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Abstract. We show that for families of measures on Euclidean space which satisfy

an ergodic-theoretic form of �self-similarity� under the operation of re-scaling, the

dimension of linear images of the measure behaves in a semi-continuous way. We

apply this to prove the following conjecture of Furstenberg: if X, Y ⊆ [0, 1] are

closed and invariant, respectively, under ×m mod 1 and ×n mod 1, where m, n are

not powers of the same integer, then, for any t 6= 0,

dim(X + tY ) = min{1, dim X + dim Y }.

A similar result holds for invariant measures, and gives a simple proof of the Rudolph-

Johnson theorem. Our methods also apply to many other classes of conformal frac-

tals and measures. As another application, we extend and unify results of Peres,

Shmerkin and Nazarov, and of Moreira, concerning projections of products self-

similar measures and Gibbs measures on regular Cantor sets. We show that under

natural irreducibility assumptions on the maps in the IFS, the image measure has

the maximal possible dimension under any linear projection other than the coordi-

nate projections. We also present applications to Bernoulli convolutions and to the

images of fractal measures under di�erentiable maps.

1. Introduction

1.1. Background and history. Let dim denote the Hausdor� dimension of a set

and let Πd,k denote the space of orthogonal projections from Rd to k-dimensional

subspaces, with the natural measure. Then it is a classical fact, due in various versions

to Marstrand, Mattila and others, that for any Borel set X ⊆ Rd, almost every π ∈ Πd,k

satis�es

(1.1) dim(πX) = min(k, dim X).

Indeed, the right hand side is a trivial upper bound: Lipschitz maps cannot increase

dimension, so dim πX ≤ dim X, and πX is a subset of a k-dimensional subspace,

hence dim πX ≤ k. Since this equality holds almost everywhere, we shall use the term

exceptional for projections for which equality fails, and call the right hand side the

expected dimension.
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While (1.1) tells us what happens for a typical projection, it is far more di�cult

to analyze the image of even the simplest fractals under individual projections. See

Kenyon [19] for a particularly simple and frustrating example.

There are, however, a number of well-known conjectures to the e�ect that, for certain

sets of combinatorial, arithmetic or dynamical origin, phenomena which hold typically

in the general setting should, for these special sets, always hold, except in the pres-

ence of some evident obstruction. The present work was motivated by a conjecture of

this kind concerning projections of product sets whose marginals are invariant under

arithmetically �independent� dynamics.

Denote the m-fold map of the unit interval by Tm : x 7→ mx mod 1 and let πx, πy ∈
Π2,1 denote the coordinate projections onto the axes.

Conjecture 1.1 (Furstenberg). Let X, Y ⊆ [0, 1] be closed sets which are invariant

under T2 and T3, respectively. Then

dim π(X × Y ) = min{1,dim(X × Y )}

for any π ∈ Π2,1 \ {πx, πy}.

In the situation above it is evident that πx, πy are exceptions, since they map X×Y

to X or Y , respectively, and a drop in dimension is to be expected.

Note that this conjecture can also be formulated as a result on sumsets:1 for X, Y

as above and all s 6= 0,

dim(X + sY ) = min{1,dim X + dim Y }.

Here A + B = {a + b : a ∈ A , b ∈ B}.
Conjecture 1.1 originates in the late 1960s. Although it has apparently not appeared

in print, it is related to another conjecture of Furstenberg's from around the same time,

which appears in [12]:

Conjecture 1.2 (Furstenberg, [12]). Let X, Y ⊆ [0, 1] be closed sets which are invari-

ant under T2 and T3, respectively. Then for any s, t, t 6= 0,

dim X ∩ (s + tY ) ≤ max{dim X + dim Y − 1, 0}

The relation between these conjecture is as follows. The sets X ∩ (s+ tY ) are, up to

a�ne coordinate change, the intersections of X × Y with the �bers of the projections

π ∈ Π2,1 \ {πx, πy}. Heuristically, one expects the following relation between the

dimension of the image and the �bers:

(1.2) dim X × Y = dim π(X × Y ) + sup
z
{dim(X × Y ) ∩ π−1(z)}}

1In the sumset formulation we relied on the identity

dim(X × Y ) = dim(X) + dim(Y )

This holds in the present case because X has coinciding Hausdor� and box dimension (see e.g. [13,
Theorem 5.1]); in general one only has the inequality dim(X × Y ) ≥ dim(X) + dim(Y ).
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This is, for example, the way a�ne subspaces in Rd behave under linear maps, as

do generic sub-manifolds, and if it were true then Conjectures 1.1 and 1.2 would be

equivalent: if the image under a projection has the expected dimension then the �bers

would behave as expected as well.

Equation (1.2) is a very strong statement, and simple examples show that it is not

generally true. For quite general sets A ⊆ Rd it is known that, under a natural distri-

bution on the k-dimensional subspaces which intersect A, almost every such subspace

intersects A in the expected dimension, i.e. the larger of dim A − k and 0; see [22,

Theorem 10.11]. For certain special sets A ⊆ R2, related in some ways to the product

sets we are discussing, a stronger result was obtained by Furstenberg [13]: for every

t 6= 0 there are many (in the sense of dimension) vaues of s such that A intersects the

line x− ty = s in at least the expected dimension. However, the uniform upper bounds

needed for Conjecture 1.2 still seems out of reach of current methods.

We refer the reader to [12] for a more detailed discussion of Conjecture 1.2 and some

related questions.

1.2. Iterated Function Systems. A related circle of questions concerns projections

of product sets whose marginals are attractors of iterated function systems (IFSs) on

the line. Here again it is believed that, in the absence of some evident �resonance�

between the IFSs, projections should behave as expected.

There was little progress on these problems until fairly recently. The �rst result of

this kind is a theorem by C. G. Moreira [23]2 for pairs of regular IFSs, i.e. systems of

C1+ε contractions on the line satisfying the strong separation condition (see Section

11). Moreira assumes that at least one of the IFSs is strictly non-linear, i.e. cannot

be conjugated to a linear one, and that a certain irrationality condition is satis�ed

between the IFSs. Under these hypotheses he shows that if X, Y are the attractors

then the sumset X + Y , which is the projection of X × Y under π(x, y) = x + y, has

the expected dimension.

More recently Y. Peres and P. Shmerkin [29] solved the problem for projections

of X × Y when X, Y are attractors of linear IFSs satisfying an irrationality condition,

namely, that the logarithms of some pair of contraction ratios is rationally independent.

This class of examples includes some special cases of Furstenberg's conjecture. For

example, the standard middle-third Cantor set is both T3-invariant and the attractor

of an IFS with contraction ratio 1/3. With an eye to Furstenberg's conjecture, these

methods can be pushed to apply to Tm-invariant subsets of [0, 1] which are shifts of

�nite type with respect to the base-m coding. See also [10] for an extension to some

non-conformal attractors on the plane.

With regard to the question of projecting measures rather than sets, Nazarov, Peres

and Shmerkin [27] recently established some results for projections of Hausdor� measure

2The proof in [23] is incomplete, see e.g. [29]
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on X × Y , where X, Y are now attractors of linear IFSs in which, additionally, all

contracting maps have the same contraction ratio (while these assumptions are quite

special, in this case they also establish a stronger result using correlation dimension

rather than Hausdor� dimension).

It is interesting to note that the methods of Moreira and of Peres-Shmerkin are quite

di�erent and rely heavily on their respective assumptions, i.e. strict non-linearity and

linearity of the IFSs. This leaves open the case of a pair of IFSs which are both non-

linearly conjugated to linear IFSs. Their methods also do not give any information

about behavior of measures on regular IFSs.

Finally, similar questions may be asked about multidimensional attractors of IFSs

rather than products one-dimensional ones. For the case of 2-dimensional linear IFSs

Peres and Shmerkin [29] showed that, assuming that the orthogonal part of the con-

tractions include at least one irrational rotation, all projections behave as expected.

Unfortunately these methods do not work for dimension d ≥ 3, and again give no

information about measures.

1.3. Results. In this work we develop a method for bounding from below the dimen-

sion of projections of measures which exhibit certain statistical self-similarity. Before

describing the general result, we summarize our main applications.

The �rst is a resolution of Conjecture 1.1 in its full generality. In fact, we establish a

stronger statement concerning invariant measures. Recall that for a probability measure

µ on a metric space, the lower Hausdor� dimension dim∗ µ is de�ned as

dim∗ µ = inf{dim(A) : µ(A) > 0}.

Also, write dim µ = α to indicate that

lim
r↓0

µ(Br(x))
log r

= α for µ-a.e. x.

In this case α is the exact dimension of µ and dim∗ µ = dim µ, but note that the dim µ

is not always de�ned. See Section 3 for a discussion of dimension.

Theorem 1.3. Let µ, ν be Borel probability measures on [0, 1] which are invariant

under Tm, Tn, respectively, and m,n are not powers of the same integer. Then for

every π ∈ Π2,1 \ {πx, πy},

dim∗ π(µ× ν) = min{1,dim∗(µ× ν)}

If µ, ν are exact dimensional then the above holds for dim instead of dim∗.

Note that both the conjecture above and the theorem hold trivially in dimension

zero. From the theorem one proves the conjecture using the variational principle to

relate the dimension of sets and measures; see Section 10.4.

Theorem 1.3 also leads to a very short proof of the Rudolph-Johnson theorem (see

Section 10.5): If m,n are not powers of the same integer, µ is a probability measure on
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[0, 1] invariant under both Tm and Tn, and all ergodic components have positive entropy

for one (equivalently both) of the maps, then µ =Lebesgue measure. Unfortunately,

neither this proof nor our methods provide a hint on how to approach the long-standing

conjecture about the entropy zero case.

For the next result we require some notation. For general de�nitions regarding

IFSs see Sections 9, 11. Given a contracting smooth map f on [0, 1], we let λ(f) =
− log(f ′(x)), where x is the �xed point of f . Furthermore, if I = {fi : i ∈ Λ} is a

regular IFS (see Section 11 for the de�nition), we let

L(I) = {λ(fx1 ◦ · · · ◦ fxn) : n ∈ N, x1, . . . , xn ∈ Λ}.

Theorem 1.4. Let I(i) =
{

f
(i)
j : j ∈ Λi

}
, i = 1, . . . , d be regular IFSs with attractor

Xi. Suppose the following holds:

Minimality assumption. The set L(I1) × · · · × L(Id) is dense in the quotient

space (Rd,+)/∆, where ∆ is the diagonal subgroup of Rd.

Then for any globally supported Gibbs measures µi on Xi corresponding to arbitrary

Hölder potentials, and for any projection π(x) =
∑

i tixi with all ti nonzero,

dim (π(µ1 × · · · × µd)) = min(1,dim(µ1) + . . . + dim(µd)).

A classical result of R. Bowen shows that Hausdor� measure on a regular Cantor set

is equivalent to a Gibbs measure for an appropriate potential. We therefore have

Corollary 1.5. If Xi are attractors of IFSs satisfying the hypotheses of the theorem,

then

(1.3) dim π(X1 × · · · ×Xd) = min{1,dim X1 + . . . + dim Xd}

The minimality condition in Theorem 1.4 is satis�ed, for example, when there are

d rationally independent numbers among the numbers λ(f (i)
j ). Thus Theorem 1.4

(and its corollary) generalizes and extends the aforementioned results of Moreira [23],

Peres-Shmerkin [29] and Nazarov-Peres-Shmerkin [27]. We note that Theorem 1.4

does not make any assumptions about the linear or non-linear nature of the IFSs,

and neither does the proof, which provides a uni�ed treatment of the known cases.

We also remark that Moreira [private communication] has shown that, for d = 2, the
minimality assumption holds automatically when one of the IFS is not conjugated to

a linear IFS. In the linear case, however, the minimality assumption may fail to hold

and is necessary; see [29] for a discussion.

For self-similar sets and measures in Rd (see Section 9), we have:

Theorem 1.6. Let {fi : i ∈ Λ} be an iterated function system on Rd with the strong

separation condition consisting of similarities, and µ a self-similar measure on its at-

tractor. Let Oi denote the orthogonal part of the similarity fi and suppose that:

Minimality assumption. The action (by right composition) of the semigroup gen-

erated by Oi on Πd,k is topologically minimal, i.e. for some (equivalently any) π ∈ Πd,k
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the orbit

{πOi1 · · ·Oik : i1, . . . , ik ∈ Λ}

is dense in Πd,k.

Then for every C1 map g : suppµ → Rk without singular points, gµ is exact dimen-

sional and

dim(gµ) = min(k, dim µ).

