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Abstract. We prove that it is consistent that Club Stationary Reflection and the Special Aronszajn Tree
Property simultaneously hold on l2 , thereby contributing to the study of the tension between com-
pactness and incompactness in set theory. The poset which produces the final model follows the
collapse of an ineffable cardinal first with an iteration of club adding (with anticipation) and second
with an iteration specializing Aronszajn trees.
In the first part of the paper, we prove a general theorem about specializing Aronszajn trees on l2
after forcing with what we call F-Strongly Proper posets, where F is either the weakly compact filter
or the filter dual to the ineffability ideal. This type of poset, of which the Levy collapse is a degenerate
example, uses systemsof exact residue functions to createmany strongly generic conditions.Weprove
a new result about stationary set preservation by quotients of this kind of poset; as a corollary, we
show that the original Laver-Shelah model, which starts from a weakly compact cardinal, satisfies a
strong stationary reflection principle, though it fails to satisfy the full Club Stationary Reflection. In
the second part, we show that the composition of collapsing and club adding (with anticipation) is an
F-Strongly Proper poset. After proving a new result about Aronszajn tree preservation, we showhow
to obtain the final model.

1 Introduction

Thiswork is a contribution to the study of the tension between compactness and incom-
pactness principles in set theory. We focus on the second uncountable cardinal, l2,
and consider the strong compactness principle of Club Stationary Reflection and the
strong incompactness principle known as the Special Aronszajn Tree Property (these
are defined below).

The two properties have been shown to be consistent separately by Magidor [34]
and Laver and Shelah [33], respectively. Since the properties represent strong forms of
opposing phenomena (compactness and incompactness) it is natural to suspect that they
are jointly inconsistent. The main result of this paper shows, on the contrary, that the
conjunction of the two principles is consistent. More precisely, we prove:

Theorem 1.1 It is consistent relative to the existence of an ineffable cardinal that Club
Stationary Reflection and the Special Aronszajn Tree Property simultaneously hold at l2.

Our work also shows that a weaker version of stationary reflection holds in the
original Laver-Shelah model (which uses a weakly compact):
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2 O. Ben-Neria and T.D. Gilton

Theorem 1.2 In the original Laver-Shelah model the following stationary reflection principle
holds: for every sequence 〈(U | U < l2〉 of stationary subsets ofl2∩cof(l) there is V < l2
so that (U ∩ V is stationary in V, for every U < V. However, Club Stationary Reflection atl2
fails.

We proceed to define the relevant terms and contextualize our result. If a is a regular
cardinal, we use cof(a) denote the class of ordinals with cofinality a. We recall that if
cf(U) > l, then ( ⊆ U is stationary if (∩� ≠ ∅ for each club� ⊆ U.We say that ( reflects
if there is some V < U with cf(V) > l so that ( ∩ V is stationary in V. If ^ is regular, we
say that stationary reflection holds at ^++ if every stationary ( ⊆ ^++ ∩ cof(≤ ^) reflects.
Baumgartner originally showed ([5]) that stationary reflection atl2 is consistent from a
weakly compact cardinal. Harrington and Shelah ([21]) later improved this, showing that
the optimal assumption of a Mahlo cardinal suffices. One obtains stronger principles
by requiring that multiple stationary sets reflect simultaneously. Recall that a collection
{(8 | 8 < g} of g < U stationary subsets of U is said to reflect simultaneously if there
is some V < U with cf(V) > l so that (8 ∩ V is stationary in V for every 8 < g.
Magidor ([34]) has shown that the consistency strength of “any two stationary subsets of
l2∩cof(l) simultaneous reflect" implies the consistency of a weakly compact cardinal.
One may also consider stronger diagonal versions of the above, defined in the natural
way.

We are interested in the following very strong form of stationary reflection which
implies all of the above:

Definition 1.1 Suppose that ^ is regular. We say that Club Stationary Reflection
holds at ^++ if for any stationary ( ⊆ ^++ ∩ cof(≤ ^), there exists a club � ⊆ ^++

so that for all V ∈ � ∩ cof(^+), ( reflects at V. We writeCSR(^++).

We will concern ourselves with the case ^ = l, i.e., with stationary subsets of l2 ∩
cof(l). Most relevant for us, Magidor ([34]) showed thatCSR(l2) is consistent from a
weakly compact cardinal; by the above remarks, this is the optimal hypotheses.

Extensions ofCSR to other cardinals have been shown to have limitations. For exam-
ple, Jech and Shelah [25] proved that for every = < l, if every stationary subset of
l=+3∩cof(l=+1) reflects thenCSR(l=+2) fails. However, Jech and Shelah [25], and later
Cummings and Wylie [14], proved the consistency of certain best possible variations of
club stationary reflection below ℵl .

Limitations on stationary reflection emerge from incompactness principles. One of
the most prominent of these is Jensen’s�^ . In [26], Jensen showed that�^ holds in ! for
all ^ > l and that �^ implies the existence of many nonreflecting stationary subsets of
^+.

Further studies showed that variations of �^ place limitations on the cofinality of
reflection points, as well as the amount of simultaneous reflection. For instance, in [41],
Schimmerling introduced the hierarchy of square principles, �^,_, 1 ≤ _ ≤ ^+. As _
increases, this hierarchy is strictly decreasing in strength; see Jensen [27] for ^ regular
and [11] for ^ singular. For a regular cardinal ^ and _ ≤ ^, Schimmerling and indepen-
dently Foreman andMagidor have observed that if ^<_ = ^ and �^,<_ holds then every
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stationary subset of ^+ has a stationary subset which does not reflect at any point of cofi-
nality ≥ _; see [13]. In particular, ^<^ = ^ and �^,<^ imply that every stationary subset
of ^+ has a stationary subset which does not reflect at any point in ^+ ∩ cof(^). In [11],
Cummings, Foreman, andMagidor extended these results and developed the theory for
^ singular.

Other notableweakenings of�^ were introduced anddeveloped byTodorčević ([43]).
These principles, denoted�(^+) and�(^+, _), place refined limitations on the extent of
stationary reflection. See [15], [23], and [39].

Theweakest nontrivial formof square studied by Jensen is the so-calledWeakSquare,
denoted �∗^ , Remarkably, �∗^ is equivalent to a key incompactness phenomenon, the
existence of a special ^+-Aronszajn tree. Let us recall the relevant definitions. A tree is a
partially ordered set (), ≤) ) so that for each G ∈ ) , the set of ≤) -predecessors of G is
well-ordered; we refer to the height of G in ) as the ordertype of this set. If U is an ordi-
nal, we use LevU ()) to denote all G ∈ ) of height U. The height of ) is the least ordinal
U so that ) has no elements of height U. A branch through ) is a linearly ordered subset
of ) , and a cofinal branch is a branch which intersects every level below the height of ) .

Let ^ be regular. A ^-tree is a tree) of height ^ so that each level has size < ^; we will
always assume that for each such tree, each node in the tree has incompatible extensions
to all higher levels. ^ is said to have the tree property if every ^-tree has a cofinal branch.
K¥onig showed ([28]) that l has the tree property, while Aronszjan has shown that the
tree property fails at l1 (the result was communicated in [32]). The extent of the tree
property on cardinals greater thanl1, a famous question ofMagidor’s, is independent of
ZFC. A watershed in our understanding is due toMitchell and Silver ([37]) who showed
that the tree property at l2 is consistent from a weakly compact cardinal.

A tree which witnesses the failure of the tree property is said to be Aronszajn (i.e.,
a ^-tree which has no cofinal branches); the existence of such a tree is an instance of
incompactness. A particularly strong witness that a tree is Aronszajn is given by a spe-
cializing function: in the case that ^ = _+, a specializing function is an 5 : ) −→ _ so
that if G <) H, then 5 (G) ≠ 5 (H). (For an exploration of these concepts at an arbitrarily
regular cardinal, see [30].) Having a specializing function is a particularly strong witness
to being Aronszajn since the function witnesses that) remains Aronszajn in any exten-
sion of that model in which ^ is still a cardinal. ) is said to be a special Aronszajn tree if
there is a specializing function for ) . The property of interest to us is the following:

Definition 1.2 Let ^ be regular. We say that ^+ has the Special Aronszajn Tree Prop-
erty if there are Aronszajn trees on ^+, and if every Aronszajn tree on ^+ is special. We
denote this property by SATP(^+).

By a result of Specker ([42]), if ^<^ holds, then there is a special Aronszajn tree on ^+;
in particular, if the CH holds, then there is a special Aronszajn tree on l2. Jensen ([26])
later showed that the principle �∗^ holds if and only if there is a special Aronszajn tree
on ^+; since ^<^ implies �∗^ , this strengthens Specker’s result.

With regards to constructing specializing functions by forcing, Baumgartner,Malitz,
and Reinhardt showed ([8]) thatMA+¬CH implies SATP(l1). Later, Laver and Shelah
showed ([33]) that SATP(l2) is consistent from a weakly compact cardinal. General-
izing this further, Golshani and Hayut have recently shown ([20]), using posets which
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specialize with anticipation, that it is consistent that, simultaneously, for every regular
cardinal ^, SATP(^+) holds. Krueger has generalized the result of Laver-Shelah (and
also Abraham-Shelah, [2]) in a different direction ([31]), showing that it is consistent
with theCH that any two countably closed Aronszjan trees onl2 are club isomorphic.
And finally, Asperó and Golshani ([3]) have announced a positive solution to the ques-
tion of whether SATP(l2) is consistent with theGCH. This work continues the study
of the tension between differentmanifestations of compactness and incompactness phe-
nomena in set theory, which together with the study of tension with other fundamental
principles such as approximation principles (e.g., [9], [19]) and cardinal arithmetic (e.g.,
[16], [40]) is central to our understanding of their extent and limitations.

We proceed to describe our result in general terms and highlight the challenges that
appear in the process. Let ^ be a cardinal which is either ineffable or weakly compact
in a ground model+ ofGCH;we will specify later (Definition 2.8) exactly when ^
is ineffable or weakly compact. We obtain the model which witnesses Theorem 1.1
by first defining, in the extension by P = Col(l1, < ^), a ^+-length iteration C^+ =
〈Cg ,C(g) | g < ^+〉 of adding clubs which will eventually witnessesCSR(l2).

After forcing with C^+ , we then force with a ^+-iteration S^+ = 〈Sg , S(g) | g < ^+〉
specializing the desiredAronszajn trees ¤)g , i.e.,S(g) = S( ¤)g) (see Section 1.1 for precise
definitions of the posets).

To make this strategy work, we need, among other things, that all stationary subsets
of l2 ∩ cof(l) which appear in the final generic extension by P ∗ ¤C^+ ∗ ¤S^+ reflect
as in the definition of CSR(l2). Consequently, the club adding posets must anticipate
names for stationary sets added by the later specializing iteration. In order to carry this
through, we define the names ¤Cg and ¤Sg , for g < ^+, simultaneously. More precisely,
for each g < ^+, given that the P-name ¤Cg and the (P∗ ¤Cg)-name ¤Sg have been defined,
we use a bookkeeping function to pick the (P ∗ ¤Cg ∗ ¤Sg)-name ¤(g of a stationary subset
of ^ ∩ cof(l), and we set ¤C(g) to be the (P ∗ ¤Cg)-name for the poset to add, with
¤Sg-anticipation, the desired club. Then we select the (P ∗ ¤Cg+1 ∗ ¤Sg)-name ¤)g for an
Aronszajn tree on ^.

As expected, the tension between compactness and incompactness gives rise to ten-
sion between the different parts of the forcing construction. We list three notable
manifestations:

(1) Working with Intermediate Generic Extensions. A central property of the
Laver-Shelah forcing ([33]) is the existence of intermediate forcing extensions in which
regular cardinals U < ^ becomel2 and the relevant portion ¤)g ∩ (U ×l1) of the trees
are Aronszajn trees on U. Accompanying this is machinery for projecting conditions
of P ∗ ¤Sg to those intermediate extensions. In [33] the existence of such intermediate
extensions is secured by the weak compactness of ^, and the fact that P ∗ ¤Sg is ^-c.c.
However, in our case, the presence of the poset ¤Cg prevents the initial segment P ∗ ¤Cg
from being ^-c.c. To overcome this difficulty, we use the fact that the full collapse poset
P absorbs many restricted subforcings of P ∗ ¤Cg , which allows us to place upper bounds
on various generic filters of the restricted poset. We then couple this in Section 6 with
a generalization of a result of Abraham’s ([1]) that (stated in current language) if ¤Q is an
Add(l, l1)-name for anl1-closed poset, then Add(l, l1) ∗ ¤Q is strongly proper. This
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secures the existence of sufficiently many strongly generic conditions (and in turn, the
existence of intermediate extensions).

(2) Preservation of Stationary Sets by Quotients. The ability to add a closed
unbounded set through the reflection points U < ^ of a stationary set ¤(g ⊆ ^ ∩ cof(l)
hinges upon the fact thatmany such points exist. The ineffability (in fact, just weak com-
pactness) of ^ guarantees that for many U < ^, ¤(g ∩ U is a stationary subset of U in the
restricted generic extensionwhereU = l2. The forcing construction of [34] uses the fact
that the related quotient of P ∗ ¤Cg by its initial segment is f-closed, and an argument
of Baumgartner’s ([5]) shows thatf-closed posets preserve the stationarity of stationary
sets of countable cofinality ordinals. By contrast, for us the stationary sets ¤(g further rely
on the specializing poset ¤Sg , and although the poset P ∗ ¤Cg ∗ ¤Sg is,f-closed, it does not
in general admit f-closed quotients by its natural restrictions to heights U < ^. Never-
theless, in Section 4 we analyze the Laver-Shelah iteration ¤Sg to prove that the relevant
quotients preserve the stationary of ¤(g ∩ U for many suitable U < ^.

(3) Preservation of Aronszajn Trees. The organization of the posets ¤Cg and ¤Sg ,
described above, guarantees that for each g < ^+, ¤)g is a (P ∗ ¤Cg+1 ∗ ¤Sg)-name of an
Aronszajn tree on ^, which is specialized by P ∗ ¤Cg+1 ∗ ¤Sg+1.

However, in the final forcing construction, Sg+1 follows the extended iteration P ∗
¤C^+ , and on its face, P ∗ ¤C^+ ∗ ¤Sg might introduce a cofinal branch to )g , causing the
specializing poset S(g) to collapse ^. To guarantee that this cannot occur, an Aronszajn
preservation theorem is required for the quotient ofP∗ ¤C^+ ∗ ¤Sg byP∗ ¤Cg+1∗ ¤Sg . The fact
that no new reals are added during the iteration, and that ¤C^+ is not ^-closed, prevents
us from using known preservation arguments (for instance those of [44]). Therefore, in
Section 6 we develop an alternative preservation argument which fits the properties of
the poset P ∗ ¤C^+ , and we apply them in Section 7 to show that the tree )g remains
Aronszajn.

Structure of this work: In the rest of this section, we review relevant preliminar-
ies regarding forcing as well as ineffable and weakly compact cardinals. The first part
of the work consists of Sections 2 through 4. In Section 2 we develop the notion and
fundamental properties of posets which are strongly proper with respect to the filter F
on ^, which is either the weakly compact filter on ^ or the filter dual to the ineffabil-
ity ideal on ^ (depending on whether ^ is weakly compact or ineffable, respectively). We
will later verify that initial segments of the form P ∗ ¤Cg , for g < ^+, are members this
class. Section 3 studies an iteration of specializing posets Sg , following an F -strongly
proper posetP∗.We prove that themain results of the Laver-Shelah analysis apply in this
context as well. In the case when P∗ is just the Levy collapse to make ^ become l2, we
only need a weakly compact (and F is the weakly compact filter). This is just the Laver-
Shelah argument. However, when P∗ becomes a more complicated poset, we needed to
use the stronger assumption that ^ is ineffable (and F is the filter dual to the ineffabil-
ity ideal). Nevertheless, we only need the ineffability for the case when P∗ is not just the
collapse, and in this case, only for the proof of Proposition 3.12 and the corollaries of
that proposition. Section 4 is devoted to showing that suitable quotients of specializing
iterations of the form P∗ ∗ ¤Sg , where P∗ is F -strongly proper (and in either case for F )
preserve stationary subsets of countable cofinality ordinals.

In Part 2 of the paper, we construct specific posets playing the role of P∗ above, and
we prove our theorem. In Section 5, we introduce the complementary notion of posets
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which are completely proper with respect to F , and later we apply this analysis to ¤Cg ,
g < ^+. We show that the composition of the Levy collapse and a poset which is com-
pletely properwith respect toF is strongly properwith respect toF . Section 6 develops
the main properties of the club adding iterationCg . And finally, we combine the results
of the previous sections in Section 7 to prove Theorem 1.1.

1.1 Forcing

In this subsection, we review our conventions about forcing and provide explicit defi-
nitions of posets which we will use throughout the paper.

To begin, in order to anticipate working with iterations later, we will work with pre-
orderings (i.e., relations which are transitive and reflexive) rather than partial orders.
Moreover, we will use the Jerusalem convention for forcing. Thus we view a forcing
poset as a triple (Q, ≤Q, 0Q), where ≤Q is a pre-ordering and where 0Q is a smallest
element; for conditions ?, @ ∈ Q, wewill write ? ≥Q @ to indicate that ? is an extension
of @. When context is clear, we will drop explicit mention ofQ in 0Q and ≤Q. Given that
we are only working with pre-orderings rather than partial orders, we will often have
conditions ?, @ ∈ Q so that ? ≤Q @ and @ ≤Q ? but @ and ? are not literally equal as
sets. In this case, we will write ? =∗

Q
@, or simply ? =∗ @ ifQ is clear from context.

If Q is a poset, we say that Q is l1-closed with sups if for any increasing sequence
〈@= : = ∈ l〉 of conditions inQ, there exists a ≤Q-least upper bound @ of the sequence.
Any such @ is referred to as a sup of the sequence. Note that this does not say that any
two compatible conditions in Q have a sup. Moreover, it also does not require that a
sup of an increasingl-sequence is unique. However, if @1 and @2 are two sups of such a
sequence, then @1 =

∗
Q
@2. These observations will be important later when we deal with

iterations of posets with this property.
IfQ is a poset and @ ∈ Q, thenwe useQ/@ to denote all conditions inQwhich extend

@.

Let" ≺ � (\) be an elementary substructure andU ∈ " a poset. A condition D inU
is (",U)-completely generic, if the set {D̄ ∈ U ∩ " : D ≥ D̄} of weaker conditions in
" meets all dense subsets � ⊆ Uwhich belong to" , and thus forms a (",U)-generic
filter.

For the remainder of the paper, we fix a cardinal ^ which will be either weakly
compact or ineffable (we specify in Definition 2.8 exactly when ^ is ineffable or
weakly compact). In the next subsection, wewill review facts about ineffability andweak
compactness.

Throughout the paper, we will use P to denote the Levy collapse Col(l1, < ^). If
U < ^ is inaccessible, we use P � U to denote the collapse Col(l1, < U). We view
conditions in Col(l1, < ^) as countable functions ? so that dom(?) ⊆ ^ and so that
for each a ∈ dom(?), ?(a) is a countable, partial function from l1 to a. If � is a +-
generic filter over P, then we use� � U to denote the+-generic filter {? � U : ? ∈ �}
over P � U.

For adding clubs, we generalize the club-adding poset of Magidor ([34]) by incorpo-
rating anticipation; we only state the definition in the generality needed for our paper.
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Recall that if ( is stationary in U, then the trace of (, denoted tr((), consists of all V < U
so that ( reflects at V.

Definition 1.3 LetS be a cardinal-preserving poset in somemodel, , and let ¤( be anS-
name for a stationary subset ofl2 ∩ cof(l). We letCU( ¤(, S) denote the poset, defined
in, , where conditions are closed, bounded subsets 2 of l2 so that


S 2̌ ⊆ tr( ¤() ∪ (l2 ∩ cof(l)) .

The ordering is end-extension.

We emphasize that in order to be a condition in CU( ¤(, S), a given closed, bounded
subset of l2 must be outright forced by S to be contained, mod cofinality l points, in
tr( ¤(). Since any condition 2 inCU( ¤(, S) can be extended by placing an ordinal of cofi-
nalityl above max(2), we see thatCU( ¤(, S) does add a club subset ofl2 of the model.
Moreover, the poset is triviallyl1-closed, so preservesl1. However preservation ofl2
is a non-trivial matter.

We now review the definition of the poset which we will use to specialize Aron-
szajn trees on l2. The poset itself will decompose such a tree into a union of l1-many
antichains, which in this case is equivalent to having a specializing function.

Definition 1.4 Suppose that ) is an Aronszajn tree on l2. Let S()) denote the poset
where conditions are functions 5 with countable domain dom( 5 ) ⊆ l1, and where
for each U ∈ dom( 5 ), 5 (U) ⊆ ) is a countable antichain in <) . Recalling that we are
using the Jerusalem convention for forcing, we say that 6 extends 5 , written 5 ≤ 6, if
dom( 5 ) ⊆ dom(6) and if for all U ∈ dom( 5 ), 5 (U) ⊆ 6(U).

It is clear that S()) is l1-closed. Moreover, if a tree ) ′ is not Aronszajn, then the
analogously defined poset S() ′) will collapse l2.

1.2 Weak Compactness

In this final subsection, we review facts about the ineffability of ^. However, we will also
need various facts about the weak compactness of ^, and so we begin with these.

Definition 1.5 FWC is the filter generated by subsets � of ^ for which there is some
* ⊆ +^ and aΠ1

1-statementΦ, satisfied by (+^ , ∈,*), so that

� = {U < ^ | U is regular, and (+U, ∈,* ∩+U) |= Φ}.

The filter FWC is ^-closed as well as normal. It will be helpful at later parts in our
argument to phrase membership in the weakly compact filter in terms of embeddings.
The idea will be that for a subset � of ^, where � is a member of a ^-model" , � ∈ FWC
iff for all "-normal ultrafilters*, ^ ∈ 9* (�), where 9* is the ultrapower embedding.
We make this precise in the following few items.
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Definition 1.6 Suppose that U is an inaccessible cardinal. We say that a transitive set
" is an U-model if " |= ZFC−, |" | = U, U ∈ " , and <U" ⊆ " .

Weak compactness is naturally associated to various embedding properties; here we
mention the following result from [22]:

Proposition 1.3 For any ^-model" , there exist a ^-model # and an elementary embedding
9 : " −→ # so that crit( 9) = ^ and 9 , " ∈ # .

However, we are mostly interested a different case, namely, when 9 is the elementary
embeddings associatedwith an"-normal ultrafilter on ^ andwhere# is the ultrapower
of " . A filter* ⊆ P(^) ∩ " is an "-normal ultrafilter if* is an "-ultrafilter, and
for every � ∈ * and regressive function 5 : � → ^ in " there exists some �′ ⊆ �

in* so that 5 � �′ is constant. We note that being "-normal implies that* is closed
under intersections of < ^-sequences in " consisting of sets in*.

It is routine to verify that each elementary embedding 9 : " → # as in the propo-
sition above gives rise to an "-normal ultrafilter* 9 = {� ∈ P(^) ∩ " | ^ ∈ 9 (�)}.
Conversely, we can associate to each "-normal ultrafilter* its ultrapower embedding
9* : " → # � Ult(",*).

Proposition 1.4 Let" be a ^-model and � ∈ " a subset of ^. If � ∈ * for every"-normal
ultrafilter* on ^, then � ∈ FWC.

Proof Let", � be as in the statement of the proposition, and fix a subset �" ⊆ ^× ^
so that (^, �" ) is isomorphic to " . To prove that � ∈ FWC, it suffices to show
that there is a Π1

1 statement Ψ satisfied by (+^ , ∈, �" , �) so that the set {U < ^ :
U is regular and (+U, ∈, �" ∩+U, � ∩ U) |= Ψ} is contained in �.

To begin, we observe that the assertions that “�" is well-founded”, that “(^, �" ) is
isomorphic to a transitive ^-model”, and that “� is represented in (^, �" ) by 1 ∈ ^", are
all within the class of Π1

1 formulas over (+^ , ∈, �" , �) (see [29], Section 2 for details).
LetΦ0 denote their conjunction.

We also note that for a subset*" ⊆ ^, the assertion “*" codes a subset of"∩P(^)
which is an "-normal ultrafilter," is Σ0

l . Therefore the assertionΦ1 stating that

“∀*" ⊆ ^, if*" codes an "-normal ultrafilter, then � ∈ *" ”

isΠ1
1. LetΦ be the conjunctionΦ0 ∧Φ1, aΠ1

1 formula satisfied in (+^ , ∈, �" , �).
Define - := {U < ^ : U is regular, and (+U, ∈, �" ∩ +U, � ∩ U) |= Φ}, and we

show that - ⊆ �. Fix some U ∈ - . Then the relation �" � U = �" ∩ +U ⊆ U × U
is well-founded, and it codes an U-model "U with � ∩ U represented in (U, �" � U)
by the same element 1 ∈ ^ which represents � in (^, �" ). Let 8U : "U → "^ be
the elementary embedding resulting from the identifications "U � (U, �" � U) ≺
(^, �" ) � " . It is straightforward to verify that cp(8U) = U, 8U (U) = ^, and 8U (� ∩
U) = �.

It follows that *U = {� ⊆ U : U ∈ 8U (�)} is an "U-normal ultrafilter. Let 9U :
"U → #U be the induced ultrapower embedding, and let :U : #U → " be the factor
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map given by :U ( [ 5 ]*U
) = 8U ( 5 ) (U). We note that cp(:U) > U. Since (+U, ∈, �" �

U, � ∩ U) satisfiesΦ, � ∩ U ∈ *U. The last implies that U ∈ 9U (� ∩ U), which in turn
implies that U = :U (U) ∈ :U ◦ 9U (� ∩ U) = 8U (� ∩ U) = �. �

We now review the relevant facts about ineffable cardinals; see [6] for the details. A
cardinal _ is ineffable if for any sequence ®� = 〈�a : a < _〉 so that �a ⊆ a for all
a < _, there is an � ⊆ _ so that {a < _ : �a = � ∩ a} is stationary in _. Such a set � is
said to be coherent for ®�.

Notation 1.7. In the case that ^ is ineffable, we will denote the ineffability ideal on ^
byI8= throughout the paper, andwewill letF8= denote the filter on ^ which is dual toI.

I8= consists of all ( ⊆ ^ so that for some sequence ®� as above, no stationary subset
of ( is coherent for ®�. In the case that ^ is ineffable, I8= is a proper, normal ideal on ^.
Finally, we mention the following theorem of Baumgartner’s ([6], Theorem 7.2); see [24]
for more information.

