

Turing degree spectra of minimal subshifts

Mike Hochman and Pascal Vanier

September 6, 2014

Abstract

Subshifts are shift invariant closed subsets of $\Sigma^{\mathbb{Z}^d}$, minimal subshifts are subshifts in which all points contain the same patterns. It has been proved by Jeandel and Vanier that the Turing degree spectra of non-periodic minimal subshifts always contain the cone of Turing degrees above any of its degree. It was however not known whether each minimal subshift's spectrum was formed of exactly one cone or not. We construct inductively a minimal subshift whose spectrum consists of an uncountable number of cones with disjoint base.

A \mathbb{Z}^d -subshift is a closed shift invariant subset of $\Sigma^{\mathbb{Z}^d}$. Subshifts may be seen as sets of colorings of \mathbb{Z}^d , with a finite number of colors, avoiding some set of forbidden patterns. Minimal subshifts are subshifts containing no proper subshift, or equivalently subshifts in which all configurations have the same patterns. They are fundamental in the sense that all subshifts contain at least a minimal subshift.

Degrees of unsolvability of subshifts have now been studied for a few years, Cenzer, Dashti, and King [CDK08] and Cenzer, Dashti, Toska, and Wyman [CDTW10; CDTW12] studied computability of one dimensional subshifts and proved some results about their Turing degree spectra: the *Turing degree spectrum* of a subshift is the set of Turing degrees of its points, see Kent and Lewis [KL10]. Simpson [Sim11], building on the work of Hanf [Han74] and Myers [Mye74], noticed that the Medvedev and Muchnik degrees of subshifts of finite type (SFTs) are the same as the Medvedev degrees of II_1^0 classes: II_1^0 classes are the subsets of $\{0, 1\}^{\mathbb{N}}$ for which there exists a Turing machine halting only on oracles not in the subset.

Subsequently Jeandel and Vanier [JV13] focused on Turing degree spectra of different classes of multidimensional subshifts: SFTs, sofic and effective subshifts. They proved in particular that the Turing degree spectra of SFTs are almost the same as the spectra of Π_1^0 classes: adding a computable point to the spectrum of any Π_1^0 class, one can construct an SFT with this spectrum. In order to prove that one cannot get a stronger statement, they proved that the spectrum of any non-periodic minimal subshift contains the cone above any of its degrees:

37 **Theorem 1** (Jeandel and Vanier [JV13]). *Let X be a minimal non-finite subshift (i.e. non-periodic in at least one direction). For any point $x \in X$ and any degree $\mathbf{d} \geq_T \deg_T x$, there exists a point $y \in X$ such that $\mathbf{d} = \deg_T y$.*

40 Minimal subshifts are in particular interesting since any subshift contains
 41 a minimal subshift [Bir12]. Here we answer the followup question of whether
 42 a minimal subshift always corresponds to a single cone or if there exists one
 43 with at least two cones of disjoint base. It is quite easy to prove the following
 44 theorem:

45 **Theorem 2.** *For any Turing degree $\deg_T d$, there exists a minimal subshift X
 46 such that the set of Turing degrees of the points of X is a cone of base $\deg_T d$.*

47 For instance the spectrum of a Sturmian subshift [MH40] with an irrational
 48 angle is the cone whose base is the degree of the angle of the rotation. The
 49 theorem can also be seen as a corollary of Miller's proof [Mil12][Proposition 3.1]
 50 of a result on Medvedev degrees.

51 In this paper, we prove the following result:

52 **Theorem 3.** *There exist a minimal subshift $X \subset \{0,1\}^{\mathbb{Z}}$ and points $x_z \in X$
 53 with $z \in \{0,1\}^{\mathbb{N}}$ such that for any $z \neq z' \in \{0,1\}^{\mathbb{N}}$, $\deg_T x_z$ and $\deg_T x_{z'}$ are
 54 incomparable and such that there exists no point $y \in X$ with $\deg_T y \leq_T \deg_T x_z$
 55 and $\deg_T y \leq_T \deg_T x_{z'}$.*

56 The subshift constructed in this proof is not effective and cannot be “effectivized”,
 57 since minimal effective subshifts always contain a computable point and thus
 58 their spectra are the whole set of Turing degrees when they are non-periodic.