It is well known that, under the strong separation condition, for a self-similar set of

dimension α, the α-dimensional Hausdor� measure on X is equivalent to a self-similar

measure. Therefore the theorem implies a version for sets:

Corollary 1.7. If X is an attractor of an IFS satisfying the hypotheses of the theorem

above, then for every g ∈ C1(X) without singular points,

dim π(X) = min{k, dim X}.

Finally, our methods also apply to certain problems involving non-smooth maps.

Recall that the biased Bernoulli convolution with contraction 0 < t < 1 and weight

0 < p < 1 is the probability measure νp
t that is the distribution of the random real

number
∑∞

n=0±tn, where the sign is chosen i.i.d. with probability p, 1 − p. One may

view this as the image of the product measure (p, 1−p)N on {+,−}N under the Lipschitz

maps ϕt(x) =
∑

xntn.

The following theorem may be inferred from deep existing results, but follows easily

from our methods:

Theorem 1.8. The lower Hausdor� dimension dim∗ νt
p is lower semi-continuous in

(p, t).

1.4. Local dynamics and continuity of dimension. The proofs of Theorems 1.3,

1.4, 1.6 consist of two independent parts. The �rst is a semicontinuity result for the

map π 7→ dim∗ πµ when µ is a measure displaying a certain �local dynamics�. Coupled

with the general result that dim∗ πµ has the expected dimension for almost-every π,

this provides an open dense set of projections which project to nearly the expected

dimension. The second part of the proof relies on some invariance of the measures

(and hence of the set of good projections) under a su�ciently large group to show that

this open set, being invariant, is in fact all of Πd,k or some large part of it. While

all related works utilize largeness of this action in one way or another, the continuity

result is new and is perhaps the main technical innovation of this paper. We outline

these results next.

The �local dynamics� which we require of a measure µ is, brie�y, that as one zooms

in to a typical point x, all the while re-scaling the measure, one sees a sequence of

measures which display stationary dynamics. More precisely, given a measure µ and

x ∈ suppµ, one can form a sequence of cubes Bn descending to x. For example, given
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an integer b one can choose the b-adic cells containing x (later it will be necessary

to work with more general cells; see Section 7). Form the sequence of measures µx,n

obtained by restricting µ to Bn, normalizing, and re-scaling it back to the unit cube.

The sequence µx,n is sometimes called the scenery at x. Our assumption about µ

will be that for µ-typical x, the scenery sequence displays statistical regularity, i.e. is

generic for some distribution P on measures, and P is independent of x.

The limiting distribution P above is the distribution of a so-called CP-chain (or a

slight generalization of one), which were introduced by Furstenberg in [12, 13] for the

purpose of studying some related problems. A CP-chain is a measure-valued Markov

process (µn)∞n=1, in which µn are probability measures on the unit cube (or some other

�xed compact set), and, conditioned on µ1, the sequence µ2, µ3 . . . is the scenery of

µ1 at a µ1-typical point. See Section 7. Although CP-chains are quite special objects,

in fact many measures that arise in conformal dynamics have CP-chains associated to

them in a natural way, and are often equal to typical measures for CP-chains after

slight distortion.

Similar notions for measures and sets have been studied by many authors, mostly

with the aim of classifying measures and sets by their limiting local behavior [15, 1, 2,

20, 26, 25, 3]. See [16] for a systematic discussion of CP-chains and their relation to

other models of �fractal� measures.

Returning to dimension of projections, one might say that the discontinuity of dim πµ

in π is a result of the in�nitesimal nature of Hausdor� dimension. It is therefore

desirable to express, or at least bound, the dimension in terms of a �nite-scale quantity.

For this purpose a useful quantity to consider is entropy: For a measure ν on Rk de�ne

the ρ-scale entropy of ν by

Hρ(ν) = −
∫

log (ν(Bρ(t))) dν(t)

This measures how �spread out� ν is, and its behavior as ρ → 0 has been studied as

an alternative notion of dimension (this is so-called entropy or information dimension,

which again behaves discontinuously under projections). Our key innovation is to

observe that, in the presence of local dynamics, the (mean) behavior of this entropy at

a �xed �nite scale can be used to bound the dimension of projections of the measure.

Theorem 1.9. Let µ be a measure on Rd, �x an integer base b ≥ 2 and let π ∈ Πd,k.

Suppose that for µ-a.e. x,

(1.4) lim inf
1
N

N∑
n=1

H1/b(πµx,n) > α

where µx,n are the scenery of µ at x along b-adic cells. Then

dim∗ πµ >
α

log b
−

Cd,k

log b
,
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where the constant depends only on d, k.

The use of b-adic cells here is somewhat arbitrary, and we can (and will) sometimes

use other �ltrations.

Observe now that Hρ(πν) is (almost) jointly continuous in π ∈ Πd,k and ν a proba-

bility measures on the unit cube (actually, it is discontinuous at atomic measures, but

the error tends to zero as ρ → 0). Hence for b large enough, as π′ → π, if one replaces π

with π′ in (1.4), then the new averages also exceed α in the limit, and we obtain a lower

bound dim π′µ > α for π′ close enough to µ. Also note that for measures displaying

good local dynamics, the limit (1.4) converges to the mean value of H1/b(πν), with
ν distributed according to the limiting CP-chain of µ. Combining Theorem 1.9 with

some additional analysis leads to the following theorem.

Theorem 1.10. Let P be the distribution of an ergodic d-dimensional CP-chain. Then

for every k there is a lower semi-continuous function E : Πd,k → R+ such that:

(1) E(π) = min(k, α) for almost every π ∈ Πd,k, where α is the P -almost sure

dimension of measures in the chain (See Lemma 7.9).

(2) For a �xed π ∈ Πd,k,

dim∗ πµ = E(π) for P − a.e. µ.

(3) There is a set M of measures with P (M) = 1, such that, for µ ∈ M ,

dim∗ πµ ≥ E(π) for all π ∈ Πd,k.

In fact, E(π) is the limit, as ρ → 0, of the mean values of the Hρ(πν), the mean

being over ν under the distribution P .

The following corollary is then immediate:

Corollary 1.11. In the setting of Theorem 1.10, there exists a set M of measures with

P (M) = 1, such that for every ε > 0 there is a dense open set Uε ⊆ Πd,k satisfying

dim∗ πµ > min(k, α)− ε for all π ∈ Uε, µ ∈ M.

A weaker result for non-ergodic processes is available, see Theorem 8.3 below.

Since di�erentiable maps are locally close to linear ones, and limits of averages along

sceneries at x depend only on the local behavior of the measure near x. From this we

obtain results on non-linear images of measures:

Theorem 1.12. Let P be the distribution of an ergodic CP-chain. Fix π ∈ Πd,k. Then

for P -almost every µ, the map g 7→ dim∗ gµ is lower semi-continuous at π in the C1

topology.

Furthermore, the modulus of continuity is uniform in µ: for every ε > 0 there is

a δ > 0 so that for a.e. µ if g ∈ C1(supp µ, Rk) and ‖g − π‖C1 < δ then dim∗ gµ ≥
dim∗ πµ− ε.
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Theorem 1.13. Let E : Πd,k → R be the function associated to an ergodic CP-chain

as in Theorem 1.10 and let µ be typical measure for the chain.3 Then for every C1 map

g : suppµ → Rk without singular points,

dim∗ gµ ≥ essinfx∈supp µ E(Dxg)

In fact, the above theorem as well as other results involving smooth functions require

only di�erentiability, but for simplicity we present the proofs in the C1 case.

A number of natural questions arise in connection with Theorem 1.10 and the almost-

everywhere nature of results for CP-chains. In particular, results which, for each π,

hold almost surely do not a priori hold almost surely for all π. Another issue we do not

resolve here is the behavior of the upper Hausdor� dimension. Some of these issues are

addressed in [16].

1.5. Outline of the paper. Section 2 introduces some general notation.

Section 3 recalls the notions of entropy and dimension and some of their properties.

In Section 4 we study measures on trees and obtain bounds on the image of such a

measure under a tree morphism.

In Section 5 we develop machinery for lifting geometric maps between Euclidean

spaces to morphisms between trees.

Section 6 discusses Bernoulli convolutions and Theorem 1.8.

In Section 7 we de�ne (generalized) CP-chains.

Section 8 contains semicontinuity results for images of typical measures for CP-

chains.

In Sections 9, 10 and 11 we prove Theorems 1.6, 1.3 and 1.4, respectively.

2. General notation and conventions

N = {1, 2, 3 . . .}. In a metric space, Br(x) denotes the closed ball of radius r around

x. We endow Rd with the sup norm ‖x‖ = max{|x1|, . . . |xd|} and the induced metric.

All measures are Borel probability measures and all sets and functions that we work

with are Borel unless otherwise noted. The family of Borel probability measures on a

metric space X (with the Borel σ-algebra) will be denoted P(X).
Given a �nite measure µ on some space and a measurable set A, we write

µA =
1

µ(A)
µ|A.

This is the conditional probability of µ on A.

We use the standard �big O� notation for asymptotics: x = Op(y) means that

x ≤ Cy, where C depends on the parameter p. Similarly x = Ωp(y) means y = Op(x),
and x = Θp(y) means x = Op(y) and y = Op(x).

3A priori the function E is de�ned only on Πd,k. However it can be extended to all linear functions in
a straightforward way so that Theorem 1.10 still holds. Alternatively, one can identify Dxg with the
projection onto the k-plane orthogonal to the kernel of Dxg.
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For the reader's convenience, we summarize our main notation and typographical

conventions in the following table.

d Dimension of the ambient Euclidean space.

k Dimension of the range of a projection.

Πd,k Space of projections from Rd to k-dimensional subspaces.

π Orthogonal projections.

f, g, h Morphisms between trees (Section 4.1), di�erentiable maps.

α, β, γ Dimension of fractal sets and measures.

µ, ν, η, τ Probability measures.

P,Q Probability distributions on large spaces (e.g. spaces of measures).

dim Hausdor� dimension of a set, exact dimension of a measure.

dim∗,dim∗ Upper/lower Hausdor� dimension of measures (Section 3.1).

dim,dim Upper/lower pointwise dimension of a measure (Section 3.1 ).

dime, dime Upper/lower Entropy dimension of a measure (Section 3.3).

Hρ(·) ρ-scale entropy of a measure (Section 3.3).

H(µ,P),H(X) Entropy of µ w.r.t. partition P [of random variable X] (Section 3.3).

Λ,ΛX Symbol set of a tree [or of the tree X]; index set of an IFS.

Db,Db(x) b-adic cell [containing x] (Section 3.2).

X, Y Tree (Section 4.1) or attractors of an IFS (Section 9.1, 11.1).

x, y Points in tree or attractors of an IFS.

a, b Finite words.

[a], [b] Cylinder sets in a tree.

A∗ Re-scaled version of A (Section 7.2).

TA Re-scaling homothety, mapping A to A∗ (Section 7.2).

µA Conditional measure on A (Section 7.3).

µA Conditional measure on A, re-scaled to A∗ (Section 7.3).

∆, E Partition operator and family of boxes (Section 7.4).

U ,Uε Subsets (often open) of Πd,k or C1(Rd, Rk).

3. Dimension and entropy

We denote the Hausdor� dimension of a set A by dim A. Falconer's books [5], [6]

are good introductions to Hausdor� measure and dimension. In this section we collect

some basic facts about dimension and entropy of measures.

3.1. Hausdor� and local dimension of measures. Let µ be a Borel measure on a

metric space X. The upper and lower Hausdor� dimensions of µ are given by

dim∗(µ) = inf{dim(A) : µ(X\A) = 0},

dim∗(µ) = inf{dim(A) : µ(A) > 0}.
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The upper and lower local dimensions of µ at a point x are given by

dim(µ, x) = lim sup
r→0

log µ(Br(x))
log r

,

dim(µ, x) = lim inf
r→0

log µ(Br(x))
log r

.

Clearly dim(µ, x) ≤ dim(µ, x). The local dimension of µ at x exists if dim(µ, x) =
dim(µ, x), and is equal to their common value. If the local dimension of µ exists and

is constant µ-almost everywhere, µ is exact dimensional, and the almost sure local

dimension is denoted dim µ. Whenever we write dim µ, we are implicitly assuming

that µ is exact dimensional. Note that dim∗ µ = dim∗ µ does not imply that µ is exact

dimensional.

We record a few basic facts about lower dimension.

Lemma 3.1. Let µ be a Borel measure on a metric space.

(1)

dim∗(µ) = sup{α : dim(µ, x) ≥ α for µ-a.e.x}.

(2) If P is a distribution on measures and µ =
∫

νdP (ν), then

dim∗ µ ≥ essinfν∼P dim∗ ν

(3) If µ, ν are equivalent measures (i.e. mutually absolutely continuous), then

dim∗ µ = dim∗ ν.

