I am a PhD student at the Einstein Institute of Mathematics and the Federmann Center for the Study of Rationality at the Hebrew University of Jerusalem, Israel. My advisor is Prof. Nati Linial.

I am interested in high-dimensional combinatorics, especially random high-dimensional permutations and designs. I also enjoy thinking about random (hyper) graphs and (hyper) graph processes.

I am the librarian at the Federmann Center for the Study of Rationality. Please send submissions to the Center's Discussion Paper series to my email, below.

Here is my curriculum vitae.

Contact Information

Email: menahem.simkin followed by @ followed by mail.huji.ac.il
Office: Ross 35, Givat Ram campus of the Hebrew University.

My Favorite Open Problem

An order-$n$ Latin square is an $n \times n$ matrix in which every column and every row contains all the values from $[n]$. This is equivalent to an $n \times n \times n$ $(0,1)$-array in which every row, column, and "shaft" contains a single $1$. Let $A$ be a random $n \times n \times n$ $(0,1)$-array in which the $n^3$ entries are independent random variables that equal $1$ with probability $p$. What is the threshold function $p(n)$ above which $A$ contains a Latin square with high probability?

I have TAed the following courses, all at Hebrew University:

  • Spring 2019: Linear Algebra 2: Second undergraduate course in linear algebra.
  • Spring 2018: Linear Algebra 1: First year undergraduate course in linear algebra.
  • Fall2019, Fall 2018, Fall 2017, and Fall 2016: Mathematical Tools in Computer Science: Graduate course for CS students. Topics include:
    • Probability (emphasizing the probabilistic method).
    • Linear algebra: Spectral theorems and singular value decomposition for real matrices.
    • Markov chains.
    • Linear programming.
  • Spring 2017 and Fall 2015: Topics in Analysis for Computer Science Students: Second year undergraduate course for CS students. Topics include:
    • Convexity.
    • Norms, inner products, Banach and Hilbert spaces.
    • Notions of convergence for function sequences.
    • Fourier series.
  • Spring 2016 and Spring 2015: Infinitesimal Calculus 2 for Computer Science Students: Second course in undergraduate calculus.

Noam Yonat learns about triangle decompositions.

With Shanee in the French Alps.

Carrying Noam up Har HaTayasim.

Aqaba... seems more colorful in real life.