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Abstract

We settle a question of Woodin motivated by the philosophy of potentialism in set
theory. A Σ2-sentence φ is possible if for any ordinal α, φ holds in a forcing extension
W of the universe of sets V such that V and W contain the same sets of rank α. We
show in Theorem 6.1 that it is consistent relative to a supercompact cardinal that each
possible sentence is true; this is Woodin’s Σ2-potentialist principle. We accomplish
this by generalizing Gitik’s method of iterating distributive forcings by embedding
them into Pŕıkry-type forcings [5, Section 6.4]; our generalization, Theorem 5.2, works
for forcings that add no bounded subsets to a strongly compact cardinal, which requires
a completely different proof. Finally, using the concept of mutual stationarity, we show
in Theorem 7.5 that the Σ2-potentialist principle implies the consistency of a Woodin
cardinal.1

1 Introduction

The introduction of the forcing technique in the 1960s revolutionized set theory by demon-
strating the unsolvability of many classical questions in the framework of Zermelo-Fraenkel
set theory with the Axiom of Choice (ZFC). Forcing seems to offer us a glimpse of alternate
universes of set theory, universes where all the axioms of ZFC hold but various classical
questions, for example the continuum hypothesis, can go either way.

One response to this situation is to say that these questions are unanswerable or even
meaningless; another is to declare instead that the ZFC axioms are simply inadequate to
the task. Perhaps one should seek out new axioms, inspired presumably by new intuitions
about the nature of sets. In this direction, a starting point has often been forcing itself.
Broadly construed, a forcing axiom asserts that the universe of sets resembles the alternate
universes revealed by the method of forcing. The issue, however, is that these universes by
design have conflicting properties: for example, in some, the continuum hypothesis holds,
and in others, it fails.

A proponent of forcing axioms must therefore explain which of the alternate universes
the true universe resembles and in what respect it resembles them. This has been done

∗The first author would like to thank the Israel Science Foundation (Grants 1832/19 and 1302/23) for
their support.

†The second author’s research was partially supported by NSF Grant 2401789.
1We would like to thank Menachem Magidor and Martin Zeman for suggestions that ultimately led to

the proof of this consistency strength lower bound.
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in several ways, the most fruitful of which is the hierarchy of forcing axioms leading from
Martin’s Axiom to Martin’s Maximum. Here we investigate another approach, suggested
by Woodin, based on a potentialist account of the cumulative hierarchy of sets.2

The idea behind such a potentialist stance is that the hierarchy of sets does not exist as
a completed totality, since if it did there seems to be no reason why its union should not
itself form a set. Rather, the hierarchy is a “potential” object, extending as far as possible
or imaginable or consistent. We direct the reader to [8, Section 2] for a more compelling
discussion of these issues.

The forcing axiom studied here, which was proposed by Woodin, roughly asserts that if
it is possible for a level of the hierarchy of sets to have some property, then some level of
the hierarchy actually does have this property. The notion of “possibility” intended here
combines both possibility in the sense of set-theoretic potentialism and possibility in the
sense of forcing. Let us say that ψ is possible if for every ordinal α, there is a forcing
extension W of the universe of sets V such that the α-th level Wα of the hierarchy of sets
in W is equal to Vα and for some ordinal β, Wβ ⊨ ψ.

The Σ2-potentialist principle states that if ψ is possible, then there is some ordinal α
such that Vα ⊨ ψ.3

For a certain kind of set theoretic potentialist, the unfinished nature of the universe of
sets renders many sentences in the language of set theory meaningless. The only meaningful
set theoretic questions, on this view, ask whether there is some level of the hierarchy of sets
with some first-order property. For this sort of set theoretic potentialist, if ψ is possible,
then there can be no meaningful evidence against the actual existence of some Vα satisfying
ψ.

Woodin proposed the Σ2-potentialist principle with the hope that it might be refutable,
the idea being that this would amount to a mathematical refutation of the form of poten-
tialism described in the previous paragraph. Others, however, have argued in favor of such
principles, at least implicitly. For example, Shelah writes:

Maybe the following analogy will explain my attitude; we use the standard Amer-
ican ethnic prejudice system, as it is generally familiar. So a typical universe of
set theory is the parallel of Mr. John Smith, the typical American; my typical
universe is quite interesting (even pluralistic), it has long intervals where GCH
holds, but others in which it is violated badly, many λ’s such that λ+-Suslin trees
exist and many λ’s for which every λ+-Aronszajn is special, and it may have
lots of measurables, with a huge cardinal being a marginal case but certainly no
supercompact.

We will see in Section 3 that all of the properties of Shelah’s “typical universe” are conse-
quences of the Σ2-potentialist principle.

4

The first result of this paper (Theorem 6.1) is that the Σ2-potentialist principle is consis-
tent. Instead of a knock-down argument against a certain form of set-theoretic potentialism,
the result provides some evidence in favor of this perspective, or at least some reason to
believe the perspective is coherent.

2This is the sequence ⟨Vα : α ∈ Ord⟩ defined by transfinite recursion by setting V0 = ∅, Vα+1 = P (Vα),
and Vγ =

⋃
β<γ Vβ for limit ordinals γ.

3The reason the principle is named the Σ2-potentialist principle is that a sentence φ is Σ2 in Lévy
hierarchy if and only if it is equivalent to a sentence of the form “there is a level of the hierarchy of sets
satisfying ψ” for some sentence ψ.

4More accurately, they are consequences of the version of this principle that allows the possible sentences
to have parameters.
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To be precise, we prove that the Σ2-potentialist principle is consistent relative to a
supercompact cardinal. The second result of this paper (Theorem 7.5) shows that one
cannot prove the consistency of the Σ2-potentialist principle without resorting to fairly
large cardinals: the Σ2-potentialist principle implies the existence of an inner model with a
Woodin cardinal.

To conclude the introduction, let us spell out the main technical difficulty that this
paper overcomes. It is not hard to show that for any finite set of sentences {ψn}n<m in
the language of set theory, one can force the Σ2-potentialist principle restricted to these
sentences. Suppose this is the case for m, and let us prove it for m + 1. First, using the
induction hypothesis, let W be a forcing extension in which the Σ2-potentialist principle
holds for {ψn}n<m. If ψm is not possible in W , then the Σ2-potentialist principle holds in
W for {ψn}n<m+1, and we are done. Otherwise, we would like to pass to a forcing extension
W ′ such that ψm holds in some level of the hierarchy of sets of W ′.