Proof. See e.g. [6, Proposition 10.2] for the �rst assertion; the last two are easy conse-

quences of the de�nition. �

3.2. p-adic cells and regular �ltrations. Given an integer base p ≥ 2, we denote

by Dp the partition of Rd into cubes of the form I1 × . . .× Id with Ii = [kp , k+1
p ). Note

that Dpk , k = 1, 2, . . . form a re�ning sequence of partitions that separates points. A

cube in
⋃∞

k=1Dpk is called a p-adic cube.

A sequence F = (Fn)∞n=1 of partitions of a region in Rd is ρ-regular if, for some

constant C > 1, every B ∈ Fn contains a ball of radius ρn/C and is contained in a ball

of radius C · ρn. For example, this assumption is satis�ed by Fn = Dpn with ρ = 1/p.

For a partition D of E ⊆ Rd and x ∈ E, we write D(x) for the unique partition

element containing x.

The proof of the following can be found in [31, Theorem 15.3]:

Lemma 3.2. Let µ be a measure on Rd and F = (Fn)∞n=1 a ρ-regular �ltration. Then

for µ-a.e. x,

dim(µ, x) = lim sup
n→∞

log µ(Fn(x))
n log ρ

,

dim(µ, x) = lim inf
n→∞

log µ(Fn(x))
n log ρ

.
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3.3. Entropy and entropy dimension. The various notions of dimension aim to

quantify the degree to which a measure is �spread out�. One can also quantify this

using entropy. Given a probability measure µ on a metric space X, the r-scale entropy

of µ is

Hr(µ) = −
∫

log(µ(Br(x)) dµ(x).

The upper and lower entropy dimensions of µ are de�ned as

dime(µ) = lim sup
r→0

Hr(µ)
− log r

,

dime(µ) = lim inf
r→0

Hr(µ)
− log r

.

Clearly dimeµ ≤ dimeµ.

Entropy dimensions can also be de�ned in terms of entropies of partitions. Recall

that if µ is a probability measure and Q is a �nite or countable partition, then

H(µ,Q) = −
∑
Q∈Q

µ(Q) log µ(Q),

with the convention that 0 log 0 = 0. This quantity is called the Shannon entropy

of the partition Q. When X is a random variable taking �nitely many values, it

induces a �nite partition of the underlying probability space. We then write H(X)
for the Shannon entropy of this partition, with respect to the associated probability

measure. For the basic properties of Shannon entropy, and in particular the de�nition

and properties of conditional entropy, see [4].

Next, we specialize to Rd.

Lemma 3.3. Let µ be a probability measure on Rd and p ≥ 2. Then there exists a

constant C = C(d, p) such that for all k ∈ N,

|Hp−k(µ)−H(µ,Dpk)| ≤ C.

In particular,

dime(µ) = lim sup
k→∞

H(µ,Dpk)
k log p

,

dime(µ) = lim inf
k→∞

H(µ,Dpk)
k log p

.

Proof. This is proved for p = 2 in [30, Lemma 2.3]; the general case is exactly analogous.

�

The following proposition summarizes some of the relations between the di�erent

notions of dimension. Proofs can be found in [7].

Proposition 3.4. Let µ be a measure on Rn. Then:

(3.1) dim∗(µ) ≤ dime(µ) ≤ dime(µ).
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If µ is exact dimensional, then

(3.2) dim∗(µ) = dim∗(µ) = dime(µ) = dime(µ) = dim µ.

The next two lemmas establish some continuity properties of Hr(µ)

Lemma 3.5. Let µ be a probability measure on Rd, and �x a constant C > 0. Then

|Hr(µ)−HCr(µ)| = OC,d(1) for all r > 0.

Proof. See [30, Lemma 2.3]. �

Lemma 3.6. Let µ be a probability measure on the unit ball B1(0), and let π ∈ Πd,k.

Then for any C1 function g : Rd → Rk such that supx ‖Dxg − π‖∞ < r,

|Hr(πµ)−Hr(gµ)| = Od,k(1).

Proof. After a translation we can assume g(0) = 0. Then it is easy to see that

π−1(Br(x)) ⊆ g−1(BOd,k(r)(x))

and similarly with π and g exchanged. The lemma now follows from Lemma 3.5. �

3.4. Behavior of measures under orthogonal projections. The family Πd,k of

orthogonal projections from Rd to its k-dimensional subspaces may be identi�ed with

the Grassmanian of k-planes in Rd, with V ⊆ Rd corresponding to the projection to

V . This endows Πd,k with a smooth structure, and hence a measure class (there is

also a natural measure, invariant under the action by the orthogonal group, but we do

not have use for it). Di�erent projections have di�erent images, but it is convenient

to identify them all with Rk via an a�ne change of coordinates, which we specify as

needed. Such an identi�cation is harmless since it does not a�ect any of the notions of

dimension that we use.

If E ⊆ Rn is a Borel set, then the well-known projection theorem of Marstrand-

Mattila says that

dim(π(E)) = min(k, dim(E)),

for almost every projection π ∈ Πd,k. Hunt and Kaloshin [17] established the analogous

results for dimensions of a measure [17, Theorem 4.1]. In particular we shall use the

following:

Theorem 3.7. Let µ be an exact-dimensional measure on Rd. Then for almost every

projection π ∈ Πd,k the projection πµ is exact dimensional, and

dim(πµ) = min(k, dim µ).

Corollary 3.8. Let µ be an exact-dimensional probability measure on Rd. Then for

almost every π ∈ Πd,k,

(3.3) lim
r→0

−Hr(πµ)
log r

= min(k, dim µ)
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Proof. This follows from Proposition 3.4 and Theorem 3.7. �

If µ is a measure on Rd, then for every π ∈ Πd,k and x ∈ supp(πµ) we have

dim(πµ, πx) ≤ dim(π, x). In particular, if dim µ = α, then dim(πµ, y) ≤ α for (πµ)-a.e.
y. Also, dim(µ, x) ≤ d almost everywhere.

Finally, combining the above with Lemma 3.1(1), we have:

Corollary 3.9. If µ is an exact-dimensional measure on Rd and f : Rd → Rk is a

di�erentiable map, then in order to prove that

dim fµ = min{k, dim µ},

it su�ces to prove that

dim∗ fµ ≥ min{k, dim µ}.

4. Trees, local entropy and dimension

In this section we use entropy and martingale methods to bound from below the

dimension of the image fµ of a measure µ under a map f . While simple, the result

appears to be new; it may be viewed as a variant of the relative Shannon-McMillan-

Breiman with stationarity replaced by an assumption of convergence of certain averages,

and with very few requirements of the �factor� map. It may also be viewed as a relative

version of [13, Theorem 2.1]. Here we formulate the result for morphisms between trees.

In the next section we discuss how to lift more general maps to such morphisms.

4.1. Trees and tree morphisms. A tree is a closed subset X ⊆ ΛN. Here Λ is a

�nite set called the alphabet or the symbol set. We usually do not specify the symbol

set of a tree and write it generically as Λ; if we wish to be speci�c we write ΛX ,ΛY ,

etc.

A tree is a compact metrizable totally disconnected space. A basis of closed and

open sets of ΛN (and, in the relative topology, for X) is provided by the cylinder sets.

An n-cylinder is a set of the form

[a] = {x ∈ X : x1 . . . xn = a}

for a ∈ Λn, and an n-cylinder in a tree X is the intersection of X with such a set.

The cylinders form a countable family which is partially ordered by inclusion, and

this order structure determines X up to isomorphism (see below for the de�nition of a

tree morphism). Conversely, any countable partially ordered set satisfying the obvious

axioms gives rise to a tree, and we shall sometimes represent a tree in this way.

There is a closely related representation of a trees as sets of words. Write Λ∗ =⋃∞
n=0 Λn (we write ∅ for the empty word). A tree X ⊆ Λ∗ is characterized by the set

{a ∈ Λ∗ : [a] ∩X 6= ∅}.
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In this representation we call the sequence a ∈ Λn a node of the tree. Its length is n

(denoted |a|). If b ∈ Λ and ab is in the tree then ab is the child of a and a is the parent

of ab. We shall sometimes use the notation

ak
1 = a1a2 . . . ak

to represent the initial k-segment of a longer word a.

De�nition 4.1. If X,Y are trees then a morphism is a map f : X → Y that maps

n-cylinders into n-cylinders, i.e. for all a ∈ Λn
X there exists b ∈ Λn

Y such that f [a] ⊆ [b].

In the symbolic representation of trees this corresponds to a map g : Λ∗X → Λ∗Y
satisfying g(a1 . . . an) = g(a1 . . . an−1)b for some b ∈ ΛY .

4.2. Local entropy averages and mass decay. Let µ be a Borel probability measure

on a tree X. For x ∈ X denote by µ(·|xn
1 ) the conditional measure on the symbol set

Λ given by

µ(xn+1|xn
1 ) =

µ[xn+1
1 ]

µ[xn
1 ]

.

This is de�ned only when µ[xn
1 ] > 0. The n-th information function is

In(x) = − log µ(xn|xn−1
1 ).

Thus for x ∈ X,

(4.1) − log µ[x1 . . . xn] =
n∑

k=1

Ik(x).

Let Xn be the random variable given by projection from X to the n-th coordinate

and Fn the σ-algebra generated by the X1, X2, . . . , Xn, i.e. by the n-cylinders. Then

H(Xn+1|xn
1 ) = E(In+1|Fn)(x).

Lemma 4.2. For µ-a.e. x,

− 1
N

log µ[xn
1 ]− 1

N

N∑
n=1

H(Xn|xn−1
1 ) → 0.

Proof. Using (4.1) we can write this expression as

1
N

N∑
n=1

(In − E(In|Fn−1)) (x).

This is an average of uniformly L2-bounded martingale di�erences, so by the Law of

Large Numbers for martingale di�erences (see e.g. [8, Theorem 3 in Chapter 9]), it

converges to 0 a.e. �

Now suppose f : X → Y is a tree morphism, and denote by f also the induced

symbolic map Λ∗X → Λ∗Y . Let ν = fµ, de�ne the conditional measures ν(·|yn
1 ), yi ∈ ΛY ,
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as above, and let Yn denote the coordinate functions on Y . Since f is a morphism, we

also have the conditional measures ν(·|xn
1 ) on ΛY given by

ν(b|xn−1
1 ) =

∑
a∈ΛX : f(xn−1

1 a)=f(xn−1
1 )b

µ(a|xn−1
1 ),

and we have the corresponding entropy

H(Yn|xn−1
1 ).

Note that ν(·|xn−1
1 ) can also be thought of as the push-forward fµ(·|xn−1

1 ), which is

well de�ned as a measure on ΛY because f is a tree morphism.

Theorem 4.3. Suppose that

lim inf
1
N

N∑
n=1

H(Yn|xn−1
1 ) ≥ α

for µ-a.e. x. Then for ν-a.e. y we have

lim inf
1
n

(− log ν[yn−1
1 ]) ≥ α.

Proof. It is convenient to identify (Y, ν) with a sub-σ-algebra G of (X, µ), and think of

Yn as random variables on X. We write Gn for the σ-algebra generated by Y1, . . . , Yn,

so G =
∨
Gn. Note that Gn ⊆ Fn.

By the lemma above, it su�ces to show that

(4.2) lim inf
N→∞

1
N

N∑
n=1

H(Yn|yn−1
1 ) ≥ α

µ-a.e. De�ne hn : X → R+ by

hn(x) = H(Yn|xn−1
1 )

Since ν(·|yn−1
1 ) is the mean of the distributions ν(·|xn−1

1 ) over all x ∈ f−1y, the con-

cavity of the entropy function in the distribution implies

H(Yn|yn−1
1 ) ≥ E(hn | Gn−1),

and both are Gn−1-measurable. On the other hand,

1
N

N∑
n=1

(E(hn | Gn−1)− E(hn | G)) → 0

since these are averages of bounded martingale di�erences. By the hypothesis,

lim inf
1
N

N∑
n=1

hn ≥ α,
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so, conditioning on G,

lim inf
N→∞

1
N

N∑
n=1

E(hn | G) ≥ α.

Combining this with the two previous inequalities, we have

lim inf
N→∞

1
N

N∑
n=1

H(Yn|yn−1
1 ) ≥ lim inf

N→∞

1
N

N∑
n=1

E(hn | G) ≥ α,

which is what we wanted. �

4.3. Metric trees. For 0 < ρ < 1, a ρ-tree is a tree X together with the compatible

metric

dρ(x, y) = ρmin{n : xn 6=yn}.

Note that if X is a ρ-tree and Y is a τ -tree then a tree morphism X → Y is ρ/τ -Hölder.

In particular if τ = ρ then it is Lipschitz.

