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Abstract

Shelah showed that the existence of free subsets over internally ap-
proachable subalgebras follows from the failure of the PCF conjecture on
intervals of regular cardinals. We show that a stronger property called the
Approachable Bounded Subset Property can be forced from the assump-
tion of a cardinal λ for which the set of Mitchell orders {o(µ) | µ < λ} is
unbounded in λ. Furthermore, we study the related notion of continuous
tree-like scales, and show that such scales must exist on all products in
canonical inner models. We use this result, together with a covering-type
argument, to show that the large cardinal hypothesis from the forcing part
is optimal.

1 Introduction

The study of set theoretic algebras has been central in many areas, with many
applications to compactness principles, cardinal arithmetic, and combinatorial
set theory.

An algebra on a set X is a tuple A = 〈X, fn〉n<ω where fn : Xkn → X is a
function. A sub-algebra is a subset M ⊆ X such that fn(x0, . . . , xkn−1) ∈ M
for all (x0, . . . , xkn−1) ∈Mkn and n < ω. The set of sub-algebras of A is known
as a club (in P(X)). The characteristic function χM of M is defined on the
ordinals of M by χM (τ) = sup(M ∩ τ).

Shelah’s celebrated bound in cardinal arithmetic ([26]) states that if ℵω is a
strong limit cardinal then

2ℵω < min{ℵω4 ,ℵ(2ℵ0 )+}.

Starting from a supercompact cardinal, Shelah proved that for every α < ω1,
there exists a generic extension in which 2ℵω = ℵα+1 (see [15]). It is a central
open problem in cardinal arithmetic if 2ℵω ≥ ℵω1 is consistent. A major break-
through towards a possible solution is the work of Gitik ([14],[10]) on the failure
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of the PCF-conjecture. Shelah’s PCF conjecture states that |pcf(A)| ≤ |A|
for every progressive1 set A of regular cardinals. In [27], Shelah has extracted
remarkable freeness properties of sets over subalgrbras, from the assumption
of 2ℵω ≥ ℵω1

, or more generally, from the assumption |pcf(A)| > |A| for a
progressive interval of regular cardinals |A|.

Definition 1. Let A = 〈X, fn〉n be an algebra and x ⊂ X. We say that x is
free with respect to A if for every δ ∈ x and n < ω, δ 6∈ fn“(x \ {δ})<ω.
More generally, x is free over a subalgebra N ⊆ A if for every δ ∈ x and n < ω,
δ 6∈ fn“(N ∪ (x \ {δ}))<ω.

A cardinal λ has the Free Subset Property if every algebra A on λ or a bigger Hθ,
has a free subset x ⊆ λ which is cofinal in λ. A regular cardinal λ with the Free
Subset Property is Jonsson. Koepke [19] has shown that the free subset property
at ℵω is equiconsistent with the existence of a measurable cardinal. For a
singular limit λ of a progressive interval |A|, it is shown in [27] that if |pcf(A)| >
|A| then λ satisfies the Free Subset Property. In his PhD thesis ([23]), Pereira has
isolated the notion of the Approachable Free Subset Property (AFSP) to play
a critical role in the result from [27]. The Approachable Free Subset Property
for a singular cardinal λ asserts that there exists some sufficiently large Hθ,
θ > λ and an algebra A on Hθ such that for every internally approachable
substructure2 N ≺ A with |N | < λ, there exists an infinite sequence of regular
cardinal 〈τi | i < cof(λ)〉 ∈ N such that the set x = {χN (τi) | i < cof(λ)} is free
over N .
Pereira showed that Shelah’s proof yields that if λ is a limit of a progressive
interval A or regular cardinals and |pcf(A)| > |A| then the Approachable Free
Subset Property holds at λ.

Working with fixed sequences 〈τn | n < ω〉 of regular cardinal, we consider
here the following version of this property.

Definition 2. The Approachable Free Subset Property (AFSP) with re-
spect to 〈τn〉n asserts that for every sufficiently large regular θ > λ = (∪nτn) and
for every internally approachable subalgebra N ≺ A, of an algebra A extending
(Hθ,∈, 〈τn〉n), satisfying |N | < λ there exists a cofinite set x ⊆ {χN (τn) | n <
ω} which is free over N .

By moving from one cardinal θ to θ′ > θ if needed, it is routine to verify
the definition of AFSP with respect to a sequence 〈τn〉n can be replaced with a
similar assertion in which the requirement of “every internally approachable N”
is replaced with “ for every internally approachable in some closed unbounded
subset of Pλ(A)”. Clearly, if AFSP holds with respect to a sequence 〈τn〉n then
AFSP holds with respect to the singular limit λ = ∪nτn, as in the original def-
inition of [23].

1I.e., min(A) > |A|.
2See Definition 10
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The above mentioned results, suggest that AFSP can provide a path to possibly
improving Shelah’s bound, to 2ℵω < ℵω1 . I.e., proving (in ZFC) that AFSP
must fail at ℵω (or AFSP fails w.r.t every subsequence 〈τn〉n of {ℵk | k < ω})
would imply that 2ℵω < ℵω1

. To this end, Pereira ([23]) has isolated the notion
of tree-like scales, as a potential tool of proving AFSP must fail.

Definition 3. Let 〈τn〉n<ω be an increasing sequence of regular cardinals. A

scale3 ~f = 〈fα | α < η〉 is a tree-like scale on
∏
n τn if for every α 6= β < η and

n < ω, fα(n+ 1) = fβ(n+ 1) implies fα(n) = fβ(n).

Pereira shows in [24] that the existence of a continuous tree-like scale on a
product

∏
n<ω

τn guarantees the failure of AFSP with respect to 〈τn〉n (see also

Lemma 15), and further proves that continuous tree-like scales, unlike other
well-known types of scales, such as good scales, can exist in models with some
of the strongest large cardinal notions, e.g. I0-cardinals. Moreover, Cummings
[5] proved that tree-like scales can exist above supercompact cardinals. These
results show that as opposed to other well-known properties of scales such as
good and very-good scales, which exhibit desirable ”local” behaviour but cannot
exist in the presence of certain large cardinals ([6]), the notion of continuous tree-
like scales may coexist with the some of the strongest large cardinals hypothesis.

The consistency of the inexistence of a continuous tree-like scale on a product∏
n τn of regular cardinal has been established by Gitik in [12], from the consis-

tency assumption of a cardinal κ satisfying o(κ) = κ++ +1.The argument makes
a sophisticated use of the key features of Gitik’s extender based Prikry forcing
by a (κ, κ++)-extender.4 Concerning the possible consistency of the Approach-
able Free Subset Property, Welch ([31]) has shown that AFSP with respect to a
sequence 〈τn〉n implies that the large cardinal assumption of Theorem 4 holds
in an inner model.

It remained open whether AFSP with respect to some sequence 〈τn | n < ω〉 is
consistent at all, and if so, whether its consistency strength is strictly stronger
than the (seemingly) weaker property, of no continuous tree-like scale on

∏
n τn.

The current work answers both questions:

Theorem 4. It is consistent relative to the existence of a cardinal λ such that
the set of Mitchell orders {o(µ) | µ < λ} is unbounded in λ, that the Approach-
able Free Subset Property holds with respect to some sequence of regular cardinals
~τ = 〈τn〉n.
Moreover,the sequence τn can be made to be a subsequence of the first uncount-
able cardinals, in a model where λ = ℵω.

Theorem 5. Let λ be a singular cardinal of countable cofinality such that there
is no inner model M with λ = sup{oM (µ) | µ < λ}. Let 〈τn | n < ω〉 be a

3see Definition 9 for the definition of a continuous scale
4E.g., on the fact that there are unboundedly many pairs (α, α∗) ∈ [κ]2, sharing the same

Rudin-Keisler projection map πα∗,α.
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sequence of regular cardinals cofinal in λ. Then
∏
n<ω

τn carries a continuous

tree-like scale.

To achieve the proof of Theorem 5, we establish a result of an independent
interest, that the continuous tree-like scales naturally appear in fine-structural
canonical inner models. Thus obtaining complementary result to aforemen-
tioned theorems by Pereira and Cummings, i.e. we know that no large cardinal
property that can consistently appear in canonical inner models disproves the
existence of products with continuous tree-like scales (e.g., Woodin cardinals).

Theorem 6. Let M be a premouse such that each countable hull has an ω-
maximal (ω1 + 1)-iteration strategy. Let λ ∈M be a singular cardinal of count-
able cofinality. Let 〈κi : i < ω〉 be a sequence of regular cardinals cofinal in λ.
Then

∏
i<ω

κi/Jbd carries a continuous tree-like scale.

Continuous tree-like scales on products of successor cardinals in L where
implicitly constructed by Donder, Jensen, and Stanly in [7]. In the course of
proving Theorem 4, we establish the consistency of a principle stronger than
AFSP, which we call the Approchable Bounded Subset Property.
Let N be a subalgebra of A = 〈Hθ, fn〉n and ~τ = 〈τn〉n be an increasing sequene
of cardinals. Given a set x ⊆ Hθ, we define N [x] to be the A-closure of the
set (x ∪ N). We say that N satisfies the Bounded Appending Property
with respect to ~τ if for every n0 < ω, setting x = {χN (τn) | n 6= n0} then
the addition of x to N does not increase the supremum below τn0

, namely
χN [x](τn0

) = χN (τn0
).

Definition 7. The Approachable Bounded Subset Property holds with
respect to 〈τn〉n if for every sufficiently large regular θ > λ = (∪nτn) and
internally approachable subalgebra N ≺ A, of an algebra A extending (Hθ,∈
, 〈τn〉n), that satisfies |N | < λ, then N satisfies the bounded appending property
with respect to a tail of 〈τn〉n.

We show in Lemma 15 ABSP with respect to a sequence 〈τn〉n implies AFSP
with respect to the same sequence, as well as the inexistence of a continuous es-
sentially tree-like scale; a weakening of tree-like scale introduced by Pereira
(see Definition 9). The proof of the forcing Theorem 4, stated above, goes
through proving that ABSP is consistent with respect to a sequence of regulars
〈τn〉n.

The following summarizes the main results of this paper:

Corollary 8. The following principles are equiconsistent:

1. There exists a sequence of regular cardinals 〈τn | n < ω〉 for which the
Approachable Bounded Subset Property holds.

2. There exists a sequence of regular cardinals 〈τn | n < ω〉 for which the
Approachable Free Subset Property holds.
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3. There exists a sequence of regular cardinals 〈τn | n < ω〉 for which the
product

∏
n τn does not carry a continuous Tree-Like scale.

4. There exists a cardinal λ such that the set of Mitchell orders {o(µ) | µ < λ}
is unbounded in λ.

The paper is organized as follows: The remainder of this section will be
dedicated to discussing preliminary material in PCF theory and the theory of
inner models. Section 2 will dedicated to the forcing argument establishing
the proof Theorem 4. In Section 3 we discuss how to construct tree-like scales
from the fine structure of canonical inner models. In Section 4 we will use
these fine structural scales to derive scales on products in V using a covering-
like argument. Finally, in Section 5 we finish with a list of open problems.
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1.1 Preliminaries

For a set X and a cardinals λ, Pλ(X) denotes the collections of all subsets
a ⊆ X of size |a| < λ. Jbd denotes the ideal of bounded subsets of ω. Let I
be an ideal on ω and f, g two functions from ω to ordinals. We write f <I g if
{n < ω | f(n) ≥ g(n)} ∈ I. We write f <∗ g for f <Jbd g.

1.1.1 Continuous and Tree-Like Scales

Let 〈τn | n < ω〉 be a sequence of ordinals of strictly increasing cofinalities. A

sequence of functions ~f = 〈fα | α < η〉 ⊆
∏
n τn of a regular length η, is a pre-

scale in (
∏
n τn, <I) if ~f is strictly increasing in the ordering <I . A prescale
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is a scale if it is cofinal in
∏
n τn. As we focus on Jbd from this point forward,

we will frequently say that ~f is a (pre-)scale in
∏
n τn, without mentioning the

ideal Jbd.

Definition 9. Suppose that ~f = 〈fα | α < η〉 is a (pre-)scale in
∏
n τn.

1. ~f is continuous if for every limit ordinal δ < η of uncountable cofinality,
the sequence ~f � δ is <∗-cofinal in

∏
n fδ(n).

2. ~f is Tree-like if for every α 6= β < η and n < ω, if fα(n+ 1) = fβ(n+ 1)
then fα(n) = fβ(n).

3. ~f is Essentially Tree-like if for every n < ω and µ ∈ [τn, τn+1) the set

{µ′ < τn | ∃β < η, fβ(n+ 1) = µ and fβ(n) = µ′}

is nonstationary in τn.

If a product
∏
n τn carries a scale, it is not difficult to find another scale on

it with the tree-like property (see Pereira [23]), but such a scale need not be
continuous.

1.1.2 Internally Approachable Structures and related Principles

Considering notions such as the Approachable Free Subset Property or the Ap-
proachable Bounded Subset Property with respect to subalgebras of Algebras
A = (θ, fn)n, there is no harm in replacing the domain θ with another set of the
same size, such as Hθ in cases relevant to us, and adding more structure to the
algebra. Therefore, from this point on, we will only restrict ourselves to set the-
oretic algebras A of the form A = (Hθ,∈, fn)n, which extend the model (Hθ,∈)
in the language of set theory, and include Skolem functions. In particular, a
subalgebra N ≺ A will always be an elementary substructure.

This allows us to reformulate our notion of freeness. Assuming5 the algebra
A is rich enough to satisfy a fraction of ZFC6, and N ⊆ A is sufficiently closed
so it is an elementary substructure N ≺ A, then the fact that a set x is free
over N is equivalent to having that for every δ ∈ x and a function f ∈ N ,
δ 6∈ f“(x \ {δ})<ω.

The notion of internally approachable structures was formally introduced
in [9]. We refer the reader to [8] for further exposition. The definition below
is similar to the standard ones, with the addition that here, we will focus on
internally approachable unions of uncountable cofinality.

Definition 10. An elementary subalgebra (substructure) N ≺ A of an algebra
A = (Hθ;∈, fn)n is said to be internally approachable of length ρ if N =

⋃
i<ρNi

is a union of a sequence ~N = 〈Ni | i < ρ〉 of elementary subalgebras Ni ≺ N ,

5we will always be abe to assume so
6specifically, the Replacement property
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and for every j < ρ, ~N � j = 〈Ni | i < j〉 belongs to N .

We say that N ≺ A is internally approachable if it is internally approach-
able of length ρ for some ρ of uncountable cofinality cof(ρ) > ℵ0.

Notation 11. Let N ≺ (Hθ;∈) for a regular cardinal θ.

• For every regular cardinal τ ∈ N , define χN (τ) = sup(N ∩ τ).

• Given a sequence ~τ = 〈τn | n < ω〉 ⊆ N define the function χ~τN ∈
∏
n τn

by χ~τN (n) = χN (τn) if the last ordinal is strictly smaller than τn, and 0
otherwise.

The following folklore result connects continuous scales with characteristic
functions of internally approachable structures. We include a proof for com-
pleteness.

Lemma 12. Suppose that ~τ = 〈τn | n < ω〉 ∈ N is a strictly increasing sequence

of regular cardinals for which
∏
n τn carries a continuous scale ~f = 〈fα | α < η〉.