There are two possible issues with this. First, if n < m and ψn is true in the αn-th level
of the hierarchy of sets of W for some ordinal αn, then we would like this to remain the
case in W ′. But this can be achieved by making sure W ′

αn
= Wαn

. Second, if n < m and
ψn is not true in any level of the hierarchy of sets of W , it follows that ψn is not possible
in W . This means that there is some ordinal αn such that for any forcing extension W ′′ of
W that preserves Wαn , ψn does not hold in any level of the hierarchy of sets of W ′′. If we
make sure W ′

αn
=Wαn

, then ψn will remain impossible in W ′.
Thus we can simply take W ′ to be a forcing extension such that ψm hold in some level

of W ′ and W ′
α =Wα where α = maxn<m αn. But we can do this since ψm is possible in W !

If one tries to extend this method to infinitely many sentences, one faces the seemingly
insurmountable problem of showing that if all the finite stages of the iteration preserve Vα,
then the whole iteration preserves Vα. The issue is that no matter what support one chooses
— full support seems like a natural choice here —- it is not clear how to show, for example,
that no new subsets of ω are added in the limit. And it seems essential to be able to preserve
levels of the cumulative hierarchy to make the argument work.

Our solution to this problem is to extend a technique of Gitik for iterating distributive
forcings. The idea is to realize these forcings as Pŕıkry-type forcings and perform a Magidor
iteration rather than the full-support iteration. Our main contribution to Gitik’s technique is
to show that if κ is strongly compact, then any forcing that does not change Vκ is equivalent
to a Pŕıkry-type forcing (Theorem 5.2). Combining this with Gitik’s technique allows us to
answer Woodin’s question.

2 Preliminaries

In this section we lay out the well-known connection between Σ2-sentences and the hierarchy
of sets and introduce the various principles that will be studied in this paper.

Proposition 2.1. For each Σ2-formula φ(x) in the language of set theory, there is a formula
φ′(x), obtained uniformly from φ(x), such that ZFC proves that φ(x) is equivalent to the
existence of a level of the hierarchy of sets containing x and satisfying φ′(x).

Proof. Let ψ be the conjunction of the Axiom of Infinity with the statement that every set
is in bijection with an ordinal number. Let φ′(x) = ψ ∧ φ(x). Then ZFC proves that φ(x)
is equivalent to the existence of a level of the hierarchy of sets containing x and satisfying
φ′(x). This is because if κ is an ordinal, then Vκ ⊨ ψ if and only if Vκ is a Σ1-elementary
substructure of V .
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We say a sentence φ in the language of set theory is possible if for all ordinals α, φ holds
in some forcing extension W of the universe of sets such that Wα = Vα. More generally,
if φ(x) is a formula in the language of set theory and a is a set, then φ(a) is possible if
for all ordinals α, φ(a) holds in some forcing extension W of the universe of sets such that
Wα = Vα.

The Σ2-potentialist principle, defined in the introduction, is equivalent to the statement
that every possible Σ2-sentence is true. But we can now also define, for each n < ω, the
Σn-potentialist principle, asserting that every possible Σn-sentence is true. Similarly, we
define the Πn-potentialist principle for n < ω.

The boldface Σn-potentialist principle asserts that if a is a set and φ(a) is a possible
Σn-formula, then φ(a) holds. The boldface Σ2-potentialist principle seems equal in intu-
itive appeal to the Σ2-potentialist principle, but it is a more powerful global principle; for
example, see Proposition 3.3 and Proposition 3.6.

For n ≥ 3, the Σn-potentialist principle does not seem well-motivated at all, since the
formulas involved are not pinned down by a single level of the hierarchy of sets. To see
the difference, note that if ZFC proves two Σ2-sentences φ0 and φ1 are possible, then ZFC
proves that φ0 ∧ φ1 is possible. But this is not at all clear for more complicated sentences.

We will show below that the Π3-potentialist principle is consistent. In an earlier preprint
of this paper, we showed that the boldface Σ3-potentialist principle is inconsistent and
posed the problem of proving the Σ3-potentialist principle inconsistent as well. This was
quickly accomplished by Taranovsky, and we are grateful to include his argument below
(Theorem 3.5).

3 The inconsistency of the Σ3-Potentialist Principle

Proposition 3.1. The boldface Π2-potentialist principle is a consequence of ZFC.

Proof. Suppose φ(x) is a Π2-formula and a is a set such that for all α, there is a forcing
extension W of V such that Wα = Vα and W satisfies φ(a).

Fix a first-order formula φ′(x) in the language of set theory such that ZFC proves that
φ(x) is equivalent to the statement that φ′(x) holds in every level of the hierarchy of sets
that contains x.

Fix α > rank(a), and let us show that Vα ⊨ φ′(a). Let W be a forcing extension of V
such that Wα = Vα and W satisfies φ(a). Since φ(x) is equivalent to ∀α ∈ Ord(rank(x) <
α→ Vα ⊨ φ′(x), Wα ⊨ θ(a), and so Vα ⊨ φ′(a).

This proves that for all α > rank(a), Vα ⊨ θ(a), or equivalently, φ(a) holds.

Proposition 3.2. The boldface Σ2-potentialist principle implies the boldface Π3-potentialist
principle.

Proof. Assume the boldface Σ2-potentialist principle, and suppose φ(a) is a possible Π3

formula. Then φ(a) has the form ∀y ψ(a, y). For each b ∈ V , the formula ψ(a, b) is a
possible Σ2-formula, and so by the Σ2-potentialist principle, it is true. Therefore φ(a) is
true.

Proposition 3.3. The boldface Σ2-potentialist principle implies V = HOD.
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Proof. For each set of ordinals A, the statement that A is coded into the continuum function
is Σ2 and possible, and so the boldface Σ2-potentialist principle implies it is true. Therefore
the principle implies that every set of ordinals belongs to HOD, and so V = HOD.

Proposition 3.4. The boldface Σ3-potentialist principle is inconsistent.