In a ρ-tree the diameter of an n-cylinder is ρn, and

Br(x) = [x1 . . . xk],

where k =
⌈

log r
log ρ

⌉
. Thus if µ is a measure on X then

lim inf
n→∞

log µ(Br(x))
log r

= lim inf
n→∞

log µ([x1 . . . xn])
n log ρ

,

and likewise for lim sup. In particular, 3.1(1) yields

Lemma 4.4. If µ is a measure on a ρ-tree X such that

lim inf
n→∞

(
− log µ([x1 . . . xn])

n

)
≥ α µ-a.e.,

then dim∗ µ ≥ α
log ρ .

The metric we choose for a tree is somewhat arbitrary, and we may change it at our

convenience, but one must note that this leads to a re-scaling of dimensions.

Recall the de�nition of Hρ(µ) for a measure µ on a metric space (section 3.3). In

the case of a ρ-tree X with a probability measure µ we see, writing again Xn for the

coordinate functions, that

Hρ(µ) = H(X1),

and more generally,

Hρn+1(µ[x1...xn]) = H(Xn+1|x1 . . . xn),

where µA = 1
µ(A)µ|A as usual. If f : X → Y is a morphism of ρ-trees and ν = fµ, we

have

Hρn+1(fµ[x1...xn]) = H(Yn+1|x1 . . . xn).

We can thus re-formulate Theorem 4.3 as follows:
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Theorem 4.5. Let X,Y be ρ-trees and f : X → Y a tree morphism, and let µ be a

probability measure on X. If

lim inf
1
N

N∑
n=1

Hρn+1(fµ[x1...xn]) ≥ α

for µ-a.e. x, then

dim∗ fµ ≥ α

log(1/ρ)
.

The signi�cance of this theorem is that one obtains a lower bound on the dimension

of the image measure fµ, in terms of an asymptotic property of the measure µ in

the domain. Because the map is not one-to-one, a lot of structure is destroyed in

the passage from µ to fµ, and it may be impossible to �nd enough structure in fµ

to analyze it directly. Instead, this theorem allows one to use structural information

about µ and the way f acts on cylinder sets in order to bound dim∗ fµ from below.

5. Lifting maps to tree morphisms

In order to make use of the last section's results it is necessary to lift topological

maps (between trees, Euclidean domains, or a mixture of the two) to tree morphisms.

This technical section provides the tools for this.

5.1. Base-p representation. Given p ≥ 2 one can represent [0, 1] using a p-regular

tree: u : {0, . . . , p− 1}N → [0, 1] is given by

u(x) =
∞∑

n=1

p−nxn.

We shall always give the full tree {0, . . . , p−1}N the metric d1/p, under which u becomes

1-Lipschitz. Similarly the base-p representation of the cube [0, 1]d is given by the tree

({0, . . . , p− 1}d)N with the map (x1, . . . , xd) 7→ (u(x1), . . . , u(xd)) and the metric d1/p,

under which this map is again 1-Lipschitz with respect to the ‖·‖∞-norm on the range.

5.2. Faithful maps. Below we introduce a class of maps which do not distort dimen-

sion very much.

De�nition 5.1. Let X be a ρ-tree. A map f : X → Rd is C-faithful if for each n and

each a ∈ Λn the following conditions hold:

(1) Multiplicity: No point in f [a] is covered by more than C sets f [ab], b ∈ Λ.
(2) Decay: f [a] contains a ball of radius (C−1ρ)n and is contained in a ball of

radius (Cρ)n.

For example, the base-p coding of [0, 1]d is C-faithful for C = 2d.
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The second condition in the de�nition implies that a C-faithful map of a ρ-tree is

(1− log C
log(1/ρ))-Hölder. Therefore, if µ is a measure on X, then

dim∗(fµ) ≤ log(1/ρ)
log(1/ρ)− log C

dim∗ µ.

In applications, C will be independent of ρ and we will be free to choose ρ to be very

small (for example, representing points in [0, 1]k using a large base); then the bound

above approaches dim∗ µ. Similarly, the following provides a lower bound:

Proposition 5.2. Let µ be a measure on a ρ-tree X and suppose f : X → Rd is

C-faithful. Then

dim∗(fµ) ≥ dim∗(µ)−
OC,d(1)
log(1/ρ)

.

Proof. We use the characterization of dim∗ given in Lemma 3.1(1). Given ε > 0,
Egorov's theorem yields a closed set Eε ⊆ X of measure at least 1− ε such that

lim inf
r↓0

log µ|Eε(Br(x))
log r

≥ dim∗(µ) uniformly in x ∈ Eε.

Since it is enough to prove the desired result for f(µ|Eε) for each ε > 0, we can assume

without loss of generality that there is uniformity already for µ and, in particular, there

is N ∈ N such that

(5.1) µ[a] ≤ ρ(dim∗(µ)−1)n

whenever a ∈ Λn with n ≥ N .

Fix x ∈ X and write y = f(x). Pick n ≥ N , and let

Φ = {a ∈ Λn : f [a] ∩Bρn(y) 6= ∅}.

By the decay hypothesis, each f [a], a ∈ Φ, contains a ball of radius (C−1ρ)n and is

contained in a ball of radius (Cρ)n. In particular, f [a] ⊂ B(1+2Cn)ρn(y). On the other

hand, by the multiplicity assumption, no point can be covered by more than Cn of the

sets f [a], a ∈ Φ. Hence, writing λ for Lebesgue measure on Rd, we have

1
Cn

(C−1ρ)nd|Φ| ≤
λ
(⋃

a∈Φ f [a]
)

λ(B1(0))
≤ ((1 + 2Cn)ρn)d .

Therefore |Φ| ≤ exp(OC,d(n)), and using (5.1) we deduce that

(fµ)(Bρn(y)) ≤ |Φ|max
a∈Φ

µ[a] ≤ ρ
n·(dim∗(µ)−

OC,d(1)

log(1/ρ)
)
.

Letting n →∞ we conclude that

dim(fµ, y) ≥ dim∗(µ)−
OC,d(1)
log(1/ρ)

.

In light of Lemma 3.1(1), this yields the desired result. �
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Note that if X is a ρ-tree then for a ∈ Λn,

Hρn+1(µ[a]) = −
∑
b∈Λ

µ[a][ab] log µ[a][ab],

i.e. this is the Shannon entropy of µ[a] with respect to the partition induced from a's

children.

The importance of the following estimate is that it is independent of ρ.

Proposition 5.3. Let µ be a measure on a ρ-tree X and suppose f : X → Rk is

C-faithful. Then for any n-cylinder a,∣∣Hρn+1(µ[a])−Hρn+1(fµ[a])
∣∣ < OC,k(1).

Proof. Since f |[a] is a C-faithful map on the ρ-tree [a] (with the re-scaled metric

ρ−ndρ(·, ·)) we may without loss of generality assume that n = 0, a = empty word, so

we must prove

|Hρ(µ)−Hρ(fµ)| < OC,k(1).

Notice that

Hρ(µ) = −
∫

log(µ[x1])dµ(x),

Hρ(fµ) = −
∫

log µ(Bf
ρ (x))dµ(x),

where

Bf
ρ (x) = f−1(Bρ(f(x)).

By the decay assumption in De�nition 5.1, f [x1] is contained in a ball of radius Cρ,

and therefore [x1] ⊆ Bf
Cρ(x), whence HCρ(fµ) ≤ Hρ(µ). It then follows from Lemma

3.5 that

Hρ(fµ)−Hρ(µ) ≤ OC,k(1).

For the other inequality, let

Λ(a) = {b ∈ Λ : dist(f [a], f [b]) < ρ}.

A volume argument like the one in the proof of Proposition 5.2 yields that b ∈ Λ
belongs to at most OC,k(1) of the sets Λ(a). Since clearly

Bf
ρ (x) ⊆

⋃
a∈Λ(x1)

[a],
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we can estimate

Hρ(µ)−Hρ(fµ) =
∫

log

(
µBf

ρ (x)
µ[x1]

)
dµ(x)

≤
∫

µBf
ρ (x)

µ[x1]
dµ(x)

≤
∫ ∑

b∈Λ(x1) µ[b]

µ[x1]
dµ(x)

=
∑
a∈Λ

∑
b∈Λ(a)

µ[b]

≤ OC,k(1). �

5.3. Lifting maps to tree morphisms. The following technical result decomposes

a map into a tree morphism, which is easier to analyze, and a faithful map, which by

Proposition 5.2 has little e�ect on dimension.

Theorem 5.4. Let X be a ρ-tree and f : X → Rk an L-Lipschitz map. Then there is

a commutative diagram

X
g

- Y

Rk

h

?

f
-

where:

(1) Y is a ρ-tree.

(2) g is a tree morphism.

(3) h is Ok,L(1)-faithful.
(4) If µ is a measure on X, then for any n-cylinder [a] ⊆ X,∣∣Hρn+1(fµ[a])−Hρn+1(gµ[a])

∣∣ = Ok,L(1).

Proof. We �rst note that by rescaling the metric on the range Rk, we may assume that

f is 1-Lipschitz. This rescaling a�ects the implicit constants in the O notation, but as

we allow them to depend on L, we obtain an equivalent statement.

The construction of Y and the associated maps consists of two parts.

Step 1: construction of Y and h. Since f is 1-Lipschitz and diam X = 1, we may

assume that the image is contained in [0, 1]k. Note that the cube Q = [0, 1]k has the

property that, given N , it can be covered by 2kNk closed cubes Q0, . . . , Q2kNk−1 ⊆ Q

such that

• Each Qi has side length 1/N ,

• No point in Q is covered by more than 2k + 1 of the cubes Qi,
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• If Q′ ⊆ Q is a cube of side length ≤ 1
2N , then Q′ ⊆ Qi for some i.

The same holds for any other cube, with side lengths scaled appropriately.

For example, for k = 1 cover [0, 1] by 2N intervals of length 1/N starting at the

rational points i/2N .

Let {Nn} be an integer sequence taking values in {bρ−1c, bρ−1c + 1}, such that for

Pn =
∏n

i=1 Ni we have 1
2 ≤ ρnPn ≤ 1 (if 1/ρ ∈ N we can take Nn = 1/ρ and then

Pn = ρ−n).

Let Y be the tree such that each vertex of level n has 2kNk
n o�spring, numbered

0, . . . , 2kNk
n − 1 (when 1/ρ ∈ N this is a regular tree).

We inductively construct a map h̃ which assigns to each cylinder set [a] ⊆ Y a

cube h̃[a] ⊆ [0, 2]k of side length 2P−1
n . We start by h̃[∅] = [0, 2]k. Suppose that Q =

h̃[y1 . . . yn] has been de�ned and is a cube of side length 2P−1
n . Let Q0 . . . Q2Nk

n+1−1 ⊆ Q

be the sub-cubes of Q with properties analogous to those listed above for the unit cube.

For y ∈ {0, . . . , 2Nk
n+1 − 1} set h̃([y1 . . . yny]) = Qy.

Finally, this de�nes h by

{h(y)} =
∞⋂

n=1

h̃[y1 . . . yn].

It is easy to see that, since h respects inclusion for cylinder sets, the intersection of the

right-hand side is a single point. From the construction it is easy to check that h is

Ok(1)-faithful.
Step 2: de�ning the morphism g : X → Y . It is more convenient to work with

the symbolic representation: we de�ne a morphism g : Λ∗X → Λ∗Y so that f [a] ⊆ h̃[g(a)].
This clearly implies that f = hg.

We proceed by induction on the word length. Start with g(∅) = ∅ (corresponding to

g(X) ⊆ Y ). Suppose we have de�ned g(x1 . . . xn) = y1 . . . yn and the cube h̃[y1 . . . yn],
which has side length 2P−1

n , contains f [x1 . . . xn]. Since f is 1-Lipschitz, for each

a ∈ ΛX the set f [x1 . . . xna] is contained in a cube of side length ρn+1 ≤ P−1
n+1, i.e.

1/2Nn+1 times the side length of h̃[y1 . . . yn]. Thus by construction of h̃ there is at

least one b ∈ {0, . . . , 2Nk
n+1 − 1} such that the cube h̃[y1 . . . ynb] contains f [x1 . . . xna];

set g(x1 . . . xna) = y1 . . . ynb.

This completes the construction of Y and of g, h.

Finally, the entropy estimate is a consequence of the commutativity of the diagram,

the faithfulness of h and Proposition 5.3. �

6. Semicontinuity of dimension: Bernoulli convolutions

As a warm-up we demonstrate in this section how the methods introduced so far can

be used to obtain semi-continuity of the Hausdor� dimension of Bernoulli convolutions

in the parameter space (Theorem 1.8). Recall that for 0 < t, p < 1 the Bernoulli



Local entropy averages and projections 23

convolution νp
t is the distribution of the random real number

∞∑
n=0

±tn

where the signs are chosen i.i.d. with marginal distribution (p, 1− p). The parameter

t is called the contraction ratio.