Theorem 1.5 (Baumgartner) �,� is contained in F8=.

In fact, Baumgartner showed that F,� is contained in the filter dual to the weak
ineffability ideal on ^.

Notation 1.8. F will denote either F,� or F8= throughout this paper depending on
whether ^ is weakly compact or ineffable (respectively). I denotes the ideal dual to F .
We will specify in Definition 2.8 in the next section exactly when F is equal to F,� or
equal to F8=.

Remark 1.6

(1) In our paper, we only use the ineffability of ^ to prove Proposition 3.12 and in
the corollaries of this proposition. All other results in our paper can be carried out
assuming only that ^ is weakly compact.

(2) As is immediate from Theorem 1.5 and the fact that F is either F,� or F8=, all
F -positive sets are also �,�-positive.

(3) Thus, if � ∈ F + and if" is a ^-modelwith � ∈ " , then by Proposition 1.4 there is
some "-normal ultrafilter* on ^ so that � ∈ *. We will use this fact throughout
the paper.

As an illustration of the type of argument in (3) above, we prove the following fact
which we will need in the proof of Proposition 4.4.

Lemma 1.7 Suppose that � ∈ F +. Then �\ tr(�) ∈ I.

Proof Suppose otherwise, for a contradiction. Then �\ tr(�) ∈ F +. Let "∗ be a ^-
model containing �, and hence �\ tr(�). By Proposition 1.4, there is an "∗-normal
ultrafilter * so that, letting 9 : "∗ −→ # be the ultrapower embedding, ^ ∈
9 (�\ tr(�)). However, � is a stationary subset of ^, since � ∈ F +. Thus ^ ∈ 9 (tr(�)).
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10 O. Ben-Neria and T.D. Gilton

Since ^ ∈ 9 (�) also, we have ^ ∈ 9 (�) ∩ 9 (tr(�)) = 9 (� ∩ tr(�)), which is a
contradiction. �

2 F -strongly proper posets

In this section we transition into the main body of the paper. After briefly reviewing
some important facts about strong genericity in Subsection 2.1, we then define, in Sub-
section 2.2, the class ofF -strongly proper posets (seeNotation 1.8 for some information
about F and see Definition 2.8 for the exact definition). This class, which includes the
collapseP, consists of posets forwhichwemaybuild various residue systems and thereby
obtain strongly generic conditions for models of interest.

2.1 Review of Strongly Generic Conditions

Herewe review the definition and basic properties of strongly generic conditions.Much
of this material was originally developed by Mitchell [37]. Parts of our exposition here
summarize the exposition in [31], Section 1, to which we refer the reader for proofs.

Definition 2.1 Let # ≺ � (\), where \ is regular. Let Q ∈ # be a poset. A condition
@ ∈ Q is said to be a strongly (#,Q)-generic condition if for any set� which is dense
inQ ∩ # , � is predense above @ inQ.

Remark 2.1 Note that if Q ∈ # , with # as above, then any strongly (#,Q)-generic
condition is also an (#,Q)-generic condition.Moreover, @ is a strongly (#,Q)-generic
condition iff @ 
Q ¤�Q ∩ # is a+-generic filter overQ ∩ # .

We now review a combinatorial characterization of strongly generic conditions,
implicit in [37], Proposition 2.15, in terms of the existence of residue functions.

Definition 2.2 Suppose that Q ∈ # ≺ � (\), @ ∈ Q, and B ∈ Q ∩ # . B is said to be a
residue of @ to # if for all C ≥Q∩# B, C and @ are compatible inQ.

A residue function for # above @ is a function 5# defined onQ/@ so that for each
A ∈ Q/@, 5# (A) is a residue of A to # .

Finally, if @, A ∈ Q and B ∈ Q ∩ # , we say that B is a dual residue of @ and A to # if
B is a residue for both @ and A to # .

Lemma 2.2 @ ∈ Q is (#,Q)-strongly generic iff there is a residue function for # above @.

In the next subsection, wewill isolate further properties of residue functions of inter-
est. For now, we review the process by which strongly generic conditions allow us to
break apart the forcingQ into a two-step iteration.

Notation 2.3. LetQ be a poset and @ ∈ Q. SupposeQ ∈ # ≺ � (\) and @ is a strongly
(#,Q)-generic condition. Fix a +-generic filter �̄ over Q ∩ # . In + [�̄] , let (Q/@)/�̄
denote the poset where conditions are all A ∈ (Q/@)which areQ-compatiblewith every
condition in �̄ . The ordering is the same as inQ.

2023/01/21 17:09



Club Stationary Reflection and the Special Aronszajn Tree Property 11

The following two results originate in [36]; our formulation of them follows [31].

Lemma 2.3 Suppose Q ∈ # ≺ � (\) and @ is a strongly (#,Q)-generic condition. Then
for all A ≥ @ and B ∈ Q ∩ # , B is a residue of A to # iff B 
Q∩# A ∈ (Q/@)/ ¤�Q∩# .

Lemma 2.4 Suppose Q ∈ # ≺ � (\) and @ is a strongly (#,Q)-generic condition. Then

(1) if A ≥ @, B ∈ Q ∩ # , and A and B areQ-compatible, then there exists C ≥Q∩# B so that
C is a residue of A to # ;

(2) if � ⊆ Q is dense above @, then Q ∩ # forces that � ∩ (Q/@)/ ¤�Q∩# is dense in
(Q/@)/ ¤�Q∩# .

2.2 Exact Residue Functions and F -Strong Properness

Following Neeman ([18]), we next isolate the properties of residue functions (see Defi-
nition 2.2) of interest. We will apply this in our work to the iteration P ∗ ¤C, consisting
of the collapse poset P followed by a Magidor-style, club-adding iteration ¤C. Neeman
also connected this with countable closure of the quotient forcing ([18], subsection 2.2).
However, we were not able to apply this analysis to the final poset, which also includes
the specializing iteration, as we do not know if the quotients involving the specializing
iteration are even strategically closed. This will lead us later, in Section 4, to an ad-hoc
proof that the quotients of the final poset preserve stationary sets consisting of countable
cofinality ordinals, without having l1-closed quotients.

Recalling that we are working with pre-orders (in anticipation of working with
iterations later), we begin our discussion with the following definition.

Definition 2.4 Let Q be a poset which is l1-closed with sups. � ⊆ Q is said to be
countably =∗-closed if

(a) for each @ ∈ � and A ∈ Q, if A =∗ @, then A ∈ �;
(b) if 〈@= : = ∈ l〉 is an increasing sequence of conditions all of which are in � and if

@∗ is a sup of the sequence, then @∗ ∈ �.

Such sets � will arise later as the domains of exact (see below) residue functions,
whose domains need not in general be all of the poset under consideration, but only a
dense, =∗-closed subset. We will construct such functions in Proposition 5.4.

The following is Neeman’s notion of an exact strong residue function for # with
dense domain above @ ([18], Definitions 1.6, 2.10), but with the requirement of strategic
continuity strengthened to continuity.

Definition 2.5 LetQ be a poset which isl1-closed with sups, and fix # withQ ∈ # ≺
� (\). Let @ ∈ Q.

A partial function 5 : Q/@ ⇀ Q∩# is said to be an exact, strong residue function
for # above @ if it satisfies the following properties:

(1) (dense domain) the domain of 5 is a dense, countably =∗-closed subset � ofQ/@;
(2) (projection) A ≥ 5 (A) for all A ∈ �;
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12 O. Ben-Neria and T.D. Gilton

(3) (order preservation) for all A∗, A ∈ � , if A∗ ≥ A , then 5 (A∗) ≥ 5 (A);
(4) (strong residue) for any A ∈ � and any D ∈ Q ∩ # so that D ≥ 5 (A), there exists

A∗ ≥ A with A∗ ∈ � so that 5 (A∗) ≥ D;
(5) (countable continuity) if 〈A= : = ∈ l〉 is an increasing sequence of conditions in �

with a sup A∗, then 5 (A∗) is a sup of 〈 5 (A=) : = ∈ l〉.1

We call such a pair 〈@, 5 〉 a residue pair for (#,Q), or just a residue pair for # if Q
is clear from context.

The following appears in [18] (Lemma 2.11).

Lemma 2.5 Suppose thatQ is separative, @ ∈ Q, and that 5 : Q/@ −→ Q∩# is a function
satisfying properties (2) and (4) of Definition 2.5. Then 5 is order-preserving on its domain.

Example 2.6 Let U < ^ be inaccessible. Then the function 5 : P −→ P � U given by
5 (?) = ? � U is an exact, strong residue function for any " ≺ � (\) with " ∩ ^ = U
above the condition ∅ and has all of P as its domain.

Our next task is to isolate the models which for us will play the role of “#" in
Definition 2.5. First some notation which we will fix for the remainder of the paper.

Notation 2.6. Let C be a fixed well-order of � (^+).

In the following definitions and claims we make a standard use of continuous
sequences of elementary substructures "U , where |"U | = U < ^ and "U ∩ ^ = U,
to form natural restrictions P∗ ∩ "U of posets P∗ which are members of the models on
the chain. For ease of notation in describing such chains, we use terminology similar to
[31] and introduce the notion of a %-suitable sequence, for a parameter %.

Definition 2.7 Let % ∈ � (^+) be a parameter. We say that a sequence 〈"U : U ∈ �〉
is %-suitable if

(1) � ∈ F +;
(2) for each U ∈ �, U is inaccessible, "U ∩ ^ = U, <U"U ⊆ "U , and |"U | = U;
(3) for each U ∈ �, "U ≺ (� (^+), ∈,C) and % ∈ "U;
(4) if U < V are in �, then "U ∈ "V , and also if W ∈ � ∩ lim(�), then "W =⋃ {"X : X ∈ � ∩ W}.

We refer to a single model " satisfying (2) and (3) as a %-suitable model.

It is clear from the definition that if ®" is %-suitable and � ⊆ dom( ®") is in F +, then
〈"U : U ∈ �〉 is also %-suitable. It is also clear that for any % ∈ � (^+), there exists a
%-suitable sequence.

The next definition is themain item of this section; it specifies a class of posets which
contains the Levy collapse P and each of which can play the role of a preparatory forcing

1Note that A∗ is in� by (1) and also that the sequence 〈 5 (A=) : = ∈ l〉 is increasing by (3).
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Club Stationary Reflection and the Special Aronszajn Tree Property 13

for a ℵ2-c.c. iteration specializing Aronszajn trees. (The work in Section 3 is devoted to
showing this.) It is helpful to recall Notation 1.7.

Definition 2.8 Let P∗ be a poset in � (^+) which is l1-closed with sups and which
collapses all cardinals in the interval (l1, ^). In the case that P∗ = P (recall that P =
Col(l1, < ^)), we assume that ^ is weakly compact, and in the case that P∗ is not P, we
assume that ^ is ineffable. Let F denote the following filter on ^:

F =
{
F,� if P∗ = P
F8= otherwise,

and let I denote the ideal dual to F .
We say that P∗ is F -strongly proper if for any P∗-suitable sequence ®" there exist

an � ⊆ dom( ®") with dom( ®")\� ∈ I, a sequence 〈?∗ ("U) : U ∈ �〉 of conditions
in P∗, and a sequence 〈i"U : U ∈ �〉 of functions satisfying the following properties,
for each U ∈ �:

(1) i"U is an exact, strong residue function for ("U, P
∗) above ?∗ ("U) and

i"U (?∗ ("U)) = 0P∗ ;
(2) if V ∈ � is greater than U, then ?∗ ("U) and i"U are members of "V .

We will refer to the sequence of pairs 〈〈?∗ ("U), i"U〉 : U ∈ �〉 as a residue system
for ®" � � and P∗.

Remark 2.7

(1) A corollary of (1) of the above definition is that ?∗ ("U) is compatible with every
condition in P∗ ∩ "U. Such conditions were called universal in [10].

(2) Note that any F -strongly proper poset has size exactly ^. It has size at least ^ since
theGCH holds and it collapses all cardinals in the interval (l1, ^) and has size no
more than ^ since it is a member of � (^+).

Example 2.8 The Levy collapse poset P is an example of a F -strongly proper poset
(noting that F = F,� in this case). Indeed, letting ®" be any suitable sequence, we may
take the set � in Definition 2.8 to just be dom( ®"). Then we define ?("U) := ∅ for all
U ∈ � and define i"U on the entire poset P by i"U (?) = ? � U. As stated in Exam-
ple 2.6, each i"U is an exact, strong residue function for "U above ∅. The remaining
properties of Definition 2.8 are trivial.

In our intended applications, the posets playing the role ofP∗ inDefinition 2.8will be
of the form P∗ ¤C, where ¤C is a P-name for an iteration of club-adding with anticipation.

We now check, by a standard argument, that forcingwith anF -strongly proper poset
preserves ^.

Lemma 2.9 Suppose that P∗ is F -strongly proper. Then forcing with P∗ preserves ^.

Proof By Definition 2.8, we know that P∗ preserves l1 and collapses all cardinals in
the interval (l1, ^). Thus if P∗ does not preserve ^, thenwemay find a condition ? ∈ P∗
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14 O. Ben-Neria and T.D. Gilton

and a P∗-name ¤5 for a function with domain l1 which ? forces is cofinal in ^. Since P∗
has size ^, wemay assume that the name ¤5 is amember of� (^+). Let ®" be a

{ ¤5 , ?, P∗}-
suitable sequence. Also let � ⊆ dom( ®") witness Definition 2.8, and let # denote the
least model on the sequence ®" � �. By Definition 2.8, we may find a condition ?∗ (#)
and an exact, strong residue function for (#, P∗) above ?∗ (#). Since ? ∈ # , Definition
2.8(1) implies that ?∗ (#) and ? are compatible. So let @ be an extension of them both.
Then since @ is an (#, P∗)-strongly generic condition and ¤5 ∈ # , @ forces that ran( ¤5 ) ⊆
# ∩ ^ < ^. But this contradicts the fact that ? forces that ¤5 is unbounded in ^. �

The remainder of the subsection is dedicated to proving lemmas about how suitable
sequences interact with the weak compactness of ^.

Lemma 2.10 Let % ∈ � (^+) and ®" be %-suitable. Then % ⊆ ⋃
U∈dom( ®" ) "U.

Proof By definition of a suitable sequence, each model on the sequence is elementary
with respect to the fixed well-order C on � (^+), and therefore each model contains the
C-least surjection k from ^ onto %. Then

% = k [^] =
⋃

U∈dom( ®" )

k [U] ⊆
⋃

U∈dom( ®" )

"U .

�

Lemma 2.11 Let % ∈ � (^+), and let ®" be %-suitable. Suppose that "∗ is a ^-model
containing ®" and that * is an "∗-normal ultrafilter on ^ so that dom( ®") ∈ *. Let 9 :
"∗ −→ # be the ultrapower embedding. Then

(1) ^ ∈ dom( 9 ( ®")), and 9 ( ®") (^) = ⋃
U∈dom( ®" ) 9 ["U];

(2) 9 (%) ∩ 9 ( ®") (^) = 9 [%];
(3)

⋃
U∈dom( ®" ) "U is transitive, and 9−1 � "^ is the transitive collapse of "^ .

Proof Let � := dom( ®"). The first part of item (1) follows since � ∈ * =

{- ∈ P(^) ∩ "∗ : ^ ∈ 9 (-)}. Thus ^ ∈ dom( 9 ( ®")), and so we may let "^ :=
9 ( ®") (^). Additionally, 9 (�) ∩ ^ = �, and so by Definition 2.7(4),"^ =

⋃
U∈� 9 ("U).

But |"U | = U < ^ for each U ∈ �, and hence 9 ("U) = 9 ["U]. Thus

"^ =
⋃
U∈�

9 ["U],

completing the proof of (1). (2) follows immediately.
For (3), observe that if G ∈ " :=

⋃
U∈dom( ®" ) "U , then a tail of the sequence ®" is

G-suitable, and so G ⊆ " by Lemma 2.10. Thus " is transitive. Since 9−1 � "^ is an
∈-isomorphism whose range (namely ") is transitive, 9−1 is the transitive collapse. �

Lemma 2.12 Suppose that ®" is P∗-suitable and that 〈〈?∗ ("U), i"U〉 : U ∈ dom( ®")〉 is
a residue system for ®" andP∗. Then wemay find some � ⊆ dom( ®") with dom( ®")\� ∈ I
so that for all U ∈ �, P∗ ∩ "U 
 Ǔ = ¤ℵ2.
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Proof Suppose that ®" and 〈〈?∗ ("U), i"U〉 : U ∈ dom( ®")〉 are as in the statement
of the lemma. For a contradiction, assume that

� :=
{
U ∈ dom( ®") : P∗ ∩ "U 1 Ǔ = ¤ℵ2

}
∈ F +.

Since F,� ⊆ F , � is also in F +
,�

.
Let "∗ be a ^-model containing ®" , �, P∗, and the sequence 〈〈?∗ ("U), i"U〉 : U ∈

dom( ®")〉. By Proposition 1.4, since ^\� ∉ F,� , we may find some "∗-normal mea-
sure* so that, letting 9 : "∗ −→ # be the associated ultrapower embedding, ^ ∈ 9 (�).
Let "^ = 9 ( ®") (^). Then # satisfies that 9 (P∗) ∩ "^ does not force that ˇ̂ = ¤ℵ2. On
the other hand, by the previous lemma, we know that 9 (P∗) ∩"^ = 9 [P∗]. Since 9 [P∗]
is isomorphic to P∗ and P∗ forces that ^ becomes ℵ2 (by Lemma 2.9), this implies that
9 [P∗] forces that ^ = ¤ℵ2. Thus # also satisfies that 9 [P∗] = 9 (P∗) ∩ "^ forces that
ˇ̂ = ¤ℵ2, a contradiction.

�

We recall that inDefinition 2.8(1), the condition ?∗ ("U) is required to be compatible
with every condition in P∗ ∩ "U. A practical corollary of this is that any generic for P∗
contains plenty of conditions of the form ?∗ ("U).

Lemma 2.13 Suppose that ®" is P∗-suitable, that 〈〈?∗ ("U), i"U〉 : U ∈ dom( ®")〉 is
a residue system for ®" and P∗, and that � ⊆ dom( ®") is in F +. Suppose that there is a
condition ?̄ ∈ P∗ satisfying that for each U ∈ �, there is a condition ?U ∈ dom(i"U ) so
that ?̄ =∗ i"U (?U). Then

?̄ 
 ¤- :=
{
U < ^ : ?U ∈ ¤�P∗

}
is unbounded in ^.

In particular, taking ?U := ?∗ ("U) with ?̄ the trivial condition, and recalling Definition
2.8(1),

P∗ 

{
U < ^ : ?∗ ("U) ∈ ¤�P∗

}
is unbounded in ^.

Moreover, letting � abbreviate dom( ®"), if U ∈ � ∩ lim(�), then


P∗∩"U

{
b < U : ?∗ ("b ) ∈ ¤�P∗∩"U

}
is unbounded in U.

Proof Let ? ∈ P∗ be a condition extending ?̄, and let W < ^. We find an extension of
? which forces that ¤-\W ≠ ∅. Since � is unbounded in ^ and ®" is P∗-suitable, Lemma
2.10 implies that ? ∈ "V for some V ∈ �\(W + 1). By definition of an exact, strong
residue function, ?V is compatible with ? ≥ ?̄ =∗ i"V (?V). Therefore, let ?∗ be a
common extension; then ?∗ 
 V ∈ ¤-\W.

The proof in the case U ∈ � ∩ lim(�) is identical, using the fact that, by Definition
2.7, "U =

⋃
b ∈�∩U "b in this case. �
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16 O. Ben-Neria and T.D. Gilton

3 F -Strongly Proper Posets and Specializing Aronszajn Trees
on l2

In this section wewill prove that if P∗ is an F -strongly proper poset, then we can iterate
to specialize Aronszajn trees on ^ in the extension by P∗ (see Definition 2.8 for the defi-
nition ofF ). Recall from Lemma 2.9 that P∗ forces that ^ becomesℵ2 and also preserves
theCH; thus there are in fact Aronszajn trees on ^ in any P∗-extension. By Example 2.8,
the collapse poset P is F -strongly proper, and therefore, in the case that P∗ = P, our
results here generalize those of [33] (recall that F = F,� when P∗ = P).

We consider a countable support iteration ¤S = 〈 ¤Sb , ¤S(b) : b < ^+〉 of length ^+,
specializing Aronszajn trees on ^ in the P∗-extension.More precisely, ¤S is a P∗-name for
an iteration with countable support so that for any b < ^+, ¤S(b) is an ¤Sb -name for the
poset ¤S( ¤)b ), where ¤)b is a nice ¤Sb -name for an Aronszajn tree on ^; see Definition 1.4
for the exact definition of posets of the form S()). The selection of the names ¤)b - and
hence the definition of the iteration - is determined by using the fixed well-order C of
� (^+) from Notation 2.6 as a bookkeeping function. In particular, for each b < ^+, the
name ¤Sb is definable in (� (^+), ∈,C) from P∗ and b , and consequently it is a member
of any model which is suitable with respect to P∗ and b . We will use Rb to abbreviate
P∗ ∗ ¤Sb for each b < ^+.

Since the poset Rb is l1-closed, it is straightforward to see that Rb has a dense set
of determined conditions, i.e., conditions (?, ¤5 ) for which there is some function 5 in
+ so that ? 
P∗ ¤5 = 5̌ . The dense set of determined conditions is also closed under
sups of countable increasing sequences. Thus we will assume that all future conditions
are determined.

Notation 3.1. Strictly speaking, the domain of a (determined) condition 5 in Rb is a
countable subset of b , and for each Z ∈ dom( 5 ), 5 (Z) is itself a function whose domain
is a countable subset ofl1. However, we will often make an abuse of notation and write
5 (Z, a) to mean the countable set of tree nodes 5 (Z) (a).

Themain goal of this section is to prove that ¤S is forced to be ^-c.c. For this it suffices
to prove the following:

Theorem 3.1 For every d < ^+ it is forced by the trivial condition of P∗ that ¤Sd is ^-c.c.

We will prove Theorem 3.1 by induction on d. Doing so will require two induction
hypotheses, the first of which is the following:

Inductive Hypothesis I: For each b < d, P∗ 
 ¤Sb is ^-c.c.

We will assume Inductive Hypothesis I throughout the entire section. Later in the
section, after developing more of the theory, we will introduce a second, more technical
inductive hypothesis; we state this after Remark 3.6. Though we assume the first induc-
tive hypothesis throughout, we will only use the second inductive hypothesis once it is
introduced, and the results prior to the statement thereof do not require it.

The rest of the section will proceed as follows. We will first establish, in Proposition
3.2, that for all b < d, there are plenty of intermediate generic extensions between +
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and the fullRb -extension inwhich various restrictions of Aronszajn trees are Aronszajn
in the intermediate model. In light of this, we will define analogues of the “hashtag" and
“star" principles from [33]; the former will say that two conditions have the same restric-
tion to a givenmodel, whereas the latter says that two conditions have a dual residue to a
given model. Afterwards, we define the notion of a splitting pair of conditions, a notion
which will play a key role in later amalgamation arguments. Next, we will state our sec-
ond induction hypothesis, which describes the interplay between the star and hashtag
principles. Using the second induction hypothesis, wewill prove that splitting pairs exist
and isolate sufficient conditions under which they can be amalgamated (see Lemma 3.8).
Finally, we show that ¤Sd is forced to be ^-c.c., and we verify that the second induction
hypothesis holds at d. As mentioned in Remark 1.6(1), the only substantial use of the
ineffability of ^ is in verifying that the second induction hypothesis holds at ^.

Definition 3.2 Let�∗ be+-generic over P∗. If b ≤ d, 5 ∈ Sb , and 5̄ is a function (not
necessarily a condition), we write 5 ≥ 5̄ to mean that dom( 5̄ ) ⊆ dom( 5 ) and for all
〈Z, a〉 ∈ dom( 5̄ ), 5̄ (Z, a) ⊆ 5 (Z, a).

The next item establishes the existence of the desired intermediate generic exten-
sions between + and + [Rb ] for b < d, and in turn the existence of plenty of residues.
We recommend recalling Lemma 2.11 and Notation 1.7 before reading the proof. In
the statement of the following proposition, we will assume that the various names are
nice names for subsets of� (^+). Thus, in light of our discussion about determined con-
ditions, the name ¤SZ will be viewed as a union of sets of the form { 5 } × � 5 , where
5 : Z × l1 ⇀ ^ × l1 is a countable partial function and � 5 ⊆ P∗ is an antichain. This
will ensure, for instance, that ¤SZ∩"U is really a (P∗∩"U)-name. Similar considerations
apply to the RZ -name ¤)Z .

Proposition 3.2 Suppose that ®" is Rd-suitable. Then there exists �∗ ⊆ dom( ®") with
dom( ®")\�∗ ∈ I so that for any U ∈ �∗, for any residue pair 〈?∗ ("U), i"U〉 for
("U, P

∗), and for any Z ∈ "U ∩ d, the following are true:

(1) (?∗ ("U), 0 ¤SZ ) forces that ¤�RZ ∩ "U is a+-generic filter for RZ ∩ "U;
(2) (?∗ ("U), 0 ¤SZ ) forces that ¤)Z ∩ (ľ1 × Ǔ) = ( ¤)Z ∩ "U) [ ¤�RZ ∩ "U];
(3) (P∗ ∩ "U) 
 ( ¤SZ ∩ "U) is U-c.c. Furthermore, (RZ ∩ "U) 
 ¤)Z ∩ "U is an

Aronszajn tree on U = ¤ℵ2.

Proof Fix an Rd-suitable sequence ®" , and let � := dom( ®") so that � ∈ F + by Defi-
nition 2.7. Since P∗ is F -strongly proper, we may assume that � satisfies the conclusion
of Definition 2.8, by removing an I-null set if necessary. Our goal is to show that each
of (1)-(3) fail only on a set in I. Thus we define �1 to be the set of U ∈ � so that for
some Z ∈ "U and some residue pair 〈?∗ ("U), i"U〉, (1) fails for these objects; we
define �2 to be the set of U ∈ � so that for some Z ∈ "U ∩ d and some residue pair
〈?∗ ("U), i"U〉, (2) fails for "U and Z ; and we define �3 similarly. We show that each
of these is in I.
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18 O. Ben-Neria and T.D. Gilton

Suppose for a contradiction that �8 ∈ F + for some 8 ∈ {1, 2, 3}. Then �8 ∈ F +,�

sinceF,� ⊆ F . Let"∗ be a ^model containing �8 aswell as the sequence ®" . Applying
Proposition 1.4, we may fix an "∗-normal ultrafilter * containing �8 , and we let 9 :
"∗ −→ # be the induced ultrapower embedding. In particular ^ ∈ 9 (�8).