Proof. The Σ3-potentialist principle implies that there is a set that is not in HOD, since this
is a possible Σ3-sentence. Therefore the Σ3-potentialist principle contradicts the boldface
Σ2-potentialist principle. It follows that the boldface Σ3-potentialist principle is inconsis-
tent.

Taranovsky answered one of the questions raised in an earlier preprint of this paper by
showing that the Σ3-potentialist principle itself is already inconsistent.

Theorem 3.5 (Taranovsky). The Σ3-potentialist principle is inconsistent.

Proof. Let α0 denote the least ordinal α such that there is a subset of ℵα that is not ordinal
definable. Let φeven be the sentence stating that α0 is even and let φodd state that α0 is odd.
Then φeven and φodd are Σ3 sentences and both are possible. The lightface Σ3-potentialist
principle implies that both are true, which is a contradiction.

Proposition 3.6. The boldface Σ2-potentialist principle implies there are no strongly com-
pact cardinals.

Proof. The boldface Σ2-potentialist principle implies that there are arbitrarily large cardi-
nals λ for which □λ holds, and therefore there are no strongly compact cardinals.

4 Iterating Pŕıkry-type forcing

Suppose P = (P,≤) is a partial order and P∗ = (P,≤∗) is a weak suborder of P; that is,
for all p, q ∈ P , if p ≤∗ q, then p ≤ q. Then (P,≤,≤∗) is a Pŕıkry-type forcing if it has
the Pŕıkry property : for all conditions p ∈ P and all statements φ in the forcing language
associated to P , there is some q ≤∗ p such that either q ⊩P φ or q ⊩P ¬φ. The triple
(P,≤,≤∗) is a κ-complete Pŕıkry-type forcing if in addition, for all p ∈ P , every subset of P∗

p

of cardinality less than κ has a ≤∗-lower bound. This is equivalent to the assumption that
P∗ is κ-closed and for all p ∈ P , for any q, r ≤∗ p, there is some s ≤∗ q, r. Given a partial
order P for which some direct extension order P∗ exists that makes (P,≤,≤∗) a κ-complete
Pŕıkry-type forcing, we say that P is a κ-complete Pŕıkry-type poset.

For the definition of a Magidor iteration of Pŕıkry-type forcings, see Gitik’s article in
the Handbook of Set Theory [5, Section 6.1].

Theorem 4.1 (Gitik [5, Lemma 6.4]). If κ is strongly compact and ⟨Pα, Q̇α : α < κ⟩ is
a Magidor iteration such that Q̇α ∈ V Pα

κ is forced by Pα to be an α-complete Pŕıkry-type
forcing, then κ remains strongly compact in V P where P is the Magidor support limit of the
iteration.
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5 Distributivity, compactness, and Pŕıkry-type forcings

This section is motivated by the following result [5, Lemma 6.22]:

Theorem 5.1 (Gitik). If κ is supercompact, then every κ-distributive partial order is
forcing-equivalent to a κ-complete Pŕıkry-type poset.

We will improve this result by reducing the large cardinal hypothesis to strong com-
pactness and, more significantly, relaxing the assumption of κ-distributivity to the optimal
one. Note that a κ-complete Pŕikry-type forcing P adds no bounded subsets of κ.5 Indeed,
this was Pŕıkry’s original motivation for establishing that the Pŕıkry forcing associated to
a normal ultrafilter has the Pŕıkry property [9].

A partial order P that adds no bounded subsets of κ is called (κ, 2)-distributive, since
this property is equivalent to the statement that the Boolean completion of P satisfies the
following distributive law for all γ < κ:∧

i<γ

(
a0i ∨ a1i

)
=

∨
s∈2γ

∧
i<γ

asii

Theorem 5.2. If κ is strongly compact, then a partial order is (κ, 2)-distributive if and
only if it is forcing-equivalent to a κ-complete Pŕıkry-type poset.

The idea that such a theorem might be possible comes from a striking observation of
Hamkins-Seabold [6, Theorem 83]:

Theorem 5.3 (Hamkins-Seabold). If κ is strongly compact and B is a (κ, 2)-distributive
complete Boolean algebra, then B carries a κ-complete ultrafilter.

Proposition 5.4 is a corollary of this result along with a proposition that requires no
large cardinal hypothesis whatsoever. A partial order P is centered by κ-complete ultrafilters
if it is the disjoint union of a family of sets each of which generates a κ-complete ultrafilter
on the Boolean completion of P.

Proposition 5.4. For any partial order P, the following are equivalent:

(1) P is a κ-complete Pŕıkry-type poset.

(2) Every p ∈ P belongs to a set A ⊆ P that generates a κ-complete ultrafilter on the
Boolean completion of P.

(3) A dense suborder of P is centered by κ-complete ultrafilters.

(4) P is centered by κ-complete ultrafilters.

Proof. (1) implies (2): Fix a partial order ≤∗ such that (P,≤∗) is a κ-complete Pŕıkry-type
forcing. Then for any p ∈ P, {q ∈ P : q ≤∗ p} generates a κ-complete ultrafilter on the
Boolean completion of P.

(2) implies (3): Assume (2). By transfinite recursion, we construct a sequence ⟨Aα⟩α<ν

such that
⋃

α<ν Aα is dense in P and centered by κ-complete ultrafilters. Suppose Aβ has
been defined from all β < α. If

⋃
β<αAβ is dense in P, set ν = α and terminate the

5If γ < κ and p ⊩ Ȧ ⊆ γ, then using the Pŕıkry property and κ-completeness, one can find a condition
q ≤∗ p such that for all α < γ, either q ⊩P α ∈ Ȧ or q ⊩P α /∈ Ȧ. Letting A = {α < γ : q ⊩P α ∈ Ȧ}, we
have q ⊩ Ȧ = A, and hence q ⊩ Ȧ ∈ V̌ .
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construction. Otherwise, choose some p ∈ P that has no extension in
⋃

β<αAβ . Choose a
set A containing p that generates a κ-complete ultrafilter on the Boolean completion of P.
Let Aα = {q ≤ p : q ∈ A}.