59 1 Preliminary definitions

60 We give here some standard definitions and facts about subshifts, one may
 61 consult the book of Lind and Marcus [LM95] for more details.

62 Let Σ be a finite alphabet, its elements are called *symbols*, the d -dimensional
 63 full shift on Σ is the set $\Sigma^{\mathbb{Z}^d}$ of all maps (colorings) from \mathbb{Z}^d to the Σ (the colors).
 64 For $v \in \mathbb{Z}^d$, the shift functions $\sigma_v : \Sigma^{\mathbb{Z}^d} \rightarrow \Sigma^{\mathbb{Z}^d}$, are defined locally by $\sigma_v(c_x) =$
 65 c_{x+v} . The full shift equipped with the distance $d(x, y) = 2^{-\min\{\|v\| \mid v \in \mathbb{Z}^d, x_v \neq y_v\}}$
 66 is a compact metric space on which the shift functions act as homeomorphisms.
 67 An element of $\Sigma^{\mathbb{Z}^d}$ is called a *configuration*.

68 Every closed shift-invariant (invariant by application of any σ_v) subset X
 69 of $\Sigma^{\mathbb{Z}^d}$ is called a *subshift*. An element of a subshift is called a *point* of this
 70 subshift.

71 Alternatively, subshifts can be defined with the help of forbidden patterns.
 72 A *pattern* is a function $p : P \rightarrow \Sigma$, where P , the *support*, is a finite subset
 73 of \mathbb{Z}^d . We say that a configuration x contains a pattern $p : P \rightarrow \Sigma$, or
 74 equivalently that the pattern p appears in x , if there exists $z \in \mathbb{Z}^d$ such that
 75 $x|_{z+P} = p$.

76 Let \mathcal{F} be a collection of *forbidden* patterns, the subset $X_{\mathcal{F}}$ of $\Sigma^{\mathbb{Z}^d}$ containing
 77 the configurations having nowhere a pattern of \mathcal{F} . More formally, $X_{\mathcal{F}}$ is defined
 78 by

$$X_{\mathcal{F}} = \left\{ x \in \Sigma^{\mathbb{Z}^d} \mid \forall z \in \mathbb{Z}^d, \forall p \in \mathcal{F}, x|_{z+P} \neq p \right\}.$$

79 In particular, a subshift is said to be a *subshift of finite type* (SFT) when it
 80 can be defined by a collection of forbidden patterns that is finite. Similarly, an
 81 *effective subshift* is a subshift which can be defined by a recursively enumerable
 82 collection of forbidden patterns. A subshift is *sofic* if it is the image of an SFT
 83 by a letter by letter function.

84 **Definition 1** (Minimal subshift). *A subshift X is called minimal if it verifies
 85 one of the following equivalent conditions:*

- 86 • *There is no subshift Y such that $Y \subsetneq X$.*
- 87 • *All the points of X contain the same patterns.*
- 88 • *It is the closure of the orbit of any of its points.*

89 We will use the two latter conditions.

90 For $x, y \in \{0, 1\}^{\mathbb{N}}$, we say that $x \leq_T y$ if there exists a Turing machine M
 91 such that M with oracle y computes x . Of course $x \equiv_T y$ when we have both
 92 $x \leq_T y$ and $y \leq_T x$. The Turing degree of x is the equivalence class of x with
 93 respect to \equiv_T . More details can be found in Rogers [Rog67]. We call *recursive
 94 operator* a partial function $\phi : \{0, 1\}^{\mathbb{N}} \rightarrow \{0, 1\}^{\mathbb{N}}$ corresponding to a Turing
 95 machine whose input is its oracle and output is an infinite sequence. We say
 96 that the function is undefined on the inputs on which the Turing machine does
 97 not output an infinite sequence of bits.

98 For a possibly infinite word $w = w_0 \dots w_n$, we denote $w_{[i,j]} = w_i \dots w_j$.

99 2 Minimal subshifts with several cones

100 **Lemma 2.1.** *There exists a countable set $\mathcal{C} \subseteq \{0, 1\}^{\mathbb{N}}$ such that for any two
 101 recursive partial operators $\phi_1, \phi_2 : \{0, 1\}^{\mathbb{N}} \rightarrow \{0, 1\}^{\mathbb{N}}$ and two distinct words
 102 $L = \{w_1, w_2\} \subseteq \{0, 1\}^*$. There exist two words $w'_1, w'_2 \in L^*$ starting respectively
 103 with w_1 and w_2 such that we have one of the following:*

- 104 (a) *either for any pair $x, y \in \{0, 1\}^{\mathbb{N}}$, $\phi_1(w'_1 x)$ differs from $\phi_2(w'_2 y)$ when they
 105 are both defined,*
- 106 (b) *or for any pair $x, y \in \{0, 1\}^{\mathbb{N}}$, $\phi_1(w'_1 x) = \phi_2(w'_2 y) \in \mathcal{C}$ when both defined.*

107 *Proof.* Let M_1, M_2 be the Turing machines computing the functions $x \mapsto \phi_1(w'_1 x)$, $x \mapsto$
 108 $\phi_2(w'_2 x)$ respectively. When restricting ourselves to inputs on which both oper-
 109 ators are defined, it is quite clear that:

110 • either there exists some sequences $x, y \in L^*$ such that $M_1(x)$'s output
 111 differs from $M_2(y)$'s output at some step,
 112 • or the outputs of both machines M_1, M_2 do not depend on their inputs
 113 on their respective domains and are equal, in this latter case, we are in
 114 case b. We define \mathcal{C} to be the set of these outputs.

115 In the former case, there exist prefixes w'_1 and w'_2 of w_1x and w_2y such that
 116 the partial outputs of M_1 once it has read w'_1 already differs from the partial
 117 output of M_2 once it has read w'_2 .

118 In the latter case, one may take $w'_1 = w_1$ and $w'_2 = w_2$. \mathcal{C} is countable since
 119 there is a countable number of quadruples ϕ_1, ϕ_2, w_1, w_2 . \square

120 **Theorem 4.** *There exists a minimal subshift $X \subseteq \{0, 1\}^{\mathbb{N}}$ whose set of Turing
 121 degrees contains 2^{\aleph_0} disjoint cones of Turing degrees.*

122 Note that the following proof is in no way effective. As a matter of fact, all
 123 effective minimal subshifts contain some recursive point [BJ10], and their set of
 124 Turing degrees is the cone of *all* degrees.

125 *Proof.* We construct a sequence of sofic subshifts $(X_i)_{i \in \mathbb{N}}$ such that $X_{i+1} \subseteq X_i$
 126 and such that the limit $X = \bigcap_{i \in \mathbb{N}} X_i$ is minimal. In the process of constructing
 127 the X_i , which will be formed of concatenations of allowed words x_1^i, \dots, x_k^i ,
 128 we ensure that no extensions of two distinct words may compute an identical
 129 sequence with any of the first i Turing machines. At the same time, we make
 130 sure that all allowed words of level $i+1$ contain all words of level i , thus enforcing
 131 the minimality of the limit X . We also have to avoid that the limit X contains
 132 a computable point.