For every N ≺ Hθ which is internally approachable of size |N | <
⋃
n τn, with

~f ∈ N , if δ = χN (η) then χ~τN (n) = fδ(n) for all but finitely many n < ω.

Proof. Let ~N = 〈Ni | i < ρ〉 be a sequence witnessing N = ∪iNi is internally

approachable of length ρ which has uncountable cofinality. Since ~f is continuous,
it suffices to show that ~f � δ is <∗-cofinally interleaved with the functions in∏
n χ

~τ
N (n) to prove that χ~τN (n) = fδ(n) for almost all n < ω. First,for every

fα ∈ ~f � δ there exists some β ∈ N ∩ δ so that α < β, and thus fα <∗ fβ .
But fβ ∈ N since β ∈ N , which means that fβ ∈

∏
n χ

~τ
N (n). Next, fix g ∈∏

n χN (τn). We show that g <∗ fα for some α < δ. To this end, N =
⋃
i<ρNi

guarantees that for each n < ω there is i < ρ such that g(n) < χNi(τn). Since
cof(ρ) > ℵ0 there is i < ρ such that g(n) < χNi(τn) for all n, and in particular,

g <∗ χ~τNi . Since ~f ∈ N is <∗-cofinal in
∏
n τn and χ~τNi ∈ N , there is some

α ∈ N ∩ η ⊆ δ so that χ~τNi <
∗ fα, and thus g <∗ fα.

Lemma 13. Let λ < θ be cardinals with θ regular, and / be a well-ordering
of Hθ. Suppose that S ⊆ Pλ(Hθ) is a stationary set of internally approachable
structures N ≺ (Hθ;∈, /), and X ∈ Hθ is a set which belongs to all N ∈ S,
and satisfies that |Xω| ≤ η is a regular cardinal and ρℵ0 < η for every cardinal
ρ < λ. Then, for every assignment which maps each N ∈ S to a countable
sequence 〈xNn | n < ω〉 ∈ Xω which is contained in N , there exists a stationary
subset S∗ ⊆ η and a constant sequence 〈xn | n < ω〉 such that for every δ ∈ S∗
there is N ∈ S satisfying χN (η) = δ and 〈xNn 〉n = 〈xn〉n.

Proof. Let 〈~xα | α < η〉 be the /-least enumeration of Xω in Hθ, where each ~xα

is of the form 〈xαn | n < ω〉. For each N ∈ S let αN < η be such that 〈xNn | n <
ω〉 = ~xαN . Note that αN need not be a member of N since 〈xNn | n < ω〉 need
not. Since each N ∈ S is the union of a sequence 〈Ni | i < ρ〉 with cof(ρ) > ℵ0,
and 〈xNn | n < ω〉 ⊆ N there is some i < ρ so that 〈xNn | n < ω〉 ⊂ Ni, and
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thus 〈xNn | n < ω〉 ∈ (X ∩ Ni)ω ∈ N . Moreover, as |X ∩ Ni| < λ, we have
that |(X ∩ Ni)ω| < η, and therefore there exists some βN ∈ η ∩ N so that
(X ∩ Ni)ω ⊂ 〈~xα | α < βN 〉. We conclude that, αN < βN < χN (η). Next,
define S = {χN (η) | N ∈ S}. S ⊆ η is stationary, and by choosing for each
δ ∈ S a specific structure Nδ ∈ S with δ = χN (η), we can form a pressing down
assignment taking each δ ∈ S to αNδ < δ. Let α∗ < η and S∗ ⊆ S be so that
αNδ = α∗ for all δ ∈ S∗. The claim follows for S∗ and 〈xn | n < ω〉 = ~xα

∗
.

Let ~τ = 〈τn | n < ω〉 be an increasing sequence of regular cardinals, λ =
∪nτn, and θ > λ+ regular. A set C ⊆ Pλ(Hθ) is a closed unbounded set
if it contains all elementary substructures M ≺ A of size |M | < λ of some
algebra A = (Hθ,∈, fn)n on Hθ. We reformulate the definitions of Approachable
Free Subset Property and Approachable Bounded Subset Property from the
introduction.

Definition 14. 1. Let F : [λ]<ω → λ be a function. We say that a subset
X ⊆ λ is free with respect to F if for every γ ∈ X, γ 6∈ F [X \ {γ}]<ω.

2. The Approachable Free Subset Property (AFSP) with respect to ~τ
asserts that there exists a closed unbounded set C ⊆ Pλ(Hθ) of structures
N ≺ (Hθ;∈) so that for every internally approachable structure N ∈ C
there exists some m < ω such that the set {χN (τn) | m ≤ n < ω} is free
with respect to every function F ∈ N

3. The Approachable Bounded Subset Property (ABSP)with respect
to ~τ asserts that there exists a closed unbounded set C ⊆ Pλ(Hθ) of
structures N ≺ (Hθ;∈) so that for every internally approachable structure
N ∈ C there exists some m < ω such that for every F ∈ N , F : [λ]k → λ
of finite arity k < ω, and distinct numbers d, d1, d2, . . . , dk ∈ ω \m, if

F (χN (τd1), . . . χN (τdk)) < τd

then
F (χN (τd1), . . . χN (τcd)) < χN (τd).

To see that the formulations in Definition 14 are equivalent to the ones
given in the introduction, note that if θ > λ = ∪nτn is the first for which that
there exists a club C ⊆ Pλ(Hθ) which is definable in ~τ consisting of subalgebra
M ⊆ A = (Hθ,∈, fn)n, then for every θ′ > θ and M ′ ≺ Hθ′ , if ~τ ∈ M ′ then
θ, C ∈M ′ and M ′ ∩ C ∈ C.

Lemma 15. Suppose that ~τ = 〈τn | n < ω〉 is an increasing sequence of regular
cardinals.

1. If there is no continuous essentially tree-like scale on
∏
n τn then there is

no continuous tree-like scale on
∏
n τn.

2. AFSP w.r.t ~τ implies that there is no continuous tree-like scale on
∏
n τn.

8



3. ABSP w.r.t ~τ implies both
(i) AFSP w.r.t ~τ , and
(ii) there is no continuous essentially tree-like scale on

∏
n τn.

Proof. 1. This is an immediate consequence of the definitions of an essentially
tree-like scale and a tree-like scale on

∏
n τn.

2. We prove the contrapositive statement, that if there exists a continuous
tree-like scale on

∏
n τn then AFSP fails with respect to ~τ . Suppose that ~f

is a continuous tree-like scale on
∏
n τn. Since ~f is tree-like, we can assign

to it a function F : λ→ λ, λ = ∪nτn, defined as follows: For every n < ω
and µ, τn ≤ µ < τn+1, define

F (µ) =

{
fα(n) if µ = fα(n+ 1) for some α < η

0 otherwise.

F (µ) is well defined, i.e., does not depend on the choice of α such that

µ = fα(n+ 1), since ~f is tree-like. It is clear from the definition of F that
for every δ < η and n < ω, F (fδ(n+1)) = fδ(n). Now, if C ⊆ Pλ(Hθ) is a
closed unbounded subset, N ∈ C is an internally approachable structure
with F ∈ N , and δ = χN (η), then χ~τN (n) = fδ(n) for all but finitely many
n < ω. Hence, for all but finitely many n < ω, F (χN (τn+1)) = χN (τn),
which means that {χN (τn+1), χN (τn)} is not free with respect to F ∈ N .
Since C was an arbitrary closed and unbounded subset, AFSP with respect
to ~τ fails.

3. The fact that ABSP implies AFSP is immediate from the definition of
the two properties. To show that ABSP w.r.t ~τ implies that there is
no continuous scale on

∏
n τn which is essentially tree-like, we prove the

contrapositive statement. Suppose that 〈fα | α < η〉 is a continuous
essentially tree-like scale on a product

∏
n τn. Then by Definition 9 for

every n < ω, there is a function Cn : τn+1 → P(τn) so that for every µ <
τn+1, Cn(µ) is a closed and unbounded subset of τn which is disjoint from
{µn < τn | ∃β < η, fβ(n + 1) = µ and fβ(n) = µn}. Let C be any club
of elementary substructures of (Hθ;∈). Take an internally approachable
substructure N ∈ C and of size |N | < λ = ∪nτn, so that both 〈τn | n < ω〉
and 〈Cn | n < ω〉 belong to N . Define δ = χN (η) and let m < ω
so that fδ(n) = χN (τn) for all n ≥ m. Fixing n ≥ m and examining
the elementary extension N ′ = N [{fδ(n + 1)}] = {F (fδ(n + 1)) | F ∈
N} ≺ (Hθ;∈) of N , we have that Cn(fδ(n + 1)) ∈ N ′ since Cn ∈ N .
Now, as Cn(fδ(n + 1)) ⊆ τn is closed unbounded, we must have that
χN ′(τn) ∈ Cn(fδ(n + 1)). However χN (τn) = fδ(n) 6∈ Cn(fδ(n + 1))
by the definition of Cn. This implies that χN ′(τn) > χN (τn) = fδ(n),
which in turn, implies that F (fδ(n + 1)) > fδ(n) for some F ∈ N . Since
N ∈ C where C is an arbitrary closed unbounded collection, and n is an
arbitrarily large finite ordinal, we conclude that ABSP fails with respect
to 〈τn | n < ω〉.
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1.2 Fine structure primer

1.2.1 Ultrafilters

We shall take our fine structure from [30]. Our result almost certainly also
applies to different forms of fine structure such as the fine structure theory of
[17], in fact, the proof of Theorem 6 in particular would be greatly simplified,
but at the cost of significantly complicating the arguments in the core model
part of this paper. As there is currently no account of the covering lemma for
λ-indexing, we think it prudent to choose Mitchell-Steel mice at this time. We
don’t use [32], as ¬O¶ is much too strong a limitation for this section. (While

technically Mitchell and Steel operate under the assumption of ¬M#
1 in [30], it

is well understood by now that their fine structure theory functions well past
this point.)

For our purposes an extender F is a directed system of ultrafilters {(a,X)|a ∈
[lh(F )]

<ω
, X ⊂ [crit(F )]

|a|} as described in [16, p. 384]. The individual ultra-
filters will be denoted as Fa := {X ⊂ crit(F )|a||(a,X) ∈ F}. For a ⊂ b and

f a function with domain [critF ]
|a|

, we let fa,b be the function with domain

[critF ]
|b|

determined by fa,b(b̄) = f(ā) where ā is the unique subset of b̄ deter-
mined by the type of a and b. This gives rise to an embeddings from Ult(M, Fa)
into Ult(M, Fb). The direct limit along those embeddings is the extender ul-

trapower Ult(M, F ), elements of which we will present as pairs [f, a]
M
F where

f ∈ M is a function with domain [crit(F )]
|a|

and a ∈ [lh(F )]
<ω

. The direct
limit map shall be denoted ιMF : M→ Ult(M, F ). We will generally omit the
superscript in this notation. This should not lead to confusion. Note that we
will later form ultrapowers where some functions involved in the construction
are not elements of the structure but merely definable over it.

β < lh(F ) is a generator of F if it cannot be represented as [f, a]F for any

f ∈ crit(F )
crit(F ) ∩ M and a ∈ [β]

<ω
, i.e. {b ∪ {ξ}|f(b) = ξ} /∈ Fa∪{β}. Let

gen(F ) denote the strict supremum of the generators of F . Also let ν(F ) =
max{gen(F ), (crit(F )+)M}.

For a subset A of α we will write F � A := {(a,X) ∈ F |a ⊂ A}. We will
consider this an extender, forming ultrapowers etc, even if A is not an ordinal.
Let η < α be such that η = gen(F � η), then the trivial completion is the
(crit(F ), (η+)Ult(M;F �η))-extender derived from ιF �η.

1.2.2 Premice

A potential premouse is a structure of the formM = 〈J ~Eα ;∈, ~E, F 〉 where J
~E
α is

a model constructed from a sequence of extenders ~E using the Jensen hierarchy.

For β ≤ α we defineM|β := (J
~E�β
β ;∈, ~E � β, ~Eβ) andM||β := (J

~E�β
β ;∈, ~E � β).

(The difference between the two notations lies in including a top predicate.) If
N is of one of the above forms then we write N EM and say N is an initial
segment of M.

~E must be good, i.e. it has the following properties:
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(Idx) for all β < α if ~Eβ 6= ∅, then β = (ν( ~Eβ)+)Ult(M|β;~Eβ);

(Coh) for all β < α if ~Eβ 6= ∅, then M||β = Ult(M|β; ~Eβ)|β;

(ISC) for all β < α if ~Eβ 6= ∅, then for all η < α such that η = gen( ~Eβ � η) the

trivial completion of ~Eβ � η is on ~E or ~Eη 6= ∅ and it is on ι~Eη ( ~E).

Note that ~Eβ measures exactly those subsets of its critical point that are

in M||β for any β < α such that ~Eβ 6= ∅. F the top extender must be such

that ~EaF remains good. F can be empty in which case M is called passive,
otherwise M is active.

To an active potential premouse we associate three constants: µM the critical
point of the top extender; νM the strict supremum of the generators ofM’s top
extender or ((µM)+)M whichever is larger; γM the index of the longest initial
segment of M’s top extender (if it exists).

We distinguish three different types of active potential premouse: M is active
type I if νM = (µM,+)M; M is active type II if νM is a successor ordinal; M
is a active type III if it is neither type I or type II, i.e. the set of the generators
of M’s top extender has limit type.

1.2.3 Fine structure

The big disadvantage of Mitchell-Steel indexing is that we cannot deal directly
with definability over M, but instead need to work with an amenable code of
our original structure. The exact nature of this coding is dependant on the type
ofM. We will take inspiration from [29] and use a uniform notation C0(M) for
this code.

If M := 〈|M|;∈, ~E, F 〉 is an active potential premouse of type I or II, we
will define an alternative predicate F c coding the top extender F : F c consists
of tuples (γ, ξ, a,X) such that ξ ∈

(
µM, (µM,+)M

)
and γ ∈ (ν(F ),On∩|M|) is

such that (F ∩ ([ν(F )]
<ω ×M||ξ)) ∈M||γ, and (a,X) ∈ (F ∩ ([γ]

<ω ×M||ξ)).
The point is that F c is amenable. We let C0(M) := 〈|M|;∈, ~E, F c〉.

If M on the other hand is active type III we have to make bigger changes.
In the language of [30] we have to “squash”, that is remove ordinals from the
structure. (This is to ensure that the initial segment condition is preserved by

iterations.) We let C0(M) := 〈J ~Eν(F );∈, ~E � ν(F ), F � ν(F )〉.
We then define rΣ1-formulae to be Σ1 over C0(M), and rΣn+1-formulae to

be Σ1 in a predicate coding an appropriate segment of the rΣn-theory of C0(M).
We will let ThMn (α, q) := {(dφe, b)|φ is rΣn, b ∈ [α]

<ω
, C0(M) |= φ(b, q)}.

Projecta can then be defined relative to these formulas, i.e. ρn+1(N ) is the
least ordinal such that some rΣn+1-definable (in parameters) subset of it is not
in C0(M). ρ0(M) = On∩C0(M) (which might be smaller than On∩M).

As usual we define pn+1(M), the (n + 1)-th standard parameter, to be the
lexicographically least p ∈ [On∩C0(M)/ρn+1(M)]

<ω
that defines a missing

subset of ρn+1(M).
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We can also define canonical rΣn+1-Skolem function allowing us to form
HullMn+1(A) given a subset A of C0(M). Note that while our notation makes it
look like a hull of M it is a substructure of C0(M) not M.

