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Abstract

We study the smooth self-maps f of ×a-invariant sets X ⊆ [0, 1].
Under various assumptions we show that this forces log f ′(x)/ log a ∈ Q
at many points in X. Our method combines scenery �ow methods and

equidistribution results in the positive entropy case, where we improve

previous work of the author and Shmerkin, with a new topological

variant of the scenery �ow which applies in the zero-entropy case.

1 Introduction

For an integer a ≥ 2 let Ta denote the self-map of [0, 1], or R/Z, given by
Tax = ax mod 1. Furstenberg famously proved that, although each of these
maps individually admits a multitude of closed invariant sets, when a, b
are non-commensurable, the only jointly invariant ones Ta, Tb are trivial [8,
Theorem IV.1]. Here by trivial we mean either �nite or the entire interval
[0, 1], and we say that real numbers a, b ≥ 2 are non-commensurable of
log a/ log b /∈ Q.

Furstenberg's theorem has seen many generalizations. The main direc-
tion of generalization has been to commuting actions in algebraic settings:
these include commuting automorphisms of compact abelian groups [1, 2],
and analogous (though still partial) measure-rigidity results in the auto-
morphism setting as well as for higher-rank diagonal �ows on homogeneous
spaces [16, 4, 3]. Another generalization is to commuting di�eomorphisms
on compact manifolds, see e.g. [15]. These results are distinct from the
algebraic ones, although they share many common methods and are related
by conjectures predicting that, in many cases, the only commuting smooth
maps are those that are conjugate to algebraic ones.

This paper deals with another related phenomenon, namely, that if X
is Ta-invariant and non-trivial, then very few smooth maps can map it onto
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(or even into) itself, and in fact, any such map must locally behave like Ta,
in the sense that it must satisfy f ′ ∼ a for many x ∈ X. We stress that
no assumption of commutation is made between Ta and f . We also show
that if Y is another non-trivial Tb-invariant set for b 6∼ a, then X cannot be
mapped to Y by a smooth map.

Results of this kind have a long history for �fractal� sets, sometimes even
in the Lipschitz category. For example, when X,Y are �deleted-digit� Cantor
sets, i.e. de�ned by restricting individual digits in non-commensurable bases
a and b, Falconer and Marsh showed that there is no bi-Lipschitz map taking
X to Y [6]. More recent work on self-similar sets with similar �avor appears
in the work of Elekes, Keleti and Mathe, and of Feng, Rao and Wang [5, 7].
Our results have some overlap with these, but we emphasize that we deal
with much more general sets, including sets of entropy (or dimension) zero.

Recall that we say a set X ⊆ [0, 1] is non-trivial if it is in�nite and
X 6= [0, 1].

Theorem 1. Let X,Y ⊆ [0, 1] be non-trivial and closed sets that are invari-

ant under Ta, Tb, respectively, a 6∼ b. Then no C2-di�eomorphism of R or

R/Z can map X onto Y .

For self-maps of a single Ta-invariant set we obtain results under some
additional dynamical and regularity assumptions. A set is perfect if it has
no isolated points. If X is Ta-invariant then a point x ∈ X is transitive if its
orbit {Tna x}∞n=1 is dense in X, and X is transitive if it contains a transitive
point. It is minimal if every point is transitive. Minimal in�nite systems are
perfect. Adapting Furstenberg's terminology, we say that X is self-restricted
if X − X 6= [0, 1] mod 1, which holds in particular when X is minimal, or
dimX < 1/2. Finally, we say that f ∈ C1 is piecewise curved if f ′ is
piecewise strictly monotone (thus f is locally strictly concave or convex).

Theorem 2. Let X ⊆ [0, 1] be a closed, perfect, transitive and non-trivial

Ta-invariant set. Then there is no piecewise-curved f ∈ C1 that maps X
onto itself. Furthermore, without assuming curvedness, we have:

1. An a�ne map f with f(X) ⊆ X has f ′ ∼ a.

2. If X is minimal and f ∈ C1, then f(X) ⊆ X implies that f ′(x) ∼ a
for all x ∈ X;

3. If X is self-restricted and f ∈ C1 then f(X) = X implies f ′(x) ∼ a
for all x in a dense Gδ subset of X.

In particular, in (2) and (3), if in addition f is real-analytic then f is a�ne.
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We do not know whether f(X) ⊆ X for transitive X implies similar
conclusions in general.