Let "^ := 9 ( ®") (^). Fix Z∗ ∈ "^ ∩ 9 (d) for the remainder of the proof which
witnesses the relevant failure of (1), (2), or (3) on the 9-side. Since "^ = 9 [

⋃
U∈� "U] ,

by Lemma 2.11, we have that Z∗ ∈ ran( 9), and so Z∗ = 9 (Z) for some Z < d. Moreover,
"^ ∩ 9 (P∗) = 9 [P∗].

Case 1: 8 = 1 Since ^ ∈ 9 (�1), we may fix a residue pair 〈?∗ ("^ ), i"^ 〉 for
("^ , 9 (P∗)) so that (?∗ ("^ ), 0 9 ( ¤SZ ) ) does not force that ¤� 9 (RZ ) ∩ "^ is generic over
9 (RZ ) ∩ "U.

To obtain our contradiction, we show that (?∗ ("^ ), 0 9 ( ¤SZ ) ) in fact does force
that ¤� 9 (RZ ) ∩ "^ is generic over 9 (RZ ) ∩ "^ . Thus fix an extension (@∗, ¤6) of
(?∗ ("^ ), 0 9 ( ¤SZ ) ) in 9 (RZ ). Let �

∗ ∈ # be a maximal antichain of 9 (RZ ) ∩ "^ =

9 [RZ ] , and we will find some extension of (@∗, ¤6) which forces that �∗ ∩ ¤� 9 (RZ ) ≠ ∅.
Since @∗ extends ?∗ ("^ ) in 9 (P∗) and i"^ is an exact, strong residue function, we
may extend and relabel, if necessary, to assume that @∗ ∈ dom(i"^ ). Then i"^ (@∗) ∈
9 (P∗) ∩ "^ = 9 [P∗]. Therefore i"^ (@∗) = 9 (@) for some @ ∈ P∗.

Now let � := 9−1 [�∗]; since �∗ is a maximal antichain in 9 [RZ ] , � is a maximal
antichain inRZ . However, note that sinceRZ is not necessarily ^-c.c., � could very well
have size ^, and therefore we cannot assume that it is an element of "∗. Until after
the proof of the next claim, we will work in + , not "∗. Let ¤�(1) be the P∗-name for{
5 ∈ ¤SZ : (∃? ∈ ¤�P∗ ) (?, 5 ) ∈ �

}
. Then @ 
 ¤�(1) is a maximal antichain in ¤SZ .

Since P∗ 
 ¤SZ is ^-c.c., by Inductive Hypothesis I, we may extend @ in P∗ to some
condition @′ and find an ordinal V < ^ and a sequence 〈 ¤5W : W < V〉 of P∗-names so that

@′ 
+P∗
¤�(1) =

{ ¤5W : W < V
}
.

Since a given ¤5W needn’t be a member of "∗, we show how to replace these names with
ones that are in "∗, up to extending @′.

Claim. There exist a condition D ≥P∗ @′ and a sequence of P∗-names 〈 ¤ℎW : W < V〉 in
"∗ so that D 
+ (∀W < V) ¤ℎW = ¤5W . �

Proof.To find D, let�∗ be a+-generic filter overP∗ containing @′. ThenSZ := ¤SZ [�∗] ⊆⋃
[∈� "[ [�∗] , sinceRZ ⊆

⋃
[∈� "[ . Since ^ = ℵ+ [�

∗ ]
2 and V < ^, there exists some

[ ∈ � so that for all W < V, ¤5W [�∗] ∈ "[ [�∗]. By Lemma 2.13, there exists a X ≥ [
so that ?∗ ("X) ∈ �∗. Now let D ∈ �∗ be an extension of ?∗ ("X) and @′ so that
D 
 (∀W < V) ¤5W ∈ "X [ ¤�P∗ ].

Back in + we define new names ¤ℎW for each W < V; recalling Notation 3.1, we view
conditions in ¤SZ as having a domain which is a countable subset of Z × l1 so that each
element in the range is a countable subset of ^ × l1.

For each W < V, each Z̄ ∈ Z ∩"X (an iteration stage), each a < l1 (corresponding to
the ath tree antichain), and each \ ∈ X×l1 (a nodewith height below X), let �(W, Z̄ , a, \)
be a maximal antichain in P∗ ∩ "X of conditions ? which decide whether or not \ is a
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Club Stationary Reflection and the Special Aronszajn Tree Property 19

member of ¤5W ( Z̄ , a). Let ¤ℎW be the P∗-name which is interpreted in an arbitrary generic
extension via some�∗ as follows: \ ∈ ℎW ( Z̄ , a) iff there is some ? ∈ �(W, Z̄ , a, \) ∩�∗
which forces that \ ∈ ¤5W ( Z̄ , a). Otherwise ℎW is undefined.

We claim that D 
+ (∀W < V) ¤ℎW = ¤5W . To see this, let �∗ be a +-generic filter
containing D. Fix Z̄ < Z and a < l1, and we verify that 5W ( Z̄ , a) = ℎW ( Z̄ , a). On the one
hand, if \ ∈ ℎW ( Z̄ , a), then by definition 5W ( Z̄ , a) is defined and also contains the node
\.

On the other hand, if g ∈ 5W ( Z̄ , a) is a node, then since 5W ∈ "X [�∗] has a countable
domain, Z̄ ∈ "X [�∗] , and since 5W ( Z̄ , a) ∈ "X [�∗] is countable, g ∈ "X [�∗] too.
But "X [�∗] ∩ + = "X , since D ∈ �∗ is a (strongly) ("X , P

∗)-generic condition (as
it extends ?∗ ("X)). Hence Z̄ , g ∈ "X . Thus Z̄ ∈ "X ∩ Z and g has height below
"X ∩ ^ = X. Next, since D is a strongly ("X , P

∗)-generic condition which is in�∗, and
since �(W, Z̄ , a, g) is amaximal antichainP∗∩"X , we know that �(W, Z̄ , a, g)∩�∗ ≠ ∅,
say with D̄ in the intersection. But as g ∈ 5W ( Z̄ , a), we must have that D̄ forces that
g ∈ ¤5W ( Z̄ , a), and hence g ∈ ℎW ( Z̄ , a). This completes the proof that D 
 ¤5W = ¤ℎW for
each W < V.

Finally, since "∗ is < ^-closed, the sequence of antichains

〈�(W, Z̄ , a, \) : W < V, Z̄ ∈ "X ∩ Z, a < l1, \ ∈ (X × l1)〉

is a member of "∗. Therefore, the sequence 〈 ¤ℎW : W < V〉 is a member of "∗ too.
�(Claim 3.3)

Continuing with the main body of the argument, let D ≥P∗ @′ and 〈 ¤ℎW : W < V〉
witness the above claim. Since @′ 
P∗ ¤�(1) =

{ ¤5W : W < V
}
and D ≥ @′, we have

(∗) D 
P∗
{ ¤ℎW : W < V

}
is a maximal antichain in ¤SZ .

Since 〈 ¤ℎW : W < V〉 and D are in "∗, (∗) is satisfied in "∗. Applying 9 ,

9 (D) 
#
9 (P∗)

{
9 ( ¤ℎW) : W < V

}
is a maximal antichain in 9 ( ¤SZ ).

Next, D ≥P∗ @′ ≥P∗ @ so 9 (D) ≥ 9 (P∗) 9 (@) = i"^ (@∗), and 9 (D) ∈ 9 [P∗] ⊆ "^ so
9 (D) and @∗ are compatible in 9 (P∗). Let @∗∗ be a condition extending both of themwith
i"^ (@∗∗) ≥ 9 (D). Since @∗∗ extends @∗, which forces that ¤6 is a condition in 9 ( ¤SZ ), @∗∗
forces this too. As @∗∗ ≥ 9 (D) also forces that

{
9 ( ¤ℎW) : W < V

}
is a maximal antichain

in 9 ( ¤SZ ), we may find an extension A∗ of @∗∗, a 9 (P∗)-name ¤6∗, and an ordinal W < V so
that

A∗ 
 ¤6∗ ≥ ¤6, 9 ( ¤ℎW).
We may also extend, if necessary, to assume that A∗ ∈ dom(i"^ ), since A∗ ≥ @∗ ≥
?∗ ("^ ). Let A ∈ P∗ so that i"^ (A∗) = 9 (A).

Now A∗ ≥ 9 (P∗) @∗∗ are both in dom(i"^ ). Since i"^ is order-preserving, 9 (A) =
i"^ (A∗) ≥ i"^ (@∗∗) ≥ 9 (D). Then A ≥ D. As a result, A 
+ ¤ℎW = ¤5W ∈ ¤�(1).
By definition of ¤�(1), we may find some P∗-extension A ′ of A so that (A ′, ¤ℎW) extends
some element (A ′0, ¤5 ) of �. Then 9 (A ′0, ¤5 ) ∈ �∗, as � = 9−1 [�∗]. Since A ′ extends A in
P∗, we get that 9 (A ′) ≥ 9 (P∗) 9 (A) = i"^ (A∗). So 9 (A ′) and A∗ are compatible in 9 (P∗).
Let A∗∗ be a condition extending both of them. Then (A∗∗, ¤6∗) extends 9 (A ′0, ¤5 ). Indeed,
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20 O. Ben-Neria and T.D. Gilton

A∗∗ extends 9 (A ′) which extends 9 (A ′0). Furthermore, A∗∗ extends A∗ which forces that
¤6∗ ≥ 9 ( ¤ℎW), and A∗ extends 9 (A ′) which forces that 9 ( ¤ℎW) ≥ 9 ( ¤5 ). Thus (A∗∗, ¤6∗)
extends 9 (A ′0, ¤5 ), and therefore

(A∗∗, ¤6∗) 
 9 (RZ ) 9 (A ′0, ¤5 ) ∈ �∗ ∩ ¤� 9 (RZ ) ≠ ∅.

However, (A∗∗, ¤6∗) also extends the starting condition (@∗, ¤6). This finishes the proof
that ^ is not a member of 9 (�1), which contradicts our initial case assumption other-
wise.

Case 2: 8 = 2 In this case, we are assuming that ^ ∈ 9 (�2), and we will
derive a contradiction. Let 〈?∗ ("^ ), i"^ 〉 be a residue pair for ("^ , 9 (P∗)) so that
(?∗ ("^ ), 0 9 ( ¤SZ ) ) does not force the desired equality. We will show, however, that this
residue pair does in fact force the desired equality.

Towards this end, let �∗ be +-generic for 9 (RZ ) containing (?∗ ("^ ), 0 9 ( ¤SZ ) ), and
let �̄∗ := �∗ ∩ "^ which, by item (1), is a+-generic filter over 9 (RZ ) ∩ "^ = 9 [RZ ].
Let� := 9−1 [�̄∗] , which is+-generic over RZ . Let 9 ()Z ) denote 9 ( ¤)Z ) [�∗] , let )Z :=
¤)Z [�] , and let ) ′Z := ( 9 ( ¤)Z ) ∩ "^ ) [�̄∗] = 9 [ ¤)Z ] [�̄∗].
Since ¤)Z is a nice RZ -name for a tree order on ^, for each g, \ ∈ ^ × l1, there exists

an antichain �\,g of RZ so that, letting op(\, g) denote the canonical name for 〈\, g〉,

< ¤)Z =
⋃ {
{op(\, g)} × �\,g : \, g < ^

}
.

It is straightforward to see from this that )Z = ) ′
Z
. So we will show that )Z equals

the restriction of 9 ()Z ) to ^ × l1. However, we know that 9 : "∗ −→ # lifts to
9 : "∗ [�] −→ # [�∗] , since 9 [�] = �̄∗ ⊆ �∗ and since each of the filters is generic
over the appropriatemodels. From this it follows that)Z = 9 ()Z )∩ (^×l1). Therefore,
the equality in (2) is in fact satisfied, which contradicts the assumption that ^ ∈ 9 (�2).

Case 3: 8 = 3 Let 9 (@) ∈ 9 [P∗] = 9 (P∗) ∩ "^ be a condition forcing that ¤� is
a name for a ^-sized antichain in 9 ( ¤SZ ) ∩ "^ . Since � satisfies Definition 2.8, and
since �1 ⊆ � is in *, we may fix a residue pair (?∗ ("^ ), i"^ ) for ("^ , 9 (P∗)).
Let @∗ ≥ @, ?∗ ("^ ) be a condition, and let �∗ be a +-generic filter over 9 (P∗) con-
taining @∗. Then �̄∗ is a +-generic filter over 9 (P∗) ∩ "^ = 9 [P∗]. We recall that
9−1 : "^ −→

⋃
U∈�1 "U is the transitive collapse, and that 9−1 lifts in the stan-

dard way from "^ [�∗] to (
⋃
U∈�1 "U) [�]. Now let � := ¤�[�̄∗] so that � is an

antichain in ( 9 ( ¤SZ ) ∩ "^ ) [�̄∗] = 9 [ ¤SZ ] [�̄∗] = 9 ( ¤SZ [�∗]) ∩ "^ [�∗]. Also, � is
a member of + [�̄∗] and has size ^ there. Applying the elementarity of 9−1, we have
that 9−1 [�] =: �̄ is an antichain in ¤SZ [�] , where � := 9−1 [�̄∗] is +-generic over P∗.
Finally, �̄ ∈ + [�] since 9−1 [ ¤�] is a P∗-name in + and �̄ = 9−1 [ ¤�] [�]. Since �̄ has
size ^ in+ [�] = + [�̄∗] , this contradicts the assumption that P∗ 
 ¤SZ is ^-c.c.

For the “furthermore" part of (3), suppose now that ¤1′ is a 9 (RZ )∩"^ = 9 [RZ ]-name
which 9 (@) forces is a branch through 9 ( ¤)Z ) ∩ "^ . Fix @∗ and �∗ as in the previ-
ous paragraph. Then by (2), we see that 9 ( ¤)Z ) [�∗] ∩ (^ × l1) = ¤)Z [�]. Moreover,
9 ( ¤)Z ) [�∗] ∩ (^ ×l1) = 9 ( ¤)Z ) [�∗] ∩"^ [�∗] = ( 9 ( ¤)Z ) ∩"^ ) [�̄∗]. Thus ¤1′[�̄∗] is
a branch through)Z := ¤)Z [�]. But ¤1′[�̄∗] is a member of+ [�̄∗] and+ [�̄∗] = + [�].
Thus )Z is not Aronszajn in+ [�] , a contradiction.
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Thus we see that ^ cannot be a member of 9 (�3), completing Case 3 and thereby the
proof.

In both the previous result and Definition 2.8, there was the apparent necessity of
refining the domain of a suitable sequence so that various desired behavior obtains on
each level of the refined sequence. The next item amalgamates this into one definition
which we use frequently throughout.

Definition 3.4 Let ®" be an Rd-suitable sequence. We say that ®" is in pre-splitting
configuration up to d if there is a residue system 〈〈?∗ ("U), i"U〉 : U ∈ dom( ®")〉
satisfying items (1) and (2) of Definition 2.8 (with respect to P∗) as well as items (1)-(3)
of Proposition 3.2 for all U ∈ dom( ®") (with respect to Rd).

Definition 3.5 Suppose that ®" is in pre-splitting configuration up to d, b ≤ d, and
U ∈ dom( ®") so that b ∈ "U. Fix a residue pair 〈?∗ ("U), i"U〉 for ("U, P

∗).

(1) For a (determined) condition (?, 5 ), we define 5 � "U to be the function 5̄ with
domain dom( 5 ) ∩ "U so that for each 〈Z, a〉 ∈ dom( 5 ) ∩ "U ,

5̄ (Z, a) = 5 (Z, a) ∩ "U .

(2) We define � (i"U , b) to be the set of conditions (?, 5 ) ∈ Rb so that ? ∈
dom(i"U ) and (i"U (?), 5 � "U) is a condition inRb (and hence inRb ∩"U).

(3) If (?, 5 ) ∈ � (i"U , b), wemake a slight abuse of notation and define (?, 5 ) � "U

to be the pair (i"U (?), 5 � "U), when i"U is clear from context.

We observe that in general, for (?, 5 ) ∈ � (i"U , b), although (?, 5 ) � "U ∈ Rb ∩
"U is a condition, it need not be a residue of (?, 5 ) to"U in the sense that it is possible
for some (?′, 5 ′) ∈ Rb ∩ "U which extends (?, 5 ) � "U to not be compatible with
(?, 5 ). However, (?, 5 ) � "U must have some extension ( ?̄, 5̄ ) ∈ Rb ∩ "U which is
a residue of (?, 5 ). This is because if � ⊆ Rb is +-generic and contains (?, 5 ), then
by Proposition 3.2 and the definition of pre-splitting configuration, �̄ := � ∩ "U is
+-generic over Rb ∩ "U and (?, 5 ) � "U ∈ �̄ . Since (?, 5 ) ∈ � is compatible with
every condition in �̄ , there must be some ( ?̄, 5̄ ) ∈ �̄ which extends (?, 5 ) � "U and
is a residue of (?, 5 ), by Lemma 2.3.

Lemma 3.3 Suppose that ®" is in pre-splitting configuration up to d. Then for each U ∈
dom( ®"), each residue pair 〈?∗ ("U), i"U〉 for ("U, P

∗), and each b ≤ d with b ∈ "U ,
� (i"U , b) is dense and =∗-countably closed in (P∗/?∗ ("U)) ∗ ¤Sb .

Proof Wewill first prove the result for b < d and then use this to prove the result at d.
Note that the =∗-countable closure of � (i"U , b), in either case for b , follows from the
continuity of i"U and the=∗-countable closure of the posets. We therefore concentrate
on showing density.

Let (?0, 50) ∈ Rb be given with ?0 ≥ ?∗ ("U). By the observations following Defi-
nition 3.5,wemaybuild increasing sequences 〈(?=, 5=) : = ∈ l〉 and 〈( ?̄=, 5̄=) : = ∈ l〉
so that
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(i) ( ?̄=, 5̄=) is a residue of (?=, 5=) to "U with ?̄= extending i"U (?=) and with 5̄=
extending the function 5= � "U in the sense of Definition 3.2 (note that 5= � "U

needn’t be forced by i"U (?=) to be a condition);
(ii) (?=+1, 5=+1) extends both (?=, 5=) and ( ?̄=, 5̄=);
(iii) ?=+1 ∈ dom(i"U ) and i"U (?=+1) ≥ ?̄=.

Now let (?∗, 5 ∗) be a sup of 〈(?=, 5=) : = ∈ l〉. Note that ?∗ ∈ dom(i"U ) since
?= ∈ dom(i"U ) for each = and also that i"U (?∗) is a sup of 〈i"U (?=) : = ∈ l〉. We
claim that (i"U (?∗), 5 ∗ � "U) is a condition. Now i"U (?∗) ≥ i"U (?=+1) ≥ ?̄=
for each =, so i"U (?∗) forces that 〈 5̄= : = ∈ l〉 is an increasing sequence of conditions
in ¤Sb , and therefore forces that

⋃
= 5̄= is a condition too. However, 5̄=+1 extends (in

the sense of Definition 3.2) 5=+1 � "U which extends 5̄= for all =. Therefore
⋃
= 5̄= =⋃

= ( 5= � "U) = (
⋃
= 5=) � "U = 5 ∗ � "U , which finishes the claim.

Nowwe show that the lemmaholds for b = d.We dealwith d limit first. If cf(d) > l,
then the result holds since any (?, 5 ) ∈ Rd is inRb for some b < d. On the other hand,
if cf(d) = l, then let 〈b= : = ∈ l〉 be an increasing sequence of ordinals in "U which
is cofinal in d. By applying the lemma below d, we define an increasing sequence of
extensions 〈(?=, 5=) : = ∈ l〉 of (?, 5 ) so that 5= � [b=, d) = 5 � [b=, d) and so that
(?=, 5= � b=) ∈ � (i"U , b=). Now let ?∗ be a sup of 〈?= : = ∈ l〉 and 5 ∗ :=

⋃
= 5=.

Then (?∗, 5 ∗) extends (?, 5 ) and is a member of � (i"U , d).
Finally, assume that d = d0 + 1 is a successor, and let (?, ℎ) ∈ Rd be given. By the

remarks after Definition 3.5, we may find a residue ( ?̄, ℎ̄0) of (?, ℎ � d0) to "U with
respect to the posetRd0 . RecallingNotation 3.1, we use ℎ(d0)∩"U inwhat follows as an
abuse of notation for 〈ℎ(d0) (a) ∩ "U : a ∈ dom(ℎ(d0))〉. By the elementarity of "U

and the fact that ℎ(d0) ∩ "U is a member of "U , we may find an extension of ( ?̄, ℎ̄0),
say ( ?̄′, ℎ̄′0), which either forces that ℎ(d0) ∩"U ∈ ¤S(d0) or forces that ℎ(d0) ∩"U ∉
¤S(d0). Since ( ?̄′, ℎ̄′0) extends ( ?̄, ℎ̄0), it is compatible with (?, ℎ � d0), and hence it
must force that ℎ(d0) ∩"U ∈ ¤S(d0). Finally, since � (i"U , d0) is dense and d0 ∈ "U ,
we may find an extension (@, 60) of ( ?̄′, ℎ̄′0) and (?, ℎ � d0) which is in � (i"U , d0)
and which satisfies that i"U (@) ≥ ?̄′. Then (@, 60) � "U is a condition which forces
that ℎ(d0) ∩ "U is a condition in ¤S(d0). Thus (i"U (@), (60 � "U)⌢〈ℎ(d0) ∩ "U〉)
is a condition and equals (@, 6⌢0 〈ℎ(d0)〉) � "U. �

Notation 3.6. We will often find it useful to denote conditions in Rb by the letters
D, E and F. If D ∈ Rb , we write ?D and 5D to denote the objects so that D = (?D , 5D).
Furthermore, if Z ≤ b , then we write D � Z to denote the pair (?D , 5D � Z), which
restricts the length. This should not be confused with D � "U = (i"U (?), 5 � "U)
from Definition 3.5, which restricts the height.

The following definitions of # and ∗ are taken from [33] and modified to the current
presentation. The dual residue property defined in (2) of the upcoming definition is the
natural translation into the current situation of the statement that “# implies ∗" atU from
[33].

Definition 3.7 Suppose that ®" is in pre-splitting configuration up to d, that U ∈
dom( ®"), and that Z ≤ d is in "U.
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(1) Fix conditions D, E ∈ RZ and F ∈ RZ ∩ "U. Fix a residue pair 〈?∗ ("U), i"U〉
for ("U, P

∗).
(a) We say that

#Z
i"U
(D, E, F)

holds if D, E ∈ � (i"U , Z) and D � "U =
∗ F =∗ E � "U.2

(b) We say that
∗Z
i"U
(D, E, F)

holds if D, E ∈ � (i"U , Z) and if F ≥ D � "U, E � "U is a dual residue for
D and E (see Definition 2.2).3

(2) We say that RZ satisfies the dual residue property at "U if for any residue pair
〈?∗ ("U), i"U〉 for ("U, P

∗) and any conditions D, E, F so that #Z
i"U
(D, E, F)

holds, there exists F∗ ≥RZ∩"U
F so that ∗Z

i"U
(D, E, F∗) holds.

Lemma 3.4 Suppose that ∗Z
i"U
(D, E, F) holds and that � is dense and countably =∗-closed

in RZ /(?∗ ("U), 0 ¤SZ ). Then:

(1) there exist D′ ≥ D, E′ ≥ E with D′, E′ ∈ � and there exists F′ ≥ F so that D′ � "U ≥
F, E′ � "U ≥ F, and ∗Zi"U

(D′, E′, F′) hold;
(2) there exist D∗ ≥ D and E∗ ≥ E with D∗, E∗ ∈ � , and there exists F∗ ≥ F so that

#Z
i"U
(D∗, E∗, F∗) holds.

Proof First define � to be the set of conditions B in RZ /(?∗ ("U), 0 ¤SZ ) so that B ∈
� (i"U , Z) ∩� and so that either B � "U ≥ F or B � "U is incompatible withF; then
� is dense inRZ /(?∗ ("U), 0 ¤SZ ). Now fix a+-generic filter �̄ overRZ ∩"U containing
F, and note that D and E are in (RZ /(?∗ ("U), 0 ¤SZ ))/�̄ . By Lemma 2.4(2), we can find
D′ ≥ D and E′ ≥ E so that D′, E′ are in � as well as in (RZ /(?∗ ("U), 0 ¤SZ ))/�̄ . We next
observe that D′ � "U ∈ �̄ . Indeed, since D′ ∈ � (i"U , Z), D′ � "U is a condition in
RZ ∩"U. Additionally, since D′ ∈ (RZ /(?∗ ("U), 0 ¤SZ ))/�̄ and D′ ≥ D′ � "U , we have
that D′ � "U (a condition) is compatible with every condition in �̄ . Thus D′ � "U ∈ �̄ .
However, by definition of � , and since F ∈ �̄ , D′ � "U must extend F. A symmetric
argument shows that E′ � "U ≥ F.

Now let F′ ∈ �̄ be a condition extending F which forces that D′, E′ are in
(RZ /(?∗ ("U), 0 ¤SZ ))/

¤̄� . By Lemma 2.3, we have that ∗Z
i"U
(D′, E′, F′) holds. Since

D′ � "U and E′ � "U both extend F, this completes the proof of (1).
For (2), suppose that we are given conditions D0, E0, andF0 so that ∗Zi"U

(D0, E0, F0)
holds. By repeatedly applying (1), we may define a coordinate-wise increasing sequence
〈〈D=, E=, F=〉 : = ∈ l〉 so that for all = ∈ l, D=+1 ≥ D= and E=+1 ≥ E=; D=+1 �
"U ≥ F= and E=+1 � "U ≥ F=; and ∗Zi"U

(D=, E=, F=) holds. Let D∗ be a sup of

2Note that if (?, 5 ) and (@, 6) are (determined) conditions with (?, 5 ) =∗ (@, 6) , then 5 = 6.
3One can in fact argue that if F is a dual residue, then it follows that F ≥ D � "U and F ≥ E � "U ;

however, we don’t need this fact.
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〈D= : = ∈ l〉, and let E∗ and F∗ be defined similarly. Since ∗Z
i"U
(D=, E=, F=) holds for

each =, by definition we have that F= ≥ D= � "U, E= � "U. Therefore the sequences
〈D= � "U : = ∈ l〉 and 〈E= � "U : = ∈ l〉 are each intertwined with 〈F= : = ∈ l〉,
and consequently, they have suprema which are =∗-related. It follows by the continuity
of i"U that #Z

i"U
(D∗, E∗, F∗) holds. �

Suppose that ®" is in pre-splitting configuration up to d, that U ∈ dom( ®") and that
Z ∈ "U∩d. Fix \ ∈ (^\U)×l1, a node in the tree ¤)Z of level greater than or equal toU.

