδα ⊆ Pδ ∩Mδ

α be
a generic filter that contains [p � δ]Mδ

α
. We obtain that

(a) Sδ ∩ Vα ∈ V [Gδα]

(b) V [Gδα] |= “Sδ ∩ Vα is a wide Aronszajn tree on α”.

It follows that the branch bs leading to s is a branch in Sδ ∩ Vα that does
not belong to V [Gδα]. Hence it is introduced by forcing over V [Gδα] with

the quotient forcing Pδ/Gδα. Let Mδ
α′ = Ms

1 ∈ ~Mδ as determined by p.
In M δ

α′ , we can find two extensions qL, qR of [p � δ]Mδ
α′

in the quotient

forcing, such that for some ᾱ < α and some nodes sL 6= sR in Levᾱ(Sδ),
qL  sL <Sδ s and qR  sR <Sδ s. Moreover, we may assume that
[qL]Mδ

α
= [qR]Mδ

α
. By Lemma 53 applied to the condition p, the τ -sequence

of length one, 〈(δ,M δ
α′)〉 and the sequences of conditions 〈qL〉, 〈qR〉, we

can find two extensions pL, pR of p so that pL � δ ≤ qL, pR � δ ≤ qR, and
[pL]Mτ

α
= [pR]Mτ

α
. Since ḃ ∈ Mτ

α , we can find w ∈ Pτ ∩Mτ
α extending

[pL]Mτ
α

so that w  ḃ(ᾱ) = t̄ and sL, sR ∈ dom(fwδ ). Denote the images of
sL, sR according to w by fwδ (sL) = tL and fwδ (sR) = tR. Clearly tL 6= tR

both belong to Levᾱ(T δ) and cannot both be t̄. Assume without loss of
generality that tL 6= t̄.

Having w ≤ [pL]Mτ
α

we make one last application of strong properness to
find a common extension p′. We conclude that
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• fp
′

δ (s) = t,

• p′  t = b(α) since p′ ≤ p,
• p′ � δ  sL <Sδ s as p′ ≤ qL, and

• fp
′

δ (sL) = tL as p′ ≤ w.

This implies that p′  tL <T t on the one hand. On the other hand,
p′  t̄ <T t as p′ ≤ w. But this is an absurd as tL 6= t̄ belong to the same
level LevT δ(α). Contradiction.

Theorem 55. Suppose that the book-keeping function Ψ which picks the trees
Sτ , picks only names for wide κ-Aronszajn trees and covers all Pτ -names for
wide κ-Aronszajn trees, for all τ < κ+. Let G ⊆ Pκ+ be a generic filter. In V [G],
κ = ℵ2, T is a wide ℵ2-Aronszajn tree on κ which embeds all wide ℵ2-Aronszajn
trees.

Proof. It follows from the proof 50 that T embeds all wide ℵ2-Aronszajn trees
on κ. By the last theorem T does not get a cofinal branch, and hence remains
ℵ2-Aronszajn.

7 Open Problems

The following problems are left open by this work:

1. Is the weakly compact cardinal needed for Theorem 1?
We conjecture that the answer is yes.

2. Is it consistent to have a universal (narrow) Aronszajn tree?
For ℵ2-Aronszajn trees, we expect this to be possible by incorporating
ideas from Mitchell’s construction of a model without Aronszajn trees on
ω2 and work towards verifying the details. The case of ℵ1-Aronszajn trees
remains unclear.

3. Can we replace ℵ2 by ℵ1 in our result?
It seems plausible that an adaptation of the construction to ω1, in which
finite supports and approximations are used can lead to a desired result.
However, several new arguments are needed to avoid the prolific use of the
σ-closure property of our poset.

4. Can the universality result for wide Aronszajn trees hold at successors of
singular cardinals?
A positive answer would likely require developing new methods for itera-
tion at successors of singular cardinals.

5. Can one consistently have a maximal wide ℵ2-Aronszajn and, at the same
time, a maximal wide ℵ3-Aronszajn tree?
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[24] Stevo Todorčević and Jouko Väänänen. Trees and Ehrenfeucht-Fräıssé
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