(3) implies (4): Let ⟨Aα⟩α<γ witness that the dense suborder Q of P is centered by κ-
complete ultrafilters. We will define ⟨Bα⟩α<γ by recursion witnessing that P is centered by
κ-complete ultrafilters. Having defined Bβ for all β < α, let F be the filter on P generated
by Aα, and let Bα = F \

⋃
β<αBβ . Then the sets Bα form a partition of P: for any p ∈ P, let

α be least such that there is some q ∈ Aα extending p, and note that p ∈ Bα. Moreover for
all α < γ, Aα ⊆ Bα, and so Bα generates a κ-complete ultrafilter on the Boolean completion
of P. (Since Q is dense in P, the Boolean completion of P is the Boolean completion of Q.)

(4) implies (1): Let ⟨Ai⟩i∈I witness that P is centered by κ-complete ultrafilters. Set
p ≤∗ q if p ≤ q and both p and q belong to the same piece Ai of this partition. Then ≤∗

witnesses that P is a κ-complete Pŕıkry-type forcing.

It is unclear to us whether every partial order that is forcing-equivalent to a κ-complete
Pŕıkry-type forcing is itself a Pŕıkry type forcing, although this statement is true for complete
Boolean algebras:

Corollary 5.5. A partial order P is forcing-equivalent to a κ-complete Pŕıkry-type poset if
and only if its Boolean completion is a κ-complete Pŕıkry-type complete Boolean algebra.

Proof. By Proposition 5.4, if a κ-complete Pŕıkry-type forcing Q is dense in a forcing Q′,
then Q′ is a κ-complete Pŕıkry-type forcing. Therefore to prove the corollary, it suffices to
show that if a complete Boolean algebra B is forcing equivalent to a κ-complete Pŕıkry-type
complete Boolean algebra C, then B is κ-complete Pŕıkry-type.

Fix a maximal antichain A ⊆ B such that for each a ∈ A, Ba is isomorphic to Cw for
some w ∈ C; since C is κ-complete Pŕıkry type, so is Cw, and hence so is Ba.

For each a ∈ A, let ≤∗
a be a direct extension order witnessing that Ba is κ-complete

Pŕıkry type. For u, v ∈ B+, set u ≤∗ v if for all a ∈ A, either u ∧ a = v ∧ a = 0 or
(u ∧ a) ≤∗

a (v ∧ a). Then it is easy to check that ≤∗ witnesses that B is a κ-complete
Pŕıkry-type complete Boolean algebra.

Proof of Theorem 5.2. Let B be the Boolean completion of P. Since B is a (κ, 2)-distributive
complete Boolean algebra, for every p ∈ B, Bp is a (κ, 2)-distributive complete Boolean
algebra. By Theorem 5.3, Bp carries a κ-complete ultrafilter. Applying Proposition 5.4, it
follows that B is a Pŕıkry-type poset.

6 Forcing the Σ2-potentialist principle

We now turn to the main theorem of this paper.

Theorem 6.1. The Σ2-potentialist principle is consistent relative to a supercompact cardi-
nal.

Proof. In fact, we will only need to assume the existence of a strongly compact cardinal κ
such that for some α ≤ κ, Vα ⪯Σ2

V .
We define an iteration ⟨Pn, Q̇n : n < ω⟩ of Pŕıkry-type forcings as follows. Let us fix in

advance an ordering ⪯ of all formulas in the language of set theory of order-type ω. Suppose
Pn has been defined, along a sequence of formulas ⟨ψk : k < n⟩. Fix Gn ⊆ Pn is V -generic.
In V [Gn], let κn be the least Beth fixed-point λ such that V [Gn]λ ⊨

∧
k<n ψk. Let ψn be
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the first Σ2-sentence (according to the order ⪯) that is false in V [Gn] but can be forced
by a κn-complete Pŕıkry-type forcing. Let Q̇n be a Pn-name that is forced by the empty
condition to be such a forcing.

Let P be the Magidor iteration of the forcings Pn. Since there is some α ≤ κ such that
Vα ⪯Σ2

V , P ∈ Vκ. Let G ⊆ P be V -generic. We will show that the Σ2-potentialist principle
holds in V [G].

Assume towards a contradiction that in V [G], φ is the first possible Σ2-sentence that
is not true. Since κ remains strongly compact in V [G], there is a κ-complete Pŕıkry-type
forcing Q that forces φ over V [G].

For each n, let Gn be the projection of G to Pn, and let κn and ψn be defined in V [Gn]
as above. Then for all n, φ can be forced over V [Gn] by a κn-complete Pŕıkry-type forcing,
namely the two-step iteration Pn,ω ∗ Q̇ where Pn,ω denotes the factor forcing from V [Gn] to

V [G] and Q̇ is a Pn,ω-name for Q in V [Gn].
It follows that there is some n < ω such that ψn = φ: in fact, if n < ω is least such that

φ ⪯ ψn, then ψn = φ. Therefore φ holds in V [Gn+1], and in fact, φ holds in V [Gn+1]κn+1
.

Since V [Gn+1]κn+1
= V [G]κn+1

, φ is true in V [G].

Recall that the boldface Σ2-potentialist principle states that every possible Σ2-formula
(using an arbitrary set as a parameter) is true. Let us generalize the proof of Theorem 6.1
to show that this stronger principle is consistent.

Theorem 6.2. The boldface Σ2-potentialist principle is consistent relative to a proper class
of strongly compact cardinals κ such that Vκ ⪯Σ2

V .

Proof. It simplifies matters to assume instead that there is a strongly inaccessible cardinal
Ω such that for arbitrarily large κ < Ω, κ is strongly compact in VΩ and Vκ ⪯Σ2 VΩ. In
Lemma 6.3, we explain how to dispense with Ω.

Fix in advance a well-orderingW of VΩ and an ordering ⪯ of all formulas in the language
of set theory of order-type ω. We define a Magidor iteration ⟨Pα, Q̇α : α < Ω⟩ of Pŕıkry-type
forcings. Simultaneously, we define sequences ⟨κ̇α : α < Ω⟩, ⟨ẏα : α < Ω⟩, ⟨ψα : α < Ω⟩ such
that:

• Each ẏα is a Pα-name for a set in V [Ġα]Ω.

• Each ψα is a Σ2-formula.

• For every ξ < α, V [Ġα]κα ⊨ ψξ(ẏξ).