Let ¤1Z (\, U) denote theRZ -name for
{
\̄ ∈ U × l1 : \̄ < ¤)Z \

}
. By Proposition 3.2(2),

the condition (?∗ ("U), 0 ¤SZ ) forces that ¤1Z (\, U) is a cofinal branch through ( ¤)Z ∩
"U) [ ¤�RZ∩"U

]. Note that by Proposition 3.2 and the definition of pre-splitting con-
figuration, ( ¤)Z ∩ "U) [�RZ∩"U

] is an Aronsjzan tree on U in the+-generic extension
+ [�RZ∩"U

] over RZ ∩ "U. In light of this, we make the following definition:

Definition 3.8 Let Z < d, U < ^, and 〈\, g〉 be a pair of tree nodes (possibly equal) at
or above level U, which we view as nodes in the tree ¤)Z . We say that two conditions D
and E in RZ split 〈\, g〉 below U in ¤)Z if there exist a level Ū < U and distinct nodes
\̄, ḡ on level Ū so that D 
 \̄ < ¤)Z \ and E 
 ḡ < ¤)Z g. More generally, if Z ≤ b < d

and D′, E′ ∈ Rb , then we say that D′ and E′ split 〈\, g〉 below U in ¤)Z if D = D′ � Z and
E = E′ � Z do.

Lemma 3.5 Suppose that Z ≤ b < d and Rb satisfies the dual residue property at some
"U , where Z ∈ "U (see Definition 3.7). Fix D, E ∈ Rb so that for some F ∈ Rb ∩ "U ,
#b
i"U
(D, E, F). Let 〈\, g〉 be a pair of tree nodes (possibly equal) each of which is at or above

level U. Then there exist extensions D∗ ≥ D, E∗ ≥ E, and F∗ ≥ F so that #b
i"U
(D∗, E∗, F∗)

and so that D∗ and E∗ split 〈\, g〉 below U in ¤)Z .

Proof SinceRb satisfies the dual residue property at"U ,RZ does too, and so wemay
find some F′ ∈ RZ ∩ "U so that F′ ≥RZ F � Z and ∗Z

i"U
(D � Z, E � Z, F′). Fix

a +-generic filter �̄ over RZ ∩ "U containing F′. As a result, D � Z and E � Z are
in (RZ /(?∗ ("U), 0 ¤SZ ))/�̄ . By the discussion preceding Definition 3.8, we know that
D � Z forces in the quotient that ¤1Z (\, U) is a cofinal branch through )̄ := ( ¤)Z ∩
"U) [�̄] , which by Proposition 3.2 is an Aronszajn tree on U in + [�̄]. Consequently,
we may find two conditions D0, D1 which extend D � Z in (RZ /(?∗ ("U), 0 ¤SZ ))/�̄ ,
some level Ū < U, and two distinct nodes \0, \1 on level Ū of )̄ so that D8 forces in
(RZ /(?∗ ("U), 0 ¤SZ ))/�̄ that \8 < ¤)Z \. Since E � Z also forces that ¤1Z (g, U) is a cofinal
branch through )̄ , we may find some extension E0 of E � Z in the quotient so that E0
decides the < ¤)Z -predecessor, say ḡ, of g on level Ū of )̄ . As \0 ≠ \1, there exists some
8 ∈ 2 so that \8 ≠ ḡ. Set \̄ = \8 .

Now fix an extension F′′ of F′ in �̄ so that F′′ forces the following statements: (i)
D8 , E0 are in the quotient; (ii) D8 forces in the quotient that \̄ < ¤)Z \; (iii) E0 forces in the
quotient that ḡ < ¤)Z g.
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By two applications of Lemma 2.4(3), we may find conditions D̄, Ē in the quotient so
that D̄ extends D8 and F′′, so that Ē extends E0 and F′′, and so that D̄, Ē ∈ � (i"U , Z).

We now see that D̄ 
RZ \̄ < ¤)Z \, since

F′′ 
RZ∩"U

(
D8 
(RZ /(?∗ ("U) ,0 ¤SZ ))/

¤̄� \̄ < ¤)Z \

)
and since D̄ ≥ F′′, D8 . Similarly, Ē 
RZ ḡ < ¤)Z g.

Finally, let F̄ ≥ F′′ be a condition in �̄ which forces that D̄ and Ē are in the quotient,
so that by Lemma 2.3, ∗Z

i"U
(D̄, Ē, F̄) holds. By Lemma 3.4, we can find some D̄∗ ≥ D̄,

Ē∗ ≥ Ē, and F̄∗ ≥ F so that #Z
i"U
(D̄∗, Ē∗, F̄∗) holds. Now let D∗ be the condition where

?D∗ = ?D̄∗ , and where 5D∗ = 5D̄∗
⌢ 5D � [Z, b). Let E∗ and F∗ be defined similarly. Then

#b
i"U
(D∗, E∗, F∗), and D∗ and E∗ split 〈\, g〉 below U.

�

One of the most important uses of the dual residue property is to obtain splitting
pairs of conditions. Obtaining such conditions will also crucially use the “exactness"
conditions of Definition 2.8.

Definition 3.9 Suppose that ®" is in pre-splitting configuration up to d.

(1) LetU ∈ dom( ®") and b ∈ "U∩d. Fix a residue pair 〈?∗ ("U), i"U〉 for ("U, P
∗)

and conditions D, E ∈ Rb . We say that D and E are a splitting pair for (i"U , b) if
• for some F ∈ Rb ∩ "U , #b

i"U
(D, E, F);

• for any 〈Z, a〉 ∈ dom( 5D) ∩ dom( 5E ) ∩ "U and any 〈\, g〉 ∈ ( 5D (Z, a)) ×
( 5E (Z, a)), both at or above level U, D and E split 〈\, g〉 below U in ¤)Z .

(2) Given fixed enumerations 5D (Z, a)\(U × l1) = {\= | = < l} and 5E (Z, a)\(U ×
l1) = {g< | < < l} (possibly with repetitions in the case the sets are finite,
nonempty), we define a splitting function to be a function Σ with domain4

dom(Σ) = (dom( 5D) ∩ dom( 5E ) ∩ "U) × l × l,

so that for any 〈Z, a, <, =〉 ∈ dom(Σ), Σ(Z, a, <, =) is a pair 〈\̄, ḡ〉 of tree
nodes satisfying Definition 3.8 with respect to 〈\<, g=〉. We will denote \̄ by
Σ(Z, a, <, =) (!) and ḡ by Σ(Z, a, <, =) (').

Remark 3.6 Let Σ be as in Definition 3.9.

(1) We emphasize the fact that if 〈Z, a, <, =〉 ∈ dom(Σ), then

Σ(Z, a, <, =) (!) ≠ Σ(Z, a, <, =) (')

are two distinct tree nodes on the same level. We will usually suppress explicit
mention of the level.

(2) Any splitting functionΣ is amember of"U since"U is countably closed and since
Σmaps from a countable subset of "U into "U.

4Recall our convention from Notation 3.1 regarding conditions 5D and their domains.
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(3) We only require the splitting pair in Definition 3.9 to split nodes coming from
coordinates which are members of "U. As we will see from Lemma 3.8 and later
thinning out arguments, this is sufficient for our purposes.

Now we are ready to state our second inductive hypothesis, the point of which is
to provide plenty of instances of the dual residue property. We will assume the second
inductive hypothesis for the rest of the section. We again recall the filter F and its dual
ideal I from Definition 2.8.

Inductive Hypothesis II: Let b < d, and suppose that ®" isRb -suitable. Then there
is an � ⊆ dom( ®") with � ∈ I so that for all U ∈ dom( ®")\�, Rb satisfies the dual
residue property at "U.

Now we move to the main part of the proof that P∗ satisfies inductive hypotheses I
and II with respect to d. After a bit more set-up, we will verify inductive hypothesis I for
d and then use this to verify inductive hypothesis II at d.

The following lemma amalgamates instance of the second induction hypothesis
below d, stating that if ®" is d-suitable, then for almost all U ∈ dom( ®") and all
b ∈ "U ∩ d, Rb satisfies the dual residue property at "U. However, we note that
the following lemma is far from showing that the second induction hypothesis holds
at d itself, only asserting (roughly) that it holds up to d. The proof involves a standard
diagonal union, using the normality of I.

Lemma 3.7 Suppose that ®" is Rd-suitable. Then there is an � ⊆ dom( ®") with � ∈ I so
that for all U ∈ dom( ®")\� and all b ∈ "U ∩ d, Rb satisfies the dual residue property at
"U.

Proof Fix ®" which is Rd-suitable. If d < ^, then the lemma follows by taking the
union of < ^-many sets in I which witness the second induction hypothesis below d.
Suppose, then, that d ≥ ^, and let ℎ : ^ −→ d be the C-least bijection from ^ onto d.
Note that ℎ is in"U for all U ∈ dom( ®") (since d is an element of"U) and that for each
such U, "U ∩ d = ℎ["U ∩ ^]. Next observe that for all b < d, a tail of the sequence
®" is Rb -suitable, since a tail of this sequence contains b as an element and since each
model on ®" is Rd-suitable.

For each b < d, we may then find �b ∈ I so that for all U ∈ dom( ®")\�b , "U is
Rb -suitable and so that Rb satisfies the dual residue property at "U. For each a < ^,
let �a := �ℎ (a) , and let � := ∇a<^�a = {V < ^ : (∃a < V) [V ∈ �a]}. � ∈ I since I
is a normal ideal.

We now claim that for all U ∈ dom( ®") and all b ∈ "U ∩ d, "U is Rb -suitable and
Rb satisfies the dual residue property at "U. So let such U and b be given. b ∈ "U ∩ d,
and hence b = ℎ(ā) for some ā < U. However, U ∉ �, and therefore for all a < U, U ∉
�a = �ℎ (a) . In particular, U ∉ �ℎ ( ā) = �b . Thus by choice of �b , "U is Rb -suitable,
and Rb satisfies the dual residue property at "U. �
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At important parts of the following proofs we will need to understand the circum-
stances under which we can amalgamate conditions in Rd , and in particular, in ¤Sd .We
will often be interested in the following strong sense of amalgamation:

Definition 3.10 Let D, E ∈ Rd so that ?D and ?E are compatible in P∗. We say that 5D
and 5E are strongly compatible over ?D and ?E if for any condition @ ∈ P∗ which
extends ?D and ?E , @ forces that 5̌D ∪ 5̌E ∈ ¤Sd .

The next lemma gives sufficient conditions under which we may amalgamate condi-
tions in Rd whose specializing parts are strongly compatible as above.

Lemma 3.8 Suppose that ®" is in pre-splitting configuration up to d, that U < V are in
dom( ®"), and that 〈?∗ ("U), i"U〉 and 〈?∗ ("V), i"V 〉 are residue pairs for ("U, P

∗)
and ("V , P

∗), respectively. Let 〈DU, EU〉 and 〈DV , EV〉 be two pairs of conditions inRd which
satisfy the following:

(1) 〈DU, EU〉 is a splitting pair for (i"U , d) with splitting function ΣU;
(2) 〈DV , EV〉 is a splitting pair for (i"V , d) with splitting function ΣV ;
(3) ΣU = ΣV ;
(4) there exists F ∈ "U so that #d

i"U
(DU, EU, F) and #d

i
"V
(DV , EV , F) both hold; and

(5) DU, EU ∈ "V .

Then DU and EV are compatible in Rd; in fact, 5DU is strongly compatible with 5EV over ?DU
and ?EV .

Proof We first observe that ?DU and ?EV are compatible in P∗. Indeed, by (4),
i"U (?DU ) =∗ ?F =∗ i"V (?EV ), and by (5), ?DU ∈ "V . Thus as ?DU ≥ i"U (?DU ) ≥
i"V (?EV ), and as i"V is a residue function, ?DU is compatible with ?EV .

Now let @ ∈ P∗ be any common extension of ?DU and ?EV .Wewill argue by induction
on Z ≤ d that @ 
 ( 5̌DU ∪ 5̌EV ) � Z ∈ ¤SZ . Limit stages are immediate. For the successor
stage, suppose that 〈Z, a〉 ∈ dom( 5DU ) ∩ dom( 5EV ) and that we have proven that @ 

( 5̌DU ∪ 5̌EV ) � Z ∈ ¤SZ . Since 5DU ∈ "V by (5), 〈Z, a〉 ∈ "V . Thus 〈Z, a〉 ∈ dom( 5EV ) ∩
"V = dom( 5F ), since F =∗ EV � "V . Since we also have that F =∗ DV � "V ,
it follows that 〈Z, a〉 ∈ dom( 5DV ). Thus 〈Z, a〉 ∈ dom( 5DV ) ∩ dom( 5EV ) ∩ "V =

dom( 5DU )∩dom( 5EU )∩"U , with equality holding by (3) and the definition of a splitting
function. Moreover, Z ∈ "U since 〈Z, a〉 ∈ dom( 5F ) ⊆ "U.

Now pick a pair of distinct nodes 〈\, g〉 ∈ 5DU (Z, a) × 5EV (Z, a), and we will show
that (@, ( 5DU ∪ 5EV ) � Z) forces in RZ that \ and g are ¤)Z -incompatible. If \ is below
level U, then \ ∈ ( 5DU � "U) (Z, a) = 5F (Z, a) ⊆ 5EV (Z, a). Thus (@, 5EV � Z) 
 \, g
are ¤)Z -incompatible, and so (@, ( 5DU ∪ 5EV ) � Z) forces this too. A similar argument
applies if g is below level V.

We therefore assume that \ is at or above level U and g is at or above level V. Let
< and = be chosen so that \ is the <th node in 5DU (Z, a)\(U × l1) and g is the =th
node in 5EV (Z, a)\(V × l1). By assumption (3), letting Σ := ΣU = ΣV , we know that
Σ(Z, a, <, =) (!) andΣ(Z, a, <, =) (') are two distinct nodes on the same level and also
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that

(?DU , 5DU � Z) 
 Σ(Z, a, <, =) (!) < ¤)Z \

and

(?EV , 5EV � Z) 
 Σ(Z, a, <, =) (') < ¤)Z g.

Therefore (@, ( 5DU∪ 5EV ) � Z) forces that g and \ are incompatible in ¤)Z , aswe intended
to show. �

The following item shows howwe can obtain the desired splitting pairs of conditions.

Lemma 3.9 Suppose that ®" is in pre-splitting configuration up to d and that dom( ®")
satisfies the conclusion of Lemma 3.7. Fix U ∈ dom( ®"), and suppose that 〈?∗ ("U), i"U〉
is a residue pair for ("U, P

∗). Finally, fix D, E, F so that #d
i"U
(D, E, F). Then there exist

extensions D∗ ≥ D and E∗ ≥ E so that D∗, E∗ are a splitting pair for (i"U , d).

Proof Fix D, E, F as in the statement of the lemma. We define a coordinate-wise
increasing sequence of triples 〈〈D=, E=, F=〉 : = ∈ l〉 of conditions and a sequence
〈〈Z=, a=, \=, g=〉 : = ∈ l〉 of tuples of ordinals and tree nodes so that 〈D0, E0, F0〉 =
〈D, E, F〉 and so that for each =,

• #d
i"U
(D=, E=, F=) holds;

• 〈Z=, a=〉 ∈ dom( 5D= ) ∩dom( 5E= ) ∩"U and 〈\=, g=〉 ∈ ( 5D= (Z=, a=)\(U×l1)) ×
( 5E= (Z=, a=)\(U × l1)); and

• D=+1 and E=+1 split 〈\=, g=〉 below U.

This is done with respect to some bookkeeping device in such a way that if D∗ is a sup of
〈D= : = ∈ l〉 (and similarly for E∗), then for each 〈Z, a〉 ∈ dom( 5D∗ ) ∩ dom( 5E∗ ) ∩ "U

and each 〈\, g〉 ∈ ( 5D∗ (Z, a)\(U ×l1)) × ( 5E∗ (Z, a)\(U ×l1)), 〈Z, a, \, g〉 appears as
the =th tuple for some =.

To show the successor step, suppose that D=, E= and F= are given, and consider
〈Z=, a=, \=, g=〉. Note that #Z=

i"U
(D= � Z=, E= � Z=, F= � Z=) also holds. Then Lemma

3.5 applies since Z= ∈ "U and since R[ satisfies the dual residue property at "U for
all [ ∈ "U ∩ d. Thus we may find conditions D′= ≥ D= � Z=, E′= ≥ E= � Z=, and
F′= ≥ F= � Z= so that #Z=

i"U
(D′=, E′=, F′=) and so that D′= and E′= split 〈\=, g=〉 below U.

Now define 5D=+1 to be the function which equals 5D′= on Z= and which equals 5D= on
[Z=, d). Also, let D=+1 be the pair (?D′= , 5D=+1 ). Let E=+1 and F=+1 be defined similarly.
Then #d

i"U
(D=+1, E=+1, F=+1) holds and D=+1 and E=+1 split 〈\=, g=〉 below U.

This completes the construction of the sequence. Fix sups D∗, E∗, F∗. Since
#d
i"U
(D=, E=, F=) holds for all =, #d

i"U
(D∗, E∗, F∗) also holds. By the choice of book-

keeping, D∗, E∗ is a splitting pair for (i"U , d), completing the proof. �

Lemma 3.10 Suppose that ®" is in pre-splitting configuration up to d. Suppose that for
each U ∈ dom( ®"), there exist DU, EU which are a splitting pair for (i"U , d), where
〈?∗ ("U), i"U〉 is a residue pair for ("U, P

∗). Then there exists � ⊆ dom( ®") in F + so
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that for any U < V in �, DU, EU ∈ "V , DU � "U =
∗ EV � "V , and DU is compatible with

EV .

Proof Suppose that for each U ∈ dom( ®"), we have a splitting pair DU, EU for
(i"U , d); we also let FU ∈ Rd ∩ "U be a condition witnessing #d

i"U
(DU, EU, FU).

Let ΣU be a splitting function for (DU, EU) with respect to "U , as in Definition 3.9. By
Remark 3.6, ΣU ∈ "U. Now the function on dom( ®") defined by U ↦→ 〈FU,ΣU〉 is
regressive (since the pair can be coded by an ordinal below U). Since dom( ®") ∈ F +
and F is normal, there exists some � ⊆ dom( ®") which is also in F + on which that
function takes a constant value, say 〈F̄,Σ〉. Moreover, by intersecting with a club and
relabelling if necessary, we may assume that if U < V are in �, then DU, EU ∈ "V . But
then for any U < V in �, we have that DU � "U =

∗ F̄ =∗ EV � "V . Therefore, for all
U < V in �, the assumptions of Lemma 3.8 are satisfied, and consequently DU and EV
are compatible. �

Proposition 3.11 P∗ 
 ¤Sd is ^-c.c.

Proof Let ? ∈ P∗ be a condition, and suppose that ? 
 〈 ¤5W : W < ^〉 is a sequence of
conditions in ¤Sd . We will find some extension ?∗ of ? which forces that this sequence
does not enumerate an antichain.

Let ®" be a sequence which is suitable with respect to the three parametersRd , ? and
〈 ¤5W : W < ^〉, andwhich is in pre-splitting configuration up to d. By removing anI-null
set, we may assume that dom( ®") satisfies the conclusion of Lemma 3.7.

Let � := dom( ®"). Since ®" is in pre-splitting configuration up to d, let
〈〈?∗ ("U), i"U〉 : U ∈ �〉 be a residue system. For each U ∈ �, ? ∈ P∗ ∩ "U , and
therefore we may find some extension ?U of ? so that ?U ∈ dom(i"U ). We may also
assume that for some function 5U in + , ?U 
P∗ ¤5U = 5̌U. Now extend 〈?U, 5U〉 to
a condition DU in � (i"U , d). By Lemma 3.9, we may further extend DU to a splitting
pair 〈D∗U, E∗U〉 for (i"U , d). By Lemma 3.10, we may find some �∗ ⊆ � with �∗ ∈ F +
so that for all U < V in �∗, D∗U and E∗

V
are compatible. Let F be a condition extending

them both. Then ?F forces that 5̌F extends both 5̌D∗U and 5̌E∗V and hence extends ¤5U and
¤5V . Therefore ?F forces that ¤5U and ¤5V are compatible in ¤Sd . �

We are now ready to verify that the second induction hypothesis holds at d. We again
remark that this proposition (and the later results which build off of it) is the only place
in our workwhere we need the ineffability of ^. In all other cases, the weak compactness
of ^ suffices.

Proposition 3.12 Suppose that ®" is in pre-splitting configuration up to d. Then there is an
� ∈ I so that for all U ∈ dom( ®")\�, Rd satisfies the dual residue property at "U.

Proof We only deal with the case when P∗ is not just the collapse poset P (and hence
we’re in the case where ^ is ineffable, and F = F8=). The case when P∗ is the collapse P
is simpler and taken care of in [33].
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Suppose otherwise, for a contradiction. Then

� :=
{
U ∈ dom( ®") : Rd does not satisfy the dual residue property at "U

}
is in F +. Moreover, by removing anI-null set if necessary, we may assume that � satis-
fies the conclusion of Lemma 3.7.Wewill derive our contradiction by creating a ^-sized
antichain in Rd for which we can amalgamate many of the P∗-parts. This will then lead
to a ^-sized antichain in Sd in some+-generic extension over P∗.

For each U ∈ �, we fix a residue pair 〈?∗ ("U), i"U〉 for ("U, P
∗) and a triple

〈DU, EU, FU〉 which witnesses thatRd does not satisfy the dual residue property at"U.
Thus #d

i"U
(DU, EU, FU) holds, but for any F∗ ≥Rd∩"U

FU , either F∗ is not a residue
for DU to "U or F∗ is not a residue for EU to "U. In particular, for each such F∗,
we may find a further extension in Rd ∩ "U which is either incompatible with DU or
incompatible with EU in Rd .

By Lemma 3.9, we may extend 〈DU, EU, FU〉 to another triple 〈D∗U, E∗U, F∗U〉 so that
D∗U and E∗U are a splitting pair for "U. By Lemma 3.10, we may find some �∗ ⊆ � with
�∗ ∈ F + so that for all U, V ∈ �∗ with U < V, F∗U =∗ F∗V , D∗U and E∗U are in"V , and D∗U
is compatible with E∗

V
. We let F̄∗ denote a condition which is =∗ equal toF∗U for U ∈ �∗.

Next, for each U < V both in �∗, we define a conditionF∗
U,V

. Fix such U and V. Since
D∗U ∈ "V is compatible with E∗

V
, there is an extension F∗

U,V
of D∗U in Rd ∩ "V which is

a residue for E∗
V
to Rd ∩ "V . Since V ∈ � and since F∗

U,V
is a residue for E∗

V
, we may

further extend (and relabel if necessary) to assume that F∗
U,V

is incompatible with D∗
V
.

Since ?F∗
U,V
≥ ?D∗U ≥ ?∗ ("U), we may further assume that ?F∗

U,V
is in the domain of

i"U .
We now set up an application of the ineffability of ^. For each V ∈ �∗, we define the

function �V by

�V :=
{
(U, F∗U,V) : U ∈ �∗ ∩ V

}
⊆ V × ("V ∩ Rd).

Formally, we ought to apply the ineffability of ^ to a sequence ®�where the U-th element
on the sequence is a subset of U. However, we will work with the sets �V ; this poses
no loss of generality since, by using the C-least bijection from Rd onto ^ and the Gödel
pairing function, we can code �V as a subset of V.

Since ^ is ineffable and �∗ ∈ F +, we can find a subset � of ^ × Rd and a stationary
( ⊆ �∗ so that for all V ∈ (,�∩(V×("V∩Rd)) = �V .We observe that� is a function: if
(U, F) and (U, F′) are both in � , fix some V ∈ ( large enough so thatF, F′ ∈ "V∩Rd .
Then (U, F) and (U, F′) are in � ∩ (V × ("V ∩ Rd)) = �V . Since �V is a function,
F = F′. We can now rephrase the coherence as follows: if V ∈ (, then � � V = �V ,
since � � V and �V are both functions with domain �∗ ∩ V and �V ⊆ � � V.

Next, �∗ ⊆ dom(�). Indeed, for each V ∈ (, � � V = �V , and the domain of �V is
�∗ ∩ V. Since ( is unbounded (in fact stationary) in ^, there are unboundedly-many V
so that � � V = �V , from which the conclusion follows. And finally, if U ∈ �∗ then for
any V ∈ (\(U + 1), � (U) = F∗

U,V
, since � (U) = �V (U) = F∗U,V .

Now we press down residues for conditions indexed by (. Since ( ⊆ �∗ = dom(�),
� (U) is defined for each U ∈ (. And moreover, ?� (U) is in the domain of i"U since
it equals F∗

U,V
for some/any V ∈ (\(U + 1), and since F∗

U,V
is in the domain of i"U .
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Then i"U (?� (U) ) is a condition in "U ∩ Rd , and each such condition can be coded
by an element of U, using the C-least bijection from Rd onto ^. Thus the function U ↦→
i"U (?� (U) ) on ( is regressive, and so we can find a stationary (∗ ⊆ ( so that it has a
constant value, say the condition ?∗∗.

Now fix U < V in (∗, and we will show that ?� (U) and ?� (V) are compatible in P∗.
Indeed, � (U) = F∗

U,V
is an element of "V ∩ Rd . Additionally, ?F∗

U,V
≥ i"U (?F∗

U,V
) =

?∗∗ = i"V (?� (V) ). Thus ?� (U) = ?F∗
U,V

extends, inside of"V , the residue of ?� (V) to
"V . ?� (U) and ?� (V) are therefore compatible in P∗.

However, for such U < V, we also know that � (U) and � (V) are incompatible con-
ditions in Rd , since � (V) extends D∗V and since � (U) = F∗U,V is incompatible with D∗

V
.

Thus if @ is any condition which extends ?� (U) and ?� (V) in P∗, then @ must force that
5� (U) and 5� (V) are incompatible conditions in ¤Sd .