The proofs split into two parts. The main new ingredient of this paper
is a method to handle the case that X is self-restricted (though actually the
main case of interested is the more special case when its entropy is zero).
To explain this part it is useful to recall Furstenberg's original proof that
there are no non-trivial jointly Ta, Tb-invariant sets. For such an X, the
�rst observation is that X − X mod 1 is jointly Ta, Tb invariant (because
both Ta and Tb are endomorphisms of R/Z). On the other hand, if X is
in�nite, then it has an accumulation point, whence 0 is an accumulation
point of X − X. From a 6∼ b it follows that {anbm}m,n∈N is non-lacunary,
implying that for every ε > 0 there is a δ > 0 such that if y ∈ [0, δ) then
{T iaT

j
b y}i,j∈N = {aibjy mod 1}i,j∈N is ε-dense. Taken together, this shows

that X −X is ε-dense in [0, 1] for every ε, so X −X = [0, 1].

In contrast, in our setting the �rst stage of this argument already fails:
we are assuming that X is invariant under Ta and under another map f , and
while X −X is still invariant under Ta, it is generally not f -invariant. The
main new ingredient in our proof is to use a local version of the di�erence set
X−X which behaves well under smooth maps. This is developed in Section
2, and is motivated by the scenery �ow and spectral arguments of [10, 14].
These do not make a formal appearance here, but see remark at the end of
Section 2.

In the non-restricted case, and speci�cally when X has positive topologi-
cal entropy, the theorems above are proved via analysis of invariant measures
on X, adapting scenery �ow methods from [10, 14]. This is also the source
of the piecewise curvedness requirement.1 To state our result for positive-
entropy measures, let us say that a probability measure µ has dimension t if
µ(E) < 1 for all Borel sets E with dimE < t, but it is supported on some set
of dimension t. We write fµ = µ ◦ f−1 for the push-forward of µ by a map
f , and note that when f is bi-Lipschitz, µ and fµ have the same dimension.
Our result for measures is the following:2

1After this work was completed, Shmerkin [17] and M. Wu [18] independently proved a
result on slices of products of positiv-dimension Ta- and Tb-invariant sets. this implies that
C1 is enough in Theorem 1, since our methods show that it is enough in dimension zero.
The connection with Shmerkin and Wu's papers is that any C1-embedding f : X → Y
implies that the curve y = f(x) intersects X × Y in a set di�eomorphic to X, while theur
results imply that such an intersection mjst have dimension at most max{0,dimX +
dimY − 1}, which is always < dimX when the latter is positive.

2We recently learned of results by Eskin, related to work of Brown and Rodriguez-
Hertz, which shows that certain �general position�, expanding-on-average pairs of dif-
feomorphisms of a compact manifold can preserve nothing but Lebesgue measure. Their
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Theorem 3. For every Ta-ergodic measure µ of dimension 0 < s < 1, there
exists ε = ε(µ) such that the following holds. For every piecewise curved

f , every weak-* accumulation point of the sequence 1
N

∑N−1
n=0 T

n
a (fµ) has

dimension at least s+ ε.

Combined with the variational principle, this implies that if X is a non-
trivial Ta-invariant set with positive dimension, then f(X) ⊆ X is impossible
for a piecewise curved f . Thus for a piecewise curved function f , every
jointly f - and Ta-invariant ergodic probability measure is either Lebesgue
or has dimension zero, and every jointly invariant set is either [0, 1] or has
dimension 0. This and the other results stated earlier make the following
conjecture seems reasonable:

Conjecture 4. Fix Ta and let f ∈ Cω(R) or f ∈ Cω(R/Z), and assume

that f is not a�ne. Then every jointly Ta- and f -invariant set is trivial.

Of course one could also ask this for f with less smoothness, or make the
same conjecture for measures.