• If, in V [Ġα], there exists a κα-complete Pŕıkry-type extension which forces ψα(ẏα),
then the weakest condition of Pα forces that Q̇α is such a forcing.

Suppose that Pα, ⟨κ̇ξ : ξ < α⟩, ⟨ẏξ : ξ < α⟩ and ⟨ψξ : ξ < α⟩ have been defined, and let

us define Q̇α, κ̇α, ẏα and ψα. Let Gα ⊆ Pα be a V -generic filter.
Let κα be the least Beth-fixed point in V [Gα]Ω, such that κα ≥ sup{κξ : ξ < α}, κα ≥

sup{rank(Q̇α) : ξ < α} and V [Gα]κα
⊨ ψ(ẏξ) for every ξ < α. We argue that such κα exists.

Assume that ξ < α. If ξ + 1 < α, then by our construction

V [Gα]κξ+1
= V [Gξ+1]κξ+1

⊨ ψξ(yξ)

and since ψξ(yξ) is a Σ2-formula, for every cardinal κ∗ of V [Gα]Ω above κξ+1, V [Gα]κ∗ ⊨
ψξ(yξ). If ξ+1 = α, then V [Gα] ⊨ ψξ(yξ), and again since ψξ is a Σ2-formula, there exists a
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Beth fixed-point κα < Ω such that V [Gα]κα ⊨ ψξ(yξ). Overall, by picking κα high enough,
V [Gα]κα ⊨ ψξ(yξ) for all ξ < α.

We proceed and define yα, ψα,Qα. If there is no y ∈ V [Gα]κα
such that some Σ2 formula

φ(y) is false in V [Gα]Ω, but can be forced over V [Gα]Ω by a κα-complete Pŕıkry-type forcing,
let Qα be the trivial forcing, take ψα to be a tautology and yα = ∅. Else, pick yα ∈ V [Gα]γ
with a W -least Pα-name among sets y as above. Let ψ(yα) be the ⪯-minimal among Σ2-
formulas with parameter yα which can be forced over V [Gα]Ω by a κα-complete Pŕıkry-type
forcing. Finally, let Qα be a κα-complete Pŕıkry-type forcing notion which forces ψα(yα)
over V [Gα].

Back in V , pick theW -minimal Pα-names for κ̇α, ẏα, Q̇α which are forced by the weakest
condition of Pα to have the above properties.

This concludes the inductive definition. Let P be the Magidor support limit of the
forcings ⟨Pα : α < Ω⟩. The reason it is convenient to use an inaccessible cardinal is that P
is a subset of VΩ+1 rather than VΩ.

We argue that V [G]Ω satisfies the boldface Σ2-potentialist principle.
Assume by contradiction that there are y ∈ V [G]Ω and a Σ2-formula φ(y) which is

possible in V [G]Ω, but doesn’t hold in V [G]Ω. Let α < Ω be the least for which y as above
exists in V [Gα]Ω. Choose such y ∈ V [Gα]Ω with the W -least Pα-name ẏ. Let φ be the
⪯-least Σ2-formula such that φ(y) is possible but false in V [G]Ω.

Fix κ > max{rank(y), α} such that κ is strongly compact in VΩ and Vκ ⪯Σ2
VΩ. We

argue that for every ξ < κ, Q̇ξ ∈ Vκ and 1Pξ
⊩ κ̇ξ < κ.

Indeed, fix ξ < κ, and assume by induction that Pξ ∈ Vκ. Then there exists a Pξ-name

ζ̇ such that the weakest condition in Pξ forces that V [Ġξ]ζ̇ ⊨ ψξ(ẏξ). This property is by
itself a Σ2-sentence, so it holds in Vκ, since Vκ ⪯Σ2

VΩ. So the Pξ-name κ̇ξ belongs to Vκ,

and again from the fact that Vκ ⪯Σ2
VΩ, it follows that Q̇ξ ∈ Vκ.

By Theorem 4.1, κ remains strongly compact in V [Gκ]Ω.
Since φ(y) is possible in V [G]Ω, there is some κ ≤ γ < Ω large enough that V [Gγ ]Ω

satisfies that φ(y) can be forced without adding bounded subsets to κ. Fix a forcing Q ∈
V [Gγ ]Ω that achieves this, and let Q̇ be a Pκ,γ-name for Q where Pκ,γ is the factor forcing.

So, in V [Gκ]Ω, the iteration Pκ,γ ∗ Q̇ witnesses that φ(y) can be forced without adding

bounded subsets to κ, and thus, by Proposition 5.4, Pκ,γ ∗ Q̇ can be realized as a κ-complete
Pŕıkry-type forcing.

Since κα < κ, the forcing Pα,γ ∗Q can be realized as a κα-complete Pŕıkry-type forcing.
By the minimality of α, y, φ, it follows that y = yα, φ = φα and φ(y) holds in V [Gα+1]κα+1

.
In particular, it holds in V [G]κα+1

and thus also in V [G]Ω.

In order to dispense with Ω, one has to adjust the proof of Theorem 6.2 and perform a
class forcing. By forcing first Global Choice, we can assume that there exists a class well
order W of the universe (the standard class forcing for achieving Global choice does not add
new sets, and thus preserves the assumption that there exists a proper class of Σ2-correct
strongly compact cardinals). Then, perform an Ord-length iteration of Pŕıkry type forcings
as in Theorem 6.2. The technical justifications that such an iteration produces a model of
ZFC appear in the following lemma.

Lemma 6.3. Let P be the direct limit of the iterated forcing ⟨Pα, Q̇α : α ∈ Ord⟩ from the
proof of Theorem 6.2. Then:

(1) P satisfies the Pŕıkry property, with respect to the following direct extension order:
given p, q ∈ P, q direct extends p (q ≤∗ p) if and only if q ≤ p and there exists a finite
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set x ⊆ supp(p) such that for every α /∈ x, q ↾ α ⊩ q(α) ≤∗
Q̇α

p(α).

(2) For every p ∈ P and a P-name for an ordinal, η̇, there exist a direct extension q ≤∗ p
and a set A such that q ⊩ η̇ ∈ Ǎ.

(3) Let G ⊆ P be generic over V . Then V [G] is a model of ZFC.