133 Let $(\mathcal{M}_i)_{i \in \mathbb{N}}$ be an enumeration of all minimal subshifts containing a point of
 134 the set \mathcal{C} defined in lemma 2.1. Such an enumeration exists since \mathcal{C} is countable
 135 and minimal subshifts are the closure of any of their points. We will also need
 136 an enumeration $(\phi_i)_{i \in \mathbb{N}}$ of the partial recursive operators from $\{0, 1\}^{\mathbb{N}}$ to $\{0, 1\}^{\mathbb{N}}$.

137 Now let us define the sequence of sofic shifts $(X_i)_{i \in \mathbb{N}}$. Each of these subshifts
 138 will be the shift invariant closure of the biinfinite words formed by concatenations
 139 of words of some language L_i which here will be finite languages. We
 140 define $X_0 = \{0, 1\}^{\mathbb{N}}$ that is to say X_0 is generated by $L_0 = \{w_0 = 0, w_1 = 1\}$.
 141 Let us now give the induction step. At each step, L_{i+1} will contain 2^{i+1} words
 142 $w_0\dots_0, \dots, w_1\dots_1$, the indices being binary words of length $i+1$, which will verify
 143 the following conditions:

- 144 1. The words w_{b0}, w_{b1} of L_{i+1} start with the word w_b of L_i .
- 145 2. The words w_b with $b \in \{0, 1\}^{i+1}$ of L_{i+1} each contain all the words of $w_{b'}$
 146 with $b' \in \{0, 1\}^i$ of L_i .
- 147 3. For any two words $w_b, w_{b'}$ of L_{i+1} and for all $j, j' \leq i$:
 - 148 • Either for all $x, y \in L_i^\omega$, $\phi_j(w_bx) \neq \phi_{j'}(w_{b'}y)$ when both defined,
 - 149 • Or for all $x, y \in L_i^\omega$, $\phi_j(w_bx), \phi_{j'}(w_{b'}y)$ are in \mathcal{C} when defined.

150 4. The words w_{b0}, w_{b1} do not appear in any configuration of \mathcal{M}_j , for all $j \leq i$.

151 Conditions 1 and 2 are easy to ensure: just make w_{ba} start with $w' =$
152 $w_b w_{0\dots 0} \dots w_{1\dots 1}$. We then use Lemma 2.1 to extend w' into a word w'' verifying
153 condition 3, this is done several times, once for every quadruple w, w', j, j' . And
154 finally, since X_i is not minimal, we can extend w'' so that it contains a pattern
155 appearing in none of the \mathcal{M}_j 's for $j \leq i$, to obtain condition . Now we can
156 extend w'' with two different words thus obtaining w_{b0} and w_{b1} .

157 Now let's check that this leads to the desired result:

158 • $X = \bigcap X_i$ is a countable intersection of compact shift-invariant spaces, it
159 is compact and shift-invariant, thus a subshift.

160 • Any pattern p appearing in some point of X is contained in a pattern
161 w_b , with $b \in \{0, 1\}^i$ for some i , by construction (condition 2), all $w_{b'}$
162 with $b' \in \{0, 1\}^{i+1}$ contain w_b . Therefore, all points of X , since they are
163 contained in X_{i+1} , contain w_b and hence p . So X is minimal.

164 • For all $z \in \{0, 1\}^{\mathbb{N}}$, define the points $x_z = \lim_{i \rightarrow \infty} x_{z[0, i]}$, they are in
165 X because they belong to each X_i . Condition 3 ensures that if two of
166 them compute the same sequence $y \in \{0, 1\}^{\mathbb{N}}$, then this sequence is in \mathcal{C} .
167 And condition 2 ensures that no point of X belongs to a minimal subshift
168 containing a point of \mathcal{C} .