We sayM is n-sound above β relative to p iff C0(M) = HullMn (β∪{p}). We
will not mention the parameter if M is n-sound above β relative to pn(M). If
M is n-sound above ρn(M), we simply say that M is n-sound.

A potential premouse is then a premouse if all its initial segments are n-
sound for all n. We can now also define fine structural ultrapowers. Let M
be a premouse and let F be an extender that measure all subsets of its critical
point in M. Let n be such that crit(F ) < ρn(M) and M is n-sound. Then
Ultn(M, F ) is the ultrapower formed using all equivalence classes [f, a]F where

a ∈ [lh(F )]
<ω

and f is a function with domain [crit(F )]
|a|

that is rΣn-definable
over M (in parameters).

Lemma 16. Let M be a premouse, and let κ ∈ C0(M) be a regular cardinal
there. Assume ρn+1(M) ≤ β < κ ≤ ρn(M) for some n such that M is (n+ 1)-
sound above β. Then cof(κ) = cof(ρn(M)).

Proof. For ξ < ρn(M) we let Nξ be the structure M||ξ with ThMn (ξ, pn(M))
as an additional predicate. Let then κξ be the supremum of ordinals less than κ
which are Σ1-definable over Nξ from pn+1(M) and ordinals less than β. As all
objects involved are elements of M, we must have κξ < κ. On the other hand

sup
ξ<ρn(M)

κξ = κ as M was (n+ 1)-sound above β.

An additional fact that we will need is that if M is an active (potential)
premouse, then cof(On∩M) = cof((µM,+)M). See the last remark of Chapter
1 in [30].

1.2.4 Iterability

A (normal, ω-maximal) iteration tree on a premouseM is a tuple T := 〈〈MTα :
α ≤ lh(T )〉, 〈ETα : α < lh(T )〉, DT , 〈ιTα,β : α ≤T β ≤ lh(T )〉〉 where MTα is a

premouse for all α ≤ lh(T ) (MT0 = M); ETα is an extender from the MTα -
sequence for all α < lh(T ), α < β implies lh(ETα ) < lh(ETβ ); ιTα,β : C0(MTα ) →
C0(MTβ ) is the (possibly) partial iteration map for all α ≤T β ≤ lh(T ), it is

total iff DT ∩ (α, β]≤T 6= ∅; ≤T is the tree order on
lh(T ) with root 0, if γ + 1 ≤ lh(T ), then the T -predecessor is the least β

such that crit(ETγ ) < gen(ETβ ), in that case (MTγ+1)∗ is the segment of MTβ to
which

ETγ is applied, if λ ≤ lh(T ) is a limit, then bTλ := [0, λ)≤T is a cofinal branch

whose intersection with DT is finite,
MTλ must be the direct limit of 〈MTα , ιTα,β : α ≤T β ∈ bTλ 〉;
finally, γ + 1 ∈ DT if and only if (MTγ+1)∗ 6=MTβ .
A γ iteration strategy Σ for a premouse M is a function such that Σ(T ) is

a cofinal and wellfounded branch for every iteration tree on T of limit length
<γ and with the property that Σ(T � α) = [0, α)≤T for all limit α < lh(T ). M
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is γ-iterable if there exists a γ-iteration strategy for M. We will just say M is
iterable if it is γ-iterabe for all ordinals γ.

Let M be a premouse, n < ω and let pn+1(M) = 〈ξ0, . . . , ξk−1〉. The
(n+ 1)-th solidity witness wn+1(M) is a tuple 〈t0, . . . , tk−1〉 where

ti = ThMn+1(ξi, 〈ξ0, . . . , ξi−1〉).

We say M is (n+ 1)-solid if wn+1(M) ∈ C0(M).
A core result of [30] is that any reasonably iterable n-sound premouse is

(n+1)-solid. Mitchell-Steel also showed the following with similar methods, see
the remark after Theorem 8.2. Note that the requirement for unique branches
can be replaced by the weak Dodd-Jensen property from [29].

Lemma 17 (Condensation Lemma). LetM := (|M|;∈, ~E, F ) be a (n+1)-sound
premouse such that every countable hull of M has a (ω1 + 1)-iteration strategy.
Let N be a premouse such that there exist an rΣn+1-elementary embedding
π : C0(N ) → C0(M) with crit(π) ≥ ρn+1(N ). Then N is an initial segment of

M or of Ult(M, ~Ecrit(π)).

Both these results use the notion of a phalanx (although this notion was
not yet fully developed by the time of [30]) of which we too will have need. A
phalanx is a tuple 〈〈Mi : i ≤ α〉, 〈κi : i < α〉〉 where Mi agrees with Mj up to
(κ+
i )Mj for all i < j ≤ α.
Phalanxes are a natural byproduct of iteration trees, i.e. if T is a normal

iteration tree on some premouse, then 〈〈MTi : i ≤ lh(T )〉, 〈ν(ETi ) : i < lh(T )〉〉
is a phalanx.

We can then also define iterability on phanlanxes as a natural extension of
the structure of iteration trees. Given a phalanx 〈〈Mi : i ≤ α〉, 〈κi : i < α〉〉
and an extender E we can extend the phalanx by applying E to Mi where i
is minimal with crit(E) < κi. (Note we have to require that the length of E is
above sup

i<α
κi to maintain “normality”.)

A notion of iteration then follows naturally. The most critical difference here
is that we have to keep track above which element of the phalanx any given
model of the iteration tree lies. The art of phalanx iteration lies in arranging
things such that the last model of a co-iteration lies above the “right” model.

2 Forcing the Approachable Bounded Subset Prop-
erty

Our forcing notations is mostly standard. We use the Jerusalem forcing conven-
tion by which “a condition p extends (is more informative than) q” is denoted
by p ≥ q. In general, names for a set x in a generic extension will be denoted
by ẋ. If x is in the ground model then its canonical name is denoted by x̌.

We denote our initial ground model by V ′, which we assume to satisfy the
following assumptions: there are two increasing sequences 〈κn | n < ω〉, 〈λn |
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n < ω〉 of regular cardinals, with λn < κn+1 < λn+1 for all n, and that each λn
is measurable of Mitchell order o(λn) = κn.
For each n < ω, let 〈Uλn,α | α < κn〉 be a /-increasing of normal measures on
λn. I.e., Uλn,α belongs to the ultrapower by Uλn,β , whenever α < β. Denote
λ = ∪nλn.

In order to apply our main extender-based forcing notion, we first force
with a preparatory forcing P′ over V ′ to transform the Mitchell-order increasing
sequences 〈Uλn,α | α < κn〉 of normal measures, to Rudin-Keisler increasing
sequences. For this, we force with a Gitik-iteration P′ ([11]) for changing the
cofinality of measurable cardinals between the cardinals (κn, λn) for all n < ω.
Let G′ ⊆ P′ be a generic filter over V ′, and set V = V [G′]. We list a number of
facts concerning the extensions in V of the measures 〈Uλn,α | α < κn〉 from V ′.
The analysis leading to these facts can be found in [11], or [3] for a similar type
of poset. The Mitchell-order increasing sequence 〈Uλn,α | α < κn〉 extends to
a Rudin-Keisler increasing sequence of λn-complete measures 〈U∗λn,α | α < κn〉,
with Rudin-Keisler projections πnβ,α : λn → λn for each α < β < κn. We note
that the least measure U∗λn,0 remains normal. We denote for each n < ω the
linear directed system of measures {U∗λn,α, π

n
β,α | α ≤ β < κn} by En, and

further denote each U∗λn,α by En(α). Let

jEn : V →MEn = Ult(V,En) = dirlimα<κn Ult(V,En(α))

Each measure En(α) can be derived from jEn using a generator γEnα < jEn(λn).
The following list summarizes the key properties of the extenders En:

Fact 18.

1. cp(jEn) = λn and M<κn
En

⊆MEn

2. γEn0 = λn and 〈γα | α < κn〉 is a strictly increasing and continuous
sequence

3. γEn = supα<κn γ
En
α is strongly inaccessible in MEn , and we may assume

that there exists a function gn : λn → λn such that γEn = jEn(gn)(λn)

4. for each α < β < κn, En(α) is strictly weaker than En(β) in the Rudin-
Keisler order. I.e., for every A ∈ En(α) there is ν ∈ A such that π−1

β,α({ν})
is unbounded in λn.

5. for every α < κn and h : λn → λn such that jEn(h)(γEnα ) < γEn .
jEn(h)(γEnα ) < γEnβ for all β > α.

Next, we force over V with a short extender-based-type forcing P, associated
with the extenders En, n < ω. P is a variant of the forcing in [2] . Extending
the arguments of [2], we focus here on the generic scale associated with the
extender-based-forcing, and use it to analyze the possible internally approach-
able structures in the generic extensions. This approach follows the one taken
in [1], where an extender-based forcing has been used to obtain results concern-
ing internally-approachable structures witnessing that ground model sequences
〈Sn | n < ω〉 being tightly-stationary.
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Definition 19. Conditions p ∈ P are sequences p = 〈pn | n < ω〉 such that
there is some ` < ω for which the following requirements hold:

1. for n < `, pn = 〈fn〉, where fn : λ+ → λn is a partial function of size
|fn| ≤ λ, with 0 ∈ dom(fn) and both fn(0), gn(fn(0)) < λn are strongly
inaccessible cardinals

2. For n ≥ `, pn = 〈fn, an, An〉, where fn is as above, an : λ+ → κn is a
partial continuous and order-preserving function, whose domain is a closed
and bounded set of λ+ of has size |an| < κn.
We define mc(an) to be an(max(dn)) = max(rng(an)), and require that
the set An to be contained in λn \ λn−1 and belong to En(mc(an)).

3. dom(an) ∩ dom(fn) = ∅ and dom(an) ⊆ dom(an+1) for every n ≥ `,
an(0) = 0, and for every δ ∈ ∪n dom(fn) there exists some m < ω such
that δ ∈ dom(am).

For a condition p ∈ P as above, we denote `, fn, an, An by `p, fpn, a
p
n, A

p
n

respectively. Direct extensions and end-extensions of conditions are defined as
follows. A condition p∗ is a direct extension of p, if `p

∗
= `p, fpn ⊆ fp

∗

n for all
n < ω, and apn ⊆ ap

∗

n , Ap
∗

n ⊆ (πn
mc(ap

∗
n ),mc(apn)

)−1Apn for all n ≥ `p.
For every ν ∈ Apn, define pn

_〈ν〉 = 〈f ′n〉, where

f ′n = fpn ∪ {〈α, πnmc(apn),an(α)(ν)〉 | α ∈ dom(apn)}.

If ~ν = 〈ν`p , . . . , νn−1〉 belong to
∏n−1
i=`p A

p
i , we define the end extension of p

by ~ν, denoted p_~ν, to be the condition p′ = 〈p′n | n < ω〉, defined by p′k = pk
for every k 6∈ {`p, . . . , n − 1}, and p′k = pk

_〈νk〉 otherwise. A condition q ∈ P
extends p if q is obtained from p by a finite sequence of end-extensions and
direct extensions. Equivalently, q is a direct extension of an end-extension p_~ν
of p. Following the Jerusalem forcing convention, we write p ≥ q if p extends q,
and p ≥∗ q if p is a direct extension of q.

Notation 20. We introduce the following notational convention for the Rudin-
Keisler projections πnα,β to be applied in the context of the forcing P. Let p be a

condition and ν ∈ Apn for some n ≥ `p and α ∈ dom(apn). We write πpmc(p),α(ν)

for πn
mc(apn),an(α)

(ν).
7 Similarly, for a sequence ~ν = 〈νi〉`p≤i<n ∈

∏
`p≤i<nA

p
i , we write πpmc(p),α(~ν)

for the projected sequence 〈πpmc(p),α(νi) | `p ≤ i < n〉.

We proceed to list several standard basic properties of the poset P, refering
the reader to [2] for details.

Lemma 21.

1. (P,≤,≤∗) is a Prikry-type forcing

7Note that the index n is determined from the fact that ν ∈ Apn ⊆ λn \ λn−1.
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2. for each p ∈ P, the direct extension order ≤∗ of P/p is κ`-closed

3. P satisfies the λ++.c.c

4. (Strong Prikry Property) Let D ⊆ P be a dense open set. For every p ∈ P
there are p∗ ≥∗ p and n < ω, such that for every ~ν ∈

∏
`p≤i<nA

p∗

i ,
p∗_~ν ∈ D.

It is routine to verify that the above properties imply that P does not add
new bounded subsets to λ, and does not collapse λ++. We extend our analysis
of P below to show that that it preserves λ+. This result can be also derived
using a standard application of the Weak Covering Theorem. To extend our
study of the poset P, we introduce a notation of orderings ≤m, m < ω, which
refine the direct extension ordering ≤∗.

Notation 22. Let p, q be two conditions in P. For m < ω we write p ≤m q if
p ≤∗ q and apn = aqn, Apn = Aqn for all n < m.

Therefore, for each m < ω, ≤m is κm-closed and ≤m+1⊆≤m.

Lemma 23. Let θ > λ+ regular, / be a well-ordering of Hθ, and M ≺ (Hθ;∈, /)
satisfying P ∈ Mand|M | = λ, Vλ ⊆ M . Suppose that there exists an enumera-

tion ~D = 〈Dµ | µ < λ〉 of all dense open subsets of P in M , so that ~D � ν ∈M
for every ν < λ. Then for every condition p ∈ P∩M and `∗, `p ≤ `∗ < ω, there
exists p∗ ≥`∗ p so that for each dense open set D ∈M there are -

• q ∈M with p ≤`∗ q ≤`∗ p∗,

• a finite ordinal nD < ω, and

• a function ND :
∏
`p≤i<nD A

q
i → ω,

such that for every pair of sequences ~ν1, ~ν2, satisfying

~ν1 ∈
nD−1∏
i=`p

Aqi , and ~ν2 ∈
ND(~ν1)∏
i=nD

Aqi ,

the condition q_~ν1_~ν2 belongs to D.

Remark 24. We note that the condition q_~ν1_~ν2 in the statement of the
Lemma belongs to M as Vλ ⊆ M . Therefore, Lemma 23 implies that p∗ is a
generic condition for (M,P), namely, it forces the statement Ġ∩ M̌ ∩ Ď 6= ∅ for
every dense open set D ∈M .

Proof. We assume for notational simplicity that `p = 0. The proof for the
general case is similar. We fix for each n < ω a bijection ψn : λn → [λn]n+1×λn
in M . Our final condition p∗ will be obtained as a limit of a carefully constructed
sequence 〈pn | `∗ ≤ n < ω〉, starting from p`

∗
= p, and consisting of conditions

in M . Moreover, it will satisfy pn ≤n+1 pn+1 for all n ≥ `∗. Suppose that
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pn has been defined for some n ≥ `∗. Our goal is to construct an extension
pn+1 ≥n+1 pn, so that for every ordinal µ, λn−1 ≤ µ < λn there exists a

function NDµ :
∏
i≤nA

pn+1

i → ω so that for every

~ν1 ∈
∏
i≤n

Ap
n+1

i and ~ν2 ∈
∏

n+1≤i<NDµ (~ν1)

Ap
n+1

i

pn+1_~ν1_~ν2 ∈ Dµ. We note that this will guarantee nDµ = n + 1 for λn ≤
µ < λn+1. pn+1 will be constructed from pn in (λn + 1)-many steps, using two

sequences of condition parts, 〈~f i | i ≤ λn〉 and 〈qi | i ≤ λn〉 which satisfy the
following requirements:

1. ~fi = 〈fi,0, fi,1, . . . , fi,n〉 ∈ M is an (n + 1)-tuple, consisting of Cohen

functions, fi,k : λ+ → λk of size at most λ. For i = 0, ~f0 = 〈fp
n

0 , . . . , fp
n

n 〉
is the tuple of the Cohen functions of the first (n+ 1) Cohen components
of pn+1.

