Modelling processes on the \mathbb{Z}^d-lattice

Nishant Chandgotia1 \quad Tom Meyerovitch2

1Tel Aviv University

2Ben-Gurion University

March, Bar-Ilan University
Toy questions:

Question

How can we record the tossing of a coin?
Toy questions:

Question

How can we record the tossing of a coin?

By the symbols H and T.
Toy questions:

Question

How can we record the tossing of a coin?

By the symbols H and T.

Question

How can we record the throw of a dice?
Toy questions:

Question

How can we record the tossing of a coin?

By the symbols H and T.

Question

How can we record the throw of a dice?

By the symbols 1, 2, 3, 4, 5 and 6.
Toy questions:

Question

How can we record the tossing of a coin?

By the symbols H and T.

Question

How can we record the throw of a dice?

By the symbols 1, 2, 3, 4, 5 and 6.

Question

Can we record the throw of a dice using two symbols?
Toy questions:

Question

How can we record the tossing of a coin?

By the symbols H and T.

Question

How can we record the throw of a dice?

By the symbols 1, 2, 3, 4, 5 and 6.

Question

Can we record the throw of a dice using two symbols?

No! We are constrained by the size of the sample space.
(Infinite) toy questions:

Question

How can we record infinitely many dice throws?
(Infinite) toy questions:

Question

How can we record infinitely many dice throws?

Answer.

We can use functions \(f : \mathbb{Z} \rightarrow \{1, 2, 3, 4, 5, 6\} \). \(f(i) \) is used to record the result of the \(i^{th} \) dice throw.
(Infinite) toy questions:

Question

How can we record infinitely many dice throws?

Answer.

We can use functions $f : \mathbb{Z} \rightarrow \{1, 2, 3, 4, 5, 6\}$. $f(i)$ is used to record the result of the i^{th} dice throw.

Question

Can we record the sequence of dice throws using two symbols at each time point instead of six?
(Infinite) toy questions:

Question

How can we record infinitely many dice throws?

Answer.

We can use functions \(f: \mathbb{Z} \rightarrow \{1, 2, 3, 4, 5, 6\} \). \(f(i) \) is used to record the result of the \(i^{th} \) dice throw.

Question

Can we record the sequence of dice throws using two symbols at each time point instead of six?

Let us first define ‘recording’ rigorously.
Some notation:
Some notation:

We will denote the set of all functions from B to A by A^B.
Some notation:

We will denote the set of all functions from B to A by A^B. So the elements of $\{1, 2, 3, 4, 5, 6\}^\mathbb{Z}$ can be used for the recording of the dice throws.
Some notation:

We will denote the set of all functions from B to A by A^B. So the elements of $\{1, 2, 3, 4, 5, 6\}^\mathbb{Z}$ can be used for the recording of the dice throws.

Let A be a finite set. An element $\omega \in A^\mathbb{Z}$ can be thought both as a function

$$\omega : \mathbb{Z} \rightarrow A$$

and as a binfinite sequence $(\omega_i)_{i \in \mathbb{Z}}$ of the elements of A.
Some notation:

We will denote the set of all functions from B to A by A^B. So the elements of $\{1, 2, 3, 4, 5, 6\}^\mathbb{Z}$ can be used for the recording of the dice throws.

Let A be a finite set. An element $\omega \in A^\mathbb{Z}$ can be thought both as a function

$$\omega : \mathbb{Z} \to A$$

and as a binfinite sequence $(\omega_i)_{i \in \mathbb{Z}}$ of the elements of A.

Given $j \in \mathbb{N}$, the sequence $(\omega_{i-j})_{i \in \mathbb{Z}}$ represents the function whose values have been shifted j entries to the left.
Stationary stochastic processes

A stationary stochastic process is a sequence of finite-valued random variables \(\Omega = (\Omega_i)_{i \in \mathbb{Z}} \) for which \(\Omega_0, \Omega_1, \ldots, \Omega_i \) has the same distribution as \(\Omega_j, \Omega_{j+1}, \ldots, \Omega_{j+i} \) for all \(i \in \mathbb{N} \) and \(j \in \mathbb{Z} \).
Stationary stochastic processes

A stationary stochastic process is a sequence of finite-valued random variables $\Omega = (\Omega_i)_{i \in \mathbb{Z}}$ for which
A stationary stochastic process is a sequence of finite-valued random variables $\Omega = (\Omega_i)_{i \in \mathbb{Z}}$ for which

$$\Omega_0, \Omega_1, \ldots, \Omega_i$$

has the same distribution as

$$\Omega_j, \Omega_{j+1}, \ldots, \Omega_{j+i}$$

for all $i \in \mathbb{N}$ and $j \in \mathbb{Z}$.

Stationary stochastic processes
Example: Bernoulli process

Let Ω be a fixed finite-valued random variable. Let $(\Omega_i)_{i \in \mathbb{Z}}$ be a sequence of independent copies of Ω. $(\Omega_i)_{i \in \mathbb{Z}}$ is called a Bernoulli process.
Example: Bernoulli process

Let Ω be a fixed finite-valued random variable. Let $(\Omega_i)_{i \in \mathbb{Z}}$ be a sequence of independent copies of Ω. $(\Omega_i)_{i \in \mathbb{Z}}$ is called a Bernoulli process.

A sequence of dice throws forms a Bernoulli process where Ω takes values 1, 2, \ldots, 6 with equal probability.
A slightly more complicated stochastic process

Consider the stochastic process \(\Omega := (\Omega_i)_{i \in \mathbb{Z}} \) where

\[
\begin{align*}
\text{Prob}(\Omega_0 = 0) := \text{Prob}(\Omega_0 = 1) := \text{Prob}(\Omega_0 = 2) := \frac{1}{3}
\end{align*}
\]
A slightly more complicated stochastic process

Consider the stochastic process $\Omega := (\Omega_i)_{i \in \mathbb{Z}}$ where

$\text{Prob}(\Omega_0 = 0) := \text{Prob}(\Omega_0 = 1) := \text{Prob}(\Omega_0 = 2) := \frac{1}{3}$

and for all $i \in \mathbb{Z}$, given $\Omega_i = 0$

$\text{Prob}(\Omega_{i+1} = 0) := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2},$

$\text{Prob}(\Omega_{i+1} = 2) := \frac{1}{2}.$
A slightly more complicated stochastic process