Bernoulli convolutions have been studied extensively. It is known that, with p = 1
2 ,

almost every t ∈ [12 , 1) leads to a measure which is absolutely continuous with respect

to Lebesgue (in particular, it has dimension 1), with similar results available for other

values of p in a smaller range of t. See [28] and references therein for further background.

Theorem 1.8 can be inferred from a combination of existing results. In [30] it is

shown that dime(ν
p
t ) exists and is given by the supremum over a countable family of

continuous functions of t and p, implying that dime(ν
p
t ) is lower semicontinuous in t, p.

On the other hand it is a rather deep fact that νp
t is exact-dimensional; see [9] for

a careful argument. Combining these with Proposition 3.4, we �nd that dim(νp
t ) is

lower-semicontinuous. Theorem 1.8 provides a direct argument for the semicontinuity

of Hausdor� dimension. We note that a simple ergodicity argument in the coding space

shows that dim∗(ν
p
t ) = dim∗(νp

t ) for all t, p, so the result for lower Hausdor� dimension

implies it for the Hausdor� dimension.

Proof of Theorem 1.8. Fix (t0, p0) ∈ (0, 1)× (0, 1) and ε > 0, and choose N such that

HtN0

(
νp0

t0

)
N log(1/t0)

> dime(ν
p0
t0

)− ε.

Write Λ = {−1, 1}N . Given u = (u0, . . . , uN−1) ∈ Λ, let Pt(u) =
∑N−1

i=0 uit
i, and de�ne

πt : ΛN → R by

πt(x) =
∞∑
i=0

Pt(xi) tiN .

Let µp be the product measure on ΛN whose marginal is

µp([u]) = p|{i:ui=1}|(1− p)|{i:ui=−1}| for u ∈ Λ.

Then νp
t = πt(µp). It is not hard to check that (t, p) 7→ HtN (νp

t ) is continuous. Thus

there is a small square Q = [t0 − δ, t0 + δ]× [p0 − δ, p0 + δ] (with δ depending only on

ε since N = N(ε)) such that, for (t, p) ∈ Q,

γ := N log(1/t)
(
dime(ν

p0
t0

)− 2ε
)
≤ HtN (νp

t ).

Fix (t, p) ∈ Q, write µ = µp and π = πt, and set ρ = tN . To complete the proof, it is

enough to show that

dim∗(ν
p
t ) ≥ dim∗(ν

p0
t0

)− 2ε−O(1/N).
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The implicit constant in O(1/N) will depend on t0, but since N can be taken arbitrarily

large given (p0, t0), this is of no consequence.

Note that, thinking of X = ΛN as a ρ-tree, πt becomes Lipschitz and we can apply

Theorem 5.4 to obtain X
g−→ Y

h−→ R.
Since µ is a product measure, we may identify µ[a] and µ under the natural identi�-

cation of [a] with the full tree. Also,

πµ[a] = Sπµ,

where S : R → R is a homothety that scales by t−N |a|. Since translations do not change

entropies, we conclude

Hρ|a|+1

(
πµ[a]

)
≥ γ.

By Theorem 5.4,

Hρ|a|+1

(
gµ[a]

)
≥ γ −O(1).

This holds uniformly for all a ∈ Λ∗. Hence, using Theorem 4.5,

dim∗(gµ) ≥ 1
log(1/ρ)

(γ −O(1)).

Finally, by Proposition 5.2,

dim∗(ν
p
t ) ≥ dim∗ gµ− O(1)

N log(1/t)

≥ γ −O(1)
N log(1/t)

≥ dime(ν
p0
t0

)− 2ε−O(1/N)

≥ dim∗(ν
p0
t0

)− 2ε−O(1/N),

where we used Proposition 3.4 in the last line. This completes the proof. �

7. CP-chains and local dynamics

In this section we formalize the notion of local dynamics of a measure along a �l-

tration. We then introduce a slight generalization of Furstenberg's CP-chains, which

provide a rich supply of measures with good local dynamics.

We adopt the convention that a measure refers to a probability measure on Euclidean

space or a tree. We use the term distribution for probability measures on larger spaces,

such as the space of measures, sequence spaces over measures, etc.

This section uses some basic notions from ergodic theory. A good introductory

reference is [35].

7.1. Generic sequences. Let M be a compact metric space (which, later on, we

usually do not specify) and denote by T the shift map on MN. A sequence µ =
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(µn)∞n=1 ∈ MN is generic if the sequence of distributions

AN (µ, T ) =
1
N

N∑
n=1

δT nµ

converges in the weak-* topology, as N →∞, to some distribution P ∈ P(MN) (note
that these distributions are the uniform measure on the initial N points of the orbit

of µ under T ). Equivalently, there is a distribution P ∈ P(MN) such that, for any

f ∈ C(MN),
1
N

N−1∑
n=0

f(Tnµ) →
∫

fdP.

When it exists, the limit distribution P is T -invariant. Similarly, µ is totally generic if

for each q ≥ 1, the corresponding average

AN (µ, T q) =
1
N

N−1∑
n=0

δT qnµ

converges as N →∞ to a distribution Pq. In general, total genericity is stronger than

genericity.

An ergodic T -invariant distribution P on MN decomposes under T q into q′ ergodic

components for some q′|q, and these components average to P . When µ is generic for

P and the averages lim AN (µ, T q) converge to a distribution Pq, then Pq is invariant

under T q so it is a convex combination of these q components. Thus,

1
q

q−1∑
i=0

T iPq = P.

This implies the following lemma which we record for later use:

Lemma 7.1. Suppose µ ∈MN is generic for P ∈ P(MN). Let q > 1 and suppose that

AN (µ, T q) → Q. Let f ∈ C(MN). Then there is an i ∈ {0, . . . , q − 1} such that

lim
N→∞

1
N

N−1∑
n=0

f(T i+qnµ) ≥
∫

fdP

Proof. Immediate from the fact that P = 1
q

∑q
i=0 T iQ. �

7.2. Boxes and scaled measures. A d-dimensional box is a product of d intervals

of positive length, each of which may be open, closed or half-open. The eccentricity of

a box is the ratio of the lengths of the longest and shortest side.

A box is normalized if its volume is 1 and its �lower left corner�, i.e. the lexico-

graphically minimal point in its closure, is at the origin. For instance [0, 1]d and (0, 1)d

are normalized. Every box B can be scaled and translated in a unique way to give a

normalized box, which we denote B∗. We also de�ne the linear operator TB by

TB(x) =
1

volB
(x−minB),
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where min refers to the lexicographical ordering. Thus B∗ = TBB.

Recall that for a measure µ and box B with µ(B) > 0 we write

µB =
1

µ(B)
µ|B,

which is a probability measure supported on B. We also de�ne

µB = TB(µB) =
1

µ(B)
TB(µ|B).

This is a probability measure supported on B∗. We call this the re-scaled version of

µB.

7.3. Dynamics along �ltrations. Suppose now that we are given a ρ-regular se-

quence of re�ning partitions F = (Fn)∞n=1 of a box B into sub-boxes. For µ supported

on B and x ∈ suppµ we write Fn(x) for the element of Fn containing x. De�ne

µx,n = µFn(x)

and

µx,n = µFn(x)

In this way, for each µ and x we obtain sequences of measures (µx,n)∞n=1 and (µx,n)∞n=1.

The former sequence does not exhibit interesting dynamics, since the support of the

measures decreases to a point. However, elements of the latter sequence have been

re-scaled and the sequence potentially exhibits interesting dynamics. Because the �l-

tration is ρ-regular the eccentricities of Fn(x) are bounded, so there is a bounded

region of Rd supporting all the measures µx,n. Thus all the µx,n belong to some weak-∗

compact set in the space of measures.

De�nition 7.2. Given a measure µ on Rd and a ρ-regular sequence F = (Fn)∞n=1 of

partitions, µ generates a distribution P ∈ P(MN) at x if (µx,n)∞n=1 is totally generic

for P . It generates P along F if it generates P at µ-a.e. point.

We record for later use the following useful result:

Lemma 7.3. Suppose µ generates P w.r.t. a partition (Fn). Let E be a set with

µ(E) > 0. Then ν = µE generates P .

Proof. Write ν = µE . By the martingale theorem, for µ-a.e. x ∈ E,

ν(Fn(x))
µ(Fn(x))

=
µ(E ∩ Fn(x))

µ(Fn(x))
→ 1

which implies that, for a.e. x ∈ E the sequences (µx,n)∞n=1 and (νx,n)∞n=1 are weak-*

asymptotic as n →∞, so if one is generic for some distribution, both are. �

7.4. CP-chains. We next introduce a slightly generalized version of Furstenberg's CP-

chains, which will supply us with measures and �ltrations leading to generic sequences.
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De�nition 7.4. Let E be a family of boxes. A partition operator ∆ on E assigns to

each E ∈ E a partition ∆E = {Ei} ⊆ E of E in a translation and scale-invariant

manner, i.e. if Sx = ax + b and E,SE ∈ E then S(∆E) = ∆(SE).

De�ne the iterates of ∆ by B ∈ E by

∆0(B) = {B},

∆n+1(B) =
⋃

E∈∆nB

∆(E).

Thus ∆n(B) form a sequence of re�ning partitions of B.

De�nition 7.5. A partition operator ∆ on E is ρ-regular if for each B ∈ E the sequence

of partitions (∆nB)∞n=1 is ρ-regular.

For example, the base-b partition operator is de�ned on E = {[a, b]d : a < b} by

∆([0, 1]d) = Db (and extend by invariance to all cubes). Then ∆n([0, 1]d) = Dbn . This

operator is 1/b-regular.

De�nition 7.6. A CP-chain for a ρ-regular partition operator ∆ on E is a stationary

Markov process (µn, Bn)∞n=1, where:

(1) The state space is the space of pairs (µ,B) in which B ∈ E is a box and µ is a

probability measure supported on B∗.

(2) The transition is given by the law

for B ∈ ∆(A∗) , (µ,A) 7→ (µB, B) with probability µ(B).

We usually do not specify ∆ (or E), and use this symbol generically for the partition

operator associated to a CP-chain.

The stationary process (µn)∞n=1 is called the measure component of the process. We

shall not distinguish notationally between the distribution of the CP-chain, its measure

component and its marginals. Thus if P is the distribution of a CP-chain we may write

(µ,B) ∼ P , µ ∼ P etc; the meaning should be clear from the context.

Furstenberg's CP-chains are recovered using the base-b partition operator. We use

this partition operator everywhere except in the proof of Theorem 1.3, where a slightly

more elaborate partition operator is needed. We remark that one can introduce even

more general CP-chains by allowing the partition to depend also on the measure, i.e.

Bn+1 = ∆(Bn, µn), and also allow more general shapes than boxes; but we shall not

need this.

The following consequence of the ergodic theorem is immediate:

Proposition 7.7. Let (µn, Bn)∞n=1 be an ergodic CP-chain with partition operator ∆
and distribution P . Then for P−a.e. (µ,B), µ generates the measure component of P

w.r.t. the partitions Fn = ∆n(B∗), n = 1, 2, 3 . . ..
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Proof. Given a typical (µ1, B1), consider the conditional distribution on (µn, Bn)∞n=2,

obtained by running the chain forward from (µ1, B1) using the transition law in the

de�nition. Note that the random set

An = T−1
Bn

. . . T−1
B2

T−1
B1

B∗
1

satis�es An ∈ ∆n(B∗
1) and

µn = (µ1)An .

Since diam An → 0 by regularity of ∆, the intersection
⋂∞

n=1 An consists almost surely

of a single random point X ∈ B1. By de�nition

µn = (µ1)X,n,

and furthermore the transition law has been so chosen that X is distributed according

to µ1.

Now, by the ergodic theorem almost every realization (µn, Bn)∞n=1 is generic for the

CP-chain, and in particular almost every (µn)∞n=1 is generic for the measure component

of the process. Hence for almost every µ1 and almost every (µ1)∞n=1 conditioned on

µ1 this is true. But by the above, given µ1 the conditional distribution on sequences

(µn)∞n=1 of measures is the same as the distribution ((µ1)x,n)∞n=1 when x is distributed

according to µ, as desired.

Total genericity follows in the same way, because almost every point in an ergodic

system is totally generic. �

Corollary 7.8. Let (µn, Bn)∞n=1 be a CP-chain with partition operator ∆. Let P(µ,B)

denote the ergodic component of (µ,B). Then for a.e. pair (µ,B), µ generates the

measure component of P(µ,B), w.r.t. the �ltration Fn = ∆n(B∗).