2. For each k ≤ n, the sequence fi,k, i ≤ λn is increasing in⊆, and dom(fi,k)∩
dom(ap

n

k ) = ∅ for all i ≤ λn.

3. qi = 〈qim | n < m < ω〉 consists of tail segments of conditions in P starting
from the (n+ 1)-th component, and q0 = pn \ n+ 1 = 〈pnm | n < m < ω〉.

4. the sequence qi,i ≤ λn will be ≤∗-increasing in the obvious sense.

The construction of the two sequences will be internal to M , and definable from
pn, ~D � λn+1, and using the fixed well-ordering / of Hθ. Let δ ≤ λn and suppose

that 〈qi, ~fi | i < δ〉 has been defined and belongs to M . If δ is a limit ordinal,

we define ~fδ = 〈fδ,k | k ≤ n〉 by fδ,k =
⋃
i<δ fi,k. Similarly, qδ is taken to be

the supremum in the direct extension ordering of qi, i < δ, which is possible
due to the fact that for each k > n, the direct extension ordering of the k-th
components qik, is κk+1-closed, and κk+1 > λn. Therefore, for every k > n, we

define qδk = (fq
δ

k , a
qδ

k , A
qδ

k ) where

fq
δ

k =
⋃
i<δ

fq
i

k , a
qδ

k =
⋃
i<δ

aq
i

k ∪ {(α, γ)}, and Aq
δ

k =
⋂
i<δ

(πn
γ,mc(aq

i

k )
)−1Aq

i

k ,

where α = sup
(⋃

i<δ dom(aq
i

k )
)

, and γ = sup
(⋃

i<δ rng(aq
i

k )
)

. Clearly, qδ ∈
M . Suppose now that δ = i + 1 is a successor ordinal. We appeal to our
fixed bijection ψn : λn → [λn]n+1 × λn, and consider ψn(i) = (~νi, µi), where

~νi ∈ [λn]n+1 and µi < λn. We proceed as follows: If ~νi 6∈
∏
i≤nA

pn

i we make no

change, setting ~fδ = ~fi and qδ = qi. Otherwise, ~νi ∈
∏
i≤nA

pn

i and we consider
the associated functions 〈gi,0, . . . , gi,n〉, defined by

gi,k = {〈α, πk
mc(ap

n

k ),ap
n

k (α)
(ν)〉 | α ∈ dom(ap

n

k )}.
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We note that since dom(gi,k) = dom(ap
n

k ), it is disjoint from dom(fi,k), and
we can therefore take their unions f∗i,k = fi,k ∪ gi,k, k < n to define a sequence

of functions ~f∗i = 〈f∗i,0, . . . , f∗i,n〉. By concatenating the (n+1)-sequence ~f∗i with

the tail qi, we get a condition qi∗ = ~f∗i
_qi ∈ P with `q

i
∗ = n + 1, to which we

apply the last clause of Lemma 21 (Strong Prikry Property) and find a direct

extension qi∗∗ ≥∗ qi∗ and an integer N so that for every ~ν ∈
∏
k≤N A

qi∗∗
n+1+k,

qi∗∗
_~ν belongs to Dµi . Specifically, we choose qi∗∗ ∈ M to be such a condition

which is minimal according to the fixed well-ordering / of Hθ, and define

• NDµi (~νi) = N ,

• ~fδ = 〈fδ,k | k ≤ n〉 with fδ,k = f
qi∗∗
k \ gi,k,8 and

• qδ = 〈qδm | m ≥ n+ 1〉 with qδm = (qi∗∗)m for every m ≥ n+ 1.

Finally, given ~fλn = 〈fλn,k | k ≤ n〉 and qλn = 〈qδnm | m ≥ n + 1〉. we

define pn+1 ≥∗ pn by setting ap
n+1

m = ap
n

m and Ap
n+1

m = Ap
n

m and fp
n+1

m = fλn,m
for m ≤ n, and pn+1

m = qλnm for m ≥ n + 1. Our use of the well-ordering /
throughout the construction guarantees that pn+1 ∈M .

This concludes the construction of the sequence 〈pn | `∗ ≤ n < ω〉. We now
define p∗ ≥∗ p by p∗n = pnn. It is straightforward to verify from the construction
that p∗ ≥ `∗ satisfies the conclusion in the statement of the Lemma.

We now show that there are plenty of models M , satisfying the conclusion
of Lemma 23.

Proposition 25. Let ~M = 〈Mα | α < λ+〉 be an internally approachable

sequence (i.e., ~M � β ∈ Mβ+1 for every β < λ+) ⊆-increasing and continuous
sequence of elementary substructures Mα ≺ (Hθ;∈, /) of size |Mα| = λ, and
satisfy Mα ∩λ+ ∈ λ+. For every limit ordinal α < λ+ of cof(α) = ω, satisfying
α = Mα ∩ λ+, `∗ < ω, and p ∈ Mα, there exists a direct extension p∗ ≥`∗ p
satisfying the conclusion of Lemma 23 with respect to M = Mα.
Moreover, if the approachable ideal on λ+ is trivial, i.e., I[λ+] = λ+, then the
requirement of cof(α) = ω can be removed.

Proof. Suppose first that cof(α) = ω and let 〈αn | n < ω〉 be a cofinal sequence
in α. Then Mα = ∪nMαn , and for each n < ω since Mαn ∈Mα, there exists an

enumeration ~Dn = 〈Dn
µ | µ < λ〉 ∈ Mα of all dense open subsets of P in Mαn .

Using bijections from λn × n to λn, we can form a sequence ~D = 〈Dµ | µ < λ〉
so that for every n < ω, ~D � λn enumerates ~Di � λn for each i < n. Therefore
~D enumerates all dense open sets of P in Mα and satisfies ~D � β ∈Mα for every
β < λ. It follows from Lemma 23 that for every condition p ∈ Mα and `∗ < ω
there exists a direct extension p∗ ≥`∗ p as in the statement of the lemma. This
concludes the first part of the statement.

8thus, dom(fδ,k) is disjoint from dom(gi,k) = dom(ap
n

k ).
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Suppose now that I[λ+] = λ+. We proceed to prove by induction on limit
ordinals α < λ+ with α = Mα ∩ λ+, that for every `∗ < ω and p ∈ Mα, there
is p∗ ≥`∗ p satisfying the desirable property for Mα. Let α be such an ordinal
and assume the statment holds for all β < α. If cof(α) = ω we are done by the
first case above. Therefore, suppose that cof(α) = ρ is an uncountable regular
cardinal. Since I[λ+] = λ+ , there exists a closed and unbounded subset X ⊂ α
of order-type otp(X) = ρ so that X ∩β ∈Mα′ whenever β < α′ , α′ ∈ {α}∪X.

Moreover, since ~M � β belongs to Mα′ , so does ~M � (X∩β) = 〈Mγ | γ ∈ X∩β〉.
Given `∗ < ω as in the statement of the claim, we further increase it to assume
that κ`∗ > ρ. Let 〈βi | i ≤ ρ〉 be an increasing enumeration of the limit points
β in X ∪ {α} which satisfy that Mβ ∩ λ+ = β. Given p ∈Mα, we may assume
that p ∈Mβ0

and denote it by p0. Then, by applying the inductive assumption
and using the well ordering /, we form a sequence of conditions 〈pi | i ≤ ρ〉
which is increasing in ≤`∗ , so that for each i < ρ pi ∈ Mβi+1 and pi+1 ≥`∗ pi
is the /-minimal such extension, which is satisfies the conclusion of Lemma 23
for Mβi+1

. Suppose now that j ≤ ρ is limit. Then every initial segment of

〈pi | i < j〉 belongs to Mβj , and the sequence has an upper bound in ≤`∗ since
this ordering is κ`∗ -closed and κ`∗ > ρ. Defining the upper bound by pj , it
follows from the continuity of the sequence ~M that pj satisfies the desirable
property for Mβj . In particular, for j = ρ, we obtain a suitable condition
p∗ = pρ for M = Mα.

The following consequences of Lemma 23 and Proposition 25 will play a key
role in our arguments concerning Approachable Bounded Subset Property in
V [G].

Lemma 26. Let Ḟ be a P-name of a function from λ<ω to ordinals, and p ∈ P.
There is a direct extension p∗ ≥∗ p and a function f∗ : [λ]<ω × [λ]<ω → On
which provide the following recipe for deciding the P-names of ordinals Ḟ (~µ),
~µ ∈ [λ]<ω:

For every ~µ ∈ [λ]<ω there are n~µ < ω and a function N~µ : [λ]<ω → ω such

that for every ~ν1 ∈
∏
`p≤i<n~µ A

p∗

i and ~ν2 ∈
∏
nµ≤i<N~µ(~ν1)A

p∗

i ,

p∗_~ν1_~ν2  Ḟ (~µ) = f̌∗(~̌µ, ~̌ν1_~̌ν2).

Proof. Let M ≺ (Hθ;∈, /) be a model of size which satisfies the assumption
of Lemma 23 and has Ḟ , p ∈ M (the proof of Proposition 25 shows that such
structures exist). Since λ ⊆M then for every ~µ ∈ [λ]<ω, the dense open set

E~µ = {q ∈ P | ∃ξ ∈ On, q  Ḟ (~̌µ) = ξ̌}

belongs to M . By taking p∗ ≥∗ p as in the statement of Lemma 23 we obtain
the desired extension of p.

Corollary 27. P preserves λ+.

Proof. If Ḟ : λ → λ+ is a P-name of a function, then by Lemma 26 for every
condition p there are p∗ ≥∗ p and a function f∗ : [λ]<ω × [λ]<ω → λ+ in V , so
that p∗ forces rng(Ḟ ) is contained in rng(f∗).
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Let G ⊆ P be a generic filter. By a standard density argument, for every
α < λ+ and n < ω there exists p ∈ G so that `p > n and α ∈ dom(fpn). We
define the generic scale 〈tα | α < λ+〉 by tα(n) = fpn(α) for any such a condition
p ∈ G.

Recalling that our setup includes that an(0) = 0 and En(0) is a normal
measure on λn, we get that the sequence 〈ρn | n < ω〉, given by ρn = t0(n),
is generic over V for the diagonal Prikry forcing with the sequence of normal
measures 〈En(0) | n < ω〉.

Recall that for every n < ω, there exists a function gn : λn → λn so that
jEn(gn)(λn) is the supremum of the generators of En, and is inaccessible in MEn .
It follows from a standard density argument that the sequence 〈tα | α < λ+〉 is
a scale in the product

∏
n gn(ρn), and that gn(ρn) < λn is regular for almost

all n < ω. Moreover, it is straightforward to verify that our assumption that
the functions an in conditions p ∈ P are continuous and have closed domains,
implies that the scale 〈tα | α < λ+〉 is continuous.

Notation 28. In V [G], we denote gn(ρn) by τn.

Theorem 29. The Approachable Bounded Subset Property (ABSP) holds in
V [G] with respect to the sequence 〈τn | n < ω〉.

Proof. Suppose otherwise, then there exists a stationary set S ⊆ Pλ(Hθ) of
internally approachable structures N ≺ (Hθ;∈) such that for every N ∈ S and

n < ω there is a function FNn : [λ]k
N
n → λ in N , of a finite arity kNn < ω, and a

finite sequence of distinct numbers ~dN,n = 〈dN,n0 , . . . , dN,n
kNn
〉 ⊆ ω \ n, satisfying

χN (τdN,n0
) ≤ FNn

(
χN (τdN,n1

), . . . , χN (τdN,n
kNn

)

)
< τdN,n0

.

By Lemma 13, applied to the assignments N 7→ 〈FNn | n < ω〉 and N 7→ 〈~dN,n |
n < ω〉, there exists a stationary set S∗ ⊆ λ+ and two fixed sequences 〈Fn | n <
ω〉, 〈~dn | n < ω〉, with Fn : [λ]kn → λ and ~dn = 〈dn0 , . . . dnkn〉, such that for every

δ ∈ S∗ there exists N ∈ S so that δ = χN (λ+), 〈FNn | n < ω〉 = 〈Fn | n < ω〉,
and 〈~dN,n | n < ω〉 = 〈~dn | n < ω〉. For each δ ∈ S∗ there are mδ < ω and
N ∈ S∗ such that for every n ≥ mδ, tδ(n) = χN (τn) and thus,

tδ(d
n
0 ) ≤ Fn

(
tδ(d

n
1 ), . . . , tδ(d

n
kn)
)
< τdn0 (1)

We move back to V to contradict the above, and complete the proof. Let
p be a condition forcing the statement of (1) with respect to the P-names Ṡ∗,

〈Ḟn | n < ω〉, and 〈 ~̇dn | n < ω〉. By taking a direct extension if needed, we

may assume p decides the integer values for ~dn ⊆ ω \ n, for all n < ω. Apply
Lemma 26 repeatedly for each Fn, n < ω, to form sequences, 〈pn | n < ω〉 of
≤∗-extensions of p, and 〈fn | n < ω〉 of functions, fn : [λ]<ω × [λ]<ω → λ, so
that for each n < ω, pn ≥∗ pn−1 and fn are formed to satisfy the conclusion of
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Lemma 26 with respect to Ḟn. We define

α = sup

(⋃
n,m

(dom(ap
n

m ) ∪ dom(fp
n

m ))

)
+ 1

and let p∗ be a common direct extension of 〈pn | n < ω〉 with α = max(dom(ap
∗

m ))
for all m ≥ `p

∗
. Next, let q be an extension of p∗ which forces δ̌ ∈ Ṡ∗ for some

ordinal δ > α. Since q extends p∗, it is a direct extension of p∗_~ν∗ for some

~ν∗ ∈
∏
`p∗≤i<`∗ A

p∗

i . By taking a direct extension of q if needed, we may also
assume that q decides the integer values mδ from above and that δ ∈ dom(aqn)
for some n < ω.

Next, we pick n < ω satisfying n ≥ mδ, `
q and δ ∈ dom(aqn), and denote for

ease of notation, kn, 〈dn0 , . . . , dnkn〉 by k, 〈d0, . . . , dk〉 respectively. Our choice of

p∗ ≥∗ pn, and function fn guarantee that for every ~µ = 〈µd1 , . . . , µdk〉 ∈ [λ]k

there are n~µ∗ < ω and a function

N~µ
∗ :

∏
`q≤i<n~µ∗

Aqi → ω, 9

such that for every

~ν1 ∈
∏

`q≤i<n~µ∗

Aqi and ~ν2 ∈
∏

n~µ∗≤i<N~µ
∗ (~ν1)

Aqi ,

denoting ~ν∗_πqmc(q),α(~ν1_~ν2) by ~ν, we have that p∗_~ν forces Ḟn(~̌µ) =

f̌n(~µ, ~ν).
Recalling that q ≥∗ p∗_~ν∗, we get that in particular, q_~ν1_~ν2, which

extends p∗_~ν forces the same value, which depends only on πqmc(q),α(~ν1_~ν2).

To complete the argument, we will make use of the last fact, and the fact
that En(aqn(δ)) is strictly stronger than En(aqn(α)) in the Rudin-Keisler or-
dering, to find many distinct choices of sequences ~ν1_~ν2, whose projections
πpmc(q),δ(~ν

1_~ν2) are fixed, as well as the values they force for tδ(di), 1 ≤ i ≤ k,

yet they force many distinct values for tδ(d0). This will be used to find a con-
dition which extends p but forces (1) to fail.

To this end, we fix first a sequence of 〈d1, . . . , dk〉-indices,

~ν+ = 〈νd1 , . . . , νdk〉 ∈
∏

i∈{d1,...,dk}

Aqi

(note that we omit choosing a d0-coordinate) and define ~µ = πqmc(q),δ(~ν+).

9The vales n~µ∗ and N~µ
∗ are the obvious shifts of n~µ and N~µ associated to pn, fn from

Lemma 26, resulting from the fact that the values given by n~µ and N~µ apply to pn and hence
to p∗, while q ≥∗ p∗_~ν∗, already determined an initial segment ~ν∗ of a possible end-extension
of p∗ which decides Ḟn(~µ) according to the recipe of the lemma.
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Let j ≤ k + 1 largest so that di < n~µ∗ for every i < j and define ~ν1
+ =

〈νd0 , . . . , νdj−1〉. Therefore, in order to extend ~ν1
+ to a relevant sequence ~ν1 ∈∏

`q≤i<n~µ∗
Aqi , one needs to choose remaining coordinates

~ν1
− ∈

∏
i∈[`q,n~µ∗ )\~d

Aqi .

In particular, to every such sequence ~ν1
− we can assign the integer N~µ

∗ (~ν1), where
~ν1 = ~ν1

− ∪ ~ν1
+, and by taking a direct extension of q if needed, we may assume

that the numbers N~µ
∗ (~ν1) take a constant value N for all ~ν1

− ∈
∏
i∈[`q,n~µ∗ )\~dA

q
i .

Moreover, by increasing N if necessary, we may also assume that N > dk.
With N being fixed, we conclude that every choice of a sequence

~ν2
− ∈

∏
i∈[n~µ∗ ,N)\~d

Aqi

will allow us to extend the remaining portion of the fixed sequence ~ν+ to
~ν2 ∈

∏
i∈[n~µ∗ ,N)

Aqi , which together with a choice of ~ν1 will produce a suitable

extension q_~ν1_ ~ν2 forcing

Ḟn(~µ) = fn
(
~µ, ~ν∗_πqmc(q),α(~ν1_~ν2)

)
.

Following this recipe, we extend our fixed choice of ~ν+ to a choice of all relevant
coordinates for ~ν1_~ν2, except for the coordinate of i = d0. Namely, we extend
~ν+ to a fixed sequence ~ν++ ∈

∏
i∈[`q,n~µ∗+N)\{d0}A

q
i . With the fixed choice ~ν++,

we derive a function h : Aqd0 → τd0 , defined by h(ν) = fn(~µ, πqmc(q),α(~ν++∪{ν}))
if the last ordinal value is below τd0 , and h(ν) = 0 otherwise. The properties of
the function fn guarantee that h(ν) depends only on πmc(q),α(ν), and by the last
item on 18, there is a subset A∗ ∈ Ean(d0), A

∗ ⊆ Aqd0 , so that h(ν) < πqmc(q),δ(ν)

for all ν ∈ A∗. Picking such an ordinal ν, and setting ~ν1_~ν2 = ~ν++ ∪ {ν}, we
conclude that p∗_~ν1_~ν2 ≥ p must force

h(ν) = Ḟn (tδ(d1), . . . , tδ(dk)) < tδ(d0).

Contradicting the statement 1 forced by p.

Corollary 30. ABSP holds in V [G] with respect to 〈τn | n < ω〉 and thus, by
Lemma 15, AFSP holds and there are no continuous scales on

∏
n τn which are

essentially tree-like.

2.1 Down to ℵω
We define a variant P̂ of the forcing P from the previous section, to obtain the
result of Theorem 29 in a model where 〈τn | n < ω〉 form a subsequence of the
first uncountable cardinals.

Conditions q ∈ P̂ are pairs q = 〈p, h〉 of sequences, p = 〈pn | n < ω〉 and

h = 〈hhigh
−1 〉_〈hn | n ∈ ω〉 satisfying the following conditions:
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1. p ∈ P, i.e., p satisfies Definition 19 above

2. for every n < `p, hn = 〈hlow
n , hhigh

n 〉, is a pair of functions, which satisfy
the following properties:

• hlow
n ∈ Coll(ρpn, < τpn) where ρpn = fpn(0), and τpn = gn(ρpn),10

• hhigh
n ∈ Coll((τpn)+, < ρpn+1) if n < `p−1, and hhigh

`p−1 ∈ Coll((τp`p−1)+, <
λ`p).

3. for every n ≥ `p, hn = 〈hlow
n , hhigh

n 〉, is a pair of functions, which satisfy
the following properties:

• dom(hlow
n ) = dom(hhigh

n ) = Apn,

• for every ν ∈ Anp,

hlow
n (ν) ∈ Coll(ρνn, < τνn)

where ρνn = πn
mc(apn),0

(ν) and τνn = gn(ρνn), and

hhigh
n (ν) ∈ Coll

(
(τνn)+, < λn+1

)
4. hhigh

−1 belongs to Coll(ω,< ρp0) if `p ≥ 1, and to Coll(ω,< λ0) otherwise

5. hhigh
`p−1 ∈ Vρν

`p
for every ν ∈ A`p

p, and hhigh
n−1(ν′) ∈ Vρνn for every n > `p,

ν′ ∈ Apn−1, and ν ∈ Anp.

A condition q∗ = 〈p∗, h∗〉 is a direct extension of p = 〈p, h〉 if the following
conditions hold:

1. p∗ ≥∗ p in the sense of P,

2. for every n < `p, hlow
n ⊆ (h∗n)low and hhigh

n ⊆ (h∗n)high ,

3. for every n ≥ `p, and ν ∈ Ap∗n , hlow
n (πn

mc(ap
∗
n ),mc(apn)

(ν)) ⊆ (h∗n)low(ν), and

hhigh
n (πn

mc(ap
∗
n ),mc(apn)

(ν)) ⊆ (h∗n)high(ν).

Given a condition q = 〈p, h〉 and an ordinal ν ∈ Ap`p , we define the one-point
end-extension of q by ν, denoted q_〈ν〉 to be the condition 〈p′, h′〉 given as
follows:

• p′ = p_〈ν〉 in the sense of P, in particular `p
′

= `p + 1,

• h′n = hn for every n ≤ `p, and in addition, (h′`p)high is now considered as
a condition of the restricted collapse poset Coll(ρp`p−1, < τν`p) (replacing
Coll(ρp`p−1, < λ`p)).

• (h′`p)low = hlow
`p (ν) and (h′`p)high = hhigh

`p (ν),

10By Definition 19 ρpn < τpn < λn are both inaccessible for n ≥ 0.
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• h′n = hn for every n ≥ `p + 1.

Given a condition q = 〈p, h〉 and a finite sequence ~ν = 〈ν`p , . . . , νn−1〉 ∈∏
`p≤i<nA

p
i , the end-extension of q by ~ν is defined by

q_~ν = q_〈ν0〉_〈ν1〉_ . . ._〈νn−1〉

In general, a condition in P̂ extends q if it is obtain from q by finitely many
end-extensions and direct extensions. Equivalently, it is a direct extension of
q_~ν for some n ≥ `p and ~ν ∈

∏
`p≤i<nA

p
i .

Let G ⊆ P̂ be a V -generic filter. Through its projection to P, given by q =
(p, h) 7→ p, p ∈ P, it is clear that V [G] adds a sequence of functions 〈tα | α < λ+〉
in the product

∏
n τn, where τn = gn(ρn) is derived from the generic filter, as

in the case of P. In addition, it is clear that the cardinals in the intervals
(τ+
n−1, ρn) ∪ (ρn, τn), n < ω, are all collapsed in V [G].

A standard argument for diagonal Prikry-type forcings with collapses (e.g.,

see [13]) shows that no other cardinals are collapsed. It follows that τn = ℵV [G]
3n+2

for every n ∈ ω. Most relevant to us, is Lemma 31 below, which is the P̂ analog
of the Strong Prikry Property from 21.

We first introduce certain useful notations. For a sequence of regular cardi-
nals ~ρ = 〈ρi | i < n〉, satisfying λi−1 < ρi < gi(ρi) < λi, Q~ρ to be the product
of collapse forcings

Coll(ω,< ρ0)×

( ∏
i<n−1

Coll(ρi, < gi(ρi))× Coll(gi(ρi)
+, < ρi+1))

)
×Coll(gn−1(ρn−1)+, < λn)

where for i = 0 we set g−1(ρ−1) = ω. For a condition q = 〈p, h〉 ∈ P̂ we denote
~ρq = 〈fpn(0) | n < `p〉, Qp = Q~ρp , and define for every q ≥ p, the collapse
restriction q � Qp to be h � `p + 1 = 〈h0, . . . h`p〉.

Lemma 31. Suppose that D ⊆ P̂ is a dense open set and q = 〈p, h〉 ∈ P̂
a condition. Then there exists a direct extension q∗ ≥∗ q, n < ω, such that

for every ~ν ∈
∏
`p≤i<nA

q∗

i , q∗_~ν reduces meeting D to Qp∗~ν , in the sense
that there exists a dense open subset D(~ν) of Qq∗~ν so that for every q′ ≥ q, if
q′ � Qq∗~ν ∈ D(~ν) then q′ ∈ D.

This version of the strong Prikry Property naturally extends to versions
of Lemmas 23 and 26, in which in addition to nD, ND (n~µ, N~µ, respectively)
which were used to determine the length of sequences ~ν1_~ν2 for q∗_~ν1_~ν2

to meet dense open sets D (or decide values of functions Ḟ (~µ)), here an addi-
tional function D̄ mapping sequences ~ν1_~ν2 to dense open subsets D̄(~ν1_~ν2)
of Qq∗_~ν1_~ν2 , are added, and reduce the problem of finding q′ ≥ q∗_~ν1_~ν2

inside D, (or deciding Ḟ (~µ)) to q′ � Qq∗_~ν1_~ν2 being a member of D̄(~ν1_~ν2).

We note that in particular, the conclusion of 24 applies to P̂, since Vλ ⊆M
implies that the finite collapse products Q~ρ are contained in M .
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From this point, it is straightforward to verify that the rest of the argument,
leading to an analogous proof of Theorem 29, remains essentially the same, with
the additional key being that the identity of the newly introduced collapse prod-
ucts Qq∗~ν and their dense sets D̄~µ(~ν) will be decided by the generic information
of a bounded part of the scale, tβ , β < α = sup(M ∩λ+) for a suitable structure
M of size λ. This information remains independent from higher generic scale
functions tδ, δ > α, which allows one to naturally modify the proof of Theorem
29, to conclude the same result.

Theorem 32. Let G ⊆ P̂ be a generic filter over V . The Approachable Bounded
Subset Property (ABSP) holds in V [G] with respect to the sequence 〈ℵ3n+2 | n <
ω〉.

3 Fine structure and the tree-like scale

3.1 Successor Cardinals

Let M |= ZFC− be a premouse such that every countable hull of M has an
(ω1 + 1) iteration strategy, λ ∈ M a limit cardinal (in M) of V -cofinality ω
(which need not agree with its cofinality in M) such that λ+ exists in M.

Note ifN is a premouse and α ∈ N is such thatN |= α is the largest cardinal,
then we let (α+)N = On∩N .

Let ~κ := 〈κn : n < ω〉 be a sequence ofM-cardinals cofinal in λ. We do note
asume ~κ is inM. Let τn := (κ+

n )M. We will define a sequence in
∏
n<ω

τn that is

increasing, tree-like, and continuous.
Let Cλ,M := {α < (λ+)M|M||α ≺ M||(λ+)M}. For α ∈ Cλ,M let Mα be

the collapsing level for α. Let nα be minimal such that ρMα
n+1 = λ, pα := pMα

nα+1,

and wα := wMα
nα+1. Let also Fα be the top predicate of Mα.

By Lemma 17 there exists some Mn
α EM such that C0(Mn

α) is isomorphic
to HullMα

nα+1(κn ∪ {pα}).

f~κ,Mα (n) =

{
(κ+
n )M

n
α {wα, λ} ∈ HullMα

nα+1(κn ∪ {pα})
0 otherwise

Note that the above function is non-zero almost everywhere, that is if λ ∈
C0(Mα). This can fail if (and only if) Mα is active and νMα = λ. Such α we
will call anomalous. For such α we define:

f~κ,Mα (n) =

{
(κ+
n )Ult(M;Fα�κn) κn > µMα

0 otherwise

By the initial segment there must be some γ < λ such that the trivial
completion of Fα � κn is indexed at γ. We that it is impossible to have the
alternative case as κn is a cardinal and hence not an index 11

11It also cannot be type Z. Type Z extenders have a largest generator.
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Note that in either case Mn
α is the least level of M over which a surjection

from κn on to the ordinal f~κ,Mα (n) is definable. Hence the ordinal defines the
level and vice versa.

In cases where it is clear which mouse and which sequence of cardinals we are
talking about, e.g. for the rest of this subsection, we will omit the superscripts.

Lemma 33. Let α < β both in C. If m is such that fα(m) = fβ(m) then
fα(n) = fβ(n) for all n ≤ m.

Proof. Note first that if fβ(m) = 0, then fβ(n) = 0 and the same holds for α.
Let us then consider fβ(m) 6= 0, it follows thatMm

α =Mm
β . We will start with

the assumption that neither α nor β are anomalous. In that situation we must
have that wα ∈ HullMα

nα+1(κn ∪ {pα}). This implies that pα collapses down to
pnα+1(Mm

α ). The same, of course, holds for β. Note we must have nα = nβ . It
follows that

C0(Mn
α) ∼= Hull

Mm
α

nα+1(κn ∪ {pnα+1(Mm
α )})

= Hull
Mm

β

nβ+1(κn ∪ {pnβ+1(Mm
β )}) ∼= C0(Mn

β).

This implies fβ(n) = fα(n). Note that fβ(n) = 0 if and only if wnβ+1(Mm
β ) /∈

Hull
Mm

β

nβ+1(κn ∪ {pnβ+1(Mm
β )}) and similarly for α.

Assume then that at least one of α and β is anomalous. Let us assume that
α is anomalous, the proof for β is only notationally different. We will realize
that, in fact, both must be anomalous. As types are preserved by taking hulls
we must have that both are active type III. As at least one is anomalous we
do know that the top extender of Mm

α has no generators above κm. If then
the other were not to be anomalous we must have that λ is an element of the
appropriate hull. This implies that C0(Mm

β ) has ordinals and hence generators
above κn. Contradiction!

As then both are anomalous and Mm
α =Mm

β , we have Fα � κm = Fβ � κm.

From this follows µMα = µMβ and Fα � κn = Fβ � κn. Therefore fα(n) =
fβ(n).