Now we can create our ^-sized antichain of specializing conditions. Let �∗ be
a +-generic filter over P∗ which contains the condition ?∗∗, and recall that ?∗∗ =

i"U (?� (U) ) for all U ∈ (∗. By Lemma 2.13, the set

- :=
{
U ∈ (∗ : ?� (U) ∈ �∗

}
is unbounded in ^. Therefore if U < V are in - , then 5� (U) and 5� (V) are incompatible
conditions in ¤Sd [�]. Since ^ is a cardinal after forcing with P∗ and since - has size ^,
this gives a ^-sized antichain in ¤Sd [�]. This contradicts Proposition 3.11 and completes
the proof. �

Here we comment on the use of the ineffability of ^. In the original Laver-Shelah
argument, P∗ is just the collapse forcing. Thus their entire forcing is ^-c.c. However, in
our set-up, P∗ will in general fail to be ^-c.c., and consequently it is not enough to find
a ^-sized antichain in P∗ ∗ ¤Sd = Rd . Rather, we need to arrange that there is a ^-sized
antichain in Rd for which we can amalgamate plenty of the P∗-parts of the conditions.
This in turn requires that we be able to press down on the residues of the P∗-parts.
Considering the array 〈F∗

U,V
: U, V ∈ �∗∧U < V〉 from the proof of the previous result,

we need to find a stationary ( ⊆ �∗ onwhich, for each U ∈ (, the function on (\(U+1)
taking V to F∗

U,V
is independent of V, say taking value F∗∗U . Then using the stationarity

of (, we pressed down on the residue of F∗∗U . The ineffability of ^ allowed us to create a
function, namely � , out of the above array with dom(�) containing a stationary set on
which the approximations (the �V ) cohere. We were not able to create this function and
set up an application of pressing down just assuming that ^ is weakly compact.

However, in the case that P∗ is just the collapse, then a weakly compact cardinal suf-
fices for the entirety of the argument, since the entire poset P ∗ ¤Sd is then ^-c.c. In this
case, we only need to create an unbounded / ⊆ �∗ on which the function V ↦→ F∗

U,V

is independent of V, for each U ∈ / and V ∈ /\(U + 1); this is because 〈F∗∗U : U ∈ /〉
would then be a ^-sized antichain in P ∗ ¤Sd , a contradiction. / can be constructed by
working inside a ^-model "∗ containing all of the relevant information, for which
there exists an "∗-normal ultrafilter containing � as an element.
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We have now completed the proof of Theorem 3.1. We conclude with a corollary
which adds to that theorem an additional clause about the dual residue property; this
will be useful later.

Corollary 3.13 Suppose that P∗ is F -strongly proper and that ¤S^+ is a P∗-name for a ^+-
length, countable support iteration specializing Aronszajn trees on ^. Then for all d < ^+,

(1) P∗ forces that ¤Sd is ^-c.c.; and
(2) if ®" is in pre-splitting configuration up to d, then there is some � ⊆ dom( ®") with

� ∈ I so that for all U ∈ dom( ®")\�, Rd satisfies the dual residue property at "U.
Hence, for all Z ∈ "U ∩ (d + 1), RZ satisfies the dual residue property at "U.

Proof If the corollary is false, let d be the least such that it fails at d. Then Induction
Hypotheses I and II hold below d, so Propositions 3.11 and 3.12 show that (1) and (2)
hold at d, a contradiction. �

4 F -Strongly Proper Posets and Preserving Stationary Sets

In this section, we will prove that the appropriate quotients preserve stationary sets
of cofinality l ordinals. We will apply this result in Section 6 when we show that our
intended club-adding iteration is F -completely proper (see Definition 5.3). In the first
part of this section, we will prove some helpful lemmas which we use in the second part
to complete proof of the preservation of the relevant stationary sets.

For the remainder of this section, we fix a F -strongly proper poset P∗ and an iter-
ation ¤Sd of length d < ^+ specializing Aronszajn trees in the extension by P∗; see the
beginning of Section 3 for amore precise definition and relevant notation. Note that the
conclusions of Corollary 3.13 hold.

We first prove two lemmas which describe how the residue functions with respect
to two models on a suitable sequence interact. More precisely, suppose we have a suit-
able sequence ®" , where U < V are both in dom( ®") and "U and "V have respective
residue pairs 〈?∗ ("U), i"U〉 and 〈?∗ ("V), i"V 〉 with respect to P∗. A natural ques-
tion is whether, on a dense set, i"U (i"V (@)) =∗ i"U (@), i.e., whether the"U-residue
of the "V-residue is equivalent to the "U-residue. Proposition 4.2 below shows that
this is the case.

Lemma 4.1 Suppose that ®" is P∗-suitable with residue system

〈〈?∗ ("W), i"W 〉 : W ∈ dom( ®")〉

and that U < V are in dom( ®").

(1) For every ? ∈ P∗ that extends both ?∗ ("U) and ?∗ ("V), there is an extension ?∗ ≥P∗
? with ?∗ ∈ dom(i"U ) ∩ dom(i"V ).

(2) �0 (i"U , i"V ) :=
{
@ ∈ dom(i"U ) ∩ dom(i"V ) : i"V (@) ∈ dom(i"U )

}
is

=∗-countably closed and dense in P∗/
{
?∗ ("U), ?∗ ("V)

}
.5

5This denotes the set of A ∈ P∗ which extend both ?∗ ("U) and ?∗ ("V) .
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Proof For (1), we apply a dovetailing construction using the properties of the residue
functions. Define, by recursion, an increasing sequence 〈?= : = ∈ l〉 of extensions of
? so that ?2=+1 ∈ dom(i"U ) and, for = > 0, ?2= ∈ dom(i"V ). Let ?∗ be a sup of
〈?= : = ∈ l〉. Then ?∗ ∈ dom(i"U ) since it is also a sup of 〈?2=+1 : = ∈ l〉, and
?∗ ∈ dom(i"V ) since it is a sup of 〈?2= : = > 0〉.

For (2), fix a condition @−1 ∈ P∗ which extends both ?∗ ("U) and ?∗ ("V), where
by (1) we may assume that @−1 ∈ dom(i"U ) ∩ dom(i"V ). We first make a cosmetic
improvement to @−1 before the main construction. Since @−1 extends both i"V (@−1)
and ?∗ ("U) and since both of these conditions are in"V (using Definition 2.8(2) to see
that ?∗ ("U) ∈ "V ), we may apply the elementarity of "V to find a condition B−1 ∈
"V which extends i"V (@−1) and ?∗ ("U). Now find an extension @0 ≥ @−1 so that
i"V (@0) ≥ B−1, noting that we may assume that @0 ∈ dom(i"U ) ∩ dom(i"V ).

Having completed this modification, we now define, by recursion, an increasing
sequence of conditions 〈@= : = ∈ l〉 in dom(i"U ) ∩ dom(i"V ) and an increas-
ing sequence 〈B= : = ∈ l〉 of conditions in "V ∩ dom(i"U ) so that for each =,
i"V (@=+1) ≥ B= ≥ i"V (@=). So assume that @= is defined. Since i"V (@=) ≥ ?∗ ("U)
(using the previous paragraph for the case = = 0), we may find an extension B= of
i"V (@=) which is a member of "V ∩ dom(i"U ). Then let @=+1 ≥ @= be a condi-
tion with i"V (@=+1) ≥ B=. Finally, let @∗ be a sup of 〈@= : = ∈ l〉, and let B∗ be a
sup of 〈B= : = ∈ l〉, noting by the intertwined construction that B∗ is also a sup of
〈i"V (@=) : = ∈ l〉. By the countable continuity of the residue functions, we have
i"V (@∗) =∗ B∗. But B∗ ∈ dom(i"U ), since it is the sup of the increasing sequence
〈B= : = ∈ l〉 of conditions in dom(i"U ). Consequently, i"V (@∗) is also in dom(i"U ).
Since @−1 in P∗/

{
?∗ ("U), ?∗ ("V)

}
was arbitrary, this completes the proof of (2). �

Proposition 4.2 Suppose that ®" is P∗-suitable with residue system

〈〈?∗ ("W), i"W 〉 : W ∈ dom( ®")〉,

and let U < V be in dom( ®"). Then

� (i"U , i"V ) :=
{
? ∈ P∗ : i"V (?) ∈ dom(i"U ) ∧ i"U (i"V (?)) =∗ i"U (?)

}
is =∗-countably closed and dense in P∗/

{
?∗ ("U), ?∗ ("V)

}
.

Proof We begin by observing that if @ ∈ �0 (i"U , i"V ), then i"U (@) extends
i"U (i"V (@)). Indeed, since @ ∈ dom(i"V ), @ ≥ i"V (@), and since i"U is order-
preserving and both @ and i"V (@) are in dom(i"U ), we conclude that i"U (@) ≥
i"U (i"V (@)).

With this observation in mind, let ? ∈ P∗ extend both ?∗ ("U) and ?∗ ("V),
and by extending further if necessary, we may assume that ? is in �0 (i"U , i"V ).
We will define by recursion an increasing sequence of conditions 〈?= : = ∈ l〉 in
�0 (i"U , i"V ) with ?0 = ? so that for all =,

i"U (i"V (?=+1)) ≥ i"U (?=) ≥ i"U (i"V (?=));

note that all of the above items are defined, by definition of �0 (i"U , i"V ).
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Suppose we are given ?=. As observed earlier, since ?= ∈ �0 (i"U , i"V ), we
have i"U (?=) ≥ i"U (i"V (?=)). Since i"U (?=) extends, in "U , the residue of
i"V (?=) to "U , we may find a condition @ ∈ "V extending i"V (?=) so that
i"U (@) ≥ i"U (?=). Since @ ∈ "V extends i"V (?=), there is an A ≥ ?= so
that i"V (A) ≥ @. Finally, let ?=+1 ≥ A be a condition in �0 (i"U , i"V ). Then
i"V (?=+1) ≥ i"V (A) ≥ @, and hence i"U (i"V (?=+1)) ≥ i"U (@) ≥ i"U (?=).
This completes the construction of the desired sequence.

Let ?∗ be a sup of 〈?= : = ∈ l〉. It is straightforward to verify that it witnesses the
lemma. �

The last lemma that we will need before turning to the main result of this section is a
technical refinement of Lemma3.9which isolates circumstances inwhich forU < V < ^
as above, we can find splitting pairs D, E for ("U, d) with the additional property that
D � "V and E � "V also form a splitting pair for ("U, d). Moreover, D � "V and
E � "V will split the nodes on levels between U and V in the same way that D and E do.
For the statement of the next result, recall the way we denote restriction of (iteration)
length ? � b , and restriction in the poset height, ? � "U , from Notation 3.6.

Lemma 4.3 Suppose that ®" is in pre-splitting configuration up to d and that dom( ®")
satisfies the conclusion of Corollary 3.13(2). Suppose U < V are both in dom( ®") and that
〈?∗ ("U), i"U〉 and 〈?∗ ("V), i"V 〉 are residue pairs for ("U, P

∗) and ("V , P
∗) respec-

tively. Finally, fix a condition D ∈ Rd with ?D ∈ dom(i"U ) ∩ dom(i"V ). Then there
exist a splitting pair (D∗, E∗) for (i"U , d) extending D and a splitting function Σ satisfying
the following:

(1) ?D∗ and ?E∗ are both in � (i"U , i"V ) (see Proposition 4.2);
(2) (D∗ � "V , E

∗ � "V) is also an ("U, d)-splitting pair, and for any tuple
(Z, a, <, =) ∈ dom(Σ) so that the <-th node of 5D∗ (Z, a)\(U × l1) and the =-th
node of 5E∗ (Z, a)\(U × l1) are both in "V ,

(i"V (?D∗ ), ( 5D∗ � "V) � Z) 
RZ Σ(Z, a, <, =) (!) < ¤)Z \

and

(i"V (?E∗ ), ( 5E∗ � "V) � Z) 
RZ Σ(Z, a, <, =) (') < ¤)Z g.

Proof By Lemma 3.3, we know that � (i"U , d) ∩ � (i"V , d) is dense and =∗-
countably closed in Rd/

{
?∗ ("U), ?∗ ("V)

}
. Moreover, by Proposition 4.2 (with the

notation from the statement thereof), � (i"U , i"V ) is dense and countably =∗-closed
in P∗/

{
?∗ ("U), ?∗ ("V)

}
. Consequently,

�∗ (i"U , i"V , d) :=
{
E ∈ Rd : E ∈ � (i"U , d) ∩ � (i"V , d) ∧ ?E ∈ � (i"U , i"V )

}
is dense and countably =∗-closed in Rd/

{
?∗ ("U), ?∗ ("V)

}
. For use later, we also let

�∗ (i"U , i"V , Z) be defined similarly, with Z replacing d in the above definition.
Let D be as in the assumption of the current lemma.Wemay extend and relabel if nec-

essary to assume that D ∈ �∗ (i"U , i"V , d). We set D0 := E0 := D and F0 := D � "U.
We will now define a coordinate-wise increasing sequence of triples 〈〈D=, E=, F=〉 : = ∈
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l〉 and a sequence of tuples 〈〈Z=, a=, \=, g=〉 : = ∈ l〉 (with respect to some bookkeep-
ing device) of tree nodes and ordinals so that the following conditions are satisfied for
all =:

(1) #d
i"U
(D=, E=, F=);

(2) D=, E= ∈ � (i"V , d);
(3) 〈Z=, a=〉 ∈ dom( 5D= ) ∩dom( 5E= ) ∩"U , and 〈\=, g=〉 ∈ ( 5D= (Z=, a=)\(U×l1)) ×
( 5E= (Z=, E=)\(U × l1));

(4) D=+1 and E=+1 split 〈\=, g=〉 below U in ¤)Z= , and if \= and g= are both below level
V, then in fact D=+1 � "V and E=+1 � "V split 〈\=, g=〉 below U in ¤)Z= . Moreover,
in this case, there is a pair of nodes 〈\̄=, ḡ=〉 below level U which witnesses the
splitting for both D=+1 and E=+1 as well as their restrictions to "V ;

(5) ?D= and ?E= are in � (i"U , i"V ).

For = = 0, we have that (1), (2), and (5) hold because D ∈ �∗ (i"U , i"V , d). (3) holds by
definition and (4) is vacuous.

Suppose, then, that we have defined D=, E=, and F=. By Lemma 3.5, we may find
extensions D′= ≥ D=, E′= ≥ E=, and F′= ≥ F= so that #d

i"U
(D′=, E′=, F′=) holds and so

that D′= and E′= split 〈\=, g=〉 below U in ¤)Z= . Let \̄= and ḡ= be nodes below level U which
witness the splitting.

We now define conditions D∗∗∗= , E∗∗∗= , and F∗∗∗= (the superscript for later notational
purposes) which extend, respectively, D′= � Z=, E′= � Z=, and F′= � Z=. If either \= or
g= are at or above level V (namely, outside of "V ), then we simply set D∗∗∗= := D′ � Z=,
E∗∗∗= := D′ � Z=. Since dom( ®") satisfies the conclusion of Corollary 3.13 (2), and since
Z= ∈ "U , we may find a dual residue F∗∗∗= of D∗∗∗= and E∗∗∗= to "U. This completes the
definition of the triple (D∗∗∗= , E∗∗∗= , F∗∗∗= ) in the case that either \= or g= are at or above
level V.

Suppose on the other hand that \= and g= are both below level V and therefore are in
"V . Since dom( ®") satisfies the conclusion of Corollary 3.13 (2), and since Z= ∈ "U∩d
and #Z=

i"U
(D′= � Z=, E′= � Z=, F′= � Z=), we may find a condition F∗= ∈ "U ∩RZ= which

is a dual residue of D′= � Z= and E′= � Z= to "U. We next extend D′= � Z= to a condition
which extends not only F∗= but also some residue to "V .

Let D∗∗= be an extension in � (i"V , Z=) of D′= � Z= and F∗=. By the remarks before
Lemma 3.3, we may let D̄∗∗= ∈ "V be a residue of D∗∗= to "V in RZ= . Finally, let D∗∗∗= be a
condition in � (i"V , Z=) ∩ � (i"U , Z=) which extends D∗∗= and D̄∗∗= and which satisfies
that D∗∗∗= � "V ≥RZ= D̄∗∗= .

By definition of \̄= above, we know that D′= � Z= 
RZ= \̄= < ¤)Z= \=, and hence the
extension D∗∗= of D′ � Z= forces this too. Since D̄∗∗= is a residue of D∗∗= to "V in RZ= and
\̄=, \= are nodes in "V , we conclude that D̄∗∗= also forces that \̄= < ¤)Z= \=. Finally, since
D∗∗∗= � "V is a condition (because D∗∗∗= ∈ � (i"V , Z=)) which extends D̄∗∗= , we conclude
that D∗∗∗= � "V forces that \̄= < ¤)Z= \=. This completes the first round of extensions of
D′= � Z=.

We now turn to extending E′= � Z=. Since D∗∗∗= ∈ � (i"U , Z=), we may let F∗∗= be a
residue of D∗∗∗= to"U which extendsF∗=. SinceF∗∗= ≥ F∗= andF∗= is a residue of E′= � Z=
to "U , F∗∗= is also a residue of E′= � Z= to "U. Applying the same argument as in the
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previous two paragraphs to E′= � Z= with F∗∗= playing the role of F∗= and with ḡ= and g=
playing the respective roles of \̄= and \=, we may find an extension E∗∗∗= of E′= � Z= in
� (i"V , Z=) ∩ � (i"U , Z=) and a condition F∗∗∗= so that E∗∗∗= � "V forces ḡ= < ¤)Z= g=
and so that F∗∗∗= is a residue of E∗∗∗= to "U in RZ= which extends F∗∗= . Note that since
F∗∗∗= ≥ F∗∗= , F∗∗∗= is also a residue of D∗∗∗= to "U in RZ= .

To summarize, we now have extensions D∗∗∗= and E∗∗∗= of D′= � Z= and E′= � Z= respec-
tively which are both in � (i"V , d) and which satisfy that D∗∗∗= � "V and E∗∗∗= � "V

split 〈\=, g=〉 as witnessed by 〈\̄=, ḡ=〉. Moreover, F∗∗∗= is a dual residue of D∗∗∗= and E∗∗∗=
to "U in RZ= , i.e., ∗

Z=

i"U
(D∗∗∗= , E∗∗∗= , F∗∗∗= ). This completes the definition of the triple

(D∗∗∗= , E∗∗∗= , F∗∗∗= ) in the case that \= and g= are below level V.
We now apply Lemma 3.4, to find D=+1 � Z= ≥ D∗∗∗= , E=+1 � Z= ≥ E∗∗∗= and

F=+1 � Z= ≥ F∗∗∗= so that #Z=
i"U
(D=+1 � Z=, E=+1 � Z=, F=+1 � Z=) and so that D=+1 �

Z=, E=+1 � Z= ∈ �∗ (i"U , i"V , Z=). Define D=+1 := (D=+1 � Z=)⌢(D′= � [Z=, d)), with
E=+1 andF=+1 defined similarly. D=+1, E=+1, andF=+1 then satisfy (1)-(5), completing the
successor step of the construction.

If we now let D∗, E∗, F∗ be sups of their respective sequences, it is straightforward to
see that they satisfy the lemma, using (4) to secure the desired splitting function. �

Having laid the groundwork in the previous results, we next turn to analyzing when
quotients of Rd preserve stationary sets of cofinality l ordinals. We will prove the
following proposition:

Proposition 4.4 Suppose that ®" is in pre-splitting configuration up to d and that dom( ®")
satisfies Corollary 3.13(2). Then there exists some �∗ ⊆ dom( ®") with dom( ®")\�∗ ∈ I
so that for any U ∈ �∗, any (Rd ∩ "U)-name ¤( for a stationary subset of U ∩ cof(l), and
any residue pair 〈?∗ ("U), i"U〉 for ("U, P

∗), the poset Rd/(?∗ ("U), 0 ¤Sd ) forces that ¤(
remains stationary.

Thus the quotient forcing of Rd above the condition (?∗ ("U), 0 ¤Sd ) preserves the
stationarity of ¤(. The remainder of the section is devoted to the proof.

Proof Tobegin, we define the set �∗ := tr(�)∩�, where � = dom( ®"). Since � ∈ F +,
Lemma 1.7 implies that �\�∗ ∈ I.

Now fix, for the rest of the proof, an ordinal U ∈ �∗ and a residue pair
〈?∗ ("U), i"U〉 for ("U, P

∗); since ®" is in pre-splitting configuration up to d, wemay
also fix, for each W ∈ � ∩ U, a residue pair 〈?∗ ("W), i"W 〉 for ("W , P

∗).
Next, fix a condition (?, 5 ) in Rd/(?∗ ("U), 0 ¤Sd ) and an Rd-name ¤� for a closed

unbounded subset of U. We will find some extension (?∗, 5 ∗) of (?, 5 ) which forces in
Rd that ¤� ∩ ¤( ≠ ∅. By Lemma 3.3, we may assume that (?, 5 ) ∈ � (i"U , d).

In + , let \ > ^+ be a large enough regular cardinal, and let  ≺ � (\) be chosen so
that | | = ^, <^ ⊆  , and so that  has the following parameters as elements:

(i) the sequences ®" and 〈〈?∗ ("W), i"W 〉 : W ∈ � ∩ (U + 1)〉, the set �∗, the poset
Rd , the Rd-condition (?, 5 ), the Rd-name ¤� , and the (Rd ∩ "U)-name ¤(;

(ii) the fixed well-order C of � (^+) from Notation 2.6.
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Finally, letK denote the tuple ( , ∈, U, ®", �∗,Rd, (?, 5 ), ¤�, ¤(,C).
Define �0 to be the club of V < U so that SkK (V) ∩ U = V. Since U ∈ �∗, we know

that � ∩ U is stationary in U. Thus � ∩ lim(�) ∩ U is stationary in U, and therefore
� := lim(�0 ∩ �) is a club in U.

Recalling that (?, 5 ) ∈ � (i"U , d), we can find a residue ( ?̄, 5̄ ) of (?, 5 ) to "U

which extends the condition (i"U (?), 5 � "U). Let ¤- be the (Rd ∩ "U)-name for{
V ∈ �0 ∩ �∩ lim(�) ∩ U : (?∗ ("V), 0 ¤Sd ) ∈ ¤�Rd∩"U

}
;

by Lemma 2.13we know that ¤- is forced byRd∩"U to be unbounded inU. Since ¤( is an
(Rd∩"U)-name of a stationary subset ofU∩cof(l), ¤( is forced to contain a limit point
of ¤- . This, combinedwith the fact thatRd∩"U does not add newl-sequences, implies
that we can find an extension (@, 6) ≥Rd∩"U

( ?̄, 5̄ ) and an increasing sequence 〈V= :
= ∈ l〉 in �0 ∩ �∩ lim(�) with sup= V= = a ∈ � ∩ cof(l), so that (i) (@, 6) 
Rd∩"U

a ∈ ¤(, and (ii) for all = ∈ l, @ ≥P∗ ?∗ ("V= ).
For the rest of the proof, we will fix (@, 6) ∈ Rd ∩"U , 〈V= | = < l〉, and a with the

above properties. Define  V= := SkK (V=), noting that  V= ∩ U = V= because V= ∈ �0.
It will be helpful for later to see that "V= ⊆  V= for each =. Indeed, V= ∈ � ∩ lim(�)
which implies that "V= =

⋃
[∈�∩V= "[ . Moreover, V= ⊆  V= , and therefore applying

the elementarity of  V= , we see that for all [ ∈ � ∩ V=, "[ ∈  V= . Since V= ⊆  V= ,
[ ⊆  V= too. Thus"[ ⊆  V= since V= sees a bijection between"[ and [. Combining
all of this, we see that "V= =

⋃
[∈�∩V= "[ ⊆  V= .

We proceed to find an extension (?∗, 5 ∗) of (?, 5 ) which is compatible with (@, 6)
and forces that a ∈ ¤� . We will secure this by building two increasing l-sequences of
conditions, one above (?, 5 ) and another above (@, 6), in such a way that the limits of
each sequence can be amalgamated; the resulting condition will then force a into ¤(∩ ¤� .
Let (?0, 50) := (?, 5 ) and (@0, 60) := (@, 6).

Claim. There exists an increasing sequence 〈(?=, 5=) : = ∈ l〉 of conditions inRd and
an increasing sequence 〈(@=, 6=) : = ∈ l〉 of conditions in Rd ∩ "U so that for each
= ∈ l,

(1) (?=, 5=) ∈  V= ;
(2) (?=+1, 5=+1) 
Rd ¤� ∩ (V=, a) ≠ ∅;
(3) (?=, 5=) ∈ � (i"U , d);
(4) @= ≥P∗∩"U

i"U (?=);
(5) 5=+1 and 6=+1 are strongly compatible (Definition 3.10) over ?=+1 and @=+1.

�

Before we prove this claim, we show that proving it suffices to obtain the desired
condition (?∗, 5 ∗). So suppose that Claim 4.1 is true. Let (?∗, 5 ∗) be a sup of 〈(?=, 5=) :
= ∈ l〉, and let (@∗, 6∗) be a sup of 〈(@=, 6=) : = ∈ l〉.

Observe that by item (2) of Claim 4.1 and the fact that the sequence 〈V= : = ∈ l〉
is cofinal in a, we have that (?∗, 5 ∗) 
Rd a ∈ lim( ¤�) and hence forces that a ∈ ¤�
as ¤� names a club. Also, since (@∗, 6∗) ≥ (@0, 60) and since (@0, 60) = (@, 6) forces
that a ∈ ¤(, (@∗, 6∗) forces that a ∈ ¤( too. We claim that ?∗ and @∗ are compatible

2023/01/21 17:09



38 O. Ben-Neria and T.D. Gilton

in P∗, from which it follows by item (5) of Claim 4.1 that 5 ∗ and 6∗ are strongly com-
patible over ?∗ and @∗. Indeed, (?∗, 5 ∗) ∈ � (i"U , d) since this set is closed under
sups of increasingl-sequences by Lemma 3.3. Furthermore, by the countable continu-
ity of i"U , i"U (?∗) is a sup of the increasing sequence 〈i"U (?=) : = ∈ l〉. Thus
to show that ?∗ and @∗ are compatible, since @∗ ∈ P∗ ∩ "U , it suffices to show that
@∗ ≥P∗∩"U

i"U (?∗). However, we know that @∗ ≥ @= for all = and so by (4) of
Claim 4.1, @∗ ≥ i"U (?=) for all =. Therefore @∗ extends i"U (?∗), by definition of
a supremum.

Now let (?∗∗, 5 ∗∗) be a condition in Rd above both (?∗, 5 ∗) and (@∗, 6∗). Then
because (?∗∗, 5 ∗∗) extends (?∗ ("U), 0 ¤Sd ) as well as (@

∗, 6∗), which in turn forces in
Rd ∩ "U that a ∈ ¤(, we have that (?∗∗, 5 ∗∗) 
Rd a ∈ ¤(. And finally, as (?∗∗, 5 ∗∗)
extends (?∗, 5 ∗) which forces in Rd that a ∈ ¤� , we conclude that (?∗∗, 5 ∗∗) 
Rd a ∈
¤(∩ ¤� . Thus it suffices to prove Claim 4.1 in order to finish the proof of Proposition 4.4.

