Markov Random Fields and the 3-coloured Chessboard

Nishant Chandgotia1 \hspace{1cm} Tom Meyerovitch2

1University of British Columbia

2Ben-Gurion University

August 2013
Outline

- Topological Markov fields
- Markov random fields and Gibbs measures with nearest neighbour interactions
- The pivot property
- Examples: 3-coloured chessboard and the Square Island shift.
Topological Markov Fields

A topological Markov field is a shift space $X \subset A^{\mathbb{Z}^d}$ with the ‘conditional independence’ property: for all finite subsets $F \subset \mathbb{Z}^d$, $x, y \in X$ satisfying $x = y$ on ∂F, $z \in A^{\mathbb{Z}^d}$ given by

$$z = \begin{cases} x & \text{on } F \\ y & \text{on } F^c \end{cases}$$

is also an element of X.
Topological Markov Fields

A topological Markov field is a shift space $X \subset \mathcal{A}^{\mathbb{Z}^d}$ with the ‘conditional independence’ property: for all finite subsets $F \subset \mathbb{Z}^d$, $x, y \in X$ satisfying $x = y$ on ∂F, $z \in \mathcal{A}^{\mathbb{Z}^d}$ given by

$$z = \begin{cases} x & \text{on } F \\ y & \text{on } F^c \end{cases}$$

is also an element of X.

- x, y, and z are depicted in the grid diagrams.
Topological Markov Fields

Every nearest neighbour shift of finite type is a topological Markov field.
Topological Markov Fields

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.
Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where
Topological Markov Fields

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where the horizontal constraints come from X. If x and y agree on ∂F, they must agree on F. Therefore Y is a topological Markov field. There are uncountably many such shift spaces but there are only countably many nearest neighbour shift of finite type!!
Topological Markov Fields

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where the horizontal constraints come from X and the vertical direction is constant.
Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where the horizontal constraints come from X and the vertical direction is constant. If x and y agree on ∂F, they must agree on F.
Topological Markov Fields

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space \(X \). Make a two-dimensional shift space \(Y \) where the horizontal constraints come from \(X \) and the vertical direction is constant. If \(x \) and \(y \) agree on \(\partial F \), they must agree on \(F \). Therefore \(Y \) is a topological Markov field.
Topological Markov Fields

Every nearest neighbour shift of finite type is a topological Markov field. However not every topological Markov field is a nearest neighbour shift of finite type.

Consider any one-dimensional shift space X. Make a two-dimensional shift space Y where the horizontal constraints come from X and the vertical direction is constant. If x and y agree on ∂F, they must agree on F. Therefore Y is a topological Markov field. There are uncountably many such shift spaces but there are only countably many nearest neighbour shift of finite type!!!
Markov Random Fields

The measure-theoretic version of this ‘conditional independence’ is called a Markov random field.
Markov Random Fields

The measure-theoretic version of this ‘conditional independence’ is called a Markov random field.

A Markov random field is a shift-invariant Borel probability measure \(\mu \) on \(\mathcal{A}^{\mathbb{Z}^d} \) with the property that for all finite \(A, B \subset \mathbb{Z}^d \) such that \(\partial A \subset B \subset A^c \) and \(a \in \mathcal{A}^A, b \in \mathcal{A}^B \) satisfying \(\mu([b]_B) > 0 \)

\[
\mu([a]_A \mid [b]_B) = \mu([a]_A \mid [b]_{\partial A}).
\]
The measure-theoretic version of this ‘conditional independence’ is called a Markov random field.

A Markov random field is a shift-invariant Borel probability measure μ on $A^{\mathbb{Z}^d}$ with the property that for all finite $A, B \subset \mathbb{Z}^d$ such that $\partial A \subset B \subset A^c$ and $a \in A^A, b \in A^B$ satisfying $\mu([b]_B) > 0$

$$\mu([a]_A \mid [b]_B) = \mu([a]_A \mid [b]_{\partial A}).$$

The support of every Markov random field is a topological Markov field.
The measure-theoretic version of this ‘conditional independence’ is called a Markov random field.

A **Markov random field** is a shift-invariant Borel probability measure \(\mu \) on \(\mathcal{A}^{\mathbb{Z}^d} \) with the property that for all finite \(A, B \subset \mathbb{Z}^d \) such that \(\partial A \subset B \subset A^c \) and \(a \in \mathcal{A}^A, b \in \mathcal{A}^B \) satisfying \(\mu([b]_B) > 0 \)

\[
\mu([a]_A \mid [b]_B) = \mu([a]_A \mid [b]_{\partial A}).
\]

The set of conditional measures \(\mu([\cdot]_A \mid [b]_{\partial A}) \) for all \(A \subset \mathbb{Z}^d \) finite and \(b \in \mathcal{A}^{\partial A} \) is called **specification** for the measure \(\mu \).
Markov Random Fields

The measure-theoretic version of this ‘conditional independence’ is called a Markov random field.