Proof. (1) The same argument of [5, Lemma 6.2] works here. Let σ be a statement in the
forcing language of P, and let p ∈ P. Assume for contradiction that no direct extension of
p decides σ.

For every α ∈ supp(p), consider in V Pα the statement σα in the forcing language of the
quotient forcing P \ α,

σα ≡ ∃r ≤∗ p \ α, r ∥ σ.

We will construct a direct extension q ≤∗ p with supp(q) = supp(p), such that, for every
α ∈ supp(q), q ↾ α ⊩Pα ¬σα.

Before constructing q, let us argue that this suffices. Take s ≤ q an extension which
decides σ. Let α ∈ supp(q) be the maximal coordinate such that s ↾ α+1 ⊩Pα+1

s\α+1 ≤∗

q \α+1. Then s ↾ α+1 ⊩Pα+1
σα+1, contradicting the fact that s ↾ α+1 ≤ q ↾ α+1 ⊩Pα+1

¬σα+1.
We proceed to the construction of q. Assume that α ∈ supp(p) and q ↾ α has been

defined. Take q(α) to be a Pα-name for a direct extension of p(α) which decides the statement
σα+1.

We argue by induction that q is as desired, namely, for every α ∈ supp(q), q ↾ α ⊩Pα
¬σα.

For α = 0, this follows from the fact that no direct extension of p decides σ. Assume now
that α ∈ supp(q) and for every ξ < α, q ↾ β ⊩Pβ

¬σβ . We argue that q ↾ α ⊩Pα ¬σα.

Case 1. α is a limit ordinal.

Assume, for contradiction, that there exists an extension s ≤ q ↾ α such that s ⊩Pα
σα.

Then there exists a Pα-name for a condition r ≤∗ p \α such that s ⊩Pα
r ∥ σ. By extending

s further, we can assume that it decides how r decides σ. Let β < α be the maximal
coordinate such that s ↾ β + 1 ⊩ s \ β + 1 ≤∗ q ↾ [β + 1, α). Then s ↾ β + 1 ⊩ σβ+1, since
s \ β + 1

⌢
r is a direct extension of p \β+1 which decides σ. This contradicts the fact that

s ↾ β + 1 ≤ q ↾ β + 1 ⊩Pβ+1
¬σβ+1.

Case 2. α = β + 1 is a successor ordinal.

By our construction, q ↾ β forces that q(β) ∥ σα. It suffices to argue that q ↾ β ⊩Pβ

q(β) ⊩Q̇β
¬σα. Else, there is s ≤ q ↾ β such that s ⊩Pβ

q(β) ⊩Q̇β
σα. Let r be a Pα-name for

a direct extension of p \ α which decides σ, and direct extend q∗(β) ≤∗ q(β) (applying the
Pŕıkry property in the forcing Q̇β) so that q∗(β) decides how r decides σ. Assume without
loss of generality that q∗(β)

⌢
r ⊩P\β σ. Then q

∗(β)
⌢
r is a Pβ-name for a direct extension of

p\β which forces σ, namely s ↾ β ⊩Pβ
σβ , contradicting the fact that s ↾ β ≤ q ↾ β ⊩Pβ

¬σβ .
(2) Assume for contradiction that there is no direct extension q ≤∗ p and a set of ordinals

A such that q ⊩ η̇ ∈ Ǎ. For every α ∈ supp(p), consider in V Pα the statement σα in the
forcing language of the quotient forcing P \ α,

σα ≡ ∃r ≤∗ p \ α ∃A, r ⊩P\α η̇ ∈ Ǎ.

We will construct a direct extension q ≤∗ p with supp(q) = supp(p) such that, for every
α ∈ supp(q), q ↾ α ⊩Pα

¬σα.
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Before constructing q, let us argue that this suffices. Take any condition r ≤ q which
decides the value of η̇. Let α ∈ supp(q) be the maximal coordinate such that r ↾ α +
1 ⊩Pα+1

r \ α + 1 ≥∗ q \ α + 1. Then r ↾ α + 1 ⊩Pα+1
σα+1, contradicting the fact that

r ↾ α+ 1 ≤ q ↾ α+ 1 ⊩Pα+1
¬σα+1.

We proceed to the construction of q. Assume that α ∈ supp(q) and q ↾ α has been
defined. Take q(α) to be a Pα-name for a direct extension of p(α) which decides the statement
σα+1.

We argue by induction that q is as desired, namely, for every α ∈ supp(q), q ↾ α ⊩Pα
¬σα.

For α = 0, this follows from the fact that there is no direct extension of p which forces α̇
into a set. Assume now that α ∈ supp(q) and for every β < α, q ↾ β ⊩Pβ

¬σβ . We argue
that q ↾ α ⊩Pα

¬σα.

Case 1. α is a limit ordinal.

Assume, for contradiction, that there exists an extension s ≤ q ↾ α such that s ⊩Pα
σα.

Then there exists a Pα-name for a condition r ≤∗ p \α such that s ⊩Pα
∃A, r ⊩ α̇ ∈ Ǎ. Let

Ȧ be a Pα-name for the set A whose existence in forced by s. Since Pα is a set forcing, there
exists a ground-model set A∗ which is forced by s to cover Ȧ. Therefore, s⌢r ⊩ α̇ ∈ Ǎ∗.

Let β < α be the maximal coordinate such that s ↾ β + 1 ⊩ s \ β + 1 ≤∗ q ↾ [β + 1, α).
Then s ↾ β+1 ⊩Pβ+1

(s \ β + 1)
⌢
r ⊩ α̇ ∈ Ǎ∗, namely s ↾ β+1 ⊩Pβ+1

σβ+1. This contradicts
the fact that s ↾ β + 1 ≤ q ↾ β + 1 ⊩Pβ+1

¬σβ+1.

Case 2. α = β + 1 is a successor ordinal.