Proof. (of Claim 4.5)Wewill construct the sequences satisfying (1)-(5) of Claim 4.1 recur-
sively. For the base case = = 0, items (2) and (5) hold vacuously. For item (1), we have that
(?0, 50) = (?, 5 ) ∈  V0 as (?, 5 ) = (?0, 50) was chosen to be definable by a constant
in the language ofK. We also ensured that (?0, 50) ∈ � (i"U , d), which establishes (3).
Finally, @0 ≥P∗∩"U

?̄ ≥P∗∩"U
i"U (?0), which establishes (4).

Suppose, then, that we have defined (?=, 5=) and (@=, 6=) satisfying (1)-(5). We first
observe that (?=, 5=) and (@=, 6=) are compatible. If = = 0, this holds since (@0, 60) is
in Rd ∩ "U and extends ( ?̄, 5̄ ), which is a residue of (?0, 50) to Rd ∩ "U. If = > 0,
then we have that @= ≥P∗∩"U

i"U (?=), and therefore ?= and @= are P∗-compatible.
Moreover, 5= and 6= are strongly compatible over the compatible conditions ?= and @=,
and therefore (?=, 5=) and (@=, 6=) are compatible in Rd .

Next choose some condition (A, ℎ) in Rd which extends (?=, 5=) and (@=, 6=), and
by extending if necessary, we may assume that there is some ordinal ` > V= so that
(A, ℎ) 
Rd ` ∈ ¤�\(V= + 1). Since A ≥ ?= ≥ ?∗ ("U) and since A ≥ @= ≥
@0 ≥ ?∗ ("V=+1 ), we may also extend if necessary to assume, by Lemma 4.1(1), that
A ∈ dom(i"V=+1 ) ∩ dom(i"U ) and also that i"U (A) ≥ @=.

We now apply Lemma 4.3, with U and V=+1 playing the respective roles of “V"
and “U" in the statement thereof, to find extensions (A! , ℎ!) and (A', ℎ') of (A, ℎ)
which satisfy the conclusion of that lemma. We let (Ā , ℎ̄) be a condition so that
#d
i
"V=+1

((A! , ℎ!), (A', ℎ'), (Ā , ℎ̄)).
Let Σ be a splitting function for (A! , ℎ!) and (A', ℎ') with respect to the model

"V=+1 which satisfies Lemma 4.3. For / ∈ {!, '}, set

G/ := dom(ℎ/ ) ∩ "V=+1 ;

this is a countable subset of "V=+1 and therefore is a member of "V=+1 . Since "V=+1 ⊆
 V=+1 , as shown earlier, G/ is also an element of  V=+1 .

We are now in a position to reflect into the model  V=+1 . We observe that in � (\)
the following statement is true in the following parameters V=,Σ, Ā , ℎ̄,Rd, (?=, 5=), U,
�, ¤�, G! , G' , ®" , and 〈〈?∗ ("W), i"W 〉 : W ∈ � ∩ (U + 1)〉, all of which are in  V=+1 :
there exists a condition (A∗, ℎ∗) in Rd and a pair (A∗/ , ℎ∗/ )/ ∈{!,'} of conditions above
(A∗, ℎ∗) in Rd as well as ordinals `∗, [, so that
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(i) (A∗, ℎ∗) ≥Rd (?=, 5=);
(ii) [ ∈ �;
(iii) #d

i"[
((A∗

!
, ℎ∗
!
), (A∗

'
, ℎ∗
'
), (Ā , ℎ̄));

(iv) for each / ∈ {!, '}, (A∗
/
, ℎ∗
/
) and (A∗, ℎ∗) are in �∗ (i"[ , i"U ) (see Proposition

4.2);
(v) (A∗, ℎ∗) 
Rd `∗ ∈ ¤�\(V= + 1);
(vi) dom(ℎ∗

/
) ∩ "[ = G/ ;

(vii) (A∗
!
, ℎ∗
!
) and (A∗

'
, ℎ∗
'
) are an ("[ , d)-splitting pair, and Σ is a splitting function

for (A∗
!
, ℎ∗
!
) and (A∗

'
, ℎ∗
'
) with respect to the model "[ .

This statement is true in � (\) as witnessed by the conditions (A/ , ℎ/ )/ ∈{!,'} and
(A, ℎ), the ordinal ` playing the role of `∗, and the ordinal V=+1 playing the role of [.
Since the parameters of this statement are in  V=+1 , we may therefore find, in  V=+1 ,
conditions (A∗

/
, ℎ∗
/
)/ ∈{!,'} extending some (A∗, ℎ∗) ≥ (?=, 5=), an ordinal `∗, and an

ordinal [ ∈ � so that (i)-(vii) above are satisfied of these objects.
We now define (?=+1, 5=+1) := (A∗

!
, ℎ∗
!
). We need to extend the condition

(i"U (A'), ℎ' � "U) a bit more before defining (@=+1, 6=+1). The following claimwill
help us do this:

Subclaim. i"U (?=+1) and i"U (A') are compatible in P∗ ∩ "U. �

Proof. Both the condition ?=+1 and the function i"U are members of  V=+1 . Therefore
i"U (?=+1) ∈  V=+1∩"U∩P∗. Recall thatK contained the fixedwell-orderC of� (^+)
and that all suitable models are elementary in � (^+) with respect to C. Thus if we let
4P
∗ denote the C-least bijection from ^ onto P∗, then we have that 4P∗ is in "U and in

 V=+1 . Since "U is elementary and contains 4P∗ , we see that i"U (?=+1) = 4P
∗ (Z) for

some Z < U. But then by the elementarity of  V=+1 , we see that Z ∈  V=+1 ∩ U = V=+1.
Therefore i"U (?=+1) = 4P

∗ (Z) ∈ "V=+1 . Furthermore, we know that

Ā =∗ i"V=+1 (A') =∗ i"V=+1 (i"U (A'))

where the first equality holds by definition of Ā and the second because A' satisfies
Lemma 4.3. Applying (iii) and (iv) above we also have that,

Ā =∗ i"[ (?=+1) =∗ i"[ (i"U (?=+1)).

Additionally, since i"[ is an exact, strong residue function and i"U (?=+1) ∈
dom(i"[ ), we know that

i"U (?=+1) ≥ i"[ (i"U (?=+1)) =∗ Ā .

Therefore, as i"U (?=+1) ∈ "V=+1 extends Ā , which is a residue of i"U (A') to "V=+1 ,
we conclude that i"U (?=+1) is compatible with i"U (A') in P∗ ∩ "U. �(Subclaim
4.2)

Using Subclaim 4.2, wemay fix some condition @=+1 in P∗∩"U which is above both
i"U (?=+1) and i"U (A'). We finally set 6=+1 := ℎ' � "U , noting that (@=+1, 6=+1) ∈
"U.
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We next verify that items (1)-(5) of Claim 4.1 hold for = + 1. We have that
(?=+1, 5=+1) ≥ (?=, 5=) by (i) of the reflection, more precisely, since

(?=+1, 5=+1) = (A∗! , ℎ∗!) ≥ (A∗, ℎ∗) ≥ (?=, 5=).

Additionally, because

@=+1 ≥ i"U (A') ≥ i"U (A) ≥ @=,

we have that @=+1 ≥ @=. Moreover, 6=+1 extends 6= as a function: 6=+1 = ℎ' � "U ,
6= ∈ "U , and (A', ℎ') ≥ (A, ℎ) ≥ (@=, 6=). Thus (@=+1, 6=+1) extends (@=, 6=). (1) of
Claim4.1 holds becausewe found thewitnesses in themodel V=+1 . For (2), `∗ ∈  V=+1∩
U = V=+1 ⊆ a, and since `∗ > V=, we have that (?=+1, 5=+1) 
 `∗ ∈ ¤�∩(V=, a). For (3),
we have (?=+1, 5=+1) ∈ � (i"U , d) by (iii) and the definition of #d

i"[
(see Definition

3.7). For (4), we have that @=+1 ≥ i"U (?=+1) by choice of @=+1.
It remains therefore to check that item (5) of Claim 4.1 holds. Since @=+1 ≥P∗∩"U

i"U (?=+1), we know that ?=+1 and @=+1 are compatible in P∗; let ?∗ ∈ P∗ be any
condition extending both. We claim that

?∗ 
P∗ 5̌=+1 ∪ 6̌=+1 ∈ ¤Sd .

Suppose by induction on X < d that 〈X, a〉 ∈ dom( 5=+1) ∩ dom(6=+1) and that
?∗ forces that the union of 5̌=+1 � X and 6̌=+1 � X is a condition in ¤SX . Again using
the fixed well-order C of � (^+), we may let k be the C-least bijection from ^ onto d,
so that k is a member of  V=+1 as well as every model on the Rd-suitable sequence ®" .
Since 〈X, a〉 ∈ dom(6=+1) and 6=+1 ∈ "U , X ∈ "U ∩ d = k [U]. Furthermore, since
〈X, a〉 ∈ dom( 5=+1) and 5=+1 = ℎ

∗
!
∈  V=+1 , we have that X ∈  V=+1 . Thus

X ∈ k [U] ∩  V=+1 = k [ V=+1 ∩ U] = k [V=+1] ⊆ "V=+1 .

Therefore (recalling that 6=+1 = ℎ' � "U),

〈X, a〉 ∈ dom(ℎ') ∩ "V=+1 = G' = dom(ℎ∗') ∩ "[ .

Continuing, fix a pair

〈\, g〉 ∈ 5=+1 (X, a) × 6=+1 (X, a)

with \ ≠ g. We need to show that \ and g are forced to be incompatible nodes in the tree
¤)X by the condition

(
?∗, ( 5=+1∪6=+1) � X

)
. Recall, going forward, that (Ā , ℎ̄) equals both

(A', ℎ') � "V=+1 and (?=+1, 5=+1) � "[ ; in particular, 5=+1 and ℎ' � "U = 6=+1 both
extend ℎ̄. Continuing, if g is below level V=+1, then g ∈ ℎ̄(X, a) ⊆ 5=+1 (X, a) and we are
done. Furthermore, if \ is below level [, then \ ∈ ℎ̄(X, a) ⊆ 6=+1 (X, a) and we are done
in this case too. Thus we assume that \ is at or above level [ and that g is at or above level
V=+1. With respect to the fixed enumerations, let : and < be chosen so that \ is the :th
element of 5=+1 (X, a)\([×l1) and g is the<th element of ℎ' (X, a)\(V=+1×l1). Then
because the function Σ is the same for both pairs of splitting conditions, we know that

(?=+1, 5=+1 � X) 
RX
Σ(X, a, :, <) (!) < ¤)X \

and that
(A', ℎ' � X) 
RX

Σ(X, a, :, <) (') < ¤)X g.
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However, g ∈ 6=+1 (X, a) = (ℎ' � "U) (X, a), and therefore g is below level U of the
tree ¤)X . Therefore by Lemma 4.3, we have that(

i"U (A'), (ℎ' � "U) � X
)

RX

Σ(X, a, :, <) (') < ¤)X g.

Since @=+1 ≥ i"U (A') and 6=+1 = ℎ' � "U , we conclude that

(@=+1, 6=+1 � X) 
RX
Σ(X, a, :, <) (') < ¤)X g.

Finally, since
(
?∗, ( 5=+1 ∪ 6=+1) � X

)
is above both (?=+1, 5=+1 � X) and (@=+1, 6=+1 �

X), it follows that(
?∗, ( 5=+1 ∪ 6=+1) � X

)

 Σ(X, a, :, <) (') < ¤)X g ∧ Σ(X, a, :, <) (!) < ¤)X \.

Since the distinct nodes Σ(X, a, :, <) (!) and Σ(X, a, :, <) (') are on the same level,(
?∗, ( 5=+1 ∪ 6=+1) � X

)
therefore forces that \ and g are incompatible nodes in the tree

¤)X .
This completes the proof that 5=+1 and 6=+1 are strongly compatible over ?=+1 and

@=+1. Therefore the proof of Claim 4.1 is now complete. �(Claim 4.1)

As remarked earlier, this completes the proof of Proposition 4.4.

Remark 4.5 As we’ve noted before, if P∗ is just equal to the collapse poset P, then the
results from Section 3 which are needed for this section hold only assuming that ^ is
weakly compact (since then F = F,� ; see Definition 2.8). We then see that if P∗ is just
P, then the arguments in this section can also be carried out only using aweakly compact.

As a corollary of Proposition 4.4, we can now prove Theorem 1.2.

Proof Recall that the Laver-Shelah model + [� ∗ �] is obtained by starting from a
ground model + with a weakly compact cardinal ^, and forcing with the Levy collase
P followed by a countable support iteration S = 〈Sg , S(g) | g < ^+〉 of specializing
posets S(g) = S( ¤)g) of Aronszajn trees on ^, chosen by a bookkeeping function. Since
S satisfies the ^-c.c, every sequence of stationary sets 〈(U | U < ^〉 as in the statement
of Theorem 1.2, belongs to an intermediate extension+ [� ∗ �g] , where �g := � ∩ Sg ,
for some g < ^+. Now work in + , and take a (P ∗ ¤Sg)-name 〈 ¤(U | U < ^〉 for the
sequence of stationary sets. Let ®" be suitable with respect to these parameters. By the
weak compactness of ^, let V ∈ dom( ®") be such that 〈 ¤(U ∩+V | U < V〉 are names for
stationary subsets of V in the restricted poset (P ∗ ¤Sg) ∩ "V . Recalling Remark 4.5, we
see that Proposition 4.4 can be applied to P, and in this case, F = F,� . We conclude
that each (U ∩ V remains stationary in the full P ∗ ¤Sg generic extension+ [� ∗ �g] and
hence in+ [� ∗ �].

To see that CSR(l2) fails in the Laver-Shelah model, observe that in the ground
model, there exist stationary sets ( ⊆ ^ ∩ cof(l) and ) ⊆ ^ ∩ cof(l1) so that ( does
not reflect at any point in) (see Proposition 1.1 of [25]). The stationarity of ( and) are
preserved by the ^-c.c. forcing of Laver and Shelah, and since l1 is also preserved, we
have that ( and ) witness the failure ofCSR(l2) in the final model. �
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5 F -completely proper posets

In this section, we will specify what P-names ¤C for posets are such that P ∗ ¤C is F -
strongly proper, andwewill draw some conclusions from this. SinceP∗ ¤Cwill be playing
the role of P∗ in Definition 2.8, and since P ∗ ¤C is not merely the collapse, we are in
the case when ^ is ineffable and F = F8=. However, we only use the ineffability of ^
in the following section when applying Proposition 3.12 through its use in Proposition
4.4. Recall Definition 2.8 for the definition of F , and also recall that P denotes the Levy
collapse poset Col(l1, < ^), where ^ is either ineffable or weakly compact. Two main
ideas come into play in this section. The first is an axiomatization of various properties
of the iterated club adding ¤CMagidor from [34], which will allow us to place upper bounds
on various “local" filters added by the Levy collapse. We then couple this axiomatization
with a generalization of a result of Abraham’s ([1]) that, in current language, if ¤Q is an
Add(l, l1)-name for an l1-closed poset, then Add(l, l1) ∗ ¤Q is strongly proper; see
[18] for a proof of this fact as stated here. The strong properness results from using
so-called “guiding reals."

We recall that in [34], to show that an iteration ¤CMagidor of length < ^+ adding the
desired clubs is ^-distributive, Magidor argued, in part, as follows: let 9 : " −→ # be a
weakly compact embedding, where" has the relevant parameters. Let�∗ be #-generic
over 9 (P) and� := �∗∩P, so that in # [�∗] , we may construct an" [�]-generic filter
� for CMagidor. Moreover, 9 [�] has a least upper bound in 9 (CMagidor), namely, the
function obtained by placing ^ on top of each coordinate in the domain of 9 [�]; by the
closure of the quotient (which implies the preservation of the stationary sets appearing
along the way in the definition of CMagidor), this is indeed a condition.

The property of ¤CMagidor which we will axiomatize is a reflection of the above to
an F -positive set of U < ^. Roughly, we want to say that for many U, if you “cut off"
P ∗ ¤C at U, then many generics added by the tail of the collapse for “ ¤C cut off at U” have
upper bounds in the full poset ¤C. More precisely, given a P-name ¤C in� (^+) for a poset
which is l1-closed with sups and given a ¤C-suitable model (see Definition 2.7) " , say
with " ∩ ^ = U < ^, we consider the poset c" ( ¤C), where c" denotes the transitive
collapse of " to "̄ . An easy absoluteness argument shows that c" ( ¤C) is a name in
c" (P) = P � U. Appealing to the closure of "̄ under < U-sequences, and hence l-
sequences, we see that c" ( ¤C) is forced by P � U to bel1-closed with sups. The desired
condition on P-names ¤C can now be stated a bit more precisely: we will demand that
after forcing with P, say to add the generic� , for many U as above and many+ [�P�U]-
generics � for c" ( ¤C) [�P�U] in+ [�] , c−1

" [� ] [�] has an upper bound in ¤C[�]. Note
that we are implicitly appealing to the properness of P with respect to " to see that
c" : " −→ "̄ lifts to c" [� ] : " [�] −→ "̄ [�P�U]; we discuss this more later.

The first step to making this work is to isolate exactly which filters we will use; for
reasons related to building strong, exact residue functions later, we will not consider all
filters added by the tail of the collapse for c" ( ¤C). The definition is meant to capture
the behavior of filters generated by using the generic surjections to guide choices of
conditions, similar to how Abraham used guiding reals in [1].
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5.1 Residue Functions from Local Filters

Definition 5.1 Let U < ^ be inaccessible, and let ¤Q be a (P � U)-name for a poset of
sizeUwhich isl1-closedwith sups. Since P � U isU-c.c there exists a list 〈 ¤W8 : 8 < U〉 of
(P � U)-names, which is forced to enumerate all conditions in ¤Q. We say that a sequence
¤B = 〈 ¤3a : a < l1〉 of P-names (not (P � U)-names) for conditions in ¤Q is guided by
the collapse at U for ¤Q if the following conditions are satisfied:

(1) 
P 〈 ¤3a : a < l1〉 is ≤ ¤Q-increasing, ¤30 is the weakest condition in ¤Q, and if a is
limit, then ¤3a is a sup of 〈 ¤3` : ` < a〉;

(2) if ? ∈ P and dom(?(U)) is an ordinal a < l1, then there exists ?′ ≥ ? with
?′ � [U, ^) = ? � [U, ^) and a sequence 〈V(`) : ` ≤ a〉 of ordinals in + so that
?′ 
 ¤3` =∗ ¤WV (`) for all ` ≤ a. In this case we will say that ?′ determines an
initial segment of ¤B;

(3) if ?′ as in (2) determines an initial segment of ¤B and if ¤W is a (P � U)-name for a
¤Q-extension of ¤WV (a) , then there exists ?∗ ≥ ?′ so that ?∗ 
 ¤3a+1 ≥ ¤W.

Lemma 5.1 Suppose that ¤B := 〈 ¤3a : a < l1〉 is guided by the collapse at U. Let � ( ¤B) be the
P-name for the filter on ¤Q generated by ¤B. Then P forces that � ( ¤B) is+ [ ¤� � U]-generic over
¤Q.

Proof Fix a condition ? ∈ P and a P-name ¤� for a dense subset of ¤Q which is a
member of + [ ¤� � U]. We find an extension of ? which forces that ¤� ∩ � ( ¤B) ≠ ∅. By
extending ? and applying (2) ofDefinition 5.1 if necessary,wemay assume the following:

(1) there is a (P � U)-name ¤�0 for a dense subset of ¤Q so that ? 
 ¤� = ¤�0;
(2) dom(?(U)) is an ordinal a, and there is a sequence 〈V(`) : ` ≤ a〉 of ordinals in

+ so that ? 
 ¤3` =∗ ¤WV (`) for all ` ≤ a.

Let ¤W be a (P � U)-name for a condition in ¤�0 forced to extend ¤WV (a) . By item (3)
of Definition 5.1, we may find an extension ?∗ of ? so that ?∗ 
 ¤3a+1 ≥ ¤W. Then
?∗ 
 ¤W ∈ ¤� ∩ � ( ¤B), finishing the proof. �

Definition 5.2 Let ¤� be a P-name for a filter on ¤Q. We say that ¤� is guided by the
collapse at U if there is a sequence ¤B = 〈 ¤3a : a < l1〉 of conditions guided by the
collapse at U so that ¤� = � ( ¤B).

Suppose that " is a suitable model. Let U := " ∩ ^, and let c" : " → "̄ be the
transitive collapse map of " . Let� ⊆ P be generic over+ , and set�U = � ∩ (P � U).
We have that P � U = c" (P) ∈ "̄ , and �U ⊂ c" (P) is generic for "̄ . Moreover,
setting " [�] = { ¤G [�] | ¤G ∈ " is a P-name}, we have that "̄ [�U] is the transitive
collapse of " [�] , with the transitive collapse map c" [� ] being the natural extension
of c" , given by c" [� ] ( ¤G [�]) = c" ( ¤G) [�U].

Lemma 5.2 Suppose that " is a (P ∗ ¤C)-suitable model, where ¤C is a P-name for a poset
on ^ which is l1-closed with sups. Let U := " ∩ ^ and c" be the transitive collapse map of
" . Suppose that ¤� is a P-name for a subset of c" ( ¤C) which is guided by the collapse at U for
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c" ( ¤C), and further suppose that there is a P-name ¤2 for a condition in ¤C which is forced to
be an upper bound for c−1

" [ ¤� ] [ ¤�]. Then P forces that ¤2 is an (" [
¤�], ¤C)-completely-generic

condition.

Proof Fix� . To see that 2 = ¤2[�] is (" [�],C)-completely generic, fix a dense, open
� ⊆ C with � ∈ " [�]. We show that 2 extends some condition in � .

By the elementarity of c" [� ] : " [�] → "̄ [�U] , we know that c" [� ] (�) is
dense in c" [� ] (C) = c" ( ¤C) [�U]. Since � := ¤� [�] is a + [�U]-generic filter, by
Lemma 5.1, � ∩ c" [� ] (�) ≠ ∅, and thus c−1

" [� ] [�] ∩ � ≠ ∅. �

There are two particularly useful properties of this class of names for generic filters.
On the one hand, filters in this class will allow us to generate strong, exact residue func-
tions by isolating the information which a given conditions determines about the filters.
On the other hand, the class of such filters for one poset, such as a two-step iteration,
often projects to the class of such filters for another poset, such as the first step in a two-
step iteration. This property will be particularly useful in Section 6 when we want to
show, by induction, that our club adding poset is well-behaved.

It is straightforward to verify that the notion of P-names of filters, which are guided
by the collapse at a given cardinal, factor well in iterations.

Lemma 5.3 Suppose that U < ^ is inaccessible and that ¤Q0 ∗ ¤Q1 is a (P � U)-name for a
two-step poset of size U which is l1-closed with sups. Let 〈 ¤3a : a < l1〉 be a sequence of P-
names which is guided by the collapse at U for ¤Q0 ∗ ¤Q1. Then the sequence 〈 ¤3a (0) : a < l1〉
of P-names of conditions in ¤Q0 is guided by the collapse at U for ¤Q0.

The following proposition shows how to generate exact, strong residue functions
from the filters discussed above.

Proposition 5.4 Suppose that ¤C is a P-name in� (^+) for a poset of size ^ which isl1-closed
with sups, and set P∗ := P ∗ ¤C. Let " be a (P ∗ ¤C)-suitable model, say with U := " ∩ ^ < ^,
and let c" denote the transitive collapse of " . Also let ¤B = 〈 ¤3a : a < l1〉 be a sequence of
P-names guided by the collapse at U for c" ( ¤C). Additionally, suppose that there is a P-name
¤3∗ for a condition in ¤C which is forced to be an upper bound for the sequence c−1

" [ ¤� ] [ ¤B].
Define ?∗ (") to be the condition

?∗ (") := (0P, ¤3∗),

and let

� (") :=
{
(?, ¤3) ≥ ?∗ (") : ? determines an initial segment of ¤B

}
.

Finally, define i" on � (") by

i" (?, ¤3) = (? � U, c−1
" ( ¤WV)),

where V < U is the least so that ? 
 ¤3dom(? (U)) =
∗ ¤WV (V exists by definition of “? determines

an initial segment of ¤B"). Then

(a) � (") is a dense, countably =∗-closed subset of P∗/?∗ (");
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(b) ?∗ (") is compatible with every condition in P∗ ∩ " ; and
(c) i" is an exact, strong residue function from � (") to " ∩ P∗.

Proof Let 〈 ¤W8 : 8 < U〉 be a sequence of (P � U)-names which is forced to enumerate
all conditions in c" ( ¤C), and with ¤3∗, satisfies Definition 5.1, witnessing that ¤B = 〈 ¤3a :
a < l1〉 is guided by the collapse at U for c" ( ¤C).

We first prove item (a). Given a condition (?, ¤3) in P∗/?∗ ("), by item (2) of Defi-
nition 5.1, we may find an extension ?′ of ? so that ? determines an initial segment of
¤B. Then (?′, ¤3) ≥ (?, ¤3) is in � ("), proving density. Similarly, � (") is =∗-closed:
if (?1, ¤31) ∈ � (") and (?1, ¤31) =∗ (?2, ¤32), then ?2 determines an initial segment
of ¤B, because ?2 = ?1 (recall these are collapse conditions) and because (?2, ¤32) ≥
(?1, ¤31) ≥ (0P, ¤3∗).

To see that � (") is closed under sups of increasing l-sequences, suppose that
〈(?=, ¤2=) : = ∈ l〉 is an increasing sequence of conditions in � ("), and let (?∗, ¤2∗) be
a sup. Set a= := dom(?= (U)) and a∗ := dom(?∗ (U)). If a∗ = a< for some < ∈ l, then
because ?< determines ¤B up to a<, we have that ?∗ determines ¤B up to a∗ = a<. Thus
?∗ determines an initial segment of ¤B in this case. So consider the case that a∗ > a<
for all <; in particular, a∗ is a limit ordinal. Since for all = ∈ l, ?= determines an ini-
tial segment of ¤B and ?∗ ≥ ?=, we may find a sequence 〈V(`) : ` < a∗〉 in + so that
?∗ 
 ¤3` =∗ ¤WV (`) for all ` < a∗. Now let V(a∗) be chosen so that ¤WV (a∗) is forced to
be a sup of 〈 ¤WV (`) : ` < a〉, if this sequence is increasing, and equals the trivial condi-
tion otherwise. Since a∗ is a limit, 
P ¤3a∗ is a sup of 〈 ¤3` : ` < a∗〉. But ?∗ forces that
¤3` =∗ ¤WV (`) for all ` < a∗, and therefore ?∗ forces that ¤3a∗ =∗ ¤WV (a∗) . Thus, in either
case, ?∗ determines an initial segment of ¤B, which finishes the proof of (a).