Proof. This follows from the previous proposition and the fact that the ergodic com-

ponents of a Markov chain are Markov chains for the same transition law. �

The next lemma is analogous to [13, Theorem 2.1] (and the remark following it). In

the examples we shall encounter one can either rely on that proposition, or else the

statement will be clear for other reasons, but we outline a proof for completeness.

Lemma 7.9. For an ergodic CP-chain (µn, Bn)∞n=1, a.e. measure µn is exact dimen-

sional, and dim µn is almost surely constant.

Proof. It is easy to see that dim∗ µn is non-increasing in n, since µn+1 is, up to scale

and translation, the restriction of µn to Bn+1. Since dim∗(·) is a Borel function of the

measure, and the process is ergodic, dim∗(·) must be almost everywhere constant. The

same argument works for dim∗.
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To see that µ1 (and hence µn) is exact-dimensional, condition the process on (µ1, B1),
and let An be de�ned as in the proof of Proposition 7.7. Then

lim
N→∞

− log µ1(AN )
log diam AN

= lim
N→∞

− 1
N log ρ

N∑
n=1

log µ1(An)
log µ1(An−1)

= lim
N→∞

− 1
N log ρ

N−1∑
n=0

log µn(Bn+1).

(in the �rst equality we used ρ-regularity of the partition operator). Writing P for the

distribution of the process, the ergodic theorem implies that the above converges to

α = − 1
log ρ

∫
log µ(B) dP (µ,B)

almost surely. Using the fact that X = ∩An is distributed according to µ, and using

regularity of ∆ again, it follows from Lemma 3.2 that

dim(µ1, x) = dim(µ1, x) = α

for µ1-a.e. x, which establishes the lemma. �

In light of the previous lemma, we refer to the dimension of a typical measure for a

CP-chain as the dimension of the chain.

7.5. Micromeasures and existence of CP-chains. The following discussion is adapted

from [13].

Let µ be a measure on Rd. A micromeasure of µ is any weak limit of measures

of the form µQn , where the Qn are cubes of side length tending to 0. The set of

micromeasures of µ is denoted 〈µ〉. Micromeasures are closely related to the tangent

measures of geometric measure theory.

Starting from a measure µ on [0, 1]d and the b-adic partition operator, one can run

the chain forward. If one averages the distributions at times 1, 2, . . . , n one gets a

sequence of distributions which in general will not converge, but one may still take

weak-* limits of it. These limiting distributions can be easily shown to be CP-chains

and are supported on the micromeasures of µ. In this way we have associated to µ

a family of CP-chains supported on 〈µ〉, and from which one may hope to extract

information about µ. One result in this direction is the following theorem, which

appears in another form in Furstenberg's paper [12]. Since it is not stated there in this

way, we indicate a proof.

Theorem 7.10. Let µ be a measure on [0, 1]d. Then there is an ergodic CP-chain of

dimension at least dime(µ) supported on 〈µ〉.

Proof. This is very similar to [13, Proposition 5.2]. Using the notation from that paper,

we indicate how to modify that proof to get the desired result: to form the measures ν`



30 M. Hochman and P. Shmerkin

(which correspond to our distributions on measures), use the given measure µ rather

than the measures θ` constructed in [13]. Moreover, consider only values of ` along a

sequence `j such that
1

`j log p
H(µ,D

p`j ) → dime(µ),

which we are allowed to do thanks to Lemma 3.3 above. Then proceed as in [13,

Proposition 5.2] to take a weak limit point of the distributions ν`, which is clearly

supported on 〈µ〉. It follows that
∫

H(ν,Dp)dP (ν) ≥ dime(µ). Hence there is an

ergodic component Q of P for which the same holds. Q is still a CP-chain and is

supported on 〈µ〉, and its dimension is equal to the average above (this follows from

[13, Theorem 2.1]), which is at least dime(µ). �

8. Dimension of projections and CP-chains

In this section we establish some continuity results for linear and smooth projections

of typical measures for CP-chains. We show that the dimension of these projections is

controlled, or at least bounded below, by mean projected entropies of the CP-chain.

8.1. Linear projections. Fix an ergodic CP-chain (µn, Bn)∞n=1 with partition oper-

ator ∆ and distribution P . Fix k and an orthogonal projection π ∈ Πd,k. Given a

measure ν and q ∈ N, let

eq(ν) =
1

q log(1/ρ)
Hρq(πν),

and denote the mean value of eq by

Eq =
∫

eq(ν)dP (ν).

For the rest of the section, the constants implicit in the O(·) notation depend only

on ρ, the constant in the de�nition of ρ-regularity, d and k. The following theorem

contains the proof of Theorem 1.9

Theorem 8.1. Let P be the distribution of an ergodic CP-chain, π ∈ Πd,k a projection,

and let eq, Eq be de�ned as above. Then if µ is a measure generating P along a �ltration

Fn = ∆nB∗, then

(8.1) dim∗(πµ) ≥ Eq −O(1/q).

In particular, this holds for P -a.e. µ.

Proof. First, suppose that the measure component of the process is totally ergodic.

Since µ generates the measure component of P , by Proposition 7.7,

1
N

N−1∑
n=0

eq(µx,n) → Eq.
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Fix q. Using linearity of π, the ρ-regularity of F and Proposition 5.3 we see that for

every n ∈ N, ∣∣Hρq(πµx,n)−Hρn+q(πµx,n)
∣∣ = O(1).

Therefore for µ-a.e. x,

1
q log(1/ρ)

· lim inf
N→∞

1
N

n∑
n=0

Hρn+q(πµx,n) ≥ En −O(1/q).

Let X be the ρq-tree whose nodes at level n are the atoms of Fqn with ancestry

determined by inclusion. De�ne f : X → Rd by

{f(E1, E2, . . .)} =
∞⋂

n=1

En.

Then f is Lipschitz by ρ-regularity of F (the Lipschitz constant depends also on the

constant C in the de�nition of ρ-regularity). Let µ̃ be the lift of µ to X.4

For the map f̃ = πf : X → Rk apply Theorem 5.4, obtaining a ρq-tree Y and

maps X
g−→ Y

h−→ Rk as in the theorem. It follows that for each n-cylinder Ẽ ⊆ X,

corresponding to E ∈ Fqn, we have∣∣∣Hρq(n+1)(f̃µ eE)−Hρq(n+1)(gµ eE)
∣∣∣ = O(1).

Thus, for gµ̃-a.e. y ∈ Y ,

1
q log(1/ρ)

lim inf
N→∞

1
N

N−1∑
n=0

Hρq(n+1)(gµ[y1...yn]) ≥ Eq −O(1/q).

By Theorem 4.5, this implies that

dim∗ gµ̃ ≥ Eq −O(1/q),

and since h is faithful,

dim∗ hgµ̃ ≥ Eq −O(1/q).

As hgµ̃ = πµ, we are done.

Suppose now that the measure component of the process is not totally ergodic. For

µ-almost every x, there is, by Lemma 7.1, an i = i(x) ∈ {0, . . . , q − 1} (which may be

chosen measurably in x) such that

lim inf
1
N

N−1∑
n=0

en(µx,qn+i) ≥ Eq.

Let Ai ⊆ Rd be the partition according to i(x). We may apply the argument above to

TBµAi∩B for each i and each B ∈ Fi separately, using the induced �ltrations TBF (see

4If µ gives non-zero mass to the boundaries of partition elements the lift may not be unique. Fix for
example the lift de�ned by the condition that the cylinder set corresponding to E ∈ Fn has mass µ(E),
and we choose µ to be this measure. Alternatively, we may assume that the boundary of partition
elements is null by reducing, if necessary, to a lower-dimensional case as in [13].
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Lemma 7.3). Since µ is a weighted average of the measures µAi∩F , this completes the

proof. �

We now let π vary. Thus eq : M×Πd,k → [0, k] and Eq : Πd,k → [0, k], and we write

eq(ν, π) and Eq(π) to make the dependence on π explicit. Note that the next theorem

implies Theorem 1.10.

Theorem 8.2. Fix an ergodic CP-chain of dimension α (recall Lemma 7.9) with dis-

tribution P . De�ne eq and Eq as above. The limit

E(π) := lim
q→∞

Eq(π)

exists and E : Πd,k → [0, k] is lower semi-continuous. Moreover,

(1) E(π) = min(k, α) for almost every π.

(2) For a �xed π ∈ Πd,k,

dime(πµ) = dim∗ πµ = E(π) for P − a.e. µ.

(3) For any measure µ that generates (the measure component of) P along a �ltra-

tion {∆nB∗},

dime(πµ) ≥ dim∗ πµ ≥ E(π) for all π ∈ Πd,k.

In particular, the above holds on a set M with P (M) = 1.

Proof. We �rst establish convergence of Eq and claim (2). It follows from Theorem 8.1

that if µ generates P , then we obtain

(8.2) dim∗(πµ) ≥ lim supEn(π).

On the other hand, by de�nition of entropy dimension, we have

dime(πµ) = lim inf
n→∞

en(µ, π),

Integrating, we have by Fatou that

(8.3)

∫
dime(πµ)dP (µ) ≤ lim inf

n
En(π).

Since dim∗ πµ ≤ dimeπµ holds for any measure by equation (3.1) in Proposition 3.4,

combining (8.2) and (8.3) we see that En(π) converges and the limit is the common

value of dim∗ πµ = dimeπµ for almost every µ (possibly depending on π).

To prove (1), write β = min{k, α} for the expected dimension of the image measure.

For almost every µ, by Theorem 3.7 we have dim πµ = β. By Fubini, for a.e. π this

holds for a.e. µ, hence E(π) = β for a.e. π (we remark that entropy dimension of a

measure is a Borel function of the measure).

We next establish semicontinuity of E. Given π ∈ Πd,k and ε > 0 there is a q so

that Eq(π)+O(1/q) > E(π)−ε, where O(1/q) is the error term in Theorem 8.1. Since

Eq is continuous, this continues to hold in a neighborhood U of π. By Theorem 8.1,
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for almost every µ, if π′ ∈ U then by letting q →∞ we get dim∗ π′µ > E(π)− ε. This

implies that E(π′) > E(π) − ε for π′ ∈ U , and since ε was arbitrary, semicontinuity

follows.

The last statement follows from (8.2). �

We shall also encounter non-ergodic CP-chains. In this case much of the above fails;

for example, the dimension of the projection through π of need not be a.s. constant, as

they may di�er by ergodic component (nor do measures for the process have to have

the same dimension a.s.). However, we have the following substitute:

Theorem 8.3. Let (µn, Bn)∞n=1 be a CP-chain whose measures almost surely have exact

dimension α, and write β = min{k, α}. Then for any ε > 0 there is an open dense set

U ⊆ Πd,k and a set Mε of measures with P (Mε) > 1− ε and such that

dim∗ πµ > β − ε

for every π ∈ U and µ ∈ Mε.

Proof. Applying Theorem 3.7 and Fubini, we can �nd a dense set of projections {πi}∞i=1 ⊆
Πd,k such that for a.e. µ,

dim∗ πiµ = β for i ∈ N.

This together with equation (3.1) imply that for almost every µ,

lim inf
q→∞

eq(µ, πi) ≥ β

for every i, and we can therefore �nd a set Mε of measures with P (Mε) > 1 − ε such

that for each i, the convergence above holds uniformly in µ ∈ Mε. From this and the

proof of Theorem 8.2, for each i there is an open neighborhood Ui ⊆ Πd,k of πi such

that

dim∗ π′µ > β − ε for π′ ∈ Ui, µ ∈ Mε.

Now U =
⋃∞

i=1 Ui is the open dense set we are looking for. �

8.2. Non-linear images of measures. Fix an ergodic CP-chain, let µ be a typical

measure for it, and de�ne en, En etc. as in the previous section. In the proof of Theorem

8.1 linearity of π was used only for the bound∣∣Hρq(πµx,n)−Hρn+q(πµFn(x))
∣∣ < O(1).

Now replace π with a di�erentiable but non-linear map f . For n large enough, f |Fn(x)

approaches the linear map Dxf , and hence, after a little work, the bound above can

be replaced by ∣∣Hρq((Dxf)µx,n)−Hρn+q(fµFn(x))
∣∣ < O(1).

We have omitted a few details here but this is essentially how the following proposition

is proved.
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Proposition 8.4. Fix an ergodic CP-chain with distribution P , a projection π ∈ Πd,k,

and de�ne eq and Eq as before. Then for all C1 maps f : [0, 1]d → Rk such that

supx∈supp µ ‖Dxf − π‖ < ρq, we have

dim∗(fµ) ≥ Eq −O(1/q)

for all µ that generate the measure component of P along a sequence of partitions

Fn = ∆n(B∗) (and in particular for P -a.e. µ).

Proof. The proof is completely analogous to that of Proposition 8.1, and we only indi-

cate the di�erences.