By our construction, q ↾ β forces that q(β) ∥ σα. It suffices to argue that q ↾ β ⊩Pβ

q(β) ⊩Q̇β
¬σα. Else, there is s ≤ q ↾ β such that s ⊩Pβ

q(β) ⊩Q̇β
σα. Let r be a Pα-name

for a direct extension of p \α such that s⌢q(β) ⊩ ∃A, r ⊩ α̇ ∈ Ǎ. As in the limit case, there
exists a set A∗ ∈ V such that s⌢q(β)⌢r ⊩ α̇ ∈ Ǎ∗. Therefore, s ⊩Pβ

σβ , contradicting the
fact that s ↾ β ≤ q ↾ β ⊩Pβ

¬σβ .
(3) It is routine to verify that every axiom of ZFC other than Powerset and Replacement

holds in V [G].
Let us verify that the Powerset Axiom holds in V [G]. Let α be an ordinal, p ∈ P a

condition and Ȧ a P-name which is forced by p to be a subset of α. Factor P = Pα+1∗P\α+1.
The forcing P \ α + 1 has a direct extension order which is more than α-closed. Thus, by
applying the Pŕıkry property over and over, we can find a Pα+1-name for a direct extension
r ≤∗ p \ α + 1 such that p ↾ α+ 1 ⊩Pα+1 ∃B ⊆ α, r ⊩ Ȧ = B. Namely, p has a direct

extension which forces Ȧ to be a set in V Pα+1 . By density, the powerset of α exists in V [G],
and is equal to its powerset in V [G ↾ α+ 1].

We proceed and verify that Replacement holds in V [G]. Since Comprehension holds in
V [G], it suffices to prove that for every ordinal α and f : α→ Ord a class function definable
over V [G], there exists a set in V [G] which contains the image of f . For every β < α,
consider the P-name η̇β = rank(f(β)). Then ⟨η̇β : β < α⟩ is a definable class of V (by using
the names of the parameters used to define f as a class over V [G]). In V Pα+1 , apply the
Pŕıkry property of P \ α + 1, together with the fact every P \ α + 1-name for an ordinal
can be forced into a set by a direct extension, and the fact that ⟨P \ α + 1,≤∗⟩ is more
than α-closed, to find a Pα+1-name for an ordinal η and a direct extension r ≤∗ p \ α + 1
such that r ⊩P\α+1 supβ<α η̇β < η. Thus, in V , there exists an ordinal η∗ such that
p ↾ α+ 1⌢r ⊩ im(f) ⊆ V [G]η̌∗ . By density, in V [G], the image of f is contained in V [G]η∗

for some ordinal η∗, as desired.
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7 On the strength of the potentialist principle

In this section we prove that the Σ2-potentialist principle has consistency strength beyond
a Woodin cardinal, answering another question of Woodin. The main idea, which was in-
dependently suggested to the authors by Magidor and Zeman, is based on a connection
between the potentialist principle and a failure of mutual stationarity. The exact implemen-
tation of this idea, as described below, is based on recent results by Adolf, the first author,
Schindler and Zeman, regarding mutual stationarity and iterations of distributive forcings
[2].

The notion of mutual stationarity was introduced by Foreman and Magidor in [4]. As-
sume that ⟨κn : n < ω⟩ is a sequence of regular uncountable cardinals, and, for every n < ω,
Sn ⊆ κn is stationary. The sequence ⟨Sn : n < ω⟩ is called mutually stationary if every alge-
bra A on supn<ω κn has a subalgebra A′ ≺ A such that, for every n < ω, sup(A′ ∩ κn) ∈ Sκ

(here, A,A′ denote the universes of A,A′, respectively).
As an example, we demonstrate the simple property that a sequence of clubs is mutually

stationary.

Proposition 7.1. Let κ⃗ = ⟨κn : n < ω⟩ be an increasing sequence of regular cardinals. Let

C⃗ = ⟨Cn : n < ω⟩ be a sequence such that, for each n < ω, Cn is a club subset of κn. Then

for every sequence S⃗ = ⟨Sn : n < ω⟩ of sets such that for each n < ω, Cn ⊆ Sn ⊆ κn, S⃗ is
mutually stationary.

Proof. By replacing algebras with their Skolemizations, it suffices to prove that every ele-
mentary substructure M of (Hθ, κ⃗, C⃗) for θ large enough, has a substructure N ≺ M with
sup(N ∩ κn) ∈ Sn for every n < ω.

Given such an M, take any countable elementary substructure N ≺ M containing κ⃗, S⃗,
and C⃗. For n < ω, set ηn = sup(N ∩ κn). Note that since N is countable, ηn < κn.
Since Cn ∈ N and N ⊨ ”Cn is a club in κn”, Cn is unbounded in ηn and thus ηn ∈ Cn. In
particular, ηn ∈ Sn.

Very roughly, the argument that the Σ2-potentialist principle has high consistency
strength goes as follows: assuming the Σ2-potentialist principle with suitable anti-large car-
dinals assumptions, one can prove that there are sequences ⟨κn : n < ω⟩ and ⟨Sn : n < ω⟩,
such that for each n < ω, κn is a regular uncountable cardinal, Sn contains a club subset of
κn, but ⟨Sn : n < ω⟩ is not mutually stationary. This contradicts Proposition 7.1.

A key feature of the stationary subsets we consider is that the standard forcing notion
for shooting a club through them is highly distributive. Given a regular cardinal κ and a
stationary subset S ⊆ κ, S is called fat if for every ν < κ and club C ⊆ κ, S ∩C contains a
closed set of order type ν. By a classical result of Abraham and Shelah, clubs can be shot
through fat stationary subsets of κ without adding <κ-sequences.

Theorem 7.2 (Abraham–Shelah [1]). Assume that κ is either inaccessible or the successor
of a strong limit cardinal,6 and S ⊆ κ is a stationary set. Let P be the standard forcing
notion for shooting a club through S.7 Then P is κ-distributive if and only if S is a fat
stationary subset of κ.

6The version of the theorem for a successor of a strong limit singular cardinal, which will matter to us
the most, is sketched in [1, Theorem 2].

7Namely, P consists of closed, bounded subsets of S ordered by reserve end-extension.
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We sketch below a very partial list of fundamental results about mutual stationarity.
Given an increasing sequence κ⃗ = ⟨κn : n < ω⟩ of regular uncountable cardinals and a
regular cardinal λ < κ0, the Mutual Stationarity Property MS(κ⃗, λ) is the assertion that

every sequence of stationary sets S⃗ = ⟨Sn : n < ω⟩ with Sn ⊆ κn∩Sκn

λ is mutually stationary.
Foreman and Magidor proved in [4], that for every increasing sequence of regular un-

countable cardinals κ⃗, MS(κ⃗, ω) holds. In L, however, for every 1 ≤ k < ω, MS(⟨ωn : k <
n < ω⟩, ωk) is false.