Now we verify item (b). Fix a condition (D, ¤20) in P∗ ∩" , and we will show that it is
compatible with ?∗ ("). We observe that, trivially, D determines an initial segment of ¤B
since dom(D(U)) = 0 and 
P ¤30 is the trivial condition in c" ( ¤C), by (1) of Definition
5.1. By (3) of the same definition, wemay find an extension ? ≥ D s.t. ? 
 ¤31 ≥ c" ( ¤20).
Then (?, ¤3∗) extends (D, ¤20) since ? forces that ¤3∗ is an upper bound for the sequence
c−1
"
[ ¤B] and that c−1

"
( ¤31) ≥ ¤20.

It therefore remains to verify that i" is an exact, strong residue function. Condi-
tion (1) of Definition 2.5 holds since, by (a), � (") is dense and countably =∗-closed in
P∗/?∗ ("). For the projection condition of Definition 2.5, fix (?, ¤2) ∈ � ("), and let
¤W be the (P � U)-name so that i" (?, ¤2) = (? � U, c−1

"
( ¤W)). Since (?, ¤2) ∈ � ("),

? determines an initial segment of ¤B, and therefore ? 
 ¤3dom(? (U)) =
∗ ¤W. Since ? also

forces that ¤2 ≥ ¤3∗, ? forces that ¤2 is an upper bound for c−1
"
[ ¤B] and therefore that ¤2

extends c−1
"
( ¤3dom(? (U)) ) =∗ c−1

"
( ¤W). Therefore (?, ¤2) ≥ (? � U, c−1

"
( ¤W)) = i" (?, ¤2).

It is straightforward to verify that i" is order preserving, i.e., condition (3) ofDefini-
tion 2.5. Soweprove that i" has the strong residue property (condition (4) ofDefinition
2.5). Thus fix (?, ¤2) ∈ � ("), where we let a := dom(?(U)) and ¤W so that i" (?, ¤2) =
(? � U, c−1

"
( ¤W)). Fix a condition (D, ¤X) in P∗ ∩ " with (D, ¤X) ≥ (? � U, c−1

"
( ¤W)), and

we will verify that (D, ¤X) is compatible with (?, ¤2). Let ?′ := D∪ ?, a condition in P, and
observe that ?′ still determines an initial segment of ¤B and a = dom(?′(U)). By item (3)
of Definition 5.1, we may find some ?∗ ≥ ?′ so that ?∗ 
 ¤3a+1 ≥ c" ( ¤X). Then (?∗, ¤2)
extends both (?, ¤2) and (D, ¤X).
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Wenow check that i" isl-continuous, whichwill finish the proof of (c) and thereby
the proof of the proposition. Fix an increasing sequence of conditions 〈(?=, ¤2=) : = ∈
l〉 in � ("), and let (?∗, ¤2∗) be a supremum of this sequence. Then ?∗ :=

⋃
= ?=, and

¤2∗ is forced by ?∗ to be a sup of 〈 ¤2= : = ∈ l〉. By item (a) of the proposition, (?∗, ¤2∗) ∈
� ("). We need to show that i" (?∗, ¤2∗) is a sup of 〈i" (?=, ¤2=) : = ∈ l〉. For each
= < l, set a= := dom(?= (U)), and also set a∗ := dom(?∗ (U)). Additionally, for each
=, fix the least ordinal V(a=) with ?= 
 ¤3a= =∗ ¤WV (a=) , so that i" (?=, ¤2=) = (?= �
U, c−1

"
( ¤WV (a=) )). Finally let V(a∗) be least so that i" (?∗, ¤2∗) = (?∗ � U, c−1

"
( ¤WV (a∗) )).

We claim that ?∗ 
 ¤WV (a∗) is a sup of 〈 ¤WV (a=) : = ∈ l〉. Note that proving this claim
suffices: indeed, then ?∗ � U forces that ¤WV (a∗) is a sup of 〈 ¤WV (a=) : = ∈ l〉, and as a
result i" (?∗, ¤2∗) = (?∗ � U, c−1

"
( ¤WV (a∗) )) is a sup of 〈i" (?=, ¤2=) : = ∈ l〉.

To prove the claim, we have two cases on a∗. Since a∗ = sup< a<, either a∗ > a<
for all <, or a∗ = a< for almost all <. In the first case, a∗ is a limit, and so P forces
that ¤3a∗ is a sup of 〈 ¤3a : a < a∗〉. Since ?= 
 ¤3a= =∗ ¤WV (a=) for each =, ?∗ forces
that 〈 ¤WV (a=) : = ∈ l〉 is cofinal in 〈 ¤3a : a < a∗〉. Therefore ?∗ forces that these two
sequences have the same sups. Consequently, ?∗ forces that ¤WV (a∗) =∗ ¤3a∗ is a sup of
〈 ¤WV (a=) : = ∈ l〉. For the second case, a∗ = a< for all < above some : . Then P forces
that 〈 ¤3a= : = ∈ l〉 is eventually equal to ¤3a∗ . Because ?= 
 ¤3a= =∗ ¤WV (a=) for all =
and ?∗ ≥ ?=, we have that ?∗ 
 〈 ¤WV (a=) : = ∈ l〉 is eventually equal to ¤3a∗ . Finally,
?∗ 
 ¤WV (a∗) =∗ ¤3a∗ , and therefore ?∗ forces that 〈 ¤WV (a=) : = ∈ l〉 is eventually =∗-
equal to ¤WV (a∗) , and therefore that ¤WV (a∗) is a sup. This finishes the proof of the claim
and thereby the proof that i" is l-continuous. �

The final result in this subsection shows that we can create filters which are guided
by the collapse at U by using the generic surjection from l1 onto U to guide extensions
in the second coordinate. This combines ideas of collapse absorptionwith, as previously
mentioned, Abraham’s use of guiding reals.

Lemma 5.5 Suppose that ¤Q is a (P � U)-name for a poset of size U, which isl1-closed with
sups, and let 〈 ¤W8 : 8 < U〉 be forced to enumerate all conditions in ¤Q. Let ¤5U be the P-name for
the standard surjection added from l1 onto U.

Suppose that ¤B = 〈 ¤3a : a < l1〉 is a sequence of P-names for conditions in ¤Q forced by P
to satisfy the following properties:

(1) ¤B is ≤ ¤Q-increasing, ¤30 names the trivial condition, and if a is a limit, then ¤3a is a ≤ ¤Q-sup
of 〈 ¤3` : ` < a〉;

(2) if a < l1 and ¤W ¤5U (a) extends ¤3a in ¤Q, then ¤3a+1 extends ¤W ¤5U (a) ;
(3) for each a < l1, the sequence 〈 ¤3` : ` ≤ a〉 is definable in+ [ ¤� � U] from ¤5U � a.

Then ¤B is guided by the collapse at U for ¤Q.
In particular, there exists a P-name for a sequence which is guided by the collapse atU for ¤Q.

Proof Wewill verify that items (1)-(3) of Definition 5.1 hold. Item (1) of the definition
is immediate from assumption (1) of the lemma.

For item (2) of Definition 5.1, suppose that ? ∈ P is a condition where dom(?(U)) is
an ordinal a < l1. Let� be+-generic over P containing ?, and let �̄ := � ∩ (P � U).
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For each ` ≤ a, let 3` := ¤3` [�] , and let V(`) be an ordinal< U so that 3` = ¤WV (`) [�̄].
By assumption (3) of the lemma, the sequence 〈3` : ` ≤ a〉 is definable in + [�̄] from
5U � a = ?(U). Therefore, there exists a condition ?̄ ≥ ? � U with ?̄ ∈ �̄ so that ?̄
forces that 〈 ¤WV (`) : ` ≤ a〉 satisfies the definitionwith respect to ?(U). Then ?′ := ?∪ ?̄
witnesses item (2) of Definition 5.1, since ?′ forces that 〈 ¤WV (`) : ` ≤ a〉 and 〈 ¤3` : ` ≤
a〉 both satisfy the same definition in+ [ ¤̄�] with the parameter ¤5U � a = ?(U).

Turning to item (3) of Definition 5.1, let ?′ be a condition as in the previous para-
graph. Fix a (P � U)-name ¤W for a ¤Q-extension of ¤WV (a) , and let X < U and ?̄∗ ≥ ?′ � U
so that ?̄∗ 
P�U ¤W = ¤WX . Define ?∗ to be the minimal extension of ?̄∗ ∪ ?′ � [U, ^) so
that ?∗ 
 ¤5U (a) = X. Then ?∗ 
 ¤W ¤5U (a) ≥ ¤WV (a) =

∗ ¤3a , so there exists an extension ?∗∗
of ?∗ so that ?∗∗ forces ¤3a+1 ≥ ¤W ¤5U (`) = ¤W.

For the “in particular" claim of the lemma, define a sequence ¤B by recursion so that it
satisfies (1) and so that if a < l1, then ¤3a+1 is forced to be equal to W ¤5U (a) if this extends
¤3a , and otherwise equals ¤3a . Then (2) and (3) are also satisfied, so ¤B is guided by the
collapse at U for ¤Q. �

5.2 F -Complete Properness

We are now ready to isolate a sufficient condition on names ¤C so thatP∗ ¤C isF -strongly
proper.

Definition 5.3 Let ¤C be aP-name in� (^+) for a poset forced to bel1-closedwith sups.
We say that ¤C is F -Completely Proper if for any (P ∗ ¤C)-suitable sequence ®" there
is some � ⊆ dom( ®") with � ∈ I so that for each U ∈ dom( ®")\� and each P-name
¤� for filter over c"U

( ¤C) which is guided by the collapse at U, there exists a P-name ¤2 ¤�
for a condition in ¤C which is forced to be a least upper bound for c−1

"U [ ¤�P ]
[ ¤�].

We recall that a posetU is _-distributive if forcing withU adds no sequences of ordi-
nals of length less than _. A sufficient condition to guarantee this is that the intersection
of fewer than _-many dense, open subsets ofU is dense, open. They are equivalent ifU
is separative.

Lemma 5.6 Suppose that ¤C is F -completely proper. Then P forces that the intersection of
fewer than ^-many dense, open subsets of ¤C is dense, open. Hence ¤C is forced to be ^-distributive.

Proof Let ®� = 〈 ¤�8 : 8 < l1〉 be a sequence of P-names for dense, open subsets of
¤C. We show that the intersection is forced to be non-empty. Fix a sequence ®" which is
suitablewith respect toP∗ ¤C and ®� so thatdom( ®") satisfies the conclusionofDefinition
5.3. LetU ∈ dom( ®"). By Lemma 5.5, there exists aP-name ¤� for a filterwhich is guided
by the collapse atU for c"U

( ¤C). Since dom( ®") satisfies Definition 5.3, wemay find aP-
name ¤3 for a conditionwhich is forced to be anupper bound in ¤C for c−1

"U [ ¤�P ]
[ ¤�]. Then,

by Lemma 5.2, ¤3 is forced to be an ("U [ ¤�], ¤C)-completely generic condition. But ¤�8 ∈
"U for each 8 < l1 and is dense, open. Therefore it is forced that ¤3 ∈

⋂
8∈l1

¤�8 . �
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By combining Lemma 5.5, Proposition 5.4, and Lemma 2.12, we conclude with the
following key result:

Proposition 5.7 Suppose that ¤C is F -completely proper. Then P ∗ ¤C is F -strongly proper.

6 Properties of the Club-Adding Poset

In this section, we have two main tasks. In the first subsection, we will prove that our
intended club adding iteration, as well as useful variants thereof, are F -completely
proper, and in the second subsection, we will prove that our intended club adding iter-
ation does not add branches through various Aronszajn trees. Each of these results will
be used as part of a larger inductive argument in the final section in which we prove
Theorem 1.1. Again we comment that, in this case, ^ is ineffable, but we are only using
the ineffability of ^ when we apply Proposition 4.4, since this requires Proposition 3.12.

6.1 Adding Clubs is F -Completely Proper

In order to anticipate arguments in the next subsection, wherewe show that appropriate
F -completely proper posets do not add branches through certain Aronszajn trees, we
will need to not only show that our club adding poset is F -completely proper, but also
show that variants of it have this property. These variants are created by iterating the
process of taking an initial segment of the iteration followed by products of finitely-
many copies of the tail.

The following iteration followsMagidor’s work [34] on adding clubs through reflec-
tion points of stationary subsets of a weakly compact cardinal ^, which has been
collapsed to become l2.

Let d < ^+, and suppose that we have defined a P-name for an iteration 〈 ¤Cf , ¤C([) :
f ≤ d, [ < d〉 and a (P ∗ ¤Cd)-name 〈 ¤Sf , ¤S([) : f ≤ d, [ < d〉 for an iteration so that
for all f < d the following assumptions are satisfied:

(1) P forces that the iteration 〈 ¤Cf , ¤C([) : f ≤ d, [ < d〉 has < ^-support, and P∗ ¤Cd
forces that 〈 ¤Sf , ¤S([) : f ≤ d, [ < d〉 has countable support. Furthermore, ¤Sf is
a (P ∗ ¤Cf)-name;

(2) ¤C(f) is a (P ∗ ¤Cf)-name for CU( ¤(f , ¤Sf) (see Definition 1.3), where ¤(f is a
(P∗ ¤Cf ∗ ¤Sf)-name for a stationary subset of ^∩ cof(l) and ¤Cf+1 = ¤Cf ∗ ¤C(f);

(3) ¤S(f) is a (P ∗ ¤Cf+1 ∗ ¤Sf)-name for S( ¤)f) (see Definition 1.4), where ¤)f is a
(P ∗ ¤Cf+1 ∗ ¤Sf)-name for an Aronszajn tree on ^;

(4) ¤Cf is F -completely proper (and hence P ∗ ¤Cf is F -strongly proper, by Proposi-
tion 5.7), and P ∗ ¤Cf forces that ¤Sf is a countable support iteration specializing
Aronszajn trees, as defined in Section 3.

Working in an arbitrary generic extension by P, we now define the variations of ¤Cd
mentioned above; we call these Doubling Tail Products. These will be the posets Cd ( ®X),
where ®X = 〈X0, X1, . . . , X=−1〉 ∈ [d]= is a strictly decreasing sequence of ordinals.
We use [d]<ldec to denote the set of all finite, strictly decreasing tuples from d; [d]=dec
is defined similarly.
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We first introduce an auxiliary name for a poset ¤CX∗ ,d ( ®X), where ®X is as above and
X∗ ≤ X=−1 is an additional ordinal. This is done by recursion on = = | ®X | as follows:

• For = = 0 (i.e., ®X = ∅) we define ¤CX∗ ,d (∅) = ¤CX∗ ,d to be the tail-segment of the
iteration Cd , starting from stage X∗.

• For = ≥ 1, ®X ∈ [d]=, and X∗ ≤ X=−1, the poset CX∗ ,d ( ®X) is given by-

¤CX∗ ,d ( ®X) = ¤CX∗ , X=−1 ∗ ( ¤CX=−1 ,d ( ®X � = − 1))2,

where ¤CX∗ , X=−1 is the segment of the iteration Cd starting from (and including)
stage X∗ to stage X=−1, and ®X � (= − 1) = 〈X0, . . . , X=−2〉.

We can now define Cd ( ®X).

Definition 6.1 For ®X ∈ [d]<ldec , define Cd ( ®X) = C0,d ( ®X) (i.e., as CX∗ ,d ( ®X) with X∗ = 0).

For example, if ®X = 〈X0〉 is a singleton, then Cd (〈X0〉) = CX0 ∗ ¤C2
X0 ,d

. Similarly, if
®X = 〈X0, X1〉 has two elements X0 > X1 then

Cd (〈X0, X1〉) = CX1 ∗ ¤C2
X1 ,d
(〈X0〉) = CX1 ∗

(
¤CX1 , X0 ∗ ¤C2

X0 ,d

)2

We refer to posets Cd ( ®X) as the doubling tail products of Cd . We now return to
working in+ , in particular with the statement of the next item.

Proposition 6.1 (Given assumptions (1)-(4) stated at the beginning of the subsection) For each
d < ^+ and ®X = 〈X0, . . . , X=−1〉 ∈ [d]<ldec , the doubling tail product ¤Cd ( ®X) is F -completely
proper. In particular, ¤Cd is F -completely proper.

Wewill explain the necessity of proving Proposition 6.1 for the doubling tail products
of ¤Cd in the final section of the paper.

Proof Wewill first workwith ¤Cd , rather thanwith the doubling tail products, in order
to establish that a certain statement (∗) (see below) holds. We will then show that this
statement (∗) can be used to prove the desired result for the doubling tail products. We
use Rf , for f ≤ d, to denote P ∗ ¤Cf ∗ ¤Sf .

To begin, we fix an Rd-suitable sequence ®" ; by removing a set in I, we may assume
that ®" is in pre-splitting configuration up to d. By removing a further I-null set, we
may assume that ®" satisfies the conclusion of Proposition 4.4.

Let " be a ^-model so that " contains the relevant parameters, including ®" . Since
dom( ®") is in F +, we may apply Proposition 1.4 to find an "-normal ultrafilter* so
that, letting 9 : " −→ # be the corresponding ultrapower map, ^ ∈ 9 (dom( ®")). Let
"^ be the ^-th model on the sequence 9 ( ®").

Fix a +-generic filter �∗ over 9 (P), and let � := �∗ ∩ P. For notational simplicity,
we continue using 9 to denote the lifted map 9 : " [�] −→ # [�∗]. Recall by Lemma
2.11 that 9−1 � "^ is the transitive collapse map of"^ and that 9−1 lifts in the standard
way to "^ [�∗].

2023/01/21 17:09



50 O. Ben-Neria and T.D. Gilton

Suppose that f ≤ d and that ¤� is a 9 (P)-name in # for a generic filter over
c"^ [ ¤�∗ ] ( 9 ( ¤Cf)) = ¤Cf . We define the ^-flat function for (the pull-back of) ¤� to
be the 9 (P)-name for the function with domain 9 [f] ,6 so that for each [ < f, ¤A ( 9 ([))
is forced to be equal to

(⋃ ¤� ([)) ∪ {^}.
We will prove the following proposition (∗) by induction:

(∗) for any f ≤ d, if ¤� is a 9 (P)-name in # for a generic filter over ¤Cf =

c"^ [�∗ ] ( 9 ( ¤Cf)) which is guided by the collapse at ^ (see Definition 5.2), then it
is forced by 9 (P) that the ^-flat function for ¤� is a condition in 9 ( ¤Cf).

We first consider the case that f ≤ d is limit. Suppose that we know the result for
all [ < f. We use throughout the fact that 9−1 equals the transitive collapse map of
"^ [�∗].

Let � ∈ # [�∗] be a filter over Cf which is guided by the collapse at ^, and let A be
the ^-flat function for �. Since | dom(A) |# < 9 (^) and 9 (Cf) is taken with < 9 (^)-
supports, in order to see that A ∈ 9 (Cf), it suffices to show that for all [ < f, A �
9 ([) ∈ 9 (C[). So let [ < f be fixed. Since Cf � C[ ∗ ¤C[,f and since � is guided
by the collapse at ^ over Cf , we have by Lemma 5.3 that � � C[ is also guided by the
collapse at ^ over C[ . By induction, this implies that the ^-flat function for � � C[ ,
namely A � 9 ([), is a condition in 9 (C[). This completes the proof of (∗) in the limit
case.

Now suppose thatf+1 ≤ d and thatwe know that (∗) holds atf. Let� ∈ # [�∗] be
a filter overCf+1 which is guided by the collapse at ^, and let�f denote the restriction
of � to Cf . Again appealing to Lemma 5.3, we know that �f is guided by the collapse
at ^.

Let A be the ^-flat function for �, and let Ā denote A � 9 (f), the ^-flat function for
�f . Since �f is guided by the collapse at ^, we may apply the induction hypothesis to
conclude that Ā is a condition in 9 (Cf). By Proposition 5.4, since �f is guided by the
collapse at ^, we know that in # wemay find a residue pair 〈(0 9 (P) , ¤̄A), i"^ 〉 for the pair
("^ , 9 (P∗)), where ¤̄A is a 9 (P)-name in # for Ā . We use ?∗ ("^ ) to denote (0 9 (P) , ¤̄A).

Since Ā is an upper bound for c−1
"^ [�∗ ] [�f] = 9 [�f] , we conclude that Ā forces in

9 (Cf) over # [�∗] that
⋃
9 [� (f)]= ⋃

� (f) is club in ^ (equality follows since 9 is
the identity on bounded subsets of ^). Therefore, to see that A ∈ 9 (Cf+1) (which finishes
the proof of (∗) in the successor case), it suffices to show that

Ā 
# [�
∗ ]

9 (Cf )

(⋃
� (f) ∪ {^}

)
∈ 9 ( ¤C(f)).

Since 9 ( ¤C(f)) is a 9 (P∗ ¤Cf)-name forCU( 9 ( ¤(f), 9 ( ¤Sf)), the above holds if and only
if

(Ā , 0 9 ( ¤Sf ) ) 

# [�∗ ]
9 (Cf∗¤Sf )

(⋃
� (f) ∪ {^}

)
⊆

(
tr

(
9 ( ¤(f)

)
∪ ( 9 (^) ∩ cof(l))

)
.

By the elementarity of 9 and since Ā is an upper bound for 9 [�f] , we see that

(Ā , 0 9 ( ¤Sf ) ) 

# [�∗ ]
9 (Cf∗¤Sf )

⋃
� (f) ⊆

(
tr

(
9 ( ¤(f)

)
∪ ( 9 (^) ∩ cof(l))

)
.

6We note that 9 [f ] ∈ # :"^ ∩ 9 (d) = 9 [d] , and so 9 [d] is in # . Then intersect with 9 (f) .

2023/01/21 17:09



Club Stationary Reflection and the Special Aronszajn Tree Property 51

Since ^ has cofinalityl1 after forcingwith 9 (Cf ∗ ¤Sf), it therefore suffices to show that

(Ā , 0 9 ( ¤Sf ) ) 

# [�∗ ]
9 (Cf∗¤Sf )

( 9 ( ¤(f) ∩ ^) is stationary in ^.

Before continuing, we recall that Rf denotes P ∗ ¤Cf ∗ ¤Sf . By Proposition 3.2, we
know that

(?∗ ("^ ), 0 9 ( ¤Sf ) ) 

#
9 (Rf ) 9 ( ¤(f) ∩ ^ = ( 9 ( ¤(f) ∩ "^ ) [ ¤� 9 (Rf ) ∩ "^ ] .

However, 9 (Rf) ∩ "^ = 9 [Rf] is isomorphic to Rf , and 9 ( ¤(f) ∩ "^ = 9 [ ¤(f].
Since ¤(f is a nice Rf-name for a stationary subset of ^ ∩ cof(l), 9 [ ¤(f] is therefore a
9 (Rf) ∩ "^-name for a stationary subset of ^ ∩ cof(l).

We now apply Proposition 4.4 in # , recalling that ®" satisfies the conclusion of that
proposition and that ^ ∈ 9 (dom( ®")). Thus, applying the observations in the previous
paragraph, we conclude that (?∗ ("^ ), 0 9 ( ¤Sf ) ) forces over # that 9 [ ¤(f] is stationary
in ^. Recalling that ?∗ ("^ ) = (0 9 (P) , ¤̄A), we now conclude that

(Ā , 0 9 ( ¤Sf ) ) 

# [�∗ ]
9 (Cf∗¤Sf )

9 ( ¤(f) ∩ ^ = 9 [ ¤(f] [ ¤� 9 (Rf ) ∩ "^ ] is stationary.

This completes the proof that A , the ^-flat function for �, is a condition in 9 (Cf) and
also finishes the proof that (∗) holds.

To finish the proof of Proposition 6.1, we prove by induction on : < l that for any
®X = 〈X0, . . . , X:−1〉 ∈ [d]:dec, the poset Cd ( ®X) is F -completely proper. Working by
contradiction, let : ∈ l be the least so that for some (empty in case : = 0) ®X ∈ [d]:dec,
the proposition fails for Cd ( ®X). Let ®" be a ®X-suitable sequence which witnesses that
Cd ( ®X) is not F -suitable. Since ®" is ®X-suitable it is also P∗ ¤Cd ( ®X)-suitable. By removing
a I-null set, we may assume that ®" satisfies the conclusion of Proposition 4.4.

Let " be a ^-model containing the relevant parameters, including ®" . Since
dom( ®") ∈ F +, we may find some"-normal ultrafilter* so that, letting 9 : " −→ #

be the ultrapower embedding, ^ ∈ 9 (dom( ®")).
First we deal with the case : = 0. Since ®" witnesses that ¤Cd is not F -completely

proper, # satisfies that the conclusion of Definition 5.3 fails at ^ with respect to 9 (P)
and 9 ( ¤Cd). However, this directly contradicts (∗), whichwe showed holds in this set-up.

Now we assume that : = ; + 1 is a successor. Then we may find an #-generic filter
�∗ over 9 (P) so that in # [�∗] there is a filter�∗ over c"^ [�∗ ] ( 9 (Cd ( ®X))) = Cd ( ®X) so
that no condition in 9 (Cd ( ®X)) is a least upper bound for c−1

"^ [�∗ ] [�
∗]. We will show,

on the contrary, that there is such a least upper bound for the pull-back of �∗.
Write ®X = 〈X0, . . . , X:−1〉. For simplicity of notation, we also write Cd ( ®X � : − 1) =

CX:−2∗ ¤D so thatCd ( ®X) = CX:−1∗
( ¤C[X:−1 , X:−2) ∗ ¤D

)2.Note in the case : = 1, we just have
Cd ( ®X) = CX0 ∗ ( ¤C[X0 ,d) )2. The filter �∗ adds generics �0, �1 overCd ( ®X � : − 1) so that
�0 and �1 agree on CX:−1 (recall that X:−1 < X:−2) but are mutually generic afterwards.
Since �∗ is guided by the collapse at ^, both �0 and �1 are guided by the collapse at ^.
Hence, our inductive assumption implies that for each 8 ∈ 2, c−1

"^ [�∗ ] [�8] has a sup A8
in 9 (Cd ( ®X � : − 1)). By the agreement between �0 and �1 up to stage X:−1 < X:−2, we
know that A0 � 9 (CX:−1 ) = A1 � 9 (CX:−1 ). We let Ā denote the common value. Finally,
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we define A∗ to be the function Ā ⌢〈A8 � 9 (Cd ( ®X � : − 1)) : 8 < 2〉. Then A∗ is a
condition in 9 (Cd ( ®X)) which is a sup of c−1

"^ [�∗ ] [�
∗].