Consider the stochastic process \(\Omega := (\Omega_i)_{i \in \mathbb{Z}} \) where

\[
\text{Prob}(\Omega_0 = 0) := \text{Prob}(\Omega_0 = 1) := \text{Prob}(\Omega_0 = 2) := \frac{1}{3}
\]

and for all \(i \in \mathbb{Z} \), given \(\Omega_i = 0 \)

\[
\text{Prob}(\Omega_{i+1} = 0) := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2},
\]

\[
\text{Prob}(\Omega_{i+1} = 2) := \frac{1}{2}.
\]
A slightly more complicated stochastic process

Consider the stochastic process $\Omega := (\Omega_i)_{i \in \mathbb{Z}}$ where

$$\text{Prob}(\Omega_0 = 0) := \text{Prob}(\Omega_0 = 1) := \text{Prob}(\Omega_0 = 2) := \frac{1}{3}$$

and for all $i \in \mathbb{Z}$, given $\Omega_i = 0$

$$\text{Prob}(\Omega_{i+1} = 0) := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2},$$
A slightly more complicated stochastic process

Consider the stochastic process \(\overline{\Omega} := (\Omega_i)_{i \in \mathbb{Z}} \) where

\[
\text{Prob}(\Omega_0 = 0) := \text{Prob}(\Omega_0 = 1) := \text{Prob}(\Omega_0 = 2) := \frac{1}{3}
\]

and for all \(i \in \mathbb{Z} \), given \(\Omega_i = 0 \)

\[
\text{Prob}(\Omega_{i+1} = 0) := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2},
\]
A slightly more complicated stochastic process

Consider the stochastic process $\Omega := (\Omega_i)_{i \in \mathbb{Z}}$ where

\[
\text{Prob}(\Omega_0 = 0) := \text{Prob}(\Omega_0 = 1) := \text{Prob}(\Omega_0 = 2) := \frac{1}{3}
\]

and for all $i \in \mathbb{Z}$, given $\Omega_i = 0$

\[
\text{Prob}(\Omega_{i+1} = 0) := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2},
\]

given $\Omega_i = 1$

\[
\text{Prob}(\Omega_{i+1} = 2) := 1
\]
A slightly more complicated stochastic process

Consider the stochastic process $\Omega := (\Omega_i)_{i \in \mathbb{Z}}$ where

$$\text{Prob}(\Omega_0 = 0) := \text{Prob}(\Omega_0 = 1) := \text{Prob}(\Omega_0 = 2) := \frac{1}{3}$$

and for all $i \in \mathbb{Z}$, given $\Omega_i = 0$

$$\text{Prob}(\Omega_{i+1} = 0) := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2},$$

given $\Omega_i = 1$

$$\text{Prob}(\Omega_{i+1} = 2) := 1$$
A slightly more complicated stochastic process

Consider the stochastic process \(\Omega := (\Omega_i)_{i \in \mathbb{Z}} \) where

\[
\begin{align*}
\text{Prob}(\Omega_0 = 0) := \text{Prob}(\Omega_0 = 1) := \text{Prob}(\Omega_0 = 2) := \frac{1}{3}
\end{align*}
\]

and for all \(i \in \mathbb{Z} \), given \(\Omega_i = 0 \)

\[
\begin{align*}
\text{Prob}(\Omega_{i+1} = 0) := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2},
\end{align*}
\]

given \(\Omega_i = 1 \)

\[
\begin{align*}
\text{Prob}(\Omega_{i+1} = 2) := 1
\end{align*}
\]

given \(\Omega_i = 2 \)

\[
\begin{align*}
\text{Prob}(\Omega_{i+1} = 0) := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2}.
\end{align*}
\]
A slightly more complicated stochastic process

Consider the stochastic process $\Omega := (\Omega_i)_{i \in \mathbb{Z}}$ where

$$\text{Prob}(\Omega_0 = 0) := \text{Prob}(\Omega_0 = 1) := \text{Prob}(\Omega_0 = 2) := \frac{1}{3}$$

and for all $i \in \mathbb{Z}$, given $\Omega_i = 0$

$$\text{Prob}(\Omega_{i+1} = 0) := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2},$$

given $\Omega_i = 1$

$$\text{Prob}(\Omega_{i+1} = 2) := 1$$

given $\Omega_i = 2$

$$\text{Prob}(\Omega_{i+1} = 0) := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2}.$$
A slightly more complicated stochastic process

Consider the stochastic process \(\Omega := (\Omega_i)_{i \in \mathbb{Z}} \) where

\[
\text{Prob}(\Omega_0 = 0) := \text{Prob}(\Omega_0 = 1) := \text{Prob}(\Omega_0 = 2) := \frac{1}{3}
\]

and for all \(i \in \mathbb{Z} \), given \(\Omega_i = 0 \)

\[
\text{Prob}(\Omega_{i+1} = 0) := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2},
\]

given \(\Omega_i = 1 \)

\[
\text{Prob}(\Omega_{i+1} = 2) := 1
\]

given \(\Omega_i = 2 \)

\[
\text{Prob}(\Omega_{i+1} = 0) := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2}.
\]
A slightly more complicated stochastic process

Consider the stochastic process \(\Omega := (\Omega_i)_{i \in \mathbb{Z}} \) where

\[
\begin{align*}
\text{Prob}(\Omega_0 = 0) & := \text{Prob}(\Omega_0 = 1) := \text{Prob}(\Omega_0 = 2) := \frac{1}{3} \\
\text{Prob}(\Omega_{i+1} = 0) & := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2}, \\
\text{Prob}(\Omega_{i+1} = 2) & := 1
\end{align*}
\]

and for all \(i \in \mathbb{Z} \), given \(\Omega_i = 0 \)

\[
\text{Prob}(\Omega_{i+1} = 0) := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2},
\]

given \(\Omega_i = 1 \)

\[
\text{Prob}(\Omega_{i+1} = 2) := 1
\]

given \(\Omega_i = 2 \)

\[
\text{Prob}(\Omega_{i+1} = 0) := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2}.
\]
A slightly more complicated stochastic process