We construct X from F and π : X → Rd precisely as before, lift µ to µ̃ and let

f̃ = fπ : X → Rk. Construct X
g−→ Y

h−→ Rk as before. We wish to estimate the

dimension of gµ̃ and for this we must estimate

lim inf
N→∞

1
N

N−1∑
n=0

Hρq(n+1)(gµ̃[x1...xn])

for µ̃-typical x ∈ X. Brie�y, the point is that as n → ∞ the map g at [x1 . . . xn]
looks more and more like f on Fqn(x), which looks more and more like Dxf , which is

not far from π, so we are essentially averaging Hρq(n+1)(πµFqn(x)). By ρ-regularity of

the �ltration, this is almost the same as the average of Hρq(πTFqn(x)µFqn(x)), which is

Hρq(πµx,qn) and we get our bound by total genericity.

Here are the details. Losing an O(1) term, by Theorem 4.3 it su�ces to estimate

lim inf
N→∞

1
N

N−1∑
n=0

Hρq(n+1)(fµx,qn)

for µ-typical x. Now, we change scale: letting An denote scaling by ρ−nq on Rk,

Hρq(n+1)(fµx,qn) = Hρq(An(fµx,qn))

Since f is di�erentiable at x, we see that

lim
n→∞

(An(fµx,qn)−An ◦ (Dxf)(µx,qn)) = 0,

and since An ◦Dxf = Dxf ◦ Ãn, where Ãn is scaling by ρ−nq on Rd, we have

lim
n→∞

(
An(fµx,qn)− (Dxf) ◦ Ãn(µx,qn)

)
= 0.

The same is true after we apply Hρq to these measures, so it su�ces to estimate

lim inf
N→∞

1
N

N−1∑
n=0

Hρq((Dxf) ◦ Ãn(µx,qn)).

Since ‖Dxf − π‖ < ρq we have by Lemma 3.6 that

|Hρq(πν)−Hρq((Dxf)ν)| = O(1)
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for any ν, in particular for ν = Ãn(µx,qn); thus we only need to estimate

lim inf
N→∞

1
N

N−1∑
n=0

Hρq(π ◦ Ãn(µx,qn)).

Finally, since Hρq(·) is invariant under translations and F is ρ-regular, by Lemma 3.5 we

may replace Ãn by TFqn(x) at the cost of losing another O(1). Since TFqn(x)µx,qn = µx,qn,

we have reduced the problem to estimating the ergodic averages

lim inf
N→∞

1
N

N−1∑
n=0

Hρq(π(µx,qn))

which, by total ergodicity of P , equal∫
Hρq(πν)dP (ν) = q log(1/ρ) · Eq(π),

as desired. �

Proof of Theorem 1.12. The theorem is an immediate consequence of Theorem 8.2(2)

and Proposition 8.4. �

We also have the following strengthening of Corollary 1.11:

Corollary 8.5. For every ε > 0 there is an open set Uε ⊆ C1([0, 1]d, Rk) with the

following properties:

(1) Uε ∩Πd,k is open, dense and has full measure in Πd,k.

(2) If µ generates the measure component of an ergodic CP -chain along a �ltration

{∆n(B∗)}, then

dim∗ πµ > min(k, α)− ε for all π ∈ Uε,

where α is the dimension of the CP-chain.

Proof. This is an immediate consequence of Theorem 8.2(1) and Proposition 8.4. �

Finally, we obtain Theorem 1.13 as another consequence of Proposition 8.4.

Proof of Theorem 1.13. Fix a measure µ that generates the measure component of the

CP-chain along a �ltration {∆n(B∗)} and a C1 map g : suppµ → Rk without singular

points. It follows from Proposition 8.4 that, given a q ∈ N, for every x ∈ supp(µ) there
is r = r(x) such that

dim∗(gµBr(x)) ≥ Eq(Dxg)−O(1/q).

It easily follows that

dim∗ gµ ≥ essinfx∼µ Eq(Dxg)−O(1/q),

and we obtain the theorem by letting q →∞. �



36 M. Hochman and P. Shmerkin

9. Self-similar measures

9.1. Self-similar sets and measures. In this section we prove Theorem 1.6. We

begin by brie�y recalling the main de�nitions involved.

A map f on Rd is called a contraction if it is C-Lipschitz for some C < 1. Let Λ be

a �nite index set; a collection {fi : i ∈ Λ} of contractions on Rd is called an iterated

function system or IFS for short. As is well-known, there is a unique nonempty compact

set X, called the attractor of the IFS, such that X =
⋃

i∈Λ fi(X). For a = a1 . . . an ∈
Λn, write

fa = fa1 ◦ fa2 ◦ . . . ◦ fan .

Given a ∈ ΛN and x ∈ Rd, the sequence fa1...an(x) has a limit which lies in X and is

independent of x. This de�nes a continuous and surjective map Φ : ΛN → X, called

the coding map.

We say that the strong separation condition holds for {fi : i ∈ Λ} if the sets fi(X)
are pairwise disjoint. This implies that the coding map is injective on the attractor.

Given an iterated function system {fi : i ∈ Λ} and a probability vector (pi)i∈Λ, one

can form the product measure on ΛN with marginal {pi : i ∈ Λ}. The push-forward of

this measure is the unique probability measure on Rd satisfying

µ =
∑
i∈Λ

pi fiµ.

The collection of pairs {(fi, pi)}i∈Λ is called a weighted iterated function system.

When all the maps fi of an IFS are contracting similarities, one says that X is a

self-similar set, and a measure as above is a self-similar measure. Under the strong

separation condition self-similar measures are quite well understood; in particular, they

are exact dimensional. In general, however, projections of self-similar sets or measures

are not self-similar, and may have complicated overlaps even if the original set does

not.

9.2. Proof of Theorem 1.6. Let {fi : i ∈ Λ} be an iterated function system satis-

fying the hypotheses of Theorem 1.6. As with Theorem 1.3, the proof of Theorem 1.6

has two parts: �rst we establish a continuity result (or, rather, a topological statement

about the set of nearly-good projections), and then use invariance of (pieces of) the

self-similar measure under a su�ciently rich set of orthogonal maps to conclude that

all linear projections are good.

We shall rely on the existence of a CP-chain supported on measures closely related

to the self-similar measure from which we begin.

Proposition 9.1. Let µ be a self-similar measure for an IFS satisfying the strong

separation property. Then there is a CP-chain supported on measures ν such that, for

some similarities S, S′ and Borel sets B,B′ (depending on ν), we have µ = SνB and

ν = S′µB′.
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There are a number of ways to construct such a CP-chain. One is to rely on Theorem

7.10, but then one must work a bit to show that micromeasures on which the chain

is supported have the desired property; not all micromeasures do, since, for example,

one can always obtain micromeasures which give positive mass to some a�ne subspace,

even when the original measure gives zero mass to all subspaces. This approach for the

homothetic case is discussed in [14]. The general case is proved in [16].

Given a measure µ on Rd and α ≥ 0, let

Uα(µ) = {π ∈ Πd,k : dim∗ πµ > α}.

The following observation is immediate from the de�nition of lower dimension:

Lemma 9.2. Let µ, ν be two measures on Rd, and suppose that Sµ = νQ for some

similarity S and some set Q with ν(Q) > 0. Let O be the orthogonal part of S. Then

for any α,

Uα(µ) ⊇ {gO : g ∈ Uα(ν)}

With this machinery in place, we have:

Proposition 9.3. Let µ be a self-similar measure for an IFS satisfying the strong

separation condition. Then for every ε > 0 there exists an open and dense set U ⊆ Πd,k

such that

dim∗(πµ) ≥ min(k, dim µ)− ε for all π ∈ U .

Proof. Choose an ergodic CP-chain supported on measures which, up to similarity,

contain a copy of µ as a restriction. Choose ε > 0. By Corollary 1.11, there is an open

dense set of projections U ′ ⊆ Πd,k so that for a.e. measure for the chain, the image

under any π ∈ U ′ has dimension at least min(k, dim µ)−ε. Choosing a typical measure

and applying the previous lemma, we see that

Uα−ε ⊇ {πO : π ∈ U ′},

for some orthogonal map O. This completes the proof. �

We �rst establish Theorem 1.6 in the case of linear maps:

Proposition 9.4. For every π ∈ Πd,k,

dim(πµ) = min(k, dim µ).

Proof. Fix ε > 0. By Corollary 3.9, it su�ces to show that for every π ∈ Πd,k,

dim∗(πµ) > min(k, dim µ)− ε.

Let Uε ⊆ Πd,k denote the set of projections with this property and let π ∈ Uε. For

a ∈ Λ and B = fa(X), where X is the attractor, the same inequality holds with πµB

in place of πµ. Since µB = fa(µ) by strong separation, we conclude that

dim∗ π ◦ fa(µ) > min(k, dim µ)− ε.
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But clearly π ◦ faµ has the same dimension as π ◦ Oaµ, where Oa is the orthogonal

part of fa, so π ◦Oa ∈ Uε. Hence Uε is invariant under the (semi)group action on Πd,k

generated by pre-composition with{Oa : a ∈ Λ}. By Proposition 9.3 the set Uε ⊆ Πd,k

has non-empty interior, and by assumption the action in question is minimal; therefore

Uε = Πd,k. �

Finally, to prove the assertion of Theorem 1.6 about non-linear images of µ, we rely

on Theorem 1.13. Let P be the distribution of the CP-chain found in Proposition 9.1.

It su�ces to show that the function E(π) associated to P in Theorem 1.10 is equal, for

every π, to the expected dimension, i.e. α = min{k, dim µ}. For this we need only note

that, for a P -typical measure ν, we have ν = SµB for some Borel set B and similarity

S. Since dim∗ πµ = α for every π ∈ Πd,k, the same holds for ν. Thus the same also

holds for entropy dimension dime πν, π ∈ Πd,k. But since ν was an arbitrary P -typical

measure, we see from Theorem 8.2 that E(π) = α for every π ∈ Πd,k, as desired.

10. Furstenberg's conjecture and measures invariant under ×m

In this section we prove Theorem 1.3: if m,n are not powers of a common integer

and µ, ν are respectively Tm and Tn-invariant measures on [0, 1], with Tkx = kx mod 1,
then µ × ν projects to a measure of the largest possible dimension for any projection

other than the coordinate projections.

The proof has two parts. The �rst is to associate to µ × ν a CP-chain and derive

topological information about the set of projections which have the desired property.

The second part of the proof uses irrationality of log m/ log n to boost this information

to the desired result using a certain invariance of the set of �approximately good�

projections.

10.1. Invariant measures and CP-chains. We �rst demonstrate how a Tm-invariant

measure gives rise to a CP-chain. We do not use this directly here, but it serves to

explain the construction in the next section.

Lift [0, 1] to X+ = {0, . . . ,m − 1}N via base-m coding and denote by T the shift

map, which is conjugated to Tm. Let µ be a non-atomic Tm invariant measure on [0, 1],
which we identify with its lift to X+. Let µ also denote the shift-invariant measure on

X = {0, 1, . . . ,m− 1}Z,

obtained as the natural extension of (X+, µ, T ); the shift on X is also denoted T . Let

(Xn)∞n=−∞be the coordinate functions

Xn(x) = xn x ∈ X

Disintegrate µ with respect to the σ-algebra F− = σ(Xi : i ≤ 0). For µ-a.e. x ∈ X

we obtain the measure µx on X+, depending only on x− = (. . . x−2, x−1, x0), such that

for any A ⊆ X+ we have µ(A) =
∫

µx(A)dµ(x). For µ-typical x ∈ X construct the
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sequence

(µn, Bn) =
(

µT nx,

[
xn−1

m
,
xn−1 + 1

m

))
∈ P([0, 1])×Dm.

Pushing the measure µ forward via x 7→ ((µn, Bn))∞n=1 we obtain a stationary P([0, 1])×
Dm-valued process which is seen to be a CP-chain for the base-m partition operator.

This is analogous to the second example in [13, page 409].

We record the following well-known fact: If µ is an ergodic Tm-invariant measure,

then both µ and µ-a.e. µx are exact dimensional, with

(10.1) dim µ = dim µx = h(µ, Tm)/ log m,

Here h is the Kolmogorov-Sinai entropy (for µ this follows from Shannon-McMillan-

Breiman, for µx one uses e.g. Lemma 4.2). When µ is not ergodic and µ =
∫

µωdσ(ω) is
its ergodic decomposition, then µ is exact dimensional if and only if almost all ergodic

components have the same dimension (i.e. the same entropy). More generally, one can

show that [21, Theorem 9.1]

h(µ, Tm) =
∫

h(µω, Tm)dσ(ω)

and

(10.2) dim∗ µ = essinfω∼σ dim∗ µω.