A Markov random field is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^d}$ with the property that for all finite $A, B \subset \mathbb{Z}^d$ such that $\partial A \subset B \subset A^c$ and $a \in \mathcal{A}^A, b \in \mathcal{A}^B$ satisfying $\mu([b]_B) > 0$

$$\mu([a]_A \mid [b]_B) = \mu([a]_A \mid [b]_{\partial A}).$$

The set of conditional measures $\mu([\cdot]_A \mid [b]_{\partial A})$ for all $A \subset \mathbb{Z}^d$ finite and $b \in \mathcal{A}^{\partial A}$ is called specification for the measure μ. The specification might contain a huge lot of data!!!!
Given a shift space X define a **nearest neighbour interaction** on X as a shift-invariant function $V : \mathcal{B}(X) \rightarrow \mathbb{R}$ supported on configurations on edges and vertices.
Given a shift space X define a nearest neighbour interaction on X as a shift-invariant function $V : \mathcal{B}(X) \rightarrow \mathbb{R}$ supported on configurations on edges and vertices.

A Gibbs state with a nearest neighbor interaction V is a Markov random field μ such that for all $x \in \text{supp}(\mu)$ and $A, B \subset \mathbb{Z}^d$ finite satisfying $\partial A \subset B \subset A^c$

$$
\mu([x]_A \mid [x]_B) = \frac{\prod_{C \subset A \cup \partial A} e^{V([x]_C)}}{Z_{A, x|\partial A}}
$$

where $Z_{A, x|\partial A}$ is the uniquely determined normalising factor so that $\mu(X) = 1$, dependent upon A and $x|\partial A$.
Given a shift space X define a nearest neighbour interaction on X as a shift-invariant function $V : \mathcal{B}(X) \rightarrow \mathbb{R}$ supported on configurations on edges and vertices.

A Gibbs state with a nearest neighbor interaction V is a Markov random field μ such that for all $x \in \text{supp}(\mu)$ and $A, B \subset \mathbb{Z}^d$ finite satisfying $\partial A \subset B \subset A^c$

$$
\mu([x]_A \mid [x]_B) = \frac{\prod_{C \subset A \cup \partial A} e^{V([x]_C)}}{Z_{A, x|\partial A}}
$$

where $Z_{A, x|\partial A}$ is the uniquely determined normalising factor so that $\mu(X) = 1$, dependent upon A and $x|\partial A$.

The specification of a Gibbs measure with a nearest neighbour interaction has a finite description: all we need is
Given a shift space X define a nearest neighbour interaction on X as a shift-invariant function $V : \mathcal{B}(X) \rightarrow \mathbb{R}$ supported on configurations on edges and vertices.

A Gibbs state with a nearest neighbor interaction V is a Markov random field μ such that for all $x \in \text{supp}(\mu)$ and $A, B \subset \mathbb{Z}^d$ finite satisfying $\partial A \subset B \subset A^c$

$$
\mu([x]_A \mid [x]_B) = \frac{\prod_{C \subset A \cup \partial A} e^{V([x]_C)}}{Z_{A, x|_{\partial A}}}
$$

where $Z_{A, x|_{\partial A}}$ is the uniquely determined normalising factor so that $\mu(X) = 1$, dependent upon A and $x|_{\partial A}$.

The specification of a Gibbs measure with a nearest neighbour interaction has a finite description: all we need is the interaction V.
Question: When is a Markov random field Gibbs with some nearest neighbour interaction?
Question: When is a Markov random field Gibbs with some nearest neighbour interaction?

(*Hammersley-Clifford theorem*) Every Markov random field whose support has a *safe symbol* is Gibbs with some nearest neighbour interaction.
Question: When is a Markov random field Gibbs with some nearest neighbour interaction?

(Hammersley-Clifford theorem) Every Markov random field whose support has a safe symbol is Gibbs with some nearest neighbour interaction.

This is a property of the specification rather than the actual measure!
Question: When is a Markov random field Gibbs with some nearest neighbour interaction?

(Hammersley-Clifford theorem) Every Markov random field whose support has a safe symbol is Gibbs with some nearest neighbour interaction.

This is a property of the specification rather than the actual measure!

Question: How can we weaken the hypothesis?
Pivot Property

A shift space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site.
Pivot Property

A shift space X is said to satisfy the **pivot property** if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site. A shift space X is said to satisfy the **generalised pivot property** if there exists $K > 0$ such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:
- Any shift space with a safe symbol.
- r-coloured checkerboard for $r \in \{4, 5\}$.
- Domino tilings.
Pivot Property

A shift space X is said to satisfy the **pivot property** if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site. A shift space X is said to satisfy the **generalised pivot property** if there exists $K > 0$ such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

- Any shift space with a safe symbol.
Pivot Property

A shift space X is said to satisfy the pivot property if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site. A shift space X is said to satisfy the generalised pivot property if there exists $K > 0$ such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

- Any shift space with a safe symbol.
- r-coloured checkerboard for $r \neq 4, 5$.
Pivot Property

A shift space X is said to satisfy the **pivot property** if for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ on at most a single site. A shift space X is said to satisfy the **generalised pivot property** if there exists $K > 0$ such that for all $x, y \in X$ which differ only on finitely many sites there exists a chain $x = x^1, x^2, x^3, \ldots, x^n = y \in X$ such that x^i, x^{i+1} differ only on a region of diameter at most K.

Examples:

- Any shift space with a safe symbol.
- r-coloured checkerboard for $r \neq 4, 5$.
- Domino tilings.
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \{0, 1, 2\} such that adjacent colours are distinct.
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \(\{0, 1, 2\} \) such that adjacent colours are distinct. The 3-coloured chessboard has the pivot property.
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \(\{0, 1, 2\}\) such that adjacent colours are distinct. The 3-coloured chessboard has the pivot property.
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \{0, 1, 2\} such that adjacent colours are distinct. The 3-coloured chessboard has the pivot property.
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \(\{0, 1, 2\} \) such that adjacent colours are distinct. The 3-coloured chessboard has the pivot property.

\[
\begin{array}{ccccccc}
1 & 0 & 2 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & 1 & 2 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 2 \\
2 & 0 & 1 & 0 & 1 & 2 & 0 \\
0 & 2 & 0 & 1 & 0 & 1 & 2 \\
\end{array}
\]
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \{0, 1, 2\} such that adjacent colours are distinct. The 3-coloured chessboard has the pivot property.
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \(\{0, 1, 2\} \) such that adjacent colours are distinct. The 3-coloured chessboard has the pivot property.
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \{0, 1, 2\} such that adjacent colours are distinct. The 3-coloured chessboard has the pivot property.
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \{0, 1, 2\} such that adjacent colours are distinct. The 3-coloured chessboard has the pivot property.
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \{0, 1, 2\} such that adjacent colours are distinct. The 3-coloured chessboard has the pivot property.
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \(\{0, 1, 2\} \) such that adjacent colours are distinct. The 3-coloured chessboard has the pivot property.

\[
\begin{array}{cccccc}
1 & 0 & 2 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & 1 & 2 & 1 & 0 \\
1 & 0 & 1 & 2 & 1 & 0 & 1 \\
0 & 1 & 2 & 1 & 2 & 1 & 2 \\
2 & 0 & 1 & 1 & 1 & 2 & 0 \\
0 & 2 & 0 & 1 & 0 & 1 & 2 \\
\end{array}
\]

\[
\begin{array}{cccccc}
1 & 0 & 2 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & 1 & 2 & 1 & 0 \\
1 & 0 & 1 & 2 & 1 & 0 & 1 \\
0 & 1 & 2 & 0 & 2 & 1 & 2 \\
2 & 0 & 1 & 2 & 1 & 2 & 0 \\
0 & 2 & 0 & 1 & 0 & 1 & 2 \\
\end{array}
\]
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \(\{0, 1, 2\} \) such that adjacent colours are distinct. The 3-coloured chessboard has the pivot property.
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \{0, 1, 2\} such that adjacent colours are distinct. The 3-coloured chessboard has the pivot property.
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \(\{0, 1, 2\} \) such that adjacent colours are distinct. The 3-coloured chessboard has the pivot property.

The tables below illustrate the 3-coloured chessboard:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
The 3-coloured Chessboard

The 3-coloured chessboard is a shift space with alphabet \{0, 1, 2\} such that adjacent colours are distinct. The 3-coloured chessboard has the pivot property.

\[
\begin{array}{cccccccc}
1 & 0 & 2 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & 1 & 2 & 1 & 0 \\
1 & 0 & 1 & 2 & 1 & 0 & 1 \\
0 & 1 & 2 & 0 & 2 & 1 & 2 \\
2 & 0 & 1 & 2 & 1 & 2 & 0 \\
0 & 2 & 0 & 1 & 0 & 1 & 2 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 0 & 2 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & 1 & 2 & 1 & 0 \\
1 & 0 & 1 & 2 & 1 & 0 & 1 \\
0 & 1 & 2 & 0 & 2 & 1 & 2 \\
2 & 0 & 1 & 2 & 1 & 2 & 0 \\
0 & 2 & 0 & 1 & 0 & 1 & 2 \\
\end{array}
\]
Suppose μ is a Markov random field whose support has the pivot property.
Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in \text{supp}(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$. Therefore the entire specification is determined by finitely many parameters viz. $\mu(x^0|\partial 0)$, $\mu(y^0|\partial 0)$ for configurations x, y which differ only at 0, the origin. Thus the space of specifications on any topological Markov field with the pivot property can be parametrised by finitely many parameters.
Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in \text{supp}(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$ and consequently

$$\frac{\mu([x]_F | [x]_{\partial F})}{\mu([y]_F | [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_F | [x^i]_{\partial F})}{\mu([x^{i+1}]_F | [x^i]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_{m_i} | [x^i]_{\partial m_i})}{\mu([x^{i+1}]_{m_i} | [x^i]_{\partial m_i})}.$$
Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in supp(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$ and consequently

$$\frac{\mu([x]_F | [x]_{\partial F})}{\mu([y]_F | [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_F | [x^i]_{\partial F})}{\mu([x^{i+1}]_F | [x^i]_{\partial F})}$$

$$= \prod_{i=1}^{n-1} \frac{\mu([x^i]_{m_i} | [x^i]_{\partial m_i})}{\mu([x^{i+1}]_{m_i} | [x^i]_{\partial m_i})}.$$

Therefore the entire specification is determined by finitely many parameters viz.
Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in \text{supp}(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$ and consequently

$$\frac{\mu([x]_F | [x]_{\partial F})}{\mu([y]_F | [x]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_F | [x^i]_{\partial F})}{\mu([x^{i+1}]_F | [x^i]_{\partial F})} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_{m_i} | [x^i]_{\partial m_i})}{\mu([x^{i+1}]_{m_i} | [x^i]_{\partial m_i})}. $$

Therefore the entire specification is determined by finitely many parameters viz. $\frac{\mu([x]_{0 \cup \partial 0})}{\mu([y]_{0 \cup \partial 0})}$ for configurations x, y which differ only at 0, the origin.
Suppose μ is a Markov random field whose support has the pivot property. Then given $x, y \in \text{supp}(\mu)$ that differ exactly on F there exists a chain $x = x^1, x^2, \ldots, x^n = y$ where x^i, x^{i+1} differ exactly at a site $m_i \in \mathbb{Z}^2$ and consequently

$$\frac{\mu([x]_F \mid [x]\partial F)}{\mu([y]_F \mid [x]\partial F)} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_F \mid [x^i]\partial F)}{\mu([x^{i+1}]_F \mid [x^i]\partial F)} = \prod_{i=1}^{n-1} \frac{\mu([x^i]_{m_i} \mid [x^i]\partial m_i)}{\mu([x^{i+1}]_{m_i} \mid [x^i]\partial m_i)}.$$

Therefore the entire specification is determined by finitely many parameters viz. $\frac{\mu([x]_{0\cup\partial 0})}{\mu([y]_{0\cup\partial 0})}$ for configurations x, y which differ only at 0, the origin.

Thus the space of specifications on any topological Markov field with the pivot property can be parametrised by finitely many parameters.
Question: Suppose we are given a nearest neighbour shift of finite type with the pivot property. Is there an algorithm to determine the number of parameters which describes the specification?
A specification supported on the 3-coloured chessboard is determined the quantities

\[v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix})}, \]

If \(\mu \) is a Gibbs measure with nearest neighbour interaction \(V \) then

\[v_1 = \exp\left(V(0,1) + V(1,0) + V(0,2) + V(0,1) + V(1,2) + V(2,0) \right) \]

\[v_2 = \exp\left(V(1,2) + V(2,1) + V(2,0) + V(0,2) + V(0,1) \right) \]

\[v_3 = \exp\left(V(0,2) + V(2,0) + V(2,0) + V(0,2) + V(0,1) \right) \]

\(\mu \) is Gibbs if and only if

\[v_1 v_2 v_3 = 1. \]
A specification supported on the 3-coloured chessboard is determined the quantities \(v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix})} \), \(v_2 = \frac{\mu(\begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix})} \).
A specification supported on the 3-coloured chessboard is determined the quantities $v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix})}$, $v_2 = \frac{\mu(\begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix})}$ and $v_3 = \frac{\mu(\begin{bmatrix} 0 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix})}{\mu(\begin{bmatrix} 0 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix})}$.
A specification supported on the 3-coloured chessboard is determined the quantities \(v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix})} \), \(v_2 = \frac{\mu(\begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix})} \), and
\[v_3 = \frac{\mu(\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix})}{\mu(\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix})}. \]

If \(\mu \) is a Gibbs measure with nearest neighbour interaction \(V \) then
A specification supported on the 3-coloured chessboard is determined the quantities
\[v_1 = \frac{\mu(\begin{bmatrix} 1 & 0 & 1 \end{bmatrix})}{\mu(\begin{bmatrix} 1 & 1 & 1 \end{bmatrix})}, \quad v_2 = \frac{\mu(\begin{bmatrix} 2 & 1 & 2 \end{bmatrix})}{\mu(\begin{bmatrix} 2 & 2 & 1 \end{bmatrix})} \]
and
\[v_3 = \frac{\mu(\begin{bmatrix} 0 & 2 & 0 \end{bmatrix})}{\mu(\begin{bmatrix} 0 & 1 & 0 \end{bmatrix})}. \]
If \(\mu \) is a Gibbs measure with nearest neighbour interaction \(V \) then

\[
\begin{align*}
v_1 &= \exp(V(01) + V(10) + V(0_1) + V(0_1) - V(21) - V(12) - V(2_1) - V(1_2)), \\
v_2 &= \exp(V(12) + V(21) + V(2_1) + V(1_2) - V(02) - V(20) - V(0_2) - V(2_0)), \\
v_3 &= \exp(V(02) + V(20) + V(2_0) + V(0_2) - V(01) - V(10) - V(0_1) - V(1_0)).
\end{align*}
\]

\(\mu \) is Gibbs if and only if \(v_1 v_2 v_3 = 1. \)
Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard.
Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but
Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but every fully supported Markov random field corresponds to the parameters satisfying $\nu_1 \nu_2 \nu_3 = 1$.

What if the pivot property does not hold? Every 1 dimensional nearest neighbour shift of finite type has the generalised pivot property.
Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but every fully supported Markov random field corresponds to the parameters satisfying \(\nu_1 \nu_2 \nu_3 = 1 \).

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.
Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but every fully supported Markov random field corresponds to the parameters satisfying $\nu_1 \nu_2 \nu_3 = 1$.

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.

What if the pivot property does not hold?
Therefore the Hammersley-Clifford type conclusion fails for specifications of the 3-coloured chessboard but every fully supported Markov random field corresponds to the parameters satisfying $v_1 v_2 v_3 = 1$.

Thus the Hammersley-Clifford type conclusion holds for fully supported measures.

What if the pivot property does not hold? Every 1 dimensional nearest neighbour shift of finite type has the generalised pivot property.
Square Island Shift

Inspiration from checkerboard island shift by Quas and Şahin.
Square Island Shift

Inspiration from checkerboard island shift by Quas and Şahin. The allowed nearest neighbour configurations are all the nearest neighbour configurations in
Square Island Shift

Inspiration from checkerboard island shift by Quas and Şahin. The allowed nearest neighbour configurations are all the nearest neighbour configurations in

There are two kinds of squares: ones with red dots and ones without red dots which float in a sea of blanks.
The Square Island shift does not have the generalised pivot property.
The Square Island shift does not have the generalised pivot property.

There is no way to switch from a big square with red dots to a big square without red dots making single site changes (or even bigger regional changes).
The Square Island shift does not have the generalised pivot property.

There is no way to switch from a big square with red dots to a big square without red dots making single site changes (or even bigger regional changes).

There exists a Markov random field supported on the shift space which is not Gibbs for any finite-range interaction.

Can more uniform mixing conditions help?
The Square Island shift does not have the generalised pivot property.

There is no way to switch from a big square with red dots to a big square without red dots making single site changes (or even bigger regional changes).

There exists a Markov random field supported on the shift space which is not Gibbs for any finite-range interaction.

Question: Can more uniform mixing conditions help?
Thank You!