Lemma 34. Let α < β both in C. Then fα(n) < fβ(n) for all but finitely many
n.

Proof. Note that since α < β are in C then Mα 6=Mβ and so Mα ∈Mβ . Let
us first assume that β is not anomalous.

Let n∗ be such that Mα ∈ Hull
Mβ

nβ+1(κn∗ ∪ {pβ}). The pre-image of Mα in

Mn
β (n ≥ n∗) can then compute Mn

α and hence fα(n) correctly.
If on the other hand β were anomalous, let n∗ be such thatMα is generated

by some a ∈ [κn∗ ]
<ω

, i.e. Mα = ιFβ (h)(a) for some h ∈ (µ
Mβ

M||µMβ ). Then

fα(n) (n ≥ n∗) can be computed from ιFβ�κn(h)(a) inside Ult(M;Fβ � κn) by
 Loś’s Theorem.
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Lemma 35. Let β ∈ C be of uncountable cofinality. Then β is a continuity
point of the sequence ( i.e. fβ is the exact upper bound of 〈fα : α ∈ C ∩ β〉).

Proof. Let αn < fβ(n). We shall find some α < β such that fα dominates
〈αn : n < ω〉 almost everywhere. Towards that end, we deal first with the case
where β is not anomalous.

For almost all n < ω we have some surjection from κn onto αn in Mn
β ,

given by some parameter an ∈ [κn]
<ω

and term τn. Let ξn < ρnβ (Mβ) be
such that the image of such a surjection is (Σ1)-definable over M||ξn with
ThMβ

nβ
(ξn, pnβ (Mβ)) as an additional predicate.

By Lemma 16, ρnβ (Mβ) has uncountable cofinality. So ξ := sup
n<ω

ξn <

ρnβ (Mβ). Take then someA that codes the Σ1 theory ofM||ξ with ThMβ
nβ

(ξ, pnβ (Mβ))
as an additional predicate. Such an A exists in Mβ .

Pick some α < β such that A ∈ Mα. Let n < ω be such that A has a
pre-image Ā in Mn

α. Mn
α can then compute αn as the ordertype of

{(γ, δ)|(k, ana〈γ, δ〉) ∈ Ā}

where k is the Gödel number of “τn(an)(γ) < τn(an)(δ)′′. Hence αn < fα(n).
Similarly, if α were to be anomalous, we can pick n such that A = ιFα(h)(a) for

some h ∈ µMα

M||µMα and a ∈ [κn]
<ω

. The rest of the argument remains the
same.

Let us then assume that β is anomalous. Pick hn ∈ µMβ

M||µMβ such that

ιFβ (hn)(an) is a surjection from κn onto αn for some an ∈ [κn]
<ω

. We have
that cof((µMβ ,+)M) > ω.

Pick then some ξ < (µMβ ,+)M such that 〈hn : n < ω〉 ⊂ M||ξ. By weak
amenability the extender fragment F̄ := {(a,X) ∈ Fβ |X ∈ M||ξ, a ∈ [λ]

<ω} in

Mβ . Pick then α < β with F̄ ∈ Mα. Any Mn
α containing ¯̄F a pre-image of F̄

can then compute αn as the ordertype of {(γ, δ)|Bγ,δn ∈ ¯̄F} where

Bγ,δn = {ā ∈
[
µMβ

]|bγ,δn | |han,bγ,δnn (ā)(idγ,b
γ,δ
n (ā)) < h

an,b
γ,δ
n

n (ā)(idδ,b
γ,δ
n (ā))},

and bγ,δn := a ∪ {γ, δ}. Hence αn < fα(n).

Lemma 36. Assume 〈κn : n < ω〉 ∈ M, then 〈fα : α ∈ C〉 is a scale in∏
n<ω

τn ∩M.

Proof. Let f ∈
∏
n<ω

(τn/Jbd) ∩ M. Pick α ∈ C such that f ∈ Mα. Then

f(n) < fα(n) for all but finitely many n.

Remark 37. We note that it is possible to associate a sequence in
∏
n<ω

τn to any

initial segment of M projecting to λ and it would obey the established rules.

In certain situations we will want to consider a variant construction. Let us
consider an additional set of parameters ~α := 〈αn : n < ω〉 ∈

∏
n<ω

τn. Let β ∈ C.
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By the condensation lemma there exists some Mn,αn
β such that C0(Mn,αn

β ) is

isomorphic to Hull
Mβ

nβ+1(κn ∪ {pβa〈αn〉}). We then define:

f~κ,~α,Mβ (n) =

{
(κ+
n )M

n,αn
β {λ,wβ} ∈ Hull

Mβ

nβ+1(κn ∪ {pβa〈αn〉})
0 otherwise

If β is anomalous, then we use Fβ � (αn + 1) (instead of Fβ � κn) to define the
sequence.

This sequence will behave just like the previously defined sequence. The
proofs are mostly the same. The only minor problem adapting these arguments
lie in the preservation of standard parameters. Let pnβ be the image of pβ under

the collapse map in Mn,αn
β . Then pnβ might fail to be the standard parameter

of Mn,αn
β as it can fail to be a good parameter.

Though certainly we do know that pnβ
a〈αn〉 is a parameter so the standard

parameter is below it in the lexicographic order. As we do have a preimage of
the solidity witness inMn,αn

β , its standard parameter can only be lesser on that

last component, i.e. pnβ+1(Mn,αn
β ) = pnβ

aα′ with α′ ≤ αn.

Then Mm,αm
β can always compute Mn,αn

β from its standard parameter and
the ordinal αn in a consistent matter, guaranteeing tree-likeness of the sequence.
Everything else goes through with minor changes.

3.2 Limit cardinals

Let now each of the κn be an inaccessible cardinal in M. We want to extract
from Mβ ,β ∈ C, a sequence of structures that singularize some gβ(n) < κn.
For this we need a vector of parameters ~α = 〈αn : n < ω〉 where αn < κn. We
also do require that sup

n<ω
αn = λ. When do these parameters give rise to the

right structure? This will depend on whether β is anomalous or not. When
begin with listing three key factors for the case β is not anomalous:

(1)βn sup(Hull
Mβ

nβ+1(αn ∪ {pβ}) ∩ κn) > αn;

(2)βn κn ∈ Hull
Mβ

nβ+1(αn ∪ {pβ})

(3)βn Hull
Mβ

nβ+1(αn ∪ {pβ}) is cofinal in ρnβ (Mβ).

If β is anomalous, we have the following two considerations:

(4)βn sup({ιFβ (h)(a)|h ∈ µMβ

(µMβ ), a ∈ [αn]
<ω} ∩ κn) > αn;

(5)βn κn = ιFβ (h)(a) for some h ∈ µMβ

(µMβ) and a ∈ [αn]
<ω

.

We say β is adequate iff (1)βn + (2)βn + (3)βn or (4)βn + (5)βn (depending on
type) are met for all but finitely many n. If β is adequate and not anomalous
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then

g~κ,~α,Mβ (n) :=

{
sup(Hull

Mβ

nβ+1(αn ∪ {pβ}) ∩ κn) (1)βm + (2)βm + (3)βm∀m ≥ n
0 otherwise

We then let Mn
β be the unique initial segment of M such that C0(Mn

β)

is isomorphic to Hull
Mβ

nβ+1(gβ(n) ∪ {pβ}). (Note that the second case in the

condensation lemma cannot hold as gβ(n) is a limit of cardinals and hence a
cardinal itself. This follows by elementarity, trivially so when nβ > 0 otherwise
by (3)βn.)

If on the other hand β is anomalous then

g~κ,~α,Mβ (n) :=

{
sup({ιFβ (h)(a)|h ∈ µMβ

µMβ , a ∈ [αn]
<ω} ∩ κn) (4)βm + (5)βm∀m ≥ n

0 otherwise

Mn
β will be the unique initial segment of M with the trivial completion

of Fβ � gβ(n) as its top extender. As in the previous section, we will omit
superscripts for the remainder of this section.

To ensure tree-likeness for this sequence we need a strong interdependence
between the ordinal gβ(n) and structure Mn

β . Towards that end notice that
gβ(n) is definably singularized over Mn

β . The next lemma will show that Mn
β

is the least level of M with this property.

Lemma 38. gβ(n) is regular in Mn
α for all n such that (1)βn + (2)βn + (3)βn or

(4)βn + (5)βn holds.

Proof. First we will consider β that is not anomalous. Since κn is regular inMβ ,

it will then be enough to show that sup(Hull
Mβ

nβ+1(gβ(n) ∪ {pβ}) ∩ κn) = gβ(n).

Let ξ < κn be such that ξ ∈ Hull
Mβ

nβ+1(gβ(n) ∪ {pβ}). We can then take

γ < gβ(n) and δ < ρnβ (Mβ) such that ξ ∈ HullNδ1 (γ) where Nδ isM||δ together

with ThMβ
nβ

(δ, pnβ (Mβ)) as an additional predicate. We can take γ and δ to be

in Hull
Mβ

nβ+1(αn ∪ {pβ}) (by definition of gβ(n) and (3)n respectively).

Then η := sup(HullNδ1 (γ) ∩ κn) is also in that hull (uses (2)n) and thus
ξ < η < gβ(n).

Now consider an anomalous β. We will show that gβ(n) is regular in

Ult(M;Fβ � gβ(n)). We have some h ∈ µMβ

µMβ and a ∈ [αn]
<ω

such that

κn = ιFβ (h)(a). We will show that gβ(n) = ιFβ�gα(n)(h)(a). As this pair repre-
sents a regular cardinal in the larger ultrapower this will suffice.

Pick then some h0 and b such that b ∈ [gβ(n)]
<ω

and ιFα�gβ(n)(h0)(b) <

ιFβ�gβ(n)(h)(a). Pick some c ∈ [αn]
<ω

(w.l.o.g. a ⊂ c) and h1 such that b ⊂
ιFβ (h1)(c). Define h2 :

[
µMβ

]|c| → µMβ by d 7→ sup{h0(e)|e ∈ [h1(d)]
|b|
, h0(e) <

ha,c(d)}.
We then have ιFβ�gβ(n)(h0)(b) ≤ ιFβ�gβ(n)(h2)(c) < gβ(n) as required.
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Thus gβ(n) is regular in Mn
β but is definably singular over it. Thus it is

uniquely determined as a level of M by gβ(n).
The following is a straightforward corollary of the proof of the previous

Lemma.

Corollary 39. Let α ∈ C be such that gβ(n) is defined for all but finitely many
n. Let ~α∗ := 〈α∗n : n < ω〉 be such that αn ≤ α∗n < gα(n) for all but finitely

many n. Then g~κ,M,~α∗

β is defined and agrees with gβ almost everywhere.

Lemma 40. Say β∗ is adequate, then every β > β∗ in C of uncountable cofi-
nality is also adequate.

Proof. Let us assume for simplicity’s sake that (1)β
∗

n + (2)β
∗

n + (3)β
∗

n holds for

all n. Let then n∗ be such that β∗ ∈ Hull
Mβ

nβ+1(αm ∪{pβ}) for all m ≥ n∗. Then

that hull can compute Hull
Mβ∗

nβ∗+1(αm ∪{pβ∗}) for all m ≥ n∗. (1)βm + (2)βm then
follows.

That is if β∗ is not anomalous. If it is anomalous note that Hull
Mβ

nβ+1(αm ∪
{pβ}) has access to the extender Fβ∗ and can compute κm from it assuming
αm > µMβ∗ . (1)βm follows for similar reasons.

(3)βm almost everywhere follows for cofinality reasons.
If β is anomalous then we take some h and a ∈ [αm]

<ω
such that β∗ =

ιFβ (h)(a) and let τ be some rΣnβ∗+1-term such that κm = τ
Mβ∗
m (bm, pβ∗) for

bm ∈ [αm]
<ω

. Define then hm0 :
[
µMβ

]|a∪bm| → µMβ by

c 7→ τ
M

ha,a∪bm (c)
m (idbm,a∪bm(c), pha,a∪bm (c)).

We then have ιFβ (h0)(a ∪ bm) = κm. (4)βm follows for similar reasons.
The idea is similar if β∗ and β are both anomalous. (Pick h, a representing

Fα∗ etc.) We skip further details.

Assuming the existence of an adequate ordinal β∗ we can then show that
〈gβ : β ∈ C\β∗ ∩ cof(>ω)〉 is increasing (mod finite), tree-like, and continuous
as before.

Lemma 41. Let 〈κn : n < ω〉 and 〈αn : n < ω〉 both in M then there exists an
adequate β∗ and 〈gβ : β ∈ C\β∗ ∩ cof(>ω)〉 is a scale in

∏
n<ω

κn ∩M.

Proof. Any β∗ of uncountable cofinality (inM) such thatM||β∗ contains both
sequences will be adequate. The rest is then as before.

Note that while we have only considered sequences of a “pure” type, we
could easily deal with sequences 〈κn : n < ω〉 of regular cardinals with both
successor cardinals and inaccessible cardinals by mixing both constructions us-
ing parameters where needed. With this we finish the proof of Theorem 6.

Remark 42. Assuming that λ is not subcompact inM the sequences we defined
should be very good, but we have yet to check this in detail. The proof would
presumably proceed along similar lines as in [7].
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4 Core models and the tree-like scale

We now want to consider the question when the sequences constructed in the
previous section are scales in V . For this we need to consider the right mouse.
The natural candidate is, of course, the core model. But even core model
sequences are not always scales.

To keep the following as accessible as possible we are going to operate under
a smallness assumption. This will allow us to cover all known anti tree-like scale
results while greatly simplify the following arguments.

This assumption is:

There is no inner model W and F ∈W a total extender

such that gen(F ) ≥ (crit(F )++)W
(2)

Corollary 43. There is no ω1-iterable premouse (M,∈, ~E, F ) such that gen(F ) >
(crit(F )++)M.

Proof. Assume towards a contradiction that (M;∈, ~E, F ) is a counterexample.
Then we can generate an inner model W by iterating the top extender out of the
universe. Note that by a standard reflection argument, ω1-iterability is enough
to ensure that this model is wellfounded. By the initial segment condition
F � (crit(F )++)W is then in W contradicting (2).

The reader should be aware, though, that our main results will hold under
much weaker anti-Large Cardinals assumptions (up to one Woodin cardinal
and beyond). Neither should the choice of indexing scheme affect their validity
(though we have yet to check this in detail).

The most immediate payoff of (2) will be that all iterations we are going to
consider are linear (This is one instance in which ms-indexing will make things
simpler for us).

Proposition 44. Let M be a ω1-iterable premouse, and T a normal iteration
tree on M. Then no α < β ≤ lh(T ) is such that crit(ETβ ) < gen(ETα ).

Proof. Let α < β such that crit(ETβ ) < gen(ETα ). There are three cases:

Case 1: crit(ETα ) < crit(ETβ )

By agreement between models in an iteration we have that crit(ETβ ) is inac-

cessible in MTα || lh(ETα ) and thus (crit(ETα )++)M
T
α || lh(ETα ) < crit(ETβ ). As ETα

has generators above crit(ETβ ), MTα | lh(ETα ) is a counterexample to Corollary
43.