This completes the inductive step and the proof of the proposition.
�

6.2 No New Branches

In this subsection, we will show that various F -completely proper posets do not add
branches through Aronszajn trees of interest. We will use this general result to show, in
particular, that tails of the club adding posetCd donot add any branches to trees ¤) which
are Aronszajn trees in an intermediate extension obtained by forcing with Cf∗¤Sf , for
f < d. This will ensure that the tree specializing iteration of length d above is in fact
an iteration of specializing Aronszajn trees in the extension byCd , a conclusion which is
essential in order to see that the specializing iteration does not collapse ^.

Arguments for securing that certain posets do not add new cofinal branches to trees
play a crucial role in consistency results concerning the tree property, going back to the
work of Mitchell and Silver ([37]), and Magidor and Shelah ([35]). Lemma 6 of Unger
[44] provides such an argument with respect to closed posets and trees named by posets
with reasonable chain condition, given constraints on the continuum function. Here,
we prove a version of these results, in which the relevant posets (which in practice are
variants of the club-adding poset) areF -completely proper (and thus ^-distributive) but
not ^-closed.

The statement of the following Proposition involves (names of) posets ¤Q1, ¤Q2, and
¤S. To relate the statement to our scenario, we suggest keeping in mind the following
assignments of the posets: Fixing d < d∗ < ^+, ¤Q1 = ¤Cd is the (P-name) of the first d
steps of the club adding iteration, ¤S = ¤Sd is the P ∗ ¤Cd-name of the first d steps of the
iteration specializing trees, and ¤Q2 = ¤C[d,d∗) is the P ∗ ¤Cd-name of the segment of the
final iteration from (and including) stage d to stage d∗ (i.e. ¤Q1 ∗ ¤Q2 = ¤Cd∗ ).

Proposition 6.2 Suppose that ¤Q1 is a P-name and that ¤Q2 and ¤S are (P ∗ ¤Q1)-names so
that ¤Q1 ∗ ¤Q2

2 is F -completely proper and so that P ∗ ¤Q1 ∗ ¤Q2
2 forces that ¤S is ^-c.c. Let ¤) be a

(P ∗ ¤Q1 ∗ ¤S)-name for an Aronszajn tree on ^. Then P ∗ ¤Q1 ∗ ( ¤Q2 × ¤S) forces that ¤) is an
Aronszajn tree.

That is to say, forcing with ¤Q2 after P ∗ ¤Q1 ∗ ¤S does not add branches to ¤) . To show
this, wewill follow the standard approach and show that if ¤Q2 were to add such a branch,
then we can find some model in which a level of the tree has too many nodes.

For the rest of this subsection, we suppose for a contradiction that ¤1 is (P∗ ¤Q1∗ ( ¤Q2×
¤S))-name for a branch through ¤) , where ¤) is a (P ∗ ¤Q1 ∗ ¤S)-name for an Aronszajn tree
on ^. In the context of working with the forcing R∗ := P ∗ ¤Q1 ∗ ( ¤Q2

2 × ¤S), for which
a typical generic looks like � ∗ &1 ∗ (&!2 × &'2 × �), we will use ¤1! to denote the
(P ∗ ¤Q1 ∗ ( ¤Q2 × ¤S))-name for ¤1[ ¤� ∗ ¤&1 ∗ ( ¤&!2 × ¤�)] , i.e., the interpretation of ¤1 using
the left generic filter added by ¤Q2

2. ¤1' is defined similarly.
The next lemma will be used as a successor step in obtaining a tree of conditions

forcing incompatible information about a branch.
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Lemma 6.3 (Under the assumptions of Proposition 6.2) P forces that for each ¤Q1-name ¤3 for
a condition in ¤Q2, there is a dense, open set of 2 in ¤Q1 satisfying the following property: there
exist names ¤3! , ¤3' for conditions in ¤Q2 and an ordinal b < ^ so that

(1) 2 
 ¤3/ ≥ ¤3 for each / ∈ {!, '};
(2) 〈2, ¤3! , ¤3', 0 ¤S〉 


+ [ ¤� ]
¤Q1∗( ¤Q2× ¤Q2×¤S)

¤1! (b) ≠ ¤1' (b).

Proof We work in + [�]. Fix 2 ∈ Q1 and a Q1-name ¤3 for a condition in ¤Q2. Let &1
be+ [�]-generic overQ1 containing 2, and let&!2 ×&'2 be+ [� ∗&1]-generic overQ2

2
containing (3, 3).

We first claim that 0S forces over+ [� ∗&1 ∗ (&!2 ×&'2 )] that ¤1! ≠ ¤1' . Thus let �
be an arbitrary+ [� ∗&1 ∗ (&!2 ×&'2 )]-generic filter for S. Since S andQ2

2 both live in
+ [� ∗&1] , the product lemma implies that&!2 ×&'2 is+ [� ∗&1 ∗�]-generic overQ2

2.
Since&!2 and&'2 are mutually+ [� ∗&1 ∗�]-generic filters overQ2, we conclude that

+ [� ∗&1 ∗ �] = + [� ∗&1 ∗ (� ×&!2 )] ∩+ [� ∗&1 ∗ (� ×&'2 )] .

Therefore, if 1 := 1! = 1' , then 1 is in + [� ∗ &1 ∗ �] , and therefore ) is not an
Aronszajn tree in that model, a contradiction.

We now claim that there is an ordinal b so that 0S forces over+ [� ∗&1 ∗ (&!2 ×&'2 )]
that ¤1! (b) ≠ ¤1' (b). Let � ⊆ S be a maximal antichain in + [� ∗ &1 ∗ (&!2 × &'2 )]
consisting of conditions 6 ∈ S so that for some Z6 < ^,

6 

+ [�∗&1∗(&!

2 ×&'
2 ) ]

S
¤1! (Z6) ≠ ¤1' (Z6).

Because ¤1! and ¤1' name branches in ¤) , we see that for any 6 ∈ � and Z ≥ Z6 , 6 forces
that ¤1! (Z) ≠ ¤1' (Z). Since S is still ^-c.c. after forcing to add&!2 × &'2 , we know that
� has size < ^ in + [� ∗ &1 ∗ (&!2 × &'2 )]. Therefore, letting b := sup6∈� Z6 , b < ^.
Then b witnesses the claim: indeed, if 5 ∈ S is any condition, we may extend it to 5 ∗
so that 5 ∗ is above some 6 ∈ �. By the remarks above and since b ≥ Z6 , we know that
5 ∗ 
 ¤1! (b) ≠ ¤1' (b), completing the proof of the second claim.

Since (2, ¤3, ¤3) ∈ &1 ∗ (&!2 ×&'2 ), wemay find an extension (2∗, ¤3! , ¤3') of (2, ¤3, ¤3)
aswell as an ordinal b < ^ so that (2∗, ¤3! , ¤3') forces that 0 ¤S forces that ¤1! (b) ≠ ¤1' (b).
Then 2∗ ≥ 2 is in the desired dense set. �

For the rest of the subsection, let ®" = 〈"U : U ∈ �〉 be a sequence which is suitable
with respect to all parameters of interest. Since ¤Q1 ∗ ¤Q2

2 is F -completely proper, which
implies that ¤Q1 ∗ ¤Q2 is F -completely proper, we may assume that dom( ®") satisfies the
conclusion of Definition 5.3 with respect to ¤Q1 ∗ ¤Q2

2 and with respect to ¤Q1 ∗ ¤Q2.
Fix"∗ ≺ � (^++), where"∗ has size ^, is closed under < ^-sequences, and contains
®" as well as C from Notation 2.6 as an element. Let " denote the transitive collapse of
"∗, so that" is a ^-model. Since dom( ®") ∈ F +, we may find an"-normal ultrafilter
* so that, letting 9 : " −→ # be the associated ultrapower map, ^ ∈ 9 (dom( ®")). As
usual, we use "^ to denote 9 ( ®") (^). The following claim shows that we can build the
desired tree of conditions forcing incompatible information about the branch.
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Claim 6.2. 9 (P) forces over # that there exist sequences 〈 ¤2a : a < l1〉 and 〈 ¤3B : B ∈
2<l1〉 so that the following properties hold:

(1) for each 5 ∈ (2l1 )# [ ¤� 9 (P) ] , 〈( ¤2a , ¤3 5 �a) : a < l1〉 is an increasing sequence of
conditions in ¤Q1 ∗ ¤Q2 which is guided by the collapse at ^ (see Definition 5.2);

(2) if B ≠ C are in 2a for some a < l1, then

9 (〈 ¤2a , ¤3B , ¤3C , 0 ¤S〉) 

# [ ¤� 9 (P) ]
9 ( ¤Q1∗( ¤Q2× ¤Q2×¤S)) 9 (

¤1)! � ^ ≠ 9 ( ¤1)' � ^.

Proof The definition is by recursion. Let�∗ be an arbitrary+-generic over 9 (P), and
let � = �∗ ∩ P. Let (20, ¤30) be the trivial condition in Q1 ∗ ¤Q2. In order to show that
the desired sequences generate filters which are guided by the collapse at ^ (which in
turnwill guarantee that they have upper bounds), wewill show that (1)-(3) of Lemma 5.5
are satisfied. In particular, to secure (3) of that lemma, throughout the construction we
will select objects which are minimal according to the fixed well-order C of � (^+). We
remark that the entire construction takes place in# [�∗] , but the proper initial segments
can be carried out in" [�] using a proper initial segment of 5^ , the standard surjection
from ^ onto l1 added by�∗.

Suppose that a is a limit and that for all ` < a and all B ∈ 2` , we have defined 2`
and ¤3B . Then we let ¤2a be the C-least P-name for a condition in ¤Q1 so that 2a := ¤2a [�]
is a sup of 〈2` : ` < a〉. Similarly, for B ∈ 2a , we let ¤3B be aQ1-name forced to be a sup
of 〈 ¤3B�` : ` < a〉 so that a P-name for ¤3B is C-minimal. Note that item (2) in the claim
still holds since if B ≠ C are in 2a , then there exists some ` < a so that B � ` ≠ C � `.
So 9 (〈2`, ¤3B�`, ¤3C�`, 0 ¤S〉) forces that 9 ( ¤1)! � ^ ≠ 9 ( ¤1)' � ^. Hence the extension
9 (〈2a , ¤3B , ¤3C , 0 ¤S〉) also forces this.

Now for the successor step. Suppose that we have defined 2a and ¤3B for all B ∈ 2a . In
order to ensure that the assumptions of Lemma 5.5 are satisfied, and thereby ensure that
the sequences are guided by the collapse at ^ (which in turn will guarantee they have an
upper bound), we will first define an auxiliary extension 2∗a ≥ 2a and for each B ∈ 2a , a
Q1-name ¤3∗B forced by 2∗a to extend ¤3B . Towards this end, let W := 5^ (a), where 5^ is the
standard surjection added by�∗ froml1 onto ^. Let DW be the W-th condition inQ1∗ ¤Q2,
and write DW as 〈2W , ¤3W〉. If 2W does not extend 2a in Q1, set 2∗a = 2a and ¤3∗B = ¤3B . On
the other hand, if 2W ≥ 2a , we set 2∗a = 2W . Then, given B ∈ 2a , if 2∗a 
 ¤3W ≥ ¤3B , we set
¤3∗B = ¤3W , and otherwise we set ¤3∗B = ¤3B . Note that there is at most one B that falls into
the first of these, since 2∗a 


{ ¤3B : B ∈ 2a
}
is an antichain in ¤Q2.

Nowwemove to defining 2a+1 and ¤3C for all C ∈ 2a+1. By Lemma 6.3, for each B ∈ 2a ,
the set �B of all 2 ∈ Q1 for which there exist names ¤3! and ¤3' and an ordinal b < ^

satisfying

(i) 2 
 ¤3/ ≥ ¤3B for each / ∈ {!, '}; and
(ii) 〈2, ¤3! , ¤3', 0 ¤S〉 
 ¤1! (b) ≠ ¤1' (b)

is dense, open inQ1. By Lemma 5.6 applied toQ1, there exists an extension of 2a inside⋂
B∈2a �B . Let ¤2a+1 be the C-minimal P-name so that 2a+1 := ¤2a+1 [�] is such an

extension. For each B ∈ 2a , we may find an ordinal bB < ^ and Q1-names ¤3B⌢ 〈0〉
and ¤3B⌢ 〈1〉 so that 2a+1 
 ¤3B⌢ 〈8〉 ≥ ¤3B , so that 〈2a+1, ¤3B⌢ 〈0〉 , ¤3B⌢ 〈1〉 , 0 ¤S〉 forces that
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¤1! (bB) ≠ ¤1' (bB), and so that P-names for ¤3B⌢ 〈0〉 and ¤3B⌢ 〈1〉 are C-minimal. Applying
9 to this statement, we secure (2) of the claim. This completes the proof. �

Now that we have proven the above claim, we can finish the proof of Proposition 6.2.

Proof (of Proposition 6.2) Let �∗ be #-generic over 9 (P), let � := �∗ ∩ P, and fix
sequences 〈20

a : a < l1〉 and 〈 ¤30
B : B ∈ 2<l1〉 satisfying Claim 6.2. Let 〈2a : a < l1〉

and 〈 ¤3B : B ∈ 2<l1〉 denote the sequences of their 9-images. For each 5 ∈ (2l1 )# [�∗ ] ,
〈(20

a ,
¤30
5 �a) : a < l1〉 is guided by the collapse at ^. Moreover, dom( ®") satisfies

Definition 5.3, and ^ ∈ 9 (dom( ®")). Since 9 (Q1 ∗ ¤Q2) is 9 (F )-completely proper, we
may find a condition (2∗, ¤3 5 ) which is a sup in 9 (Q1 ∗ ¤Q2) of 〈(2a , ¤3 5 �a) : a < l1〉
(note that 2∗ is independent of 5 since any two sups are =∗-equal). By item (2) of the
previous claim, we know that if 5 ≠ 6 are in (2l1 ) ∩ # [�∗] , then 〈2∗, ¤3 5 , ¤36, 0 9 ( ¤S)〉
forces that 9 ( ¤1)! � ^ ≠ 9 ( ¤1)' � ^.

Now let&∗1 ∗ �∗ be # [�∗]-generic over 9 (Q1 ∗ ¤S) with&∗1 containing 2∗. Applying
item (2) of the previous claim again, we know that if 5 ≠ 6 are in (2l1 ) ∩ # [�∗] , then
〈3 5 , 36〉 forces in 9 (Q2

2) that 9 ( ¤1)! � ^ ≠ 9 ( ¤1)' � ^. We note here that the tree of
interest, namely)∗ := 9 ( ¤)) [�∗ ∗&∗1 ∗ �∗] , is a member of # [�∗ ∗&∗1 ∗ �∗] , i.e., exists
prior to forcing with 9 (Q2

2).
For each 5 ∈ (2l1 ) ∩ # [�∗] , let 3∗

5
be an extension of 3 5 in 9 (Q2) which decides

the value of 9 ( ¤1) (^), say as U 5 . We claim that if 5 ≠ 6 are in (2l1 ) ∩ # [�∗] , then
U 5 ≠ U6 . Indeed, suppose for a contradiction that there were 5 ≠ 6 with U 5 = U6 .
Then force in 9 (Q2

2) above the condition 〈3∗5 , 3
∗
6〉 to obtain a pair &̄!2 ×&̄'2 of mutually

generic filters for 9 (Q2). Since U 5 = U6 , the branch of )∗ below U 5 is the same as the
branch of )∗ below U6 . But the branch of )∗ below U 5 equals ( 9 ( ¤1) [&̄!2 ]) � ^ and
the branch of )∗ below U6 equals ( 9 ( ¤1) [&̄'2 ]) � ^, contradicting the fact that 〈3∗5 , 3

∗
6〉

forces that the interpretations diverge below ^.
Since (2l1 ) ∩ # [�∗] has size 9 (^) in # [�∗] and 9 (Q2 ∗ ¤S) preserves 9 (^), this set

still has size 9 (^) in # [�∗ ∗&∗1 ∗�∗]. Thus in the model # [�∗ ∗&∗1 ∗�∗] , the function
taking 5 ∈ (2l1 ) ∩ # [�∗] to U 5 is an injection. Therefore level ^ of )∗ has size 9 (^)
which contradicts the fact that 9 (^) isℵ2 in # [�∗∗&∗1∗�∗] and that)∗ is an Aronszajn
tree on 9 (^). �

7 Putting it all Together

Up to this point in the paper, we have worked to establish a number of isolated results.
In this section, we will now define the poset which will witness Theorem 1.1. Each of
the previous sections will function as a component in the inductive verification that this
poset has the desired properties.

We recall that P denotes Col(l1, < ^), the Levy collapse of the ineffable cardinal
^. We define a P-name ¤C^+ for a ^+-length iteration adding clubs, and we also define a
(P ∗ ¤C^+ )-name ¤S^+ for an iteration which specializes Aronszajn trees. This is done in
such a way that for all d < ^+, the (P ∗ ¤C^+ )-name ¤Sd for the first d-stages of ¤S^+ is
actually a (P ∗ ¤Cd)-name.
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More precisely, we define by recursion on d ≤ ^+ the names ¤Cd and ¤Sd . Suppose that
d = d0 + 1 is a successor and that ¤Cd0 and ¤Sd0 are both defined. Using the fixed well-
order C from Notation 2.6 as a bookkeeping device, we select a (P ∗ ¤Cd0 ∗ ¤Sd0 )-name
¤(d0 for a stationary subset of ^ ∩ cof(l), and we define ¤Cd := ¤Cd0 ∗ CU( ¤(d0 ,

¤Sd0 ); see
Definition 1.3. Next, we use C to select a (P ∗ ¤Cd ∗ ¤Sd0 )-name ¤)d0 for an Aronszajn tree
on ^, and we set ¤Sd to be the (P ∗ ¤Cd)-name for ¤Sd0 ∗ S( ¤)d0 ); see Definition 1.4.

Now suppose that d is a limit and that we have defined the sequences 〈 ¤Cb , ¤C(b) :
b < d〉 and 〈 ¤Sb , ¤S(b) : b < d〉. We first let ¤Cd be the < ^-support limit of 〈 ¤Cb , ¤C(b) :
b < d〉. Second, we see that P ∗ ¤Cd forces that 〈 ¤Sb , ¤S(b) : b < d〉 names an iteration
with countable support: by induction, if b < d is a limit, then ¤Sb is the (P ∗ ¤Cb )-
name for the countable support limit of 〈 ¤SZ , ¤S(Z) : Z < b〉. But ¤Cd is l1-closed, and
consequently, the countable support limit of 〈 ¤SZ , ¤S(Z) : Z < b〉 is the same in both the
extension by P ∗ ¤Cb and the extension by P ∗ ¤Cd . In light of this, we let ¤Sd denote the
countable support limit of 〈 ¤Sb , ¤S(b) : b < d〉, noting that this is an l1-closed poset
in the extension by P ∗ ¤Cd . This completes the definitions of the names. We may now
define R∗ := P ∗ ¤C^+ ∗ ¤S^+ .

We begin our analysis of R∗ with some simple remarks. First, R∗ is l1-closed, since
all the posets under consideration are (and since our iterationswere takenwith supports
which are at least countable). Additionally, R∗ is ^+-c.c. Indeed, P trivially is. Further-
more, ^<^ = ^ after forcing with P, and so if V < ^+, ¤CV is forced to be a poset of size
^. Since direct limits in the iteration ¤C^+ are taken at all stages in ^+ ∩ cof(^), stan-
dard arguments (e.g., see [7]) show that ¤C^+ is ^+-c.c. Finally, since for every V < ^+,
¤SV is forced to have size ^ by P ∗ ¤C^+ , and since ¤S^+ is taken with countable supports, a
standard Δ-System argument shows that ¤S^+ is ^+-c.c.

We next claim that ifR∗ preserves ^, then it forces all Aronszajn trees on ^ are special,
that such trees exist, and that every stationary subset ( ⊆ ^ ∩ cof(l) reflects on every
ordinal of cofinality l1 in some closed unbounded subset on ^. First, suppose that ¤) is
an R∗-name for an Aronszajn tree on ^. Because R∗ is ^+-c.c., ¤) is an (P ∗ ¤CW ∗ ¤SW)-
name for some W < ^+, and hence names an Aronszajn tree in any extension between
that given by P ∗ ¤CW ∗ ¤SW and the fullR∗-extension. By our bookkeeping device, there is
some X ≥ W so that ¤S(X) is forced by P ∗ ¤CX+1 ∗ ¤SX to equal ¤S( ¤)). Hence R∗ forces that
¤) is special. Similarly, if ¤( is anR∗-name for a stationary subset of ^∩cof(l), then there
is some U < ^+ so that ¤( is a (P∗ ¤CU ∗ ¤SU)-name, and hence there is some V ≥ U so that
¤C(V) is forced by P ∗ ¤CV to equal CU( ¤(, ¤SV). Thus in the extension by P ∗ ¤CV+1 ∗ ¤SV ,
¤( reflects almost everywhere, and since the forcing to complete P ∗ ¤CV+1 ∗ ¤SV to R∗ is
l1-closed, ¤( still reflects almost everywhere in the full R∗-extension.

As a result of the previous discussion, we see that in order to show that R∗ witnesses
Theorem 1.1, we need to prove that R∗ preserves ^. To achieve this we verify that (i) P
forces ¤C^+ is ^-distributive, and that (ii) P ∗ ¤C^+ forces that ¤S^+ is ^-c.c.

To this end, we consider the following simplifications. First, concerning (i), we note
that since ¤C^+ is forced to be ^+-c.c, it is sufficient to verify that ¤Cd is forced to be ^-
distributive for all d < ^+ to show that (i) holds. We will use Lemma 5.6 to verify this,
by proving that for every d < ^+, ¤Cd is F -completely proper.

Second, concerning (ii), since ¤S^+ names a countable support iteration, any ^-sized
antichain would witness that some proper initial segment ¤SW is not ^-c.c. Therefore, it
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is sufficient to verify that P ∗ ¤C^+ forces ¤SW is ^-c.c for every W < ^+. Howover, as ¤C^+
names a ^+-cc poset, every (P ∗ ¤C^+ )-name for a subset of ¤SW of size ^ is equivalent to
a (P ∗ ¤Cd)-name, for some d ≥ W. Clearly, if P ∗ ¤Cd forces ¤SW fails to satisfy the ^-c.c
for some W ≤ d, then it forces ¤Sd is not ^-c.c. We conclude that (ii) follows from the
assertion that for every d < ^+, P ∗ ¤Cd forces that ¤Sd is ^-c.c.

Combining the two simplifications, it remains to prove the next claim.

Claim 7.1. The following holds for every d < ^+:

(1) ¤Cd is F -completely proper, and
(2) P ∗ ¤Cd forces ¤Sd is ^-c.c.

We prove the claim by induction on d < ^+. Let d < ^+, and suppose that the claim
holds for every f < d. In particular, if f < d, then since P ∗ ¤Cf forces that ¤Sf is
a countable support iteration specializing trees and since (2) holds at f, we must have
that P ∗ ¤Cf forces that ¤Sf is a countable support iteration specializing Aronszajn trees.
Hence we see that assumptions (1)-(4) from the beginning of section 6 hold. Applying
Proposition 6.1, it follows that ¤Cd is F -completely proper, and moreover, so is Cd ( ®X)
for every finite, decreasing sequence ®X of ordinals below d. We use this to prove that (2)
of the claim holds at d.

We aim to apply Corollary 3.13 to the F -strongly proper poset P∗ := P ∗ ¤Cd , and to
do so, we need to verify that for each f < d, P∗ ∗ ¤Sf 
 ¤)f is an Aronszjan tree. This
is where the doubling tail products come into play. Indeed, we consider a slightly more
general statement, which would allow us to use Proposition 6.2. For each decreasing
sequence ®X = 〈X0, . . . , X=−1〉 in d, we let★d ( ®X) be the statement that P ∗ ¤Cd ( ®X) forces
¤SX=−1 is ^-c.c. (note that if ®X = ∅ then the statement holds vacuously). We prove by
induction on the reverse lexicographic order <rLex on [d]<ldec that ★d ( ®X) holds. The
base case of the induction, where ®X = ∅, trivially holds, as mentioned above. For the
induction step, fix ®X = 〈X0, . . . , X=−1〉 ∈ [d]<ldec and suppose that ★d ( ®W) holds for
every ®W <rLex ®X. To show that ★d ( ®X) holds, we need to verify that P ∗ ¤Cd ( ®X) forces
that ¤SX=−1 is ^-c.c. For this in turn, by Corollary 3.13, it is sufficient to verify that for
every W < X=−1, P ∗ ¤Cd ( ®X) ∗ ¤SW forces that ¤)W is an Aronszajn tree on ^. If X=−1 = 0
there is nothing to prove. Otherwise, let W < X=−1, and set ®W := ®X⌢〈W〉. By Proposition
6.2 and the definition of ¤Cd ( ®W), it suffices to verify that P ∗ ¤Cd ( ®W) forces that ¤SW is
^-c.c, to conclude that P ∗ ¤Cd ( ®X) ∗ ¤SW forces that ¤)W is Aronszajn. However, the last is
just ★d ( ®W), which holds by our inductive assumption and the fact that ®W <rLex ®X. This
concludes the proof of Claim 7.1, which in turn finishes the proof of Theorem 1.1.

We conclude the paper with two questions:

Question 7.2. Is an ineffable cardinal necessary for proving Theorem 1.1? Is a weakly
compact cardinal sufficient?

As we’ve remarked throughout the paper, we only use ineffability in the proof of
Proposition 3.12 (and thus in the corollaries of this proposition). If one could prove this
proposition assuming only a weakly compact, then that would suffice to show that a

2023/01/21 17:09



58 O. Ben-Neria and T.D. Gilton

weakly compact is optimal.

We also mention the following long-standing question:

Question 7.3. Is a weakly compact cardinal needed for SATP(l2) + 2l1 = l3?

We recall that in the Laver-Shelah model of SATP(l2), 2l1 = l3. Moreover, Rinot
has shown ([38]) that if theGCH and SATP(l2) both hold, thenl2 is weakly compact
in !.
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