The paper is organized as follows. We begin with the topological analysis
of the zero entropy (or self-restricted) case: In Section 2 we de�ne the local
di�erence (or distance) set and discuss its properties, in Section 3 we discuss
dimension and the relation between the local di�erence set and the original
set, and in Sections 4 and 5 we prove Theorem 1 and (most of) Theorem
2. The last section is devoted to Theorem 3 and completing the proof of
Theorem 2 (1).

Acknowledgement. I am grateful to J.-P. Thouvenot for encouraging me to
revisit these questions.

2 Localizing the di�erence set

As explained in the introduction, we require a �localized� version of the
di�erence set X −X. For this, de�ne the a-adic fractional part of s > 0 by

{s}a = − loga s mod 1

i.e. if 0 ≤ t < 1 and s = a−(k+t) then {s}a = t mod 1.

methods do not appear to apply in our setting, where both the expansion and invertability
are absent.
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De�nition 5. Let X ⊆ R. For 2 ≤ a ∈ N and x ∈ R the a-adic local

di�erence set of X at x is the set

Fa,X(x) =

{
t ∈ R/Z

∣∣∣∣ ∃xn, x′n ∈ X s.t. (xn, x
′
n)→ (x, x)

xn > x′n and {xn − x′n}a → t
}
}

For X ⊆ R/Z we de�ne Fa,X(x) = Fa,Y (y) where x = y mod 1 and X =
Y mod 1, and the lift Y is chosen so that reduction modulo 1 is a bijection of
neighborhoods of x and y. When X is Ta-invariant, we view X as a subset of
R/Z when de�ning Fa,X(x), even if X is initially given as a subset of [0, 1].
This convention potentially enlarges Fa,X(0) when 0, 1 ∈ X.

This de�nes a function Fa,X : R→ {subsets of R/Z}, but we sometimes
think of the range as subsets of [0, 1], and make the identi�cation whenever
convenient. It will be convenient to write

Fa,X(X) =
⋃
x∈X

Fa,X(x)

We state, mostly without proof, some elementary properties of Fa,X(x).

1. (Locality): Fa,X(x) = Fa,X∩Br(x)(x) for any r > 0.

2. (Monotonicity): Y ⊆ X implies Fa,Y (x) ⊆ Fa,X(x). In particular if
X =

⋃
Xi then Fa,X(X) ⊇

⋃
Fa,Xi(Xi).

3. (Non-triviality): Fa,X(x) 6= ∅ if and only if x is an accumulation point
of X.

4. (Closure): Fa,X(x) is closed for all x.

5. (Semi-continuity): If xn → x and tn ∈ Fa,X(xn), and if tn → t in R/Z,
then t ∈ Fa,X(x) (equivalently, in the space of compact subsets of R/Z,
any sub-sequential limit E of Fa,X(xn) in the Hausdor� metric satis�es
E ⊆ Fa,X(x)).

In particular, if X is compact, then Fa,X(X) =
⋃
x∈X Fa,X(x) is closed.

6. (Linear transformation): For X ⊆ R and any 0 6= b ∈ R, we have3

Fa,bX(bx) = Fa,X(x) + loga b mod 1

3We use the usual notation for arithmetic operations between sets: for u ∈ R and
W ⊆ R, uW = {uw : w ∈W} and W + u = {w + u : w ∈W}.
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7. (Tb-transformation): For X ⊆ R/Z and b ∈ N,

Fa,TbX(Tbx) ⊇ Fa,X(x) + loga b mod 1

Indeed, for small r > 0 the map Tb acts on Br(x) as an a�ne map of
expansion b, and sends X∩Br(x) into a subset of TbX∩Bbr(Tbx). The
inclusion above follows by locality and monotonicity.

For X ⊆ [0, 1], the same holds except possibly at points x ∈ 1
bZ, there

Tb is discontinuous.

8. (C1-transformation): If f : R→ R is a C1-di�eomorphism, then

Fa,fX(fx) = Fa,X(x) + loga f
′(x) mod 1

Indeed, for t ∈ Fa,X(x) let xn, x
′
n ∈ X converge to x and satisfy {xn−

x′n}a → t. Then by calculus, f(xn) − f(x′n) = f ′(ξn) · (xn − x′n) for
some point ξn intermediate between xn, x

′
n, so {f(xn) − f(x′n)}a =

{xn − x′n} + loga f
′(ξn). Since xn, x

′
n converge to x, also ξn → x, so

we have f ′(ξn) → f ′(x) and t + loga f
′(x) = lim{f(xn) − f(x′n)}a ∈

Fa,f(X)(f(x)). The converse inclusion is shown similarly by considering
f−1.

De�nition 5 is motivated by the spectral analysis of the scenery �ow of
×a-invariant measures that was carried out in [10]. Indeed, property (6)
means that the function t 7→ Fa,tX(0) is periodic (in log t), and so de�nes an
eigenfunction for the scenery �ow (with values in the space of closed subsets
of R/Z).

3 Dimension

We write dimX for the Hausdor� dimension of a set X ⊆ R, and dimBX
for its box dimension, de�ned as the limit of logN(x, r)/ log(1/r), N(X, r)
is the minimal number of r-balls needed to cover X (in the cases we apply
this, the limit exists). We have the following standard facts.

1. dim and dimB are non-decreasing under Lipschitz maps.

2. dim(X × Y ) ≤ dimX + dimB Y .

3. dim(X × Y ) ≥ dimX + dimY , with equality if dimX = dimBX.

4. If X is closed and Ta-invariant then dimBX exists and dimBX =
dimX = htop(X,Ta)/ log a, where htop(X,Ta) is the topological en-
tropy of (X,Ta) [8, Section III].
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It follows from the last two three that if Y ⊆ [0, 1] is closed and Ta-invariant,
then dimX × Y = dimX + dimY for all sets X.

Proposition 6. If Y ⊆ [0, 1] is Tb-invariant, then {b−t : t ∈ Fb,Y (Y )} ⊆
Y − Y and dimFb,Y (Y ) ≤ 2 dimY .

Proof. We can assume that Fb,Y (Y ) 6= ∅ (i.e. Y is in�nite), since otherwise
the statement is trivial. Let t ∈ Fb,Y (Y ). We can assume that t 6= 0, since
if it is then b0 ∈ Y − Y mod 1 trivially. By de�nition, there exist points
y′n, y

′′
n ∈ Y such that {y′n − y′′n}b → t. This means that logb(y

′
n − y′′n) →

t mod 1, or equivalently, that there exists kn ∈ N and 0 ≤ tn < 1 such that
y′n− y′′n = b−kn−tn and tn → t mod 1. Since t 6= 0, this means convergence is
also in R once we identify tn, t with elements of [0, 1), which we do henceforth.
Since y′n−y′′n < b−kn , we conclude that T knb y′′n−T knb y′n = b−tn → b−t. Passing

to a subsequence we can assume that T knb y′n → y′ and T knb y′′n → y′′, hence
b−t = y′′ − y′ ∈ Y − Y .

For the second statement, considering the t 7→ b−t from Fb,Y (Y ) to Y −
Y is bi-Lipschitz, so it preserves dimension, and in particular its image,
which is a subset of Y − Y , has the same dimension as Fb,Y (Y ). This gives
dimFb,Y (Y ) ≤ dim(Y − Y ). Since Y − Y is the image of Y × Y under the
Lipschitz map (x, y) 7→ x− y, we have

dimFb,Y (Y ) ≤ dim(Y × Y ) = 2 dimY

Proposition 7. Let X ⊆ R, let f ∈ C2(R) be a di�eomorphism, and Y =
f(X). Then dimFb,Y (Y ) ≥ dimFb,X(X)− dimX. The same holds if f is a

piecewise C2-di�eomorphism (with �nitely many intervals where it is C2).

Proof. Let g = f−1 : Y → X and

Z =
⋃
y∈Y

(
Fb,Y (y)× {logb g

′(y)}
)
⊆ Fb,Y (Y )× R

Writing π(y, t) = y + t mod 1, we have Fb,X(X) = π(Z), and since π is
Lipschitz,

dimFb,X(X) ≤ dimZ

On the other hand Z ⊆ Fb,Y (Y )× logb g
′(Y ), so

dimZ ≤ dimFb,Y (Y ) + dimB g
′(Y )

≤ dimFb,Y (Y ) + dimB Y

= dimFb,Y (Y ) + dimBX
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where the line we used the fact that log preserves dimension, the newx
inequality used the fact that g′ ∈ C1, so g′ is Lipschitz and dimB g

′(Y ) ≤
dimB Y , and the last step is because g is bi-Lipschitz, and hence dimY =
dimX. Combining the inequalities gives the �rst claim.

For the second statement, consider a �nite partition of R into intervals
{Ii}Ni=1 such that f |Ii : Ii → f(Ii) is a di�eomorphism except possibly at
the endpoints. Let Xi = X ∩ Ii and Yi = f(Xi). Since X =

⋃
Xi and

Y =
⋃
Yi and since there are �nitely many sets in these unions, we have

dimX = maxi dimXi and dimY = maxi dimYi. By the �rst part, dimYi ≥
dimFb,Xi(Xi) − dimXi. Since X =

⋃
Xi and Y =

⋃
Yi and the unions are

�nite, we have Fb,X(X) =
⋃
Fb,Xi(Xi) and Fb,Y (Y ) =

⋃
Fb,Yi(Yi), and again

the dimension of each set is given by the maximum of the dimensions of the
sets in the union. Thus,

dimF (Y ) = max
i

dimFb,Yi(Yi)

≥ max
i

(dimFb,Xi(Xi)− dimXi)

≥ max
i

dimFb,Xi(Xi)− dimX

= dimFb,X(X)− dimX

4 Proof of Theorem 1

Let X ⊆ [0, 1] or R/Z be closed, in�nite, Ta-invariant, and let f be a C2-
di�eomorphism of R or R/Z such that Y = f(X) is a Tb-invariant set for
some b 6∼ a.

Suppose �rst that dimX > 0. Then htop(X,Ta) = log a · dimX > 0. By
the variational principle we can �nd a Ta-invariant and ergodic probability
measure µ on X with h(µ, Ta) > 0. Then by [14, Theorem 1.10], for µ-a.e.
x, the point f(x) equidistributes under Tb for Lebesgue measure, and in
particular the Tb-orbit of f(x) is dense. Since f(X) ⊆ Y this means that
Y = [0, 1]. Since f is a di�eomorphism, X must also be an interval, and the
only interval in [0, 1] invariant under Ta is [0, 1].

It remains to show that dimX > 0.

Claim 8. Fb,X(X) = [0, 1].

Proof. X is closed and in�nite it contains an accumulation point x0 ∈ X,
whence

E = Fb,X(x0) 6= ∅
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Applying Ta we have

Fb,Tna X(Tna x0) ⊇ E + n logb a mod 1

Since X is Ta-invariant,

Fb,X(X) ⊇
⋃
n∈N

Fb,X(Tna x0) ⊇ E + {n logb a}n∈N mod 1

But b 6∼ a, so the set {n logb a}n∈N is dense modulo 1, hence also E +
{n logb a}n∈N and Fb,X(X) are dense modulo 1. Since Fb,X(X) is closed,
Fb,X(X) = [0, 1].

To prove dimBX > 0, suppose by way of contradiction that dimBX = 0.
Now, Y ⊇ f(X), so by Proposition 7, if

dimFb,Y (Y ) ≥ dim(Fb,XX)− dimBX = 1− dimX > 0

and so by Proposition 6, dimY ≥ 1
2 dimFb,Y (Y ) > 0. But f is bi-Lipschitz,

so dim f(X) = dimX = dimY > 0, as desired.

Note that the C2 assumption was used only in the positive-entropy case,
and there the recent work of Shmerkin [17] and M. Wu [18] can be used to
prove that C1 is enough.

5 Proof of Theorem 2

We prove Theorem 2 under the assumption that X is self-restricted, i.e.
X − X 6= [0, 1] mod 1. This covers the case dimX = 0 and the case of
minimal X.

Proof of part (2): Let X ⊆ [0, 1] be an in�nite, minimal Ta-invariant
set. Given x, y ∈ X there is a sequence nk →∞ such that we have Tnka x→ y.
Since

Fa,X(x) ⊆ Fa,Tnka X(Tnka x) = Fa,X(Tnka x)

for all k, by semi-continuity of Fa,X(·) we conclude that Fa,X(x) ⊆ Fa,X(y).
Since x, y ∈ X were arbitrary, Fa,X(x) is independent of x ∈ X. We denote
this set by E. Since X is in�nite there is an accumulation point x0 ∈ X, so
E = Fa,X(x0) 6= ∅.

Suppose that I is a non-empty open interval and f : I → R a C1-
embedding such that f(X ∩ I) ⊆ X. Let x ∈ X ∩ I, we must show that
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α = loga f
′(x) ∈ Q. Indeed suppose α /∈ Q. Then, writing y = f(x), by the

last paragraph we have

E = Fa,X(y)

⊇ Fa,f(X)(y)

= Fa,X(x) + α mod 1

= E + α mod 1

Thus E is closed, non-empty and invariant under t 7→ t+ α mod 1. Since α
is irrational this implies E = [0, 1].

Now, for x ∈ X we have Fa,X(x) ⊆ logb(X −X mod 1) by Proposition
6. Thus logb(X −X) has non-empty interior, so the same is true of X −X,
and since X −X mod 1 is Ta-invariant this implies that

X −X = [0, 1] mod 1

But, since X is minimal, this is impossible by [8, Theorem III.1].
Proof of part (3): Suppose that X is perfect and transitive, and self-

restricted, and that f(X) = X for some local di�eomorphism f ∈ C1 (the
curvedness hypothesis is only needed for the non-restricted case). The proof
is very similar to the minimal case. Indeed, since X is perfect, Fa,X(x) 6= ∅
for all x ∈ X, in particular at transitive points. By the same argument as
above, Fa,X(x) takes the same value for all transitive points x ∈ X. Let
W ⊆ X denote the set of transitive points, which is well-known to be is a
residual set in X.

Let I ⊆ [0, 1] be a non-trivial interval such that, writing J = f(I), the
restriction f : X ∩ I → X ∩ J is bijective. Clearly W ∩ I is residual in
X ∩ I. At the same time, f : X ∩ I → X ∩ J is a homeomorphism, and
W ∩J is residual in X∩J , so f−1(W ∩J) is residual in X∩I. Consequently,
W ∩ f−1(W )∩X ∩ I is residual in X ∩ I. Now, for any x in this set, both x
and f(x) are transitive. Arguing as in the minimal case we conclude that if
loga f

′(x) /∈ Q then Fa,X(x) = [0, 1], hence X −X = [0, 1] mod 1. But this
is impossible by restriction of X.

By the last paragraph, the set of x ∈ X such that f ′(x) ∈ {as : s ∈ Q}
is residual, i.e. contains a dense Gδ. On the other hand this set is just
(f ′)−1({as : s ∈ Q}) =

⋃
s∈Q(f ′)−1(as), and by continuity of f ′ this is an

Fσ-set. Thus it contains a dense open set.
It remains to note that if f is real-analytic, than our conclusion shows

that f ′(x) belongs to the countable set {as : s ∈ Q} for an uncountable
number of x, hence f ′ takes on some rational power as of a on a convergent
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sequence, and being itself real-analytic, f ′ ≡ as. Thus f is a�ne, and has
the stated form.

Proof of main statement of theorem: Let X ⊆ [0, 1] be a closed
perfect, transitive and non-trivial Ta-invariant set and f ∈ C1 piecewise
curved. If dimX = 0 then X is self-restricted, so f(X) = X implies that
f ′(x) ∈ {as : s ∈ Q} for uncountably many x ∈ X; this is impossible
because f ′ is piecewise strictly monotone, and so takes every value at most
countably many times.

It remains to deal with the case that dimX > 0. By the variational
principle, there exists a Ta-ergodic probability measure µ on X with dimµ =
dimX. If f(X) = X then fµ is also supported on X, and by Theorem 3,
we obtain (by averaging Tna fµ along some subsequence of times) a measure
on X of dimension > dimX, which is impossible.

Proof of part (1): Let f(x) = rx + t. If dimX = 0, let x ∈ X with
Fa,X(x) 6= ∅. Then Fa,X(fnx) = Fa,X(x) + n loga r mod 1, and if loga r /∈ Q
this means that Fa,X(X) contains a dense subset of [0, 1] and so is equal
to [0, 1]. By Proposition 6 this is inconsistent with X being self-restricted.
Thus loga r ∈ Q as claimed.

In the case dimX > 0, we provide a similar proof in the next section
using measure theoretic tools.

6 Proof of Theorem 3 and part Theorem 2 part (1)

We provide a proof sketch, since a full proof would be lengthy, and the
results in [17, 18] can be used to give alternative proofs of the application
to Theorems 1 and 2. We rely heavily on the scenery �ow methods from
[13, 14] and additive combinatorics methods from [11] and refer the reader
to those papers for de�nitions and notation.

Let µ be a Ta-ergodic measure µ of dimension 0 < s < 1 and f ∈ C2

piecewise curved. Let ν = fµ and let ν ′ = lim 1
Nk

∑Nk−1
n=0 Tna (fµ) for some

sequence Nk → ∞. We claim that there exists ε = ε(µ) > 0 such that
dim ν ′ > dimµ+ ε.

It is well known (e.g. [10]) that µ generates an ergodic fractal distribution
(EFD; [9, De�nition 1.2]) P supported on measures of dimension s, which
are supported (up to a bounded scaling and translation) on X. See e.g. [10,
Section 2.2]. Because X is porous, P -a.e. measure is (1−ε′) -entropy porous
along any sequence [n1+τ ] of scales, in the sense of [12, Section 6.3], for some
ε′ depending only on dimX.

Since f is a piecewise di�eomorphism, for µ-a.e. x the measure ν = fµ

11



log a-generates S∗log f ′(x)P at y = f(x) (see e.g. the proof of [14, Lemma

4.16]).
Let π denote the (partially de�ned) operation of restricting a measure

to [0, 1] and normalizing it to a probability measure. It now follows, as in
[14, Theorem 5.1], that if 1

Nk

∑Nk−1
n=0 Tna ν → ν ′ then there is an auxiliary

probability space (Ω,F , Q) and functions y, t : Ω→ R and η : Ω→ P([0, 1]),
such that tω, ω ∼ Q is distributed like log f ′(x), x ∼ µ, and ηω, ω ∼ Q is
distributed according to P , and such that

ν ′ =

ˆ
π(Stω(ηω ∗ δyω))dQ(ω)

(the formula above di�ers from [14, Theorem 5.1] in the scaling Stω of the
integrand; the scaling comes from the fact that at ν-a.e. point y = f(x),
the measure ν generates S∗t P , where t = log f ′(x). Also, the theorem in [14]
refers to ν ′ arising from the orbit of a single ν-typical point, not as above,
but in fact the averaged version above follows from the pointwise one).

Re-interpreting the last equation and the properties of t, η stated before
it, we �nd that ν ′ can be generated in the following way: choose x accord-
ing to µω, independently choose a P -typical measure η, scale η by f ′(x),
and translate by a random amount y (whose distribution depends on x, η).
Changing the order with which we choose x and η, we �nd that for P -typical
η there is a probability measure θη on the group of a�ne maps of R such
that we can represent ν ′ as

ν ′ =

ˆ ˆ
π(Tη) dθη(T ) dP (η)

=

ˆ
π(θη ∗ η) dP (η)

Furthermore, choosing T ∼ θ, the distribution of the contraction ratio of
T is the same as the distribution of f ′(x) for x ∼ µ. Since f was assumed
piecewise curved, f ′ is locally bi-Lipschitz, so the image of µ under x 7→ f ′(x)
has the same dimension as µ, so by the above, dim θη ≥ dim νω = s. Also,
recall that η has uniform entropy dimension s (in the sense of [11, De�nition
5.1]; this is an immediate conseqence of the de�nition of the measures η, of
the de�nition of Kolmogorov-Sinai entropy, and of the ergodic theorem). It
follows from [12, Theorem 9] that dimH θη ∗ η ≥ dim η + ε = s+ ε for some
ε = ε(s), hence

dimH ν
′ ≥
ˆ

dimH θη ∗ η dP (η) ≥ s+ ε

12



which is what we wanted to show.

We now turn to the case that f(x) = rx + t is a�ne, f(X) ⊆ X and
dimX > 0. Fix a dimension-maximizing Ta-invariant and ergodic measure
µ on X. Choose a typical point x and consider the EFD Pn log a-generated
at fnx. Evidently this is Pn = Sn loga rP0. Assuming loga r /∈ Q, we can
average and pass to a weak* limit, and �nd that X supports a measure of
the form

ν =

ˆ ˆ log a

0
π(St(η ∗ δyη,t))dtdP (η)

We now again apply [12, Theorem 9] to conclude that dim ν > dimµ =
dimX, a contradiction, which shows that loga r ∈ Q.

References

[1] Daniel Berend. Multi-invariant sets on tori. Trans. Amer. Math. Soc.,
280(2):509�532, 1983.

[2] Daniel Berend. Multi-invariant sets on compact abelian groups. Trans.
Amer. Math. Soc., 286(2):505�535, 1984.

[3] Manfred Einsiedler, Anatole Katok, and Elon Lindenstrauss. Invariant
measures and the set of exceptions to Littlewood's conjecture. Ann. of
Math. (2), 164(2):513�560, 2006.

[4] Manfred Einsiedler and Elon Lindenstrauss. Rigidity properties of Zd-
actions on tori and solenoids. Electron. Res. Announc. Amer. Math.

Soc., 9:99�110 (electronic), 2003.

[5] Márton Elekes, Tamás Keleti, and Andrá Máthé. Self-similar and self-
a�ne sets: measure of the intersection of two copies. Ergodic Theory

and Dynamical Systems, 30(2):399�440, 2010.

[6] K. J. Falconer and D. T. Marsh. On the Lipschitz equivalence of Cantor
sets. Mathematika, 39(2):223�233, 1992.

[7] De-Jun Feng, Hui Rao, and Yang Wang. Self-similar subsets of the
Cantor set. Adv. Math., 281:857�885, 2015.

[8] Harry Furstenberg. Disjointness in ergodic theory, minimal sets, and a
problem in Diophantine approximation. Math. Systems Theory, 1:1�49,
1967.

13



[9] Michael Hochman. Dynamics on fractal measures. prepript, 2010.
https://arxiv.org/abs/1008.3731.

[10] Michael Hochman. Geometric rigidity of ×m invariant measures. J.

Eur. Math. Soc. (JEMS), 14(5):1539�1563, 2012.

[11] Michael Hochman. On self-similar sets with overlaps and inverse theo-
rems for entropy. Ann. of Math. (2), 180(2):773�822, 2014.

[12] Michael Hochman. Some problems on the boundary of fractal geometry
and additive combinatorics. to appear in Proceedings of FARF 3, 2016.
https://arxiv.org/abs/1608.02711.

[13] Michael Hochman and Pablo Shmerkin. Local entropy averages and
projections of fractal measures. Ann. of Math. (2), 175(3):1001�1059,
2012.

[14] Michael Hochman and Pablo Shmerkin. Equidistribution from fractal
measures. Inventiones mathematicae, pages 1�53, 2015.

[15] Boris Kalinin, Anatole Katok, and Federico Rodriguez Hertz. New
progress in nonuniform measure and cocycle rigidity. Electron. Res.

Announc. Math. Sci., 15:79�92, 2008.

[16] A. Katok and R. J. Spatzier. Invariant measures for higher-rank hyper-
bolic abelian actions. Ergodic Theory Dynam. Systems, 16(4):751�778,
1996.

[17] Pablo Shmerkin. On furstenberg's intersection conjecture, self-
similar measures, and the Lq norms of convolutions. preprint, 2016.
https://arxiv.org/abs/1609.07802.

[18] Meng Wu. A proof of furstenberg's conjecture on the in-
tersections of ×p and ×q-invariant sets. preprint, 2016.
https://arxiv.org/abs/1609.08053.

Email: mhochman@math.huji.ac.il
Address: Einstein Institute of Mathematics, Edmond J. Safra campus,
Jerusalem 91904, Israel

14