The existence of a sequence of regular uncountable cardinals κ⃗ = ⟨κn : n < ω⟩ such that
MS(κ⃗, ω1) holds, is equiconsistent with a single measurable cardinal: Cummings, Foreman
and Magidor showed in [3] that, starting from a measurable cardinal and forcing a Pŕıkry
sequence into it, there exists a final segment ⟨κn : n < ω⟩ of the generic Pŕıkry sequence, such
that every sequence ⟨Sn : n < ω⟩ of sets, each Sn stationary in κn, is mutually stationary;
for the other direction, Koepke and Welch proved in [7] that MS(κ⃗, ω1) for some sequence
κ⃗ implies an inner model with a measurable cardinal.

In [7], Koepke and Welch also considered the principle MS(⟨ωn : 1 < n < ω⟩, ω1), showing
that its consistency strength is higher than just a single measurable cardinal. Recently, this
was improved in [2] to a lower bound of at least PD for the existence of a nonzero number
k such that MS(⟨ωn : k < n < ω⟩, ωk). The same methods can be used to establish a similar
lower bound on the consistency strength of the Σ2-potentialist principle. (For simplicity,
however, we only prove a lower bound of one Woodin cardinal.)

We quote below one of the main results of [2], and then apply it to prove the lower bound
on the Σ2-potentialist principle.

Theorem 7.3 (Adolf–Ben-Neria–Schindler–Zeman [2]). Assume there is no inner model
with a Woodin cardinal. Let κ⃗ = ⟨κn : n < ω⟩ be any increasing sequence of successors of
strong limit singular cardinals.8 Then for every regular λ < κ0, MS(κ⃗, λ) does not hold.

For the consistency strength lower bound on the Σ2-potentialist principle, we need some
details from the proof of Theorem 7.3, which we summarize in the following proposition:

Proposition 7.4. If there is no inner model with a Woodin cardinal, then there are partial
functions πµ,µ′ : µ→ µ′ for every pair of successors of strong limit singular cardinals µ′ < µ,
which are lightface Σ2-definable from parameters µ, µ′, such that the following hold:

(1) For every every increasing sequence µ0 < . . . < µn of successors of singular strong
limit cardinals, there is a sequence β0 < µ0, . . . , βn−1 < µn−1 such that the set

Sβ⃗(µ0, . . . , µn) = {ξ < µn : ∀i < n (ξ ∈ dom(πµn,µi
) and πµn,µi

(ξ) < βi)}

is a fat stationary subset of µn.

(2) Let β⃗(µ0, . . . , µn) ∈
∏

i<n µi be the lex-least sequence such that Sβ⃗(µ0, . . . , µn) is fat,
and let

S(µ0, . . . , µn) = Sβ⃗(µ0,...,µn)
(µ0, . . . , µn)

Then for each increasing sequence of successors of singular strong limit cardinals
κ⃗ = ⟨κi : i < ω⟩, the stationary sets ⟨S(κ0, . . . , κn−1) : 1 ≤ n < ω⟩ are not mutu-
ally stationary.

8The original argument in [2] is more general and applies also in certain cases where the κis are not
successor of singulars; in particular, it applies to the case where there exists some n0 < ω such that for
every i < ω, κi = ℵi+n0 . The assumption that each κi is a successor of a singular has the advantage that by
weak covering, each κi is a successor cardinal in the core model, which simplifies the fine structural analysis
in the proof of the theorem.
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It is not really relevant that β⃗(µ0, . . . , µn) be chosen lexicographically least; any choice

of β⃗ ∈
∏

i<n µi such that Sβ⃗(µ0, . . . , µn) is fat would do. We minimize β⃗ only to ensure that

the function (µ0, . . . , µn) 7→ S(µ0, . . . , µn) is Σ2-definable.

Theorem 7.5. The Σ2-potentialist principle implies that there is an inner model with a
Woodin cardinal.

Proof. Assume towards a contradiction that the Σ2-potentialist principle holds but there
is no inner model with a Woodin cardinal. For every n < ω, consider the following Σ2

statement:

(∗)n There are κ0 < . . . < κn+1 such that κ0 is the least successor of a strong limit

singular cardinal, and for every 0 ≤ i ≤ n, κi+1 is the least successor of a strong

limit singular cardinal above κi, such that S(κ0, . . . , κi+1) contains a club in κi+1.

We argue that all the statements (∗)n hold. Furthermore, there exists a sequence ⟨κi : i < ω⟩
of successors of strong limit singular cardinals, such that, for every 1 ≤ n ≤ ω, ⟨κ0, . . . , κn+1⟩
witnesses the truth of (∗)n.

For n = 0, let κ0 be the least successor of a strong limit cardinal. By Proposition 7.4, for
every cardinal κ above κ0 which is a successor of a strong limit singular cardinal, S(κ0, κ)
is a fat stationary subset of κ. By Theorem 7.2, the forcing which shoots a club through
S(κ0, κ) is κ-distributive. Since κ can be picked arbitrarily high, (∗)0 is a possible statement.
By the Σ2-potentialist principle, (∗)0 holds.

Assuming that (∗)n holds, let κ0 < . . . < κn be the witnesses for its truth. Arguing as
above, for every cardinal κ above κn which is a successor of a strong limit singular cardinal,
the stationary set S(κ0, . . . , κn, κ) is fat, and a club can be shot through it by a κ-distributive
forcing. Since κ can be picked arbitrarily high, (∗)n+1 is a possible Σ2-statement, and by
the Σ2-potentialist principle, (∗)n+1 is true, witnessed by a sequence κ0 < . . . < κn < κn+1,
where κn+1 is some cardinal above κn.

This concludes the inductive argument. By Proposition 7.4, the sets ⟨S(κ0, . . . , κn) : 1 ≤
n < ω⟩ are not mutually stationary. However, each such set contains a club, contradicting
Proposition 7.1.
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