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Abstract

Subshifts are shift invariant closed subsets of EZd, minimal subshifts
are subshifts in which all points contain the same patterns. It has been
proved by Jeandel and Vanier that the Turing degree spectra of non-
periodic minimal subshifts always contain the cone of Turing degrees
above any of its degree. It was however not known whether each minimal
subshift’s spectrum was formed of exactly one cone or not. We construct
inductively a minimal subshift whose spectrum consists of an uncountable
number of cones with disjoint base.

A Z9subshift is a closed shift invariant subset of ¥Z°. Subshifts may be
seen as sets of colorings of Z¢, with a finite number of colors, avoiding some
set of forbidden patterns. Minimal subshifts are subshifts containing no proper
subshift, or equivalently subshifts in which all configurations have the same
patterns. They are fundamental in the sense that all subshifts contain at least
a minimal subshift.

Degrees of unsolvability of subshifts have now been studied for a few years,
Cenzer, Dashti, and King | ] and Cenzer, Dashti, Toska, and Wyman
[ ; ] studied computability of one dimensional subshifts and
proved some results about their Turing degree spectra: the Turing degree spec-
trum of a subshift is the set of Turing degrees of its points, see Kent and Lewis
[ ]. Simpson | ], building on the work of Hanf | ] and Myers
[ |, noticed that the Medvedev and Muchnik degrees of subshifts of finite
type (SFTs) are the same as the Medvedev degrees of T1{ classes: T19 classes
are the subsets of {0, 1}Nf0r which there exists a Turing machine halting only
on oracles not in the subset.

Subsequently Jeandel and Vanier | ] focused on Turing degree spectra
of different classes of multidimensional subshifts: SFTs, sofic and effective sub-
shifts. They proved in particular that the Turing degree spectra of SFTs are
almost the same as the spectra of IIY classes: adding a computable point to the
spectrum of any II{ class, one can construct an SFT with this spectrum. In
order to prove that one cannot get a stronger statement, they proved that the
spectrum of any non-periodic minimal subshift contains the cone above any of
its degrees:
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Theorem 1 (Jeandel and Vanier | D). Let X be a minimal non-finite sub-
shift (i.e. non-periodic in at least one direction). For any point x € X and any
degree d > degy x, there exists a point y € X such that d = degp y.

Minimal subshifts are in particular interesting since any subshift contains
a minimal subshift | ]. Here we answer the followup question of whether
a minimal subshift always corresponds to a single cone or if there exists one
with at least two cones of disjoint base. It is quite easy to prove the following
theorem:

Theorem 2. For any Turing degree degy d, there exists a minimal subshift X
such that the set of Turing degrees of the points of X is a cone of base degp d.

For instance the spectrum of a Sturmian subshift | ] with an irrational
angle is the cone whose base is the degree of the angle of the rotation. The
theorem can also be seen as a corollary of Miller’s proof | ][Proposition 3.1]

of a result on Medvedev degrees.
In this paper, we prove the following result:

Theorem 3. There exist a minimal subshift X C {0,1}2 and points ©, € X
with z € {0,1}" such that for any z # 2’ € {0,1}", degp . and degy x. are
incomparable and such that there exists no point y € X with degry <r degr z,
and degry < degr .

The subshift constructed in this proof is not effective and cannot be “effectivized”,

since minimal effective subshifts always contain a computable point and thus
their spectra are the whole set of Turing degrees when they are non-periodic.

1 Preliminary definitions

We give here some standard definitions and facts about subshifts, one may
consult the book of Lind and Marcus | ] for more details.

Let X be a finite alphabet, its elements are called symbols, the d-dimensional
full shift on ¥ is the set $%° of all maps (colorings) from Z< to the ¥ (the colors).
For v € Z4, the shift functions o, : I EZd, are defined locally by o,(c;) =

Cz+v- The full shift equipped with the distance d(z,y) = 2~ min{|vll[v€Z” 2o 7y, }
is a compact metric space on which the shift functions act as homeomorphisms.
An element of 22” is called a configuration.

Every closed shift-invariant (invariant by application of any o,) subset X
of ¥2° is called a subshift. An element of a subshift is called a point of this
subshift.

Alternatively, subshifts can be defined with the help of forbidden patterns.
A pattern is a function p : P — X, where P, the support, is a finite subset
of Z?. We say that a configuration z contains a pattern p : P — Sigma, or
equivalently that the pattern p appears in z, if there exists z € Z? such that

Liz+P = D-
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Let F be a collection of forbidden patterns, the subset X of »z containing
the configurations having nowhere a pattern of F'. More formally, X = is defined
by

Xr= {x € ZZd‘Vz VAR X= Fox.p #p}.

In particular, a subshift is said to be a subshift of finite type (SFT) when it
can be defined by a collection of forbidden patterns that is finite. Similarly, an
effective subshift is a subshift which can be defined by a recursively enumerable
collection of forbidden patterns. A subshift is sofic if it is the image of an SFT
by a letter by letter function.

Definition 1 (Minimal subshift). A subshift X is called minimal if it verifies
one of the following equivalent conditions:

o There is no subshift Y such that Y C X.
o All the points of X contain the same patterns.
e [t is the closure of the orbit of any of its points.

We will use the two latter conditions.