169 □

170 It is quite straightforward to transform this proof in order to get a subshift
171 on $\{0, 1\}^{\mathbb{Z}}$ instead of $\{0, 1\}^{\mathbb{N}}$ and obtain the following corollary:

172 **Corollary 5.** *For any dimension d , there exists a minimal subshift $X \subseteq \{0, 1\}^{\mathbb{Z}^d}$
173 whose set of Turing degrees contains 2^{\aleph_0} disjoint cones of Turing degrees.*

174 References

175 [Bir12] M.-G. D. Birkhoff. “Quelques thormes sur le mouvement des systmes
176 dynamiques”. In: *Bulletin de la SMF* 40 (1912), pp. 305–323.

177 [BJ10] A. Ballier and E. Jeandel. “Computing (or not) quasi-periodicity
178 functions of tilings”. In: *Second symposium on Cellular Automata
(JAC 2010)*. 2010.

179 [CDK08] D. Cenzer, A. Dashti, and J. L. F. King. “Computable symbolic
180 dynamics”. In: *Mathematical Logic Quarterly* 54.5 (2008), pp. 460–
181 469. DOI: [10.1002/malq.200710066](https://doi.org/10.1002/malq.200710066).

182 [CDTW10] D. Cenzer, A. Dashti, F. Toska, and S. Wyman. “Computability
183 of Countable Subshifts”. In: *Computability in Europe (CiE)*.
184 Vol. 6158. Lecture Notes in Computer Science. 2010, pp. 88–97.
185 DOI: [10.1007/978-3-642-13962-8_10](https://doi.org/10.1007/978-3-642-13962-8_10).

187 [CDTW12] D. Cenzer, A. Dashti, F. Toska, and S. Wyman. “Computability of
 188 Countable Subshifts in One Dimension”. In: *Theory of Computing*
 189 *Systems* (2012). DOI: [10.1007/s00224-011-9358-z](https://doi.org/10.1007/s00224-011-9358-z).

190 [Han74] W. Hanf. “Non Recursive Tilings of the Plane I”. In: *Journal of*
 191 *Symbolic Logic* 39.2 (June 1974), pp. 283–285.

192 [JV13] E. Jeandel and P. Vanier. “Turing degrees of multidimensional
 193 SFTs”. In: *Theoretical Computer Science* 505.0 (2013). Theory and
 194 Applications of Models of Computation 2011, pp. 81 –92. ISSN:
 195 0304-3975. DOI: <http://dx.doi.org/10.1016/j.tcs.2012.08.027>. URL: <http://www.sciencedirect.com/science/article/pii/S0304397512008031>.

198 [KL10] T. Kent and A. E. M. Lewis. “On the degree spectrum of a Π_1^0
 199 class”. In: *Transactions of the American Mathematical Society* 362
 200 (2010), pp. 5283–5319.

201 [LM95] D. Lind and B. Marcus. *An Introduction to Symbolic Dynamics and Coding*. New York, NY, USA: Cambridge University Press,
 202 1995. ISBN: 0-521-55900-6.

204 [MH40] H. M. Morse and G. A. Hedlund. “Symbolic Dynamics II. Sturmian
 205 Trajectories”. In: *American Journal of Mathematics* 62.1 (1940),
 206 pp. 1–42.

207 [Mil12] J. S. Miller. “Two Notes on subshifts”. In: *Proceedings of the American Mathematical Society* 140.5 (2012), pp. 1617–1622. DOI: [10.1090/S0002-9939-2011-11000-1](https://doi.org/10.1090/S0002-9939-2011-11000-1).

210 [Mye74] D. Myers. “Non Recursive Tilings of the Plane II”. In: *Journal of*
 211 *Symbolic Logic* 39.2 (June 1974), pp. 286–294.

212 [Rog67] H. Rogers. *Theory of recursive functions and effective computability*. McGraw-Hill series in higher mathematics. McGraw-Hill, 1967.
 213 URL: <http://books.google.fr/books?id=nAkzAAAAMAAJ>.

215 [Sim11] S. G. Simpson. “Medvedev Degrees of 2-Dimensional Subshifts of
 216 Finite Type”. In: *Ergodic Theory and Dynamical Systems* (2011).