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Abstract4

Subshifts are shift invariant closed subsets of ΣZd

, minimal subshifts5

are subshifts in which all points contain the same patterns. It has been6

proved by Jeandel and Vanier that the Turing degree spectra of non-7

periodic minimal subshifts always contain the cone of Turing degrees8

above any of its degree. It was however not known whether each minimal9

subshift’s spectrum was formed of exactly one cone or not. We construct10

inductively a minimal subshift whose spectrum consists of an uncountable11

number of cones with disjoint base.12

A Zd-subshift is a closed shift invariant subset of ΣZd

. Subshifts may be13

seen as sets of colorings of Zd, with a finite number of colors, avoiding some14

set of forbidden patterns. Minimal subshifts are subshifts containing no proper15

subshift, or equivalently subshifts in which all configurations have the same16

patterns. They are fundamental in the sense that all subshifts contain at least17

a minimal subshift.18

Degrees of unsolvability of subshifts have now been studied for a few years,19

Cenzer, Dashti, and King [CDK08] and Cenzer, Dashti, Toska, and Wyman20

[CDTW10; CDTW12] studied computability of one dimensional subshifts and21

proved some results about their Turing degree spectra: the Turing degree spec-22

trum of a subshift is the set of Turing degrees of its points, see Kent and Lewis23

[KL10]. Simpson [Sim11], building on the work of Hanf [Han74] and Myers24

[Mye74], noticed that the Medvedev and Muchnik degrees of subshifts of finite25

type (SFTs) are the same as the Medvedev degrees of Π0
1 classes: Π0

1 classes26

are the subsets of {0, 1}Nfor which there exists a Turing machine halting only27

on oracles not in the subset.28

Subsequently Jeandel and Vanier [JV13] focused on Turing degree spectra29

of different classes of multidimensional subshifts: SFTs, sofic and effective sub-30

shifts. They proved in particular that the Turing degree spectra of SFTs are31

almost the same as the spectra of Π0
1 classes: adding a computable point to the32

spectrum of any Π0
1 class, one can construct an SFT with this spectrum. In33

order to prove that one cannot get a stronger statement, they proved that the34

spectrum of any non-periodic minimal subshift contains the cone above any of35

its degrees:36
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Theorem 1 (Jeandel and Vanier [JV13]). Let X be a minimal non-finite sub-37

shift (i.e. non-periodic in at least one direction). For any point x ∈ X and any38

degree d ≥T degT x, there exists a point y ∈ X such that d = degT y.39

Minimal subshifts are in particular interesting since any subshift contains40

a minimal subshift [Bir12]. Here we answer the followup question of whether41

a minimal subshift always corresponds to a single cone or if there exists one42

with at least two cones of disjoint base. It is quite easy to prove the following43

theorem:44

Theorem 2. For any Turing degree degT d, there exists a minimal subshift X45

such that the set of Turing degrees of the points of X is a cone of base degT d.46

For instance the spectrum of a Sturmian subshift [MH40] with an irrational47

angle is the cone whose base is the degree of the angle of the rotation. The48

theorem can also be seen as a corollary of Miller’s proof [Mil12][Proposition 3.1]49

of a result on Medvedev degrees.50

In this paper, we prove the following result:51

Theorem 3. There exist a minimal subshift X ⊂ {0, 1}Z and points xz ∈ X52

with z ∈ {0, 1}N such that for any z 6= z′ ∈ {0, 1}N, degT xz and degT xz′ are53

incomparable and such that there exists no point y ∈ X with degT y ≤T degT xz54

and degT y ≤T degT xz′ .55

The subshift constructed in this proof is not effective and cannot be “effectivized”,56

since minimal effective subshifts always contain a computable point and thus57

their spectra are the whole set of Turing degrees when they are non-periodic.58

1 Preliminary definitions59

We give here some standard definitions and facts about subshifts, one may60

consult the book of Lind and Marcus [LM95] for more details.61

Let Σ be a finite alphabet, its elements are called symbols, the d-dimensional62

full shift on Σ is the set ΣZd

of all maps (colorings) from Zd to the Σ (the colors).63

For v ∈ Zd, the shift functions σv : ΣZd → ΣZd

, are defined locally by σv(cx) =64

cx+v. The full shift equipped with the distance d(x, y) = 2−min{‖v‖|v∈Zd,xv 6=yv}
65

is a compact metric space on which the shift functions act as homeomorphisms.66

An element of ΣZd

is called a configuration.67

Every closed shift-invariant (invariant by application of any σv) subset X68

of ΣZd

is called a subshift. An element of a subshift is called a point of this69

subshift.70

Alternatively, subshifts can be defined with the help of forbidden patterns.71

A pattern is a function p : P → Σ, where P , the support, is a finite subset72

of Zd. We say that a configuration x contains a pattern p : P → Sigma, or73

equivalently that the pattern p appears in x, if there exists z ∈ Zd such that74

x|z+P = p.75
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Let F be a collection of forbidden patterns, the subset XF of ΣZd

containing76

the configurations having nowhere a pattern of F . More formally, XF is defined77

by78

XF =
{
x ∈ ΣZd

∣∣∣∀z ∈ Zd,∀p ∈ F, x|z+P 6= p
}

.

In particular, a subshift is said to be a subshift of finite type (SFT) when it79

can be defined by a collection of forbidden patterns that is finite. Similarly, an80

effective subshift is a subshift which can be defined by a recursively enumerable81

collection of forbidden patterns. A subshift is sofic if it is the image of an SFT82

by a letter by letter function.83

Definition 1 (Minimal subshift). A subshift X is called minimal if it verifies84

one of the following equivalent conditions:85

• There is no subshift Y such that Y ( X.86

• All the points of X contain the same patterns.87

• It is the closure of the orbit of any of its points.88

We will use the two latter conditions.89

For x, y ∈ {0, 1}N, we say that x ≤T y if there exists a Turing machine M90

such that M with oracle y computes x. Of course x ≡T y when we have both91

x ≤T y and y ≤T x. The Turing degree of x is the equivalence class of x with92

respect to ≡T . More details can be found in Rogers [Rog67]. We call recursive93

operator a partial function φ : {0, 1}N → {0, 1}N corresponding to a Turing94

machine whose input is its oracle and output is an infinite sequence. We say95

that the function is undefined on the inputs on which the Turing machine does96

not output an infinite sequence of bits.97

For a possibly infinite word w = w0 . . . wn, we denote w[i,j] = wi . . . wj .98

2 Minimal subshifts with several cones99

Lemma 2.1. There exists a countable set C ⊆ {0, 1}N such that for any two100

recursive partial operators φ1, φ2 : {0, 1}N → {0, 1}N and two distinct words101

L = {w1, w2} ⊆ {0, 1}∗. There exist two words w′1, w
′
2 ∈ L∗ starting respectively102

with w1 and w2 such that we have one of the following:103

(a) either for any pair x, y ∈ {0, 1}N, φ1(w′1x) differs from φ2(w′2y) when they104

are both defined,105

(b) or for any pair x, y ∈ {0, 1}N, φ1(w′1x) = φ2(w′2y) ∈ C when both defined.106

Proof. LetM1,M2 be the Turing machines computing the functions x 7→ φ1(w1x), x 7→107

φ2(w2x) respectively. When restricting ourselves to inputs on which both oper-108

ators are defined, it is quite clear that:109
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• either there exists some sequences x, y ∈ L∗ such that M1(x)’s output110

differs from M2(y)’s output at some step,111

• or the outputs of both machines M1,M2 do not depend on their inputs112

on their respective domains and are equal, in this latter case, we are in113

case b. We define C to be the set of these outputs.114

In the former case, there exist prefixes w′1 and w′2 of w1x and w2y such that115

the partial outputs of M1 once it has read w′1 already differs from the partial116

output of M2 once it has read w′2.117

In the latter case, one may take w′1 = w1 and w′2 = w2. C is countable since118

there is a countable number of quadruples φ1, φ2, w1, w2.119

Theorem 4. There exists a minimal subshift X ⊆ {0, 1}N whose set of Turing120

degrees contains 2ℵ0 disjoint cones of Turing degrees.121

Note that the following proof is in no way effective. As a matter of fact, all122

effective minimal subshifts contain some recursive point [BJ10], and their set of123

Turing degrees is the cone of all degrees.124

Proof. We construct a sequence of sofic subshifts (Xi)i∈N such that Xi+1 ⊆ Xi125

and such that the limit X =
⋂

i∈NXi is minimal. In the process of constructing126

the Xi, which will be formed of concatenations of allowed words xi1, . . . , x
i
k,127

we ensure that no extensions of two distinct words may compute an identical128

sequence with any of the first i Turing machines. At the same time, we make129

sure that all allowed words of level i+1 contain all words of level i, thus enforcing130

the minimality of the limit X. We also have to avoid that the limit X contains131

a computable point.132

Let (Mi)i∈N be an enumeration of all minimal subshifts containing a point of133

the set C defined in lemma 2.1. Such an enumeration exists since C is countable134

and minimal subshifts are the closure of any of their points. We will also need135

an enumeration (φi)i∈N of the partial recursive operators from {0, 1}Nto {0, 1}N.136

Now let us define the sequence of sofic shifts (Xi)i∈N. Each of these subshifts137

will be the shift invariant closure of the biinfinite words formed by concatena-138

tions of words of some language Li which here will be finite languages. We139

define X0 = {0, 1}N that is to say X0 is generated by L0 = {w0 = 0, w1 = 1}.140

Let us now give the induction step. At each step, Li+1 will contain 2i+1 words141

w0...0, . . . , w1...1, the indices being binary words of length i+1, which will verify142

the following conditions:143

1. The words wb0, wb1 of Li+1 start with the word wb of Li.144

2. The words wb with b ∈ {0, 1}i+1 of Li+1 each contain all the words of wb′145

with b′ ∈ {0, 1}i of Li.146

3. For any two words wb, wb′ of Li+1 and for all j, j′ ≤ i:147

• Either for all x, y ∈ Lω
i , φj(wbx) 6= φj′(wb′y) when both defined,148

• Or for all x, y ∈ Lω
i , φj(wbx), φj′(wb′y) are in C when defined.149
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4. The words wb0, wb1 do not appear in any configuration ofMj , for all j ≤ i.150

Conditions 1 and 2 are easy to ensure: just make wba start with w′ =151

wbw0...0 . . . w1...1. We then use Lemma 2.1 to extend w′ into a word w′′ verifying152

condition 3, this is done several times, once for every quadruple w,w′, j, j′. And153

finally, since Xi is not minimal, we can extend w′′ so that it contains a pattern154

appearing in none of the Mj ’s for j ≤ i, to obtain condition . Now we can155

extend w′′ with two different words thus obtaining wb0 and wb1.156

Now let’s check that this leads to the desired result:157

• X =
⋂
Xi is a countable intersection of compact shift-invariant spaces, it158

is compact and shift-invariant, thus a subshift.159

• Any pattern p appearing in some point of X is contained in a pattern160

wb, with b ∈ {0, 1}i for some i, by construction (condition 2), all wb′161

with b ∈ {0, 1}i+1 contain wb. Therefore, all points of X, since they are162

contained in Xi+1, contain wb and hence p. So X is minimal.163

• For all z ∈ {0, 1}N, define the points xz = limi→∞ xz[0,i], they are in164

X because they belong to each Xi. Condition 3 ensures that if two of165

them compute the same sequence y ∈ {0, 1}N, then this sequence is in C.166

And condition 2 ensures that no point of X belongs to a minimal subshift167

containing a point of C.168

169

It is quite straightforward to transform this proof in order to get a subshift170

on {0, 1}Z instead of {0, 1}Nand obtain the following corollary:171

Corollary 5. For any dimension d, there exists a minimal subshift X ⊆ {0, 1}Zd

172

whose set of Turing degrees contains 2ℵ0 disjoint cones of Turing degrees.173
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