Consider the stochastic process \(\Omega := (\Omega_i)_{i \in \mathbb{Z}} \) where

\[
\begin{align*}
\text{Prob}(\Omega_0 = 0) & := \text{Prob}(\Omega_0 = 1) := \text{Prob}(\Omega_0 = 2) := \frac{1}{3}, \\
\text{and for all } i \in \mathbb{Z}, \text{ given } \Omega_i = 0 \\
\text{Prob}(\Omega_{i+1} = 0) & := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2}, \\
\text{given } \Omega_i = 1 \\
\text{Prob}(\Omega_{i+1} = 2) & := 1 \\
\text{given } \Omega_i = 2 \\
\text{Prob}(\Omega_{i+1} = 0) & := \text{Prob}(\Omega_{i+1} = 1) := \frac{1}{2}.
\end{align*}
\]

It can be verified that this defines a stochastic process.
Recording of the stochastic process
Recording of the stochastic process

Consider the map $\Phi : \{0, 1, 2\} \to \{0, 1\}$ given by

$\Phi(0) := 0, \Phi(1) := \Phi(2) := 1$
Recording of the stochastic process

Consider the map \(\Phi : \{0, 1, 2\} \rightarrow \{0, 1\} \) given by

\[
\Phi(0) := 0, \quad \Phi(1) := \Phi(2) := 1
\]

and \(\phi : \{0, 1, 2\}^\mathbb{Z} \rightarrow \{0, 1\}^\mathbb{Z} \) given by

\[
(\phi(\omega))(i) := \Phi(\omega(i)).
\]
Recording of the stochastic process

Consider the map $\Phi : \{0, 1, 2\} \to \{0, 1\}$ given by

$$
\Phi(0) := 0, \Phi(1) := \Phi(2) := 1
$$

and $\phi : \{0, 1, 2\}^\mathbb{Z} \to \{0, 1\}^\mathbb{Z}$ given by

$$(\phi(\omega))(i) := \Phi(\omega(i)).$$

$$
\omega = \ldots 1201200120000 \ldots \\
\phi(\omega) = \ldots 1101100110000 \ldots .
$$
Recording of the stochastic process

Consider the map $\Phi : \{0, 1, 2\} \rightarrow \{0, 1\}$ given by

$$\Phi(0) := 0, \Phi(1) := \Phi(2) := 1$$

and $\phi : \{0, 1, 2\}^\mathbb{Z} \rightarrow \{0, 1\}^\mathbb{Z}$ given by

$$(\phi(\omega))(i) := \Phi(\omega(i)).$$

$$\omega = \ldots 1201200120000\ldots$$

$$\phi(\omega) = \ldots 1101100110000\ldots.$$

Though ϕ is not injective on $\{0, 1, 2\}^\mathbb{Z}$,
Recording of the stochastic process

Consider the map $\Phi : \{0, 1, 2\} \to \{0, 1\}$ given by

$$\Phi(0) := 0, \Phi(1) := \Phi(2) := 1$$

and $\phi : \{0, 1, 2\}^\mathbb{Z} \to \{0, 1\}^\mathbb{Z}$ given by

$$(\phi(\omega))(i) := \Phi(\omega(i)).$$

$$\omega = \ldots 1201200120000\ldots$$

$$\phi(\omega) = \ldots 1101100110000\ldots.$$

Though ϕ is not injective on $\{0, 1, 2\}^\mathbb{Z}$, with probability one it is injective on the values taken by the stochastic process $(\Omega_i)_{i \in \mathbb{Z}}$:
Recording of the stochastic process

Consider the map \(\Phi : \{0, 1, 2\} \rightarrow \{0, 1\} \) given by

\[\Phi(0) := 0, \Phi(1) := \Phi(2) := 1 \]

and \(\phi : \{0, 1, 2\}^\mathbb{Z} \rightarrow \{0, 1\}^\mathbb{Z} \) given by

\[(\phi(\omega))(i) := \Phi(\omega(i)). \]

\[\omega = \ldots 1201200120000 \ldots \]
\[\phi(\omega) = \ldots 1101100110000 \ldots . \]

Though \(\phi \) is not injective on \(\{0, 1, 2\}^\mathbb{Z} \), with probability one it is injective on the values taken by the stochastic process \((\Omega_i)_{i \in \mathbb{Z}}\): \(\omega \) can be recovered from \(\phi(\omega) \) by replacing the 1’s by alternating 1’s and 2’s with probability one.
Recording of the stochastic process

In other words, Ω has been recorded by $\{0, 1\}^\mathbb{Z}$.
What is an embedding (recording)?

Suppose $\Omega = (\Omega_i)_{i \in \mathbb{Z}}$ is a stationary stochastic process where the Ω_i’s take value in a finite set A.
What is an embedding (recording)?

Suppose $\Omega = (\Omega_i)_{i \in \mathbb{Z}}$ is a stationary stochastic process where the Ω_i’s take value in a finite set \mathbb{A}. We say that Ω is embedded into $\{1, 2, \ldots, k\}^\mathbb{Z}$ if there exists a measurable map

$$\Phi : \mathbb{A}^\mathbb{Z} \to \{1, 2, \ldots, k\}$$

for which
What is an embedding (recording)?

Suppose $\overline{\Omega} = (\Omega_i)_{i \in \mathbb{Z}}$ is a stationary stochastic process where the Ω_i's take value in a finite set \mathcal{A}. We say that $\overline{\Omega}$ is embedded into $\{1, 2, \ldots, k\}^\mathbb{Z}$ if there exists a measurable map

$$\Phi : \mathcal{A}^\mathbb{Z} \to \{1, 2, \ldots, k\}$$

for which the map $\phi : \mathcal{A}^\mathbb{Z} \to \{1, 2, \ldots, k\}^\mathbb{Z}$ given by

$$\phi(\omega)(j) := \Phi((\omega_{i-j})_{i \in \mathbb{Z}})$$

is injective with probability one.
What is an embedding (recording)?

Suppose \(\overline{\Omega} = (\Omega_i)_{i \in \mathbb{Z}} \) is a stationary stochastic process where the \(\Omega_i \)'s take value in a finite set \(\mathcal{A} \). We say that \(\overline{\Omega} \) is embedded into \(\{1, 2, \ldots, k\}^\mathbb{Z} \) if there exists a measurable map

\[
\Phi : \mathcal{A}^\mathbb{Z} \to \{1, 2, \ldots, k\}
\]

for which the map \(\phi : \mathcal{A}^\mathbb{Z} \to \{1, 2, \ldots, k\}^\mathbb{Z} \) given by

\[
\phi(\omega)(j) := \Phi((\omega_{i-j})_{i \in \mathbb{Z}})
\]

is injective with probability one.