For z,y € {0, 1}N, we say that z <7 y if there exists a Turing machine M
such that M with oracle y computes x. Of course x =7 y when we have both
xz <7y and y <p x. The Turing degree of = is the equivalence class of z with
respect to =p. More details can be found in Rogers [ ]. We call recursive
operator a partial function ¢ : {0, 1}N — {0, 1}N corresponding to a Turing
machine whose input is its oracle and output is an infinite sequence. We say
that the function is undefined on the inputs on which the Turing machine does
not output an infinite sequence of bits.

For a possibly infinite word w = wy . .. w,, we denote Wi j) = Wi - - - W

2 Minimal subshifts with several cones

Lemma 2.1. There exists a countable set C C {0, l}N such that for any two

recursive partial operators ¢i,ds : {O,l}N — {0,1}N and two distinct words
L = {wy,wy} C{0,1}". There exist two words wy,wh € L* starting respectively
with wy and we such that we have one of the following:

(a) either for any pair x,y € {0, 1}N, o1 (wiz) differs from ¢o(why) when they
are both defined,

(b) or for any pair z,y € {0,1}", ¢1(w)x) = ¢o(why) € C when both defined.

Proof. Let My, Ms be the Turing machines computing the functions x — ¢1(wiz), z —

@2 (wax) respectively. When restricting ourselves to inputs on which both oper-
ators are defined, it is quite clear that:
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e either there exists some sequences x,y € L* such that M;(z)’s output
differs from M (y)’s output at some step,

e or the outputs of both machines M7, Ms do not depend on their inputs
on their respective domains and are equal, in this latter case, we are in
case b. We define C to be the set of these outputs.

In the former case, there exist prefixes w} and w} of wyz and wqy such that
the partial outputs of M; once it has read w} already differs from the partial
output of My once it has read w}.

In the latter case, one may take w] = wy and w) = wy. C is countable since
there is a countable number of quadruples ¢1, ¢2, w1, ws. O

Theorem 4. There exists a minimal subshift X C {0, 1}N whose set of Turing
degrees contains 280 disjoint cones of Turing degrees.

Note that the following proof is in no way effective. As a matter of fact, all
effective minimal subshifts contain some recursive point | ], and their set of
Turing degrees is the cone of all degrees.

Proof. We construct a sequence of sofic subshifts (X;);en such that X;11 C X;
and such that the limit X = [, X; is minimal. In the process of constructing
the X;, which will be formed of concatenations of allowed words zi,...,z},
we ensure that no extensions of two distinct words may compute an identical
sequence with any of the first ¢ Turing machines. At the same time, we make
sure that all allowed words of level ¢+1 contain all words of level ¢, thus enforcing
the minimality of the limit X. We also have to avoid that the limit X contains
a computable point.

Let (M;);en be an enumeration of all minimal subshifts containing a point of
the set C defined in lemma 2.1. Such an enumeration exists since C is countable
and minimal subshifts are the closure of any of their points. We will also need
an enumeration (¢;);cn of the partial recursive operators from {0, 1}Nt0 {0, 1}N.

Now let us define the sequence of sofic shifts (X;);en. Each of these subshifts
will be the shift invariant closure of the biinfinite words formed by concatena-
tions of words of some language L; which here will be finite languages. We
define X, = {0, 1}N that is to say Xy is generated by Lo = {wp = 0,w; = 1}.
Let us now give the induction step. At each step, L; 1 will contain 2! words
wo...0,---,W1..1, the indices being binary words of length ¢+ 1, which will verify
the following conditions:

1. The words wyp, wp1 of L;41 start with the word wy, of L;.

2. The words wy, with b € {0,1}**! of L;,; each contain all the words of wy
with ¥ € {0,1}° of L;.

3. For any two words wy, wy of L;y1 and for all j, 5" <:

o Either for all x,y € LY, ¢, (wpx) # ¢, (wyy) when both defined,
o Or for all z,y € LY, ¢;(wpz), ¢, (wyy) are in C when defined.
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4. The words wyo, wp1 do not appear in any configuration of M, for all j < 4.

Conditions 1 and 2 are easy to ensure: just make wy, start with w' =
wpWo..0 - .. w1...1. We then use Lemma 2.1 to extend w’ into a word w” verifying
condition 3, this is done several times, once for every quadruple w,w’, 7, /. And
finally, since X; is not minimal, we can extend w’ so that it contains a pattern
appearing in none of the M;’s for j < 4, to obtain condition . Now we can
extend w” with two different words thus obtaining wyy and wp.

Now let’s check that this leads to the desired result:

e X =()X; is a countable intersection of compact shift-invariant spaces, it
is compact and shift-invariant, thus a subshift.

e Any pattern p appearing in some point of X is contained in a pattern
wp, with b € {0,1}% for some i, by construction (condition 2), all wy
with b € {0,1}**! contain w;,. Therefore, all points of X, since they are
contained in X1, contain wy and hence p. So X is minimal.

e For all z € {071}N7 define the points z, = lim; ,oc 7.[0,:], they are in
X because they belong to each X;. Condition 3 ensures that if two of
them compute the same sequence y € {0, 1}N, then this sequence is in C.
And condition 2 ensures that no point of X belongs to a minimal subshift
containing a point of C.

O

It is quite straightforward to transform this proof in order to get a subshift
on {0,1}% instead of {0,1}"and obtain the following corollary:

Corollary 5. For any dimension d, there exists a minimal subshift X C {0, 1}Zd
whose set of Turing degrees contains 280 disjoint cones of Turing degrees.
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