Case 2: crit(ETα ) > crit(ETβ )

In MTβ due to the agreement between models in an iteration, lh(ETα ) >

crit(ETβ ) is a cardinal inMTβ so by strong acceptability crit(ETα ) is inaccessible

inMTβ and thus above (crit(ETβ )++)Mβ ). As T is a normal iteration lh(ETβ ) >

lh(ETα ) > (crit(ETα )+)M
T
β and so gen(ETβ ) > crit(ETα ) but then MTβ | lh(ETβ ) is

a counterexample to Corollary 43.
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Case 3: crit(ETα ) = crit(ETβ )

Because T is normal we have lh(ETα ) < lh(ETβ ) but this means that ETβ must

have generators cofinal in (crit(ETβ )++)M
T
β . Now, let γ be the last drop in the

interval (α, β] if it exists or α+ 1 otherwise. We can assume that crit(ETγ−1) ≥
crit(ETβ ). ιTγ−1,β(crit(ETγ−1)) is then the critical point of an extender on theMTβ
sequence and greater than crit(ETβ ). As ETβ must be total over MTβ . Thus we

can produce a class size model W containing ETβ and agreeing with MTβ past

(crit(ETβ )++)W which contradicts (2).

Another consequence of (2) is that the Jensen-Steel core model K exists by
[18]. Note that by the smallness assumption there can be no anomalous ordinals
in K. For the following results we will follow the general framework of the proof
of weak covering for that model. Before going into the proofs we shall take quick
note of the involved objects.

Let λ be a singular cardinal of countable cofinality. Let ~κ := 〈κn : n < ω〉
be a sequence cofinal in λ. Let τn := (κ+

n )K . Consider some X ≺ Hθ (θ >> λ)
and let σX : HX → X be the inverse of the transitive collapse map. X will need
to satisfy certain properties:

• certain phalanxes “lift” through σX

• card(X) < λ,

• X is tight on ~κ (and 〈τn : n < ω〉), i.e. X∩
∏
n<ω

κn is cofinal in
∏
n<ω

(X∩κn)/

Jbd,

• the collection of X ≺ Hθ with the above three properties is stationary.

The first point is quite vague, and we will provide more details where needed
in the course of the argument. By [21] ω-closed X do satisfy the first property,
but it seems possible that there are not enough, i.e. stationary many, X with
all properties available. In such cases, by [22] we do know that for every inter-

nally approachable chain ~Y := 〈Yi : i < κ〉 in Hθ there exists some i < κ of
uncountable cofinality such that Yi satisfies the first property. That it satisfies
the other properties should be easy to see.

Let then from now on X be some such set with the required properties.
Let σX : HX → X be an isomorphism where HX is transitive. Write KX :=
σ−1
X ” [K], λX := σ−1

X (λ), κXn := σ−1
X (κn), etc.

As is standard we will compare KX with K, we should have (for our choice
of X) that the iteration tree on KX is trivial (this is (1)α from [21] or (1)iα
from [22] respectively). Let then IX be the iteration tree on K that arises from
the co-iteration. We will simplify notation by writing MX

α for MIXα etc. Let
ζX := lh(IX) be the length of the iteration.

Lemma 45. (crit(σX)+)KX < (crit(σX)+)K and if EX0 is defined then it is not
total over K.
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Note that KX and K agree up to (crit(σX)+)KX as a result of the conden-
sation lemma.

Proof. Assume towards a contradiction that (crit(σX)+)KX = crit(σX)+)K .
Then EσX the (crit(σX), σX(crit(σX)))-extender derived from σX measures all
subsets of its critical point that are in K. It also coheres with K by the ele-
mentarity of σX . (This is a little bit of a lie. We would actually need to know
that all Mitchell-Steel initial segments of EσX are on the K-sequence. But if
this fails we could simply apply the argument we are about to give to the least
missing segment instead.)

We do know that the phalanx 〈〈K,Ult(K;EσX )〉, σX(crit(σX))〉 is iterable.
This is (2)α from [21] or [22] where crit(σX) = (ℵα)KX . (Once again this is
something of a lie. We actually have to replace K with an appropriate soundness
witness in the above statement, but we can choose W such that it agrees with
K past the level we actually care about. Thus this will not make a difference
here.)

But then by [28, 8.6] we have that EσX is on the K-sequence. It should
be obvious that gen(EσX ) = σX(crit(σX)) and thus K| lh(EσX ) contradicts
Proposition 43.

As for the second part, assume EX0 is applied to K. By the first part, if
crit(EX0 ) ≥ crit(σX), then we must truncate. If (crit(EX0 )+)KX = crit(σX),
then by elementarity (crit(EX0 )+)K = σX(crit(σX) so we must truncate.

If crit(σX) ≥ (crit(EX0 )++)KX then its generators must be cofinal in crit(σX).
So, if the strict inequality holds then EX0 contradicts Corollary 43. A similar
argument applies if lh(EX0 ) > (crit(σX)+)KX .

So, we must have that crit(σX) = (crit(EX0 )++)KX . ConsiderMX
1 . It agrees

with KX up to (crit(σX)+)KX and that ordinal is a cardinal there. Thus we
can apply the extender EσX to it. The properties of X will guarantee that
K̃ := Ult(MX

1 ;EσX ) is iterable (similar to the proof of [21, Lemma 3.13]).
We have that K and K̃ agree up to sup(σX”

[
(crit(σX)+)KX

]
) which lies

past σX(crit(σX)) their common crit(EX0 )++, but on the other hand

(crit(EX0 )+++)K̃ = sup(σX”
[
(crit(σX)+)KX

]
) < σX((crit(σX)+) = (crit(EX0 )+++)K

as a result of weak covering.
Consider then Ẽ the first extender applied on the K side in the co-iteration

of K and K̃. Its index must be above σX(crit(σX)) but its critical point cannot
be larger than crit(EX0 ). Ẽ on the K-sequence then contradicts (2).

Remember now the sequence 〈κn : n < ω〉 and the sequence of successors
〈τn : n < ω〉. The general idea for the following proofs is to find some ordinal
αX < λ+ such that the natural scales of the core model at αX align with the
characteristic function of X.

From now on we shall assume that κn is a cutpoint of (the extender sequence

of) K and hence κXn is a cutpoint of KX . ( α ∈ (M;∈, ~E) is a cutpoint (of ~E)

iff whenever crit(Eβ) < α, then lh(Eα) < α for all β ∈ dom( ~E).)
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Lemma 46. There exist some nX , kX < ω, a sequence of models 〈NX
n : nX ≤

n < ω〉, and maps 〈υXn,m : nX ≤ n ≤ m < ω〉 such that:

• ((κXn )+)N
X
n = τXn and NX

n agrees with KX up to τXn for all n ≥ nX ;

• NX
n is (kX + 1)-sound above κXn for all n ≥ nX ;

• υXn,m : C0(NX
n )→ C0(NX

m ) is rΣkX+1-elementary for all m ≥ n ≥ nX ;

• crit(υXn,m) ≥ κXn for all m ≥ n ≥ nX .

For our purposes the critical point of the identity will be defined as the
ordinals of its domain.

Proof. There are a couple of cases.
Case 1: IX has no indices below λ.
In that case, we have KX |(λ+)KX E K. By Lemma 45 we do know that some

N ′ E K exists with (crit(σX)+)N
′

= (crit(σX)+)KX and ρω(N ′) ≤ crit(σX).
By assumption we must have KX |(λ+)KX E N ′.

Take then N ∗ to be the smallest initial segment of K that end-extends
KX |(λ+)KX such that ρω(N ∗) < λX .

Let kX be minimal such that ρkX+1(N ∗) < λX . Let nX be minimal such
that κXnX ≥ ρkX+1(N ∗). We then let NX

n := N ∗ for all n ≥ nX , and let υXn,m
be the identity for all m ≥ n ≥ nX . As an initial segment of K, N ∗ is sound so
this works.

Case 2: The set {lh(EXβ )|β < ζX} is bounded below λX .

Let ηX < ζX be minimal such that EXηX has length >λX , if it exists. If there

is no such ordinal, let ηX = ζX . We must then have thatMX
ηX agrees with KX

past λX . If MX
ηX has some proper initial segment of length greater than λX

projecting below λX , then this is no different from the previous case.
So let us assume that this is not the case. Let nX be minimal such that

κXnX the set {lh(EXβ )|β < ηX}. By Lemma 45, MX
ηX is not a weasel and is

(kX + 1)-sound above κXnX for some unique kX .
We then let NX

n := MX
ηX for all n ≥ nX , and υXn,m the identity for all

m ≥ n ≥ nX .
Case 3: The set {lh(EXβ )|β < ζX} is cofinal below λX .

Let ηX := sup({β < ζX | lh(EXβ ) < λX}). By assumption and Lemma 45
there is some drop in the interval (0, ηX). Let then γ + 1 be the last such.

Let kX be minimal such that ρkX+1((MX
γ+1)∗) ≤ crit(EXγ ). Let nX be min-

imal such that κXnX ≥ lh(EXγ ). Let ηXn < ηX be minimal such that crit(EXηXn
) ≥

κXn for n ≥ nX .
Let then NX

n :=MX
ηXn

and υXn,m := ιXηXn ,ηXm
for m ≥ n ≥ nX . It is easy to see

that the maps are as wanted, but it remains to check that NX
n is (kX +1)-sound

above κXn . This is going to be the one critical use of the assumption that κXn is
a cutpoint.

We have to show that the generators of the iteration up to ηXn are bounded
by κXn . If ηXn is a limit this is obvious as by choice of ηXn all previous critical
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points are less than κXn . So assume that ηXn = δ + 1 and EXδ has a generator
≥κXn . By the initial segment condition we then have that the trivial completion
G of EXδ � κ

X
n is on the sequence of KX . But we have crit(G) = crit(EXδ ) < κXn

and lh(G) > κXn , contradicting that κXn is a cutpoint.

The covering argument goes through three cases. Thanks to Lemma 45 we
can eliminate one of these cases, we will now see that we can also eliminate the
other less than convenient case.

Lemma 47. If NX
n for n ≥ nX has a top extender, then µXn , its critical point,

is ≥κXn .

Proof. Let us first assume that NX
n has been constructed according to Case 1

or Case 2. Then λX is a limit cardinal in NX
n and thus by (2) µXn cannot be

smaller than λX .
If NX

n is constructed according to Case 3, then some ordinal ≥κXn has to be
the critical point of an extender on the NX

n -sequence. As no overlaps can exist
on the NX

n -sequence, µXn ≥ κXn follows.

Remark 48. Note that NX
n in the notation of [21] is the mouse Pγ where

κn = ℵKXγ . Recall that Pγ is the least initial segment (if it exists) of MX
δ that

defines a subset of κn not in KX where δ < ζX is least such that gen(EXδ ) > κn.
In addition, by the preceding lemma Pγ = Qγ , i.e. we are avoiding protomice
in this construction.

Let then NX := dirlim(〈NX
n , υ

X
n,m : nX ≤ n ≤ m < ω〉) and υXn : C0(NX

n )→
C0(NX) the direct limit map. It should be easy to see that NX is wellfounded
and that the direct limit maps are rΣkX+1-elementary as they are generated by
an iteration on K. But more is true:

Lemma 49. The phalanx ((KX ,NX), λX) is iterable.

Proof. We cannot quote [21] here as it seems a priori possible that the mouse
(or weasel) Pβ , where λX = ℵKXβ , from that proof is not equal to NX . (This

would happen if (λ+
X)KX is not equal to (λ+

X)NX .)
Nevertheless, the proof presented in [21] works just as well with NX substi-

tuted for Pβ .
For those readers not content with this answer, we want to point out that

there is an easy cheat available to us in this case as (2) implies that λX must
be a cutpoint in NX , and hence the iterability of the phalanx reduces to the
iterability of NX . The latter holds as NX is an iterate of the core model.

Theorem 50. Let λ be a singular cardinal of countable cofinality. Let ~κ :=
〈κn : n < ω〉 be a sequence of K-cut points cofinal in λ. Let τn := (κ+

n )K , then∏
n<ω

τn carries a continuous, tree-like scale.

Proof. We will show that ~f := 〈f~κ,Kα : α ∈ Cλ,K〉 as defined in the last section is
that scale. Towards that purpose we need to show that this sequence is cofinal
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in
∏
n<ω

τn/Jbd. Let g ∈
∏
n<ω

τn/Jbd be arbitrary. Let X ≺ (Hθ;∈,K||θ, ~f) be of

good type, as explained at the beginning of this section, with g ∈ X. It will
suffice to show that there is some αX such that f~κ,KαX (n) = sup(X ∩ τn) for all
but finitely many n.

Let 〈NX
n , υ

X
n,m : nX ≤ n ≤ m < ω〉 and 〈NX , υXn : nX ≤ n < ω〉 be as

previously discussed appropriate to our choice of ~κ and X.
The first step will be to show that we can realize the least level of K to define

a surjection onto sup(X ∩ τn) by taking an ultrapower of NX
n for n ≥ nX . Let

OXn := UltkX (NX
n ;σX � KX |τXn ) and σ̃Xn be the ultrapower map for n ≥ nX . (

This ultrapower is formed using equivalence classes [f, a]σX where a ∈ [κn]
<ω

and f is a function with domain
[
κXn
]|a|

that is rΣkX -definable over NX
n .)

We do know that these models are wellfounded, in fact, the phalanx ((K,OXn ), κn)
must be iterable. (This is (2)β from [21] or [22], where κXn = ℵKXβ .) This means

that OXn is an inital segment of K. Furthermore, OXn is sound above κn, and
σ̃Xn (τXn ) = sup(X ∩ τn) is a cardinal there by the choice of NX

n . This means
that OXn is the level of K we are looking for.

The next step must be to tie the sequence 〈OXn : nX ≤ n < ω〉 to some level
of K projecting to λ. Our candidate is OX := UltkX (NX ;σX � KX |λX). Let
σ̃X be the ultrapower map. By Lemma 49 and the lifting properties of our X
not only is OX wellfounded, but it is an initial segment of the core model. Let
αX := (λ+)OX .

The last thing we need are appropriate embeddings fromOXn intoOX for n ≥
nX . Define πXn : C0(OXn )→ C0(OX): let πXn ([f, a]σX ) =

[
υXn (f) �

[
κXn
]<ω

, a
]
σX

.

It is to be understood here that if f is not an element of C0(NX
n ) but merely de-

finable over it, then υXn (f) is the function over C0(NX) with the same definition
and parameters moved according to υXn .

Let now f an rΣkX definable function over C0(NX
n ), φ an rΣkX -formula, and

a ∈ [κn]
<ω

.

C0(OXn ) |= φ([f, a]σX )⇔ a ∈ σX({b ∈
[
κXn
]<ω|NX

n |= φ(f(b))})

⇔ a ∈ σX({b ∈
[
κXn
]<ω|NX |= φ(υXn (f)(b))})

⇔ C0(OX) |= φ(
[
υXn (f) �

[
κXn
]<ω

, a
]
σX

)

This shows that πXn is rΣkX -elementary. Consider then the following dia-
gram:
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C0(OX)

C0(NX)

σ̃X

66

C0(OXn )

πXn

OO

C0(NX
n )

υXn

OO

σ̃Xn

66

The diagram commutes, and all of υXn , σ̃X , σ̃
X
n are cofinal (in ρkX (·)). Thus

so is πXn which shows that it is rΣkX+1-elementary. Also note that the critical
point of πXn is ≥κn.

It then follows that C0(OXn ) is isomorphic to HullOXkX+1(κXn ∪ {pkX+1(OX)}),
so sup(X ∩ τn) = f~κ,KαX (n) for n ≥ nX .