10.2. Products of ×m,×n invariant measures. We now deal with the more delicate

case of a measure

θ = µ× ν

where µ, ν are measures on [0, 1) invariant, respectively, under Tm, Tn. When log m
log n ∈ Q

the product measure is invariant under the action Tk × Tk for some k ∈ N which is a

common power of m,n, and we get a CP-chain in much the same manner as before. In

the case that log m
log n /∈ Q the product action, and also all actions of products of powers

of Tm, Tn, are not local homotheties, and the iterates of the product partitions do not

have bounded eccentricity. Instead, we shall show that this measure is associated to a

CP-chain using a more involved partition operator and some additional randomization.

For concreteness we �x m = 2 and n = 3, and assume as we may that µ, ν are non-

atomic. As before, identify µ, ν with shift-invariant measures on X+ = {0, 1}N and

Y + = {0, 1, 2}N and extend to the two sided versions on the corresponding two-sided

subshifts X, Y . Let (Xn)∞n=−∞, (Yn)∞n=−∞ denote the coordinate functions, and let

µx, x ∈ X and νy, y ∈ Y denote the disintegrations with respect to F− = σ(Xn : n ≤
0) and G− = σ(Yn : n ≤ 0}, respectively.

To construct our CP-chain we �rst describe our partition operator. For w ∈ [0, log 3)
de�ne the rectangle

Rw = [0, 1]× [0, ew]
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D D

0£ew£3�2

3�2<ew<3

Figure 10.1. The partition operator ∆. If the eccentricity of R is
ew, then for the rectangles in ∆(R) the eccentricity is ew′

where w′ =
w + log 2 mod log 3.

and let E be all rectangles similar to some Rw, w ∈ [0, log 3). We shall de�ne the

partition operator ∆ on the sets Rw and extend by similarity to the rest of E .
To apply ∆ to Rw, �rst split Rw into R′ = [0, 1

2 ]× [0, ew] and R′′ = (1
2 , 1]× [0, ew].

Then, if w > log(3/2), split R′ into three sub-rectangles with the same base and heights
1
3ew = ew−log 3, and similarly R′′. The partition obtained is ∆(Rw); see Figure 10.1. It
is a partition of Rw into either two or six copies of Rw′ , where

(10.3) w′ = w + log 2− 1{w≥log 3−log 2} · log 3 ∈ [0, log 3)

Thus, applying ∆ repeatedly to a rectangle Rw1 results in partitions into rectan-

gles similar to Rwn , n = 1, 2, 3 . . . and the sequence (wn)∞n=1 evolves according to an

irrational rotation by log 2/ log 3.

Lemma 10.1. For any w ∈ [0, log 3), the �ltration Fn = ∆nRw is 1
2 -regular.

Proof. Immediate, since the base of rectangles in ∆nRw are of length (1
2)n and by

de�nition their eccentricity is uniformly bounded. �

Let

Sw =

(
e−w/2 0

0 ew/2

)
,

so Sw([0, 1]2) = R∗
w and the axes are eigen-directions. Choose (x, y, w) ∈ X × Y ×

[0, log 3) according to µ× ν × λ, where λ is Lebesgue measure, and associate to it the

measure

τ = τx,y,w = Sw(µx × νy).

The distribution of τ is the marginal of the measure component of a CP-chain. To get

the distribution on pairs which is the marginal of the full CP-chain, choose B′ ∈ ∆(Rw)
with weights τ(B′) and setting τ ′ = τB′

; then (τ ′, B′) is the desired marginal (or course,
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τ ′ has the same distribution as τ). One veri�es this by checking that the distribution

is �xed by the transition law with respect to ∆.5

Note that, if µ and ν are ergodic, then Sw(µx × νy) almost surely has the same

dimension as θ = µ× ν.

Proposition 10.2. Suppose µ and ν are ergodic. For every ε > 0 there is a subset

Aε ⊆ [0, 1]2 with θ(Aε) > 1− ε and a dense, open set Uε ⊆ Π2,1 such that for π ∈ Uε,

dim∗ π(θ|Aε) > min{1,dim θ} − ε.

Proof. Let P denote the distribution of the CP-chain, and write

α = min{1,dim θ}.

This is the expected dimension of the projection of a typical measures for a typical

ergodic component of the process. By Theorem 8.3 we can �nd a dense open set

U ′ε ⊆ Π2,1 and A′
ε ⊆ P(Rd) such that P (A′

ε) > 1−ε, and dim∗ πτ > α−ε for all π ∈ U ′ε
and τ ∈ A′

ε.

Using the fact that, conditioned on w, the distribution of τ = τx,y,w is Sw(µx × νy),
with (x, y) ∼ θ, we can apply Fubini to �nd a w0 ∈ [0, log 3) and a Borel set E ⊆ X×Y

such that θ(E) > 1− ε and for every (x, y) ∈ E,

dim∗ π(Sw0µ
x × νx) > α− ε for all π ∈ U ′ε.

For an a�ne map S we identify π ◦ S with the projection π′ whose pre-image sets

partition R2 into the same lines as π. Let

Uε = {π ◦ Sw0 : π ∈ U ′ε}.

Then Uε is open and dense in Π2,1 and for (x, y) ∈ E,

dim∗ π(µx × νx) > α− ε for all π ∈ Uε

De�ne η ∈ P([0, 1]2) by

η =
∫

E
µx × νy dθ(x, y)

Then by Lemma 3.1,

dim∗ πη > α− ε for all π ∈ Uε.

Since

θ = µ× ν =
∫

µx × νy dθ(x, y),

5The dynamics of this process may also be described as follows. Let Σ = X × Y × [0, log 3) with the
measure µ× ν × λ. Let T denote the shift on X, Y . De�ne a transformation S : Σ → Σ by

S(ω, ω′, w) = (Tω, T {w≥log 3−log 2)ω′, w + log 2 mod log 3)

where T σ = T if the event σ occurs and is the identity otherwise. This represents the dynamics as
a skew product X × [0, log 3) with �ber Y , in which the second coordinate w is used to control the
average speed with which the third coordinate (i.e. Y ) is advanced.
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we have η � µ × ν, and since θ(E) > 1 − ε there is a subset Aε ⊆ [0, 1]2 such that

θ|Aε ∼ η and θ(Aε) > 1− ε. This is the desired set. �

10.3. Proof of Theorem 1.3. Let µ, ν be ergodic T2, T3-invariant measures on [0, 1],
respectively, such that dim∗ µ,dim∗ ν > 0. Let θ = µ× ν. Write

α = min{1,dim θ},

and for ε > 0 let Vε ⊆ Π2,1 denote the set

Vε =

{
π ∈ Π2,1 :

There exists A ⊆ [0, 1]2 with

θ(A) > 1− ε and dim∗ π(θ|A) > α− ε

}
In the previous section we saw that this interior of Vε is open and dense in Π2,1.

We now establish some invariance. For this it is convenient to represent projections

π ∈ Π2,1 by the slope of their image, i.e. πa projects onto the line y = ax + b (we

cannot represent projection to the y-axis, but also do not want to). We note that this

identi�cation of Vε as a subset of R is consistent with the topology on Π2,1.

Proposition 10.3. Vε is invariant under the action by multiplication of the semigroup

S = { 3i

2j : i, j ∈ N} ⊆ (N,×), i.e. if πa ∈ Vε then π3a,πa/2 ∈ Vε.

Proof. Suppose πa ∈ Vε and let A ⊆ [0, 1]2 be a set of measure > 1 − ε as in the

de�nition of Vε.

Write T2 × id for the map [0, 1]2 → [0, 1]2 given by

(T2 × id)(x, y) = (T2x, y),

and let

A0 = (T2 × id)−1A ∩ ([0,
1
2
)× [0, 1]),

A1 = (T2 × id)−1A ∩ ([
1
2
, 1)× [0, 1]),

so (T2 × id)−1A = A0 ∪ A1. By the invariance properties of µ, ν we see that µ × ν is

invariant under T2 × id, so

µ× ν(A0 ∪A1) = µ× ν((T2 × id)−1A) > 1− ε.

Also, write

µ0 = µ|[0,1/2)×[0,1]

µ1 = µ|[1/2,1]×[0,1]

Now, by invariance we have

(10.4) µ× ν = (T2µ0 × ν) + (T2µ1 × ν)
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It follows that there are a�ne maps S0, S1 of R with

πa(µ× ν|A) = S0πa/2(µ0 × ν|A0) + S1πa/2(µ1 × ν|A1)

One way to see this is to note that the �bers of πa/2 are lines of slope −2/a and are

mapped under (x, y) 7→ (2x, y) to the �bers of πa, which have slope −1/a.

By assumption dim∗ πa(µ× ν|A) > α− ε. A�ne maps preserve dimension, so

α− ε < dim∗ πa(µ× ν|A)

= min
{
dim∗ S0πa/2(µ0 × ν|A0),dim∗ S1πa/2(µ1 × ν|A1)

}
= min

{
dim∗ πa/2(µ0 × ν|A0),dim∗ πa/2(µ1 × ν|A1)

}
= dim∗ πa/2(µ× ν|(T2×id)−1A),

whence πa/2 ∈ Vε.

A similar analysis, the measures νi = ν|[0,1]×[i/3,(i+1)/3) and the identity

µ× ν = T3(µ× ν0) + T3(µ× ν1) + T3(µ× ν2)

show that if πa ∈ Vε, then π3a ∈ Vε. �

We can now conclude the proof of Theorem 1.3:

Proof of Theorem 1.3. Using (10.2) for µ, ν and Lemma 3.1(2) applied to π(µ×ν), the
general case is reduced to the case in which µ and ν are ergodic. Furthermore, by

Corollary 3.9 it is enough to show that dim∗ π(µ× ν) ≥ α.

Since log 3/ log 2 /∈ Q, the semigroup

S =
{

3i

2j
: i, j ∈ N

}
is dense in R+ [11]; this is the only place in the proof where we use the arithmetic

properties of m,n. For each ε > 0 we have seen that the interior of Vε is open and

dense, in particular contains an open set in each of the rays R+, R−; and since it is

invariant under S we see that

Vε = {πa : a 6= 0}.

For any πa, a 6= 0 we have thus shown that there is a set Aε with µ × ν(Aε) > 1 − ε

and

dim∗ πa(µ× ν|Aε) > α− ε,

which implies

dim∗ π(µ× ν) ≥ α,

as desired. �

10.4. Proof of the topological conjecture. We brie�y show how to derive the topo-

logical version, conjecture 1.1, from the measure one above. Suppose that X, Y ⊆ [0, 1]
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are closed and invariant under T2, T3, respectively. Using the variational principle (see

e.g. [32, Theorem 14.1]) we can �nd probability measures µ, ν on [0, 1), invariant and
ergodic under T2, T3, respectively, such that dim µ = dim A and dim ν = dim B.

Let θ = µ × ν, so that dim θ = dim A × B. For any projection π ∈ Π2,1 \ {πx, πy},
we have by the theorem above that

dim πθ = min{1,dim θ}

Since πθ is supported on π(A×B), we have

dim π(A×B) ≥ min{1,dim θ} = min{1,dim(A×B)},

The right hand side is also an upper bound, so we are done.

10.5. The Rudolph-Johnson theorem. In this section we show how Theorem 1.3

implies the Rudolph-Johnson theorem. We �rst prove the theorem under the hypothesis

that the measure has positive dimension rather than positive entropy.

Theorem 10.4. Let µ be a probability measure on [0, 1] that is invariant under Tm

and Tn, with m,n not powers of the same integer. Suppose that dim∗ µ > 0. Then

µ=Lebesgue measure.

Proof. Write α = dim∗ µ > 0. Denote by ∗ convolution in R and by ◦ convolution in

R/Z. Notice that, up to an a�ne map, µ ∗ µ and π1(µ × µ) are the same (recall that

π1 is projection to the line y = x). Thus, by Theorem 1.3 with µ = ν,

dim∗(µ ∗ ν) = dim∗ π1(µ× ν) = min{1, 2α}

Also, since

µ ◦ µ = µ ∗ µ mod 1

and reduction modulo 1 is a countable-to-one local isometry,

dim∗(µ ◦ µ) = min{1, 2α}.

Finally, it is easy to check that µ◦µ is again invariant under Tm and Tn, because Tm, Tn

are endomorphisms of R/Z.
Iterating this argument, we see that for each k,

dim∗ µ ◦ µ ◦ . . . ◦ µ︸ ︷︷ ︸
2k times

= min{1, 2kα},

and since α > 0 there is a k so that, for ν = ◦2k
µ,

dim∗ ν = 1

But ν is a T2-invariant measure, and by (10.2) Lebesgue measure is the only Tm in-

variant measure of lower dimension 1. