H - undirected graph.

G - undirected graph without self-loops.

\[\text{Hom}(G, H) := \{ x : G \to H \mid \text{in}_G \Rightarrow x_i \sim_H x_j \} \]

H - \(\mathbb{Z}^3 \) - proper 3-coloring of \(G \).

H - \(\mathbb{C}^2 \) - no two 1's are adjacent (hard core model).

\[H_{\text{walk}} = \left(\text{Hom}(\mathbb{Z}, H), E_{\text{walk}} \right) \]

\[E_{\text{walk}} := \{ (x, y) : x_i \sim y_i \wedge i \in \mathbb{Z} \} \]

Q: When is \(\text{diam}(H_{\text{walk}}) < \infty \)?

Motivation: \(\text{Hom}(\mathbb{Z}^2, H) \) forms a dynamical system (translation of \(H \times \text{Hom}(\mathbb{Z}, H) \) is still a homomorphism).

Want to address: How do properties of \(H \) reflect in the dynamics of \(\text{Hom}(\mathbb{Z}^2, H) \)?
By properties \rightarrow mixing properties.

What is a mixing property?

Let $A, B \subset \mathbb{Z}^2$-boxes.

\[a \in \operatorname{Hom}(A, H), \quad b \in \operatorname{Hom}(B, H) \]

Then exists $x \in \operatorname{Hom}(\mathbb{Z}^2, H)$ s.t.

\[x \cdot a = a, \quad x \cdot b = b \]

n depends on $a, b, \exists n \rightarrow$ transitivity

($\forall x$) \rightarrow holds for all H-connected

n independent of $a, b \rightarrow$ block-gluing.

Qn: When is $\operatorname{Hom}(\mathbb{Z}^2, H)$ block-gluing?

Note if H is bipartitive

a, b are even patterns on A, B singletons then n depends on whether a, b are of the same parity class.

$\text{H} \text{ - bipartitive. } \Rightarrow \text{Hom}(\mathbb{Z}^2, H) \text{ not block-gluing}$
\[n \text{ independent of } A, B. \quad \text{phased block-glim} \]
\[\text{(might depend on phase of) } q, b. \]

\[\text{Diam} \left(\mathbb{Z}^2, H \right) \text{ is block phased block-glim} \]
\[\text{iff} \]
\[\text{Diam} \left(H \text{ walk} \right) < \infty \]

\[\text{Really} \]

\[\text{Examples:} \]

\[0 \quad 1 \]
\[1 \quad 2 \]

\[\text{Anything at fixed distance looks like this to } (0, 2)^\infty \text{ looks like } (1, 3)^\infty \]

\[\text{Distance } (1012)^\infty, (0132)^\infty = \infty \]

\[\text{Diam} \left((1 \rightarrow 2) \text{ walk} \right) = \infty \]
More generally, H-graph.

ν folds into ω if $N_+(v) \cap N_{\omega}(w) = \emptyset$.

Each $\nu \rightarrow H \nu \rightarrow \emptyset$.

$x \in \text{Hom}(Z, H)$

Shifting $x \sim \ast$"
A is called bipartite dismantlable if sequence of folds stabilizes with H and ending with ...

Then: \(A \) is a set \(H \) of \(H \) to be undirected graph without self loops and copies of \(E \)

Then: \(\text{Diam}(H \text{ walk}) < 2 \) if \(H \) is not bipartite dismantlable.

Remark: Converse is not true in general.

\[\Rightarrow E \times H \Rightarrow \text{Diam}(H \text{ walk}) \leq 6 \]

=> Rennie Pantaleo

Conjecture: It is undecidable whether \(\text{Diam}(H \text{ walk}) \leq 6 \)
How to prove \(\text{diam} (H \text{ walk}) = \infty \)

for \(H = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} \)

There is a natural map \(\mathbb{Z} \mod 3 : \mathbb{Z} \to \mathbb{Z} \mathbb{H} \)

This induces a covering map \(f \) from \(\mathbb{Z} \text{ walk} \) to \(H \text{ walk} \).

But distance \(\left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ \ast \end{pmatrix} \right\} = \infty \)

\(\to \) difference of height \(\leq 1 \)

\(\Rightarrow \) number of steps \(\geq \frac{n}{2} \) for all \(n \).

\(\Rightarrow \) \(\text{diam} (\mathbb{Z} \text{ walk}) = \infty \)

\(\Rightarrow \) \(\text{diam} (H \text{ walk}) = \infty \).

If \(H \) has no self-loops and four cycles use \(\pi : \text{universal cover of } H \to H \).
Thus, it is decidable whether $\text{diam}(H_{post}) \leq n$.

Conjecture: It is undecidable whether $\text{diam}(H_{walk}) < \omega$.