Remark 51. The last line is inaccurate, as it seems possible that αX /∈ Cλ,K
meaning f~κ,KαX might not be defined. Nevertheless the structure OXn is definable
from αX and κn in K which implies that the sequence 〈sup(X ∩ τn) : nX ≤ n <
ω〉 is dominated by some f~κ,Kβ for β ∈ Cλ,K .

Corollary 52. In the above situation αX = sup(X ∩ λ+).

Proof. By continuity f~κ,Ksup(X∩λ+) is the exact upper bound of 〈f~κ,Kβ : β <

sup(X ∩λ+)〉. On the other hand, as we know that ~f is a scale, by the tightness
of X we also know that 〈sup(X ∩ τn) : n < ω〉 is also an exact upper bound for
this sequence. This implies that both agree almost everywhere, but the latter
equals f~κ,KαX almost everywhere. The desired equality then follows.

Let us now move on to the second theorem. This one concerns scales on
products that concentrate on ordinals that are inaccessible in K. We will see
that scales on such ordinals are significantly more restricted.

Theorem 53. Let λ be a singular cardinal of countable cofinality. Let 〈κn : n <
ω〉 be a cofinal sequence such that each κn is an inaccessible limit of cutpoints
of K. Assume there is some δ < λ such that ordinals β with oK(β) ≥ δ are
bounded in each of the κn. Then

∏
n<ω

κn admits a continuous, tree-like scale.

Let from now on ~κ := 〈κn : n < ω〉 and δ < λ be as in the statement of the
theorem. As this theorem deals with scales on ordinals which are inaccessible in
K we will have need of a theorem that provides information about the possible
cofinalites of such ordinals. In general, we cannot expect these cofinalities to be
high because of the existence of Prikry forcing. The next theorem essentially
states that this is the only real obstacle. Versions of this theorem for different
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forms of the core model have existed for some time, but its newest form appro-
priate for the Jensen-Steel core model is due to Mitchell and Schimmerling.

Theorem 54 (Mitchell-Schimmerling). Assume there is no inner model with
a Woodin cardinal, and let K be the Jensen-Steel core model. Let α ≥ ℵ2 be
such that α is regular in K, but cof(α) < card(α). Then oK(α) ≥ ν where
cof(α) = ω · ν.

See [20]. Alternatively, as we only deal with linear iterations here it should
be plausible that the results from [4] even though not directly applicable can be
mimicked here to achieve a similar end.

Let us now again consider some X ≺ (Hθ;∈, . . .) containing relevant objects.
In addition to its previous properties we will require that cof(sup(X ∩ κn)) >
δ. Note then that by our assumption and 54, and this fact will be crucial,
sup(X ∩ κn) is a singular cardinal in K.

We will once again have need of the directed system 〈NX
n,m, υ

X
n,m : nX ≤

n ≤ m < ω〉 and its limit 〈NX , υXn : nX ≤ n < ω〉, but we will require some
additional properties.

Lemma 55. There exist α̃Xn < κXn such that Hull
NXn
kX+1(α̃Xn ∪ {pkX+1(NX

n )}) is

cofinal in κXn .

Proof. If the system is constructed as in Case 1 and 2 then there is a single α
such that NX

n (which is independent of n) is sound above α so the conclusion
follows.

Consider then that the system is constructed as in Case 3. Pick n ≥ nX .
Recall that NX

n = MX
ηXn

and γ + 1 is the last drop below ηXn . Note that by

definition of ηXn all critical points before that point are less than κXn . There are
two cases.

Case 3.1: ηXn = η̄ + 1.
In that case as κXn is a limit cardinal we must have that lh(EXη̄ ) < κXn . Let

α̃Xn < κXn be such that MX
ηXn

is sound above α̃Xn .

Case 3.2: ηXn is a limit ordinal.
Let γ < β < ηXn be such that ιXβ,ηXn

(κ̄) = κXn for some κ̄ ∈ MX
β . We must

have that ιXβ,ξ(κ̄) ≥ crit(ιXξ,ηXn
) for all ξ ∈

[
β, ηXn

)
. The key is to consider when

equality holds in the above equation.
Let us assume towards a contradiction that ιXβ,ξ(κ̄) = crit(ιXξ,ηXn

) for an un-

bounded in ηXn set A. For ν ∈ lim(A) ∩ ηXn we have

crit(ιXν,ηXn ) ≥ sup
ξ∈A∩ν

crit(ιXξ,ηXn ) = sup
ξ∈A∩ν

ιXβ,ξ(κ̄) = ιXβ,ν(κ̄)

and hence ν ∈ A. But then B := {ιXβ,ξ(κ̄)|ξ ∈ A} is a club of indiscernibles

in κXn . As σX is continuous at points of cofinality ω, C := σX” [B] is an
ω-club in sup(X ∩ κn). As the latter was singular there must exist a club
D ⊂ sup(X ∩ κn) consisting of K-singulars. But C ∩D 6= ∅, and C consists of
K-regulars. Contradiction!
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We conclude that crit(ιXξ,ηXn
) < ιXβ,ξ(κ̄) for all ξ ≥ ν for some ν ∈

[
β, ηXn

)
.

This means that ιXν,ηXn
is continuous at ιXβ,ν(κ̄). We then finish the argument by

noticing thatMX
ν is (kX+1)-sound above crit(ιXν,ηXn

), and thus Hull
MX

ηXn

kX+1(crit(ιXν,ηXn
)∪

{pkX+1(MX
ηxn

)}) is cofinal in κXn .

Proof of Theorem 53. We want to show that for some ~αX := 〈αXn : nX ≤ n <
ω〉 ∈ X the sequence 〈sup(X ∩ κn) : n < ω〉 agrees almost everywhere with
g~κ,K,~αXαX . (Implicit here is that αX will be adequate.)

Recall the structures OXn from the proof of the preceding theorem. We
will need a slightly different structure here. Let (OXn )∗ := UltkX (NX

n ;σX �
KX |κXn ). (This ultrapower is formed using equivalence classes [f, a]σX where

a ∈ [sup(X ∩ κn)]
<ω

and f is a function with domain [γ]
|a|

where γ < κn is a
cardinal with a ⊂ σX(γ) and f is rΣkX -definable over NX

n . Note that functions
with different domains can be compared by adding dummy values.)

Let σ̄Xn be the ultrapower map. Note that σ̄Xn maps κXn cofinally into sup(X∩
κn) so we have Hull

(OXn )∗

nX+1 (αXn ∪{pkX+1((OXn )∗)}) is cofinal in sup(X∩κn) where

αXn := σ̄Xn (α̃Xn ).
The phalanx ((K, (OXn )∗), sup(X ∩ κn)) is iterable as C0((OXn )∗) can be

mapped into C0(OXn ) by a map with critical point sup(X ∩ κn), so (OXn )∗ is
an initial segment of K, in fact, the least one to define a witness to the singu-
larity of sup(X ∩ κXn ).

Just as before we can map C0((OXn )∗) into C0(OX), so g~κ,K,~αXαX (n) = sup(X∩
κn) for all n ≥ nX . We would like to have ~αX ∈ X. This is obvious if X is
ω-closed. If X is merely internally approachable then we can still find some
~α′ ∈ X ∩

∏
n<ω

sup(X ∩κn) that dominates ~αX almost everywhere. Then g~κ,K,~αXαX

and g~κ,K,~α
′

αX agree almost everywhere by Corollary 39, so we can replace ~αX with
~α′.

By Fodor’s Lemma we then have a stationary set of X and a single ~α such
that g~κ,K,~ααX agrees with 〈sup(X ∩ κn : n < ω〉 almost everywhere. This then

shows that 〈g~κ,K,~αα : α ∈ C ∩ cof(>ω)〉 is a scale.

We are going to finish by showing how to weaken the assumption of Theorem
50 yet achieving the same result. It is here that we will make use of the sequence
〈f~κ,K,~αα : α ∈ Cλ,K〉.

We say a cardinal κ ∈ K is a weak cutpoint if crit(E) < κ implies lh(E) <
(κ+)K for all extenders E on the K-sequence.

Theorem 56. Let λ be a singular cardinal of countable cofinality. Let 〈κn :
n < ω〉 be a sequence of weak cutpoints cofinal in λ. Let τn := (κ+

n )K . Then∏
n<ω

τn carries a continuous, tree-like scale.

Lemma 57. There exist some nX , kX < ω, a sequence of ordinals 〈α̃Xn : nX ≤
n < ω〉, a sequence of models 〈NX

n : nX ≤ n < ω〉, and maps 〈υXn,m : nX ≤ n ≤
m < ω〉 such that:
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• ((κXn )+)N
X
n = τXn and NX

n agrees with KX up to τXn for all n ≥ nX ;

• NX
n is (kX + 1)-sound above κXn relative to pkX+1(NX

n )aα̃Xn for all n ≥
nX ;

• υXn,m : C0(NX
n )→ C0(NX

m ) is rΣkX+1-elementary for all m ≥ n ≥ nX ;

• crit(υXn,m) ≥ max{κXn , α̃Xn + 1} for all m ≥ n ≥ nX .

Proof. This proof goes through the same cases as the proof of Lemma 46, in
fact, many of the cases will be the same. (In those cases we can take α̃Xn to be
0.) In the interest of time we shall only deal with the case that is unique to this
situation.

Let us assume that ηX := sup({β < ζX | lh(EXβ ) < λ}) is a limit ordinal.
Let γ + 1 be the last drop in the interval (0, ηX). Let kX be minimal such that
ρkX+1((MX

γ1)∗) ≤ crit(EXγ ). Let nX be minimal such that κXnX ≥ lh(EXγ ). Let

ηXn < ηX be minimal such that crit(EXηXn
) ≥ κXn for n ≥ nX .

Let then NX
n := MX

ηXn
and υXn,m := ιXηXn ,ηXm

for m ≥ n ≥ nX . Let n ≥ nX

be such that ηXn = η̃Xn + 1 and gen(EXη̃Xn
) ≥ κn. Otherwise the argument will

proceed just as in the proof of Lemma 46 (and α̃Xn = 0).
First note then gen(EXη̃Xn

) < τXn as otherwise κXn could not be a weak cutpoint

by the initial segment condition. Moreover, it then follows that EXη̃Xn
has a largest

generator as otherwise gen(EXη̃Xn
) ∈

(
κXn , τ

X
n

)
must be a cardinal in NX

n .

Let α̃Xn be that largest generator. We will be done if we can show that
κXn ∪ {α̃Xn } generates the whole ultrapower. Let then M̃ := Ult(MX

η̃Xn
;EXη̃Xn

�

κXn ∪ {α̃Xn }) and ι̃ : C0(Ñ )→ C0(NX
n ) be the canonical embedding.

We have that α̃Xn ∈
(
κXn , τ

X
n

)
is in the range of ι̃, thus so is κXn = cardN

X
n (α̃Xn )

and some surjection from κXn on to α̃Xn . Then α̃Xn ⊂ ran ι̃ and thus so are all of
the other generators of EXη̃Xn

.

Remark 58. Note that in the “special” case of Lemma 57 unlike Remark 48
NX
n is not equal to the mouse Pγ (where κn = ℵKXγ ) from [21], but it is equal

to Qγ . To see this we must first realize that Pγ must be an initial segment of
MX

η̃Xn
as in this case EXη̃Xn

has generators ≥κn.

As the Dodd projectum of EXη̃Xn
is below κn we have, in fact, Pγ =MX

η̃Xn
| lh(EXη̃Xn

).

Note though that lifting this mouse by σX would create a proto mouse. Hence
we must move to the mouse Qγ which is formed by applying the extender EXη̃Xn
using the usual iteration tree rules. Hence the resulting mouse must be equal
to MX

η̃Xn +1 = NX
n .

Proof of Theorem 56. Let 〈NX
n : nX ≤ n < ω〉,〈υXn,m : nX ≤ n ≤ m < ω〉 and

〈α̃Xn : nX ≤ n < ω〉 as in the lemma. We will find some αX and ~αX := 〈αXn :
nX ≤ n < ω〉 such that sup(X ∩ τn) = f~κ,K,~ααX (n) for all n ≥ nX . In fact,
αXn = σX(α̃Xn ) will do. A priori ~αX will depend on X but we will be able to
deal with that by pressing down just as in the proof of Theorem 53.
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We can mostly proceed as in the proof of Theorem 50. We will form OXn
and OX as before, and generate embeddings between them by lifting υXn . Note
that υXn will not move α̃Xn as iteration maps do not move generators. So nei-
ther will its lift move αXn . Thus C0(OXn ) will be isomorphic to HullOXkX+1(κn ∪
{pkX+1(OX)aαXn }) as required.

As before the fact that the phalanx 〈〈K,OXn 〉, κn〉 is iterable follows from the
covering lemma, noticing that in this case we might have to consider the mouse
Qβ not Pβ as explained above. Fortunately, this does not change anything
about the rest of the argument. We skip further detail.

Proof of Theorem 5. We have different cases depending on if the κi are limit
cardinals or successor cardinals in the core model. Let us first assume that all
κi share a type. If that shared type is limit cardinals, then we can use Theorem
53 to finish. If that type is successor cardinals we have two cases: if κ̄i is the
K-predecessor of κi is measurable, then it must be a cutpoint by the smallness
assumption therefore we can use Theorem 50 to finish; if it is not, then it must
be a weak cutpoint thus we can use Theorem 56 to finish.

In cases of mixed type, divide the sequence into three parts of pure type.
Each of these parts do have a scale by the above. These individual scales can
then be integrated. This works as individual elements of the different scales can
be tied to some common ordinal <λ+.

5 Open questions

We conclude this work with a discussion on further possible developments, and
open questions.

1. Consider the following natural strengthening of the ABSP with respect
sequence of regular cardinals ~τ = 〈τn | n < ω〉 with λ = ∪nτn: For every
sufficiently large regular cardinal θ and internally approachable structure
N ≺ (Hθ,∈, ~τ), there is some m < ω, so that for every strictly increasing
sequence d0, . . . , dk ∈ ω \m and F ∈ N , F : [λ]k → λ, if

F (χN (τd1), . . . , χN (τdk)) < τd0

then
F (χN (τd1), . . . , χN (τdk)) ∈ N.

Is it consistent?

2. We saw in Section 2.1 that from the same large cardinal assumptions of
Theorem 29, it is consistent that ABSP holds with respect to a sequence
〈τn | n < ω so that τn = ℵ2n for all n < ω. Is ABSP consistent with
respect to cofinite sequence of the ℵn’s?

3. The definitions of Tree-like scales, Essentially Tree-like scales, ASFP, and
ABFP naturally extend to uncountable sequences of cardinals 〈τi | i < ρ〉,
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ρ > ℵ0 regular. Are those principles consistent? If so, what is their
consistency strength?

4. Another natural extension of the principles AFSP and ABFP, is to require
the appropriate principle to hold for any elementary substrucute N ≺
(Hθ ∈ ~τ). Is it consistent?

5. Is there a version of Theorem 6 for Neeman-Steel long extender mice?

6. Pereira showed in [25] that it consistent relative to the existence of a
supercompact cardinal that there exist products

∏
n<ω

τn carrying a contin-

uous tree-like scale of length greater than sup(〈τn〉n)+. Can the same be
achieved from a weaker large cardinal assumptions at the level of strong
cardinals?
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