For instance if \(\omega \in \mathcal{A}^\mathbb{Z} \),

\[
\phi(\omega)(0) = \Phi(\ldots \omega_{-2}\omega_{-1}\omega_0\omega_1\omega_2 \ldots)
\]

and
What is an embedding (recording)?

Suppose $\Omega = (\Omega_i)_{i \in \mathbb{Z}}$ is a stationary stochastic process where the Ω_i’s take value in a finite set A. We say that Ω is embedded into $\{1, 2, \ldots, k\}^\mathbb{Z}$ if there exists a measurable map

$$\Phi : A^\mathbb{Z} \to \{1, 2, \ldots, k\}$$

for which the map $\phi : A^\mathbb{Z} \to \{1, 2, \ldots, k\}^\mathbb{Z}$ given by

$$\phi(\omega)(j) := \Phi((\omega_{i-j})_{i \in \mathbb{Z}})$$

is injective with probability one.

For instance if $\omega \in A^\mathbb{Z}$,

$$\phi(\omega)(0) = \Phi(\ldots \omega_{-2}\omega_{-1}\omega_0\omega_1\omega_2 \ldots)$$

and

$$\phi(\omega)(1) = \Phi(\ldots \omega_{-1}\omega_0\omega_1\omega_2\omega_3 \ldots).$$
Embedding captures the idea of recording that we have spoken about until now!
Back to the (infinite) toy question

Question

Can we embed infinite dice throws into \(\{1, 2\}^\mathbb{Z} \)?
Back to the (infinite) toy question

Question

Can we embed infinite dice throws into \(\{1, 2\}^\mathbb{Z} \)?

Answer.
No!
Back to the (infinite) toy question

Question

Can we embed infinite dice throws into \(\{1, 2\}^\mathbb{Z} \)?

Answer.

No!

To understand why, we need to introduce *entropy* in our setting.
Back to the (infinite) toy question

Question

Can we embed infinite dice throws into \(\{1, 2\}^\mathbb{Z} \)?

Answer.

No!

To understand why, we need to introduce **entropy** in our setting. This replaces the size of the sample space of random variables that we were using before.
Back to the (infinite) toy question

Question

Can we embed infinite dice throws into \(\{1, 2\}^\mathbb{Z} \)?

Answer.

No!

To understand why, we need to introduce entropy in our setting. This replaces the size of the sample space of random variables that we were using before.

Suppose \(\Omega \) is a random variable which takes values 1, 2, \ldots, \(k \) with probabilities \(p_1, p_2, \ldots, p_k \). Then the Shannon entropy of \(\Omega \) is given by

\[
H(\Omega) := - \sum_{i=1}^{k} p_i \log(p_i).
\]
Some calculations of Shannon entropy

\[H(\Omega) := - \sum_{i=1}^{k} p_i \log(p_i). \]
Some calculations of Shannon entropy

\[H(\Omega) := - \sum_{i=1}^{k} p_i \log(p_i). \]

If \(\Omega \) is a coin toss then

\[H(\Omega) = - \log\left(\frac{1}{2}\right) = \log(2). \]
Some calculations of Shannon entropy

\[H(\Omega) := - \sum_{i=1}^{k} p_i \log(p_i). \]

If \(\Omega \) is a coin toss then

\[H(\Omega) = - \log\left(\frac{1}{2}\right) = \log(2). \]

In general if \(\Omega \) is the uniform random variable taking \(k \) values then

\[H(\Omega) = \log(k). \]
Some properties of Shannon entropy

\[H(\Omega) := - \sum_{i=1}^{k} p_i \log(p_i). \]
Some properties of Shannon entropy

\[H(\Omega) := - \sum_{i=1}^{k} p_i \log(p_i). \]

Note that \(\log \) is a strictly concave function.
Some properties of Shannon entropy

\[H(\Omega) := - \sum_{i=1}^{k} p_i \log(p_i). \]

Note that \(\log \) is a strictly concave function. Thus if \(\Omega \) takes only \(k \) values with positive probability then by Jensen’s inequality

\[H(\Omega) = \sum_{i=1}^{k} p_i \log \frac{1}{p_i} \leq \log k, \]

where equality is attained if and only if \(\Omega \) is a uniform random variable (\(p_i = \frac{1}{k} \) for all \(1 \leq i \leq k \)).
Some properties of Shannon entropy (contd.)

Suppose Ω is a random variable taking k distinct values with probabilities p_1, p_2, \ldots, p_k. If Ω_1 and Ω_2 are independent copies of Ω, then (Ω_1, Ω_2) is a random variable taking k^2 distinct values with probabilities $(p_i p_j)_{1 \leq i, j \leq k}$ and

$$H(\Omega_1, \Omega_2) = -\sum_{i,j} p_i p_j \log(p_i) - \sum_{i,j} p_i p_j \log(p_j) = 2H(\Omega).$$

If $(\Omega_1, \Omega_2, \ldots, \Omega_n)$ are independent copies of Ω, then

$$H(\Omega_1, \Omega_2, \ldots, \Omega_n) = nH(\Omega).$$
Some properties of Shannon entropy (contd.)

Suppose Ω is a random variable taking k distinct values with probabilities p_1, p_2, \ldots, p_k.
Some properties of Shannon entropy (contd.)

Suppose Ω is a random variable taking k distinct values with probabilities p_1, p_2, \ldots, p_k.

If Ω_1 and Ω_2 are independent copies of Ω then (Ω_1, Ω_2) is a random variable taking k^2 distinct values with probabilities

$$(p_ip_j)_{1 \leq i, j \leq k}$$
Some properties of Shannon entropy (contd.)

Suppose Ω is a random variable taking k distinct values with probabilities p_1, p_2, \ldots, p_k.

If Ω_1 and Ω_2 are independent copies of Ω then (Ω_1, Ω_2) is a random variable taking k^2 distinct values with probabilities

$$(p_ip_j)_{1 \leq i,j \leq k}$$

and

$$H(\Omega_1, \Omega_2) = - \sum_{i,j} p_ip_j \log(p_i) - \sum_{i,j} p_ip_j \log(p_j) = 2H(\Omega).$$
Some properties of Shannon entropy (contd.)

Suppose Ω is a random variable taking k distinct values with probabilities p_1, p_2, \ldots, p_k.

If Ω_1 and Ω_2 are independent copies of Ω then (Ω_1, Ω_2) is a random variable taking k^2 distinct values with probabilities

$$(p_i p_j)_{1 \leq i, j \leq k}$$

and

$$H(\Omega_1, \Omega_2) = - \sum_{i,j} p_i p_j \log(p_i) - \sum_{i,j} p_i p_j \log(p_j) = 2H(\Omega).$$

If $(\Omega_1, \Omega_2, \ldots, \Omega_n)$ are independent copies of Ω then

$$H(\Omega_1, \Omega_2, \ldots, \Omega_n) = nH(\Omega).$$
Some more properties of Shannon entropy

If Ω is a finite-valued random variable taking k values then $H(\Omega) \leq \log k$.
Some more properties of Shannon entropy

If Ω is a finite-valued random variable taking k values then

$$H(\Omega) \leq \log k.$$

The converse is false. $H(\Omega) \leq \log(k)$ does not imply that Ω takes only k values:
Some more properties of Shannon entropy

If Ω is a finite-valued random variable taking k values then
$$H(\Omega) \leq \log k.$$

The converse is false. $H(\Omega) \leq \log(k)$ does not imply that Ω takes only k values:

For example, if
$$\Omega := \begin{cases} 1 & \text{with probability } \frac{19}{20} \\ 2, 3 & \text{with probability } \frac{1}{40} \text{ each} \end{cases}$$

then $H(\Omega) = .101 < \log 2$ but takes three different values.
Some more properties of Shannon entropy

If Ω is a finite-valued random variable taking k values then $H(\Omega) \leq \log k$.

The converse is false. $H(\Omega) \leq \log(k)$ does not imply that Ω takes only k values:

For example, if

$$\Omega := \begin{cases}
1 & \text{with probability } \frac{19}{20} \\
2, 3 & \text{with probability } \frac{1}{40} \text{ each}
\end{cases}$$

then $H(\Omega) = .101 < \log 2$ but takes three different values.

All this analysis is for a single random variable only, as opposed to a stochastic process.
Some more properties of Shannon entropy

If Ω is a finite-valued random variable taking k values then $H(\Omega) \leq \log k$.

The converse is false. $H(\Omega) \leq \log(k)$ does not imply that Ω takes only k values:

For example, if

$$\Omega := \begin{cases} 1 & \text{with probability } \frac{19}{20} \\ 2, 3 & \text{with probability } \frac{1}{40} \text{ each} \end{cases}$$

then $H(\Omega) = .101 < \log 2$ but takes three different values.

All this analysis is for a single random variable only, as opposed to a stochastic process.

For stochastic processes, we consider ‘entropy-per-site’ instead.
Kolmogorov-Sinai entropy (1958-1959)

Given a stationary stochastic process $\overline{\Omega} = (\Omega_i)_{i \in \mathbb{Z}}$ we define its entropy by

$$h(\overline{\Omega}) := \lim_{n \to \infty} \frac{1}{n} H(\Omega_1, \Omega_2, \ldots, \Omega_n).$$
Kolmogorov-Sinai entropy (1958-1959)

Given a stationary stochastic process $\Omega = (\Omega_i)_{i \in \mathbb{Z}}$ we define its entropy by

$$h(\Omega) := \lim_{n \to \infty} \frac{1}{n} H(\Omega_1, \Omega_2, \ldots, \Omega_n).$$

If $\Omega = (\Omega_i)_{i \in \mathbb{Z}}$ is a Bernoulli process (independent copies of a random variable Ω) then

$$h(\Omega) := \lim_{n \to \infty} \frac{1}{n} H(\Omega_1, \Omega_2, \ldots, \Omega_n) = \lim_{n \to \infty} \frac{1}{n} nH(\Omega) = H(\Omega).$$
Kolmogorov-Sinai entropy (1958-1959)

Given a stationary stochastic process $\Omega = (\Omega_i)_{i \in \mathbb{Z}}$ we define its entropy by

$$h(\Omega) := \lim_{n \to \infty} \frac{1}{n} H(\Omega_1, \Omega_2, \ldots, \Omega_n).$$

If $\Omega = (\Omega_i)_{i \in \mathbb{Z}}$ is a Bernoulli process (independent copies of a random variable Ω) then

$$h(\Omega) := \lim_{n \to \infty} \frac{1}{n} H(\Omega_1, \Omega_2, \ldots, \Omega_n) = \lim_{n \to \infty} \frac{1}{n} n H(\Omega) = H(\Omega).$$

In general, $h(\Omega) \leq H(\Omega_1)$.

17 / 41
Kolmogorov-Sinai entropy (1958-1959)

Theorem (Kolmogorov and Sinai, 1958-1959)

If \(\Omega \) can be embedded in \(\{1, 2, \ldots, k\}^\mathbb{Z} \) then \(h(\Omega) \leq \log k \).

Conversely, Theorem (Krieger's generator theorem (1972))

If \(h(\Omega) < \log k \) then \(\Omega \) can be embedded in \(\{1, 2, \ldots, k\}^\mathbb{Z} \).

The results are sharp.
Kolmogorov-Sinai entropy (1958-1959)

Theorem (Kolmogorov and Sinai, 1958-1959)

If Ω can be embedded in $\{1, 2, \ldots, k\}^\mathbb{Z}$ then $h(\Omega) \leq \log k$.

If Ω is an infinite sequence of dice throws then

$$h(\Omega) = H(\Omega_1) = \log 6;$$

thus dice throws cannot be embedded in $\{1, 2\}^\mathbb{Z}$.
Kolmogorov-Sinai entropy (1958-1959)

Theorem (Kolmogorov and Sinai, 1958-1959)

\[\text{If } \Omega \text{ can embedded in } \{1, 2, \ldots k\}^\mathbb{Z} \text{ then } h(\Omega) \leq \log k. \]

If \(\Omega \) is an infinite sequence of dice throws then

\[h(\Omega) = H(\Omega_1) = \log 6; \]

thus dice throws cannot be embedded in \(\{1, 2\}^\mathbb{Z} \). Conversely

Theorem (Krieger’s generator theorem (1972))

\[\text{If } h(\Omega) < \log k \text{ then } \Omega \text{ can be embedded in } \{1, 2, \ldots , k\}^\mathbb{Z}. \]

The results are sharp.
\mathbb{Z}^d-stochastic processes
\mathbb{Z}^d-stochastic processes

A shift-invariant \mathbb{Z}^d-stochastic processes $\Omega = (\Omega_{\vec{i}})_{\vec{i} \in \mathbb{Z}^d}$ is a collection of random variables indexed by \mathbb{Z}^d, such that for all $\vec{j} \in \mathbb{Z}^d$,

$$(\Omega_{\vec{i}})_{\vec{i} \in \mathbb{Z}^d} \text{ has the same distribution as } (\Omega_{\vec{i} + \vec{j}})_{\vec{i} \in \mathbb{Z}^d}.$$
\mathbb{Z}^d-stochastic processes

A shift-invariant \mathbb{Z}^d-stochastic processes $\bar{\Omega} = (\Omega_i^j)_{i \in \mathbb{Z}^d}$ is a collection of random variables indexed by \mathbb{Z}^d, such that for all $\vec{j} \in \mathbb{Z}^d$,

$$(\Omega_i^j)_{i \in \mathbb{Z}^d} \text{ has the same distribution as } (\Omega_{i+j}^j)_{i \in \mathbb{Z}^d}.$$

For $d = 1$, this is the same as a stationary stochastic processes.
Entropy for \mathbb{Z}^d-stochastic processes

Let B_n be a cube in \mathbb{Z}^d of side length n. The entropy is defined by

$$h(\Omega):=\lim_{n\to\infty} \frac{1}{n} dH(\Omega_\vec{i}; \Omega_\vec{i} \in B_n).$$

Recall for $d=1$, we had

$$h(\Omega):=\lim_{n\to\infty} \frac{1}{n} H(\Omega_1, \Omega_2, \ldots, \Omega_n).$$

Again, if $\Omega= (\Omega_\vec{i})_{\vec{i} \in \mathbb{Z}^d}$ are independent copies of the same random variable Ω then

$$h(\Omega) = H(\Omega).$$
Entropy for \mathbb{Z}^d-stochastic processes

Let B_n be a cube in \mathbb{Z}^d of side length n. The entropy is defined by

$$h(\Omega) := \lim_{n \to \infty} \frac{1}{n^d} H(\Omega_i; \vec{i} \in B_n).$$

Recall for $d = 1$, we had

$$h(\Omega) := \lim_{n \to \infty} \frac{1}{n} H(\Omega_1, \Omega_2, \ldots, \Omega_n).$$
Entropy for \mathbb{Z}^d-stochastic processes

Let B_n be a cube in \mathbb{Z}^d of side length n. The entropy is defined by

$$h(\Omega) := \lim_{n \to \infty} \frac{1}{n^d} H(\Omega_i; \vec{i} \in B_n).$$

Recall for $d = 1$, we had

$$h(\Omega) := \lim_{n \to \infty} \frac{1}{n} H(\Omega_1, \Omega_2, \ldots, \Omega_n).$$

Again, if $\Omega = (\Omega_i)_{\vec{i} \in \mathbb{Z}^d}$ are independent copies of the same random variable Ω then
Entropy for \mathbb{Z}^d-stochastic processes

Let B_n be a cube in \mathbb{Z}^d of side length n. The entropy is defined by

$$h(\Omega) := \lim_{n \to \infty} \frac{1}{n^d} H(\Omega; \vec{i} \in B_n).$$

Recall for $d = 1$, we had

$$h(\Omega) := \lim_{n \to \infty} \frac{1}{n} H(\Omega_1, \Omega_2, \ldots, \Omega_n).$$

Again, if $\Omega = (\Omega_{\vec{i}})_{\vec{i} \in \mathbb{Z}^d}$ are independent copies of the same random variable Ω then

$$h(\Omega) = H(\Omega).$$
Embedding of \mathbb{Z}^d-stochastic processes

Suppose $\Omega = (\Omega_i)_{i \in \mathbb{Z}^d}$ is a stationary stochastic process where the Ω_i’s take values in a finite set A.
Embedding of \mathbb{Z}^d-stochastic processes

Suppose $\Omega = (\Omega_i)_{i \in \mathbb{Z}^d}$ is a stationary stochastic process where the Ω_i’s take values in a finite set \mathcal{A}. We say that Ω can be embedded in $\{1, 2, \ldots, k\}^{\mathbb{Z}^d}$ if there exists a measurable map

$$\Phi : \mathcal{A}^{\mathbb{Z}^d} \to \{1, 2, \ldots, k\}$$

for which the map $\phi : \mathcal{A}^{\mathbb{Z}^d} \to \{1, 2, \ldots, k\}^{\mathbb{Z}^d}$ given by

$$\phi(\omega)(j) := \Phi((\omega_{i-j})_{i \in \mathbb{Z}^d})$$

is injective with probability one.
Embedding of \mathbb{Z}^d-stochastic processes

Suppose $\Omega = (\Omega_i)_{i \in \mathbb{Z}^d}$ is a stationary stochastic process where the Ω_i’s take values in a finite set \mathcal{A}. We say that Ω can be embedded in $\{1, 2, \ldots, k\}^{\mathbb{Z}^d}$ if there exists a measurable map

$$\Phi : \mathcal{A}^{\mathbb{Z}^d} \rightarrow \{1, 2, \ldots, k\}$$

for which the map $\phi : \mathcal{A}^{\mathbb{Z}^d} \rightarrow \{1, 2, \ldots, k\}^{\mathbb{Z}^d}$ given by

$$\phi(\omega)(\vec{j}) := \Phi((\omega_{\vec{i}-\vec{j}})_{\vec{i} \in \mathbb{Z}^d})$$

is injective with probability one.

We say that Ω can be embedded in a set $X \subset \{1, 2, \ldots, k\}^{\mathbb{Z}^d}$ if in addition there exists ϕ as above for which $\phi(\omega) \in X$ with probability one.
Embedding of \mathbb{Z}^d-stochastic processes

Again, we have,

Theorem (Robinson and Ruelle, 1967)

If $\overline{\Omega}$ can embedded in $\{1, 2, \ldots k\}^{\mathbb{Z}^d}$ then $h(\overline{\Omega}) \leq \log k$.

and

Theorem (Rosenthal, 1988 ($d = 2$) and Kammeyer, 1990 ($d > 2$))

If $h(\overline{\Omega}) < \log k$ then $\overline{\Omega}$ can be embedded in $\{1, 2, \ldots, k\}^{\mathbb{Z}^d}$.

The results are sharp.
Embedding of \mathbb{Z}^d-stochastic processes

Again, we have,

Theorem (Robinson and Ruelle, 1967)

If Ω *can embedded in* $\{1, 2, \ldots k\}^\mathbb{Z}^d$ *then* $h(\Omega) \leq \log k$.

and

Theorem (Rosenthal, 1988 ($d = 2$) and Kammeyer, 1990 ($d > 2$))

If $h(\Omega) < \log k$ *then* Ω *can be embedded in* $\{1, 2, \ldots, k\}^\mathbb{Z}^d$.

The results are sharp.

But what if we want to embed in some $X \subset \{1, 2, 3, \ldots, k\}^\mathbb{Z}^d$?
Embedding under constraints

Let $X \subset \{1, 2, \ldots, k\}^\mathbb{Z}^d$ be closed and invariant under translations of the \mathbb{Z}^d-lattice. We define the topological entropy of X as

$$h_{top}(X) := \lim_{n \to \infty} \frac{1}{n^d} \log(\#\{x|_{B_n} : x \in X\}).$$

The limit exists.
Embedding under constraints

Let \(X \subset \{1, 2, \ldots, k\}^{\mathbb{Z}^d} \) be closed and invariant under translations of the \(\mathbb{Z}^d \)-lattice. We define the topological entropy of \(X \) as

\[
h_{top}(X) := \lim_{n \to \infty} \frac{1}{n^d} \log \left(\# \{ x | B_n : x \in X \} \right).
\]

The limit exists. Informally it is the growth rate of the number of patterns seen in \(X \) for a fixed size box.
Embedding under constraints

Let $X \subset \{1, 2, \ldots, k\}^{\mathbb{Z}^d}$ be closed and invariant under translations of the \mathbb{Z}^d-lattice. We define the topological entropy of X as

$$h_{top}(X) := \lim_{n \to \infty} \frac{1}{n^d} \log(\#\{x|_{B_n} : x \in X\}).$$

The limit exists. Informally it is the growth rate of the number of patterns seen in X for a fixed size box.

More informally, it should be thought of as the logarithm of the average number of symbols available for recording/embedding per site.
Embedding under constraints

Let $X \subset \{1, 2, \ldots, k\}^{\mathbb{Z}^d}$ be closed and invariant under translations of the \mathbb{Z}^d-lattice. We define the topological entropy of X as

$$h_{top}(X) := \lim_{n \to \infty} \frac{1}{n^d} \log(\#\{x |_{B_n} : x \in X\}).$$

The limit exists. Informally it is the growth rate of the number of patterns seen in X for a fixed size box.

More informally, it should be thought of as the logarithm of the average number of symbols available for recording/embedding per site.

$$h_{top}(\{1, 2, \ldots, k\}^{\mathbb{Z}^d})$$

$$= \lim_{n \to \infty} \frac{1}{n^d} \log(\#\{x |_{B_n} : x \in \{1, 2, \ldots, k\}^{\mathbb{Z}^d}\})$$

$$= \lim_{n \to \infty} \frac{1}{n^d} \log |\{1, 2, \ldots, k\}|^{n^d} = \log k.$$
Universality

X is said to be **universal** if all stochastic process $\overline{\Omega}$ for which

$$h(\overline{\Omega}) < h_{\text{top}}(X)$$

$\overline{\Omega}$ can be embedded in X.

By the aforementioned results of Krieger, Rosenthal and Kammeyer, $\{1, 2, \ldots, k\}^\mathbb{Z}_d$ are universal.
Motivating Question

When is X universal?
Example: Hom-shifts

We are going to think of \mathbb{Z}^d as both the group and the Cayley graph with respect to standard generators. For instance, \mathbb{Z}^2 is the infinite grid.
Example: Hom-shifts

Given graphs G, H a graph homomorphism from G to H is an edge preserving map from the vertex set of G to the vertex set of H.
Example: Hom-shifts

Given graphs G, H a graph homomorphism from G to H is an edge preserving map from the vertex set of G to the vertex set of H. In other words, $f : G \rightarrow H$ is a graph homomorphism if v being adjacent to w in G implies that $f(v)$ is adjacent to $f(w)$ in H.
Example: Hom-shifts

Given graphs G, H a graph homomorphism from G to H is an edge preserving map from the vertex set of G to the vertex set of H. In other words, $f : G \rightarrow H$ is a graph homomorphism if v being adjacent to w in G implies that $f(v)$ is adjacent to $f(w)$ in H.

Figure: If $f(v)$ is green
Example: Hom-shifts

Given graphs G, H a graph homomorphism from G to H is an edge preserving map from the vertex set of G to the vertex set of H. In other words, $f : G \rightarrow H$ is a graph homomorphism if v being adjacent to w in G implies that $f(v)$ is adjacent to $f(w)$ in H.

Figure: If $f(v)$ is green then $f(w)$ is either blue.
Example: Hom-shifts

Given graphs \(G, \mathcal{H} \) a graph homomorphism from \(G \) to \(\mathcal{H} \) is an edge preserving map from the vertex set of \(G \) to the vertex set of \(\mathcal{H} \). In other words, \(f : G \to \mathcal{H} \) is a graph homomorphism if \(v \) being adjacent to \(w \) in \(G \) implies that \(f(v) \) is adjacent to \(f(w) \) in \(\mathcal{H} \).

![Graphs G and H with vertices v and w and f(v) adjacent to f(w) in H](image)

Figure: If \(f(v) \) is green then \(f(w) \) is either blue or red.
Example: Hom-shifts

Hom-shifts X_H are the space of graph homomorphisms from \mathbb{Z}^d to H.
Example: Hom-shifts

Hom-shifts $X_{\mathcal{H}}$ are the space of graph homomorphisms from \mathbb{Z}^d to \mathcal{H}.

Examples: (Hard core model)
Example: Hom-shifts

Hom-shifts $X_\mathcal{H}$ are the space of graph homomorphisms from \mathbb{Z}^d to \mathcal{H}.

Examples: (Proper 3-colourings)
Example: Domino tilings

The space of domino tilings X_{dom} are all possible partitions of \mathbb{Z}^d by rectangular parallelepipeds one of whose side lengths is 2 and rest are 1.
Example: Domino tilings

The space of domino tilings X_{dom} are all possible partitions of \mathbb{Z}^d by rectangular parallelepipeds one of whose side lengths is 2 and rest are 1.

Figure: A domino tiling in $d = 2$.
Main result
Main result

In 2001, Şahin and Robinson initiated the study of the question: When is $X \subset \{1, 2, \ldots, k\}^\mathbb{Z}^d$ universal?
Main result

In 2001, Şahin and Robinson initiated the study of the question: When is $X \subset \{1, 2, \ldots, k\}^{\mathbb{Z}^d}$ universal?

In particular, they asked whether for $d = 2$, domino tilings and the space of proper 3-colourings are universal.
In 2001, Şahin and Robinson initiated the study of the question: When is $X \subset \{1, 2, \ldots, k\}^Z$ universal?

In particular, they asked whether for $d = 2$, domino tilings and the space of proper 3-colourings are universal.

In 2015, Jackson and Gao reiterated the question (in a stronger form).
Main result (Contd.)
Main result (Contd.)

We answered the question by Şahin and Robinson.
Main result (Contd.)

We answered the question by Şahin and Robinson.

Theorem (Chandgotia and Meyerovitch, 2018)

1. All hom-shifts (for all d), $X_\mathcal{H}$ where \mathcal{H} is not bipartite and
2. the space of domino tilings (for $d = 2$)

are universal.
Main result (Contd.)

We answered the question by Şahin and Robinson.

Theorem (Chandgotia and Meyerovitch, 2018)

1. All hom-shifts (for all d), $X_{\mathcal{H}}$ where \mathcal{H} is not bipartite and
2. the space of domino tilings (for $d = 2$)

are universal.

We can in fact also ‘embed’ arbitrary measurable \mathbb{Z}^d-actions on standard Borel spaces up to a universally null set provided the entropy constraint is satisfied.
Main result (Contd.)

We answered the question by Şahin and Robinson.

Theorem (Chandgotia and Meyerovitch, 2018)

1. All hom-shifts (for all d), $X_{\mathcal{H}}$ where \mathcal{H} is not bipartite and
2. the space of domino tilings (for $d = 2$)

are universal.

We can in fact also ‘embed’ arbitrary measurable \mathbb{Z}^d-actions on standard Borel spaces up to a universally null set provided the entropy constraint is satisfied.

A similar (but more technical) result holds for graphs \mathcal{H} which are bipartite; we will skip it.
What is at stake? (Hom-shifts)
What is at stake? (Hom-shifts)

Fix a connected graph \mathcal{H} and vertices $v, w \in \mathcal{H}$ which form an edge.
What is at stake? (Hom-shifts)

Fix a connected graph \mathcal{H} and vertices $v, w \in \mathcal{H}$ which form an edge.

Let L_n be the set of graph homomorphisms from B_n to \mathcal{H} with alternating v's and w's on the boundary and G_n be the set of graph homomorphisms from B_n to \mathcal{H}.
What is at stake? (Hom-shifts)
What is at stake? (Hom-shifts)

Figure: The graph H

Figure: This is an element of L^4 (only blue and green appear on the boundary)

Figure: This is an element of $G^4 \setminus L^4$ (all the three colours appear on the boundary)
What is at stake? (Hom-shifts)

Figure: The graph H

Figure: This is an element of L_4 (only blue and green appear on the boundary)
What is at stake? (Hom-shifts)

Figure: The graph H

Figure: This is an element of L_4 (only blue and green appear on the boundary)

Figure: This is an element of $G_4 \setminus L_4$ (all the three colours appear on the boundary)
What is at stake? (Hom-shifts)
What is at stake? (Hom-shifts)

\[L_n \subset G_n. \]
What is at stake? (Hom-shifts)

\(L_n \subset G_n \).

We prove that

\[
\lim_{n \to \infty} \frac{\log |L_n|}{n^d} = \lim_{n \to \infty} \frac{\log |G_n|}{n^d};
\]

this is sufficient to prove the universality of hom-shifts when \(\mathcal{H} \) is not bipartite.
What is at stake? (Hom-shifts)

\(L_n \subset G_n \).

We prove that

\[
\lim_{n \to \infty} \frac{\log |L_n|}{n^d} = \lim_{n \to \infty} \frac{\log |G_n|}{n^d};
\]

this is sufficient to prove the universality of hom-shifts when \(\mathcal{H} \) is not bipartite.

Note that when \(X_\mathcal{H} := \{1, 2, \ldots, k\}^{\mathbb{Z}^d} \) we have that

\[
|L_n| = 2k^{(n-1)^d} \quad \text{while} \quad |G_n| = k^{(n)^d}
\]

So the equation mentioned above follows automatically.
What is at stake? (Hom-shifts)

In fact, we prove that there is a $c_H > 0$ then given the uniform distribution on G_n

$$\text{Prob}(L_n) \geq e^{-c_H n^{d-1}}.$$
What is at stake? (Domino tilings)

Question (Open)

Are domino tilings universal in all dimensions d?

Recall that B_n is the box of side length n in \mathbb{Z}^d. Let L_{2n} be the set of tilings of B_{2n} by dominos and G_{2n} be the set of tilings of \mathbb{Z}^d by dominos restricted to B_{2n}. It follows that $L_{2n} \subset G_{2n}$.

![Figure: An element of L_6 (on the left) and of $G_6 \setminus L_6$ (on the right)]
What is at stake? (Domino tilings)

If the equation

\[
\lim_{n \to \infty} \frac{\log |L_{2n}|}{(2n)^d} = \lim_{n \to \infty} \frac{\log |G_{2n}|}{(2n)^d}
\]

holds then domino tilings are universal for all dimensions \(d\).

Fact: The number on the right is the topological entropy of the space of domino tilings.
What is at stake? (Domino tilings)

If the equation

$$\lim_{n \to \infty} \frac{\log |L_{2n}|}{(2n)^d} = \lim_{n \to \infty} \frac{\log |G_{2n}|}{(2n)^d}$$

holds then domino tilings are universal for all dimensions d.

Fact: The number on the right is the topological entropy of the space of domino tilings.

For $d = 2$, the equation follows from some deep ideas from Kastelyn (1961) and also from the work of Cohn, Kenyon and Propp (2001). These ideas fail to extend to higher dimensions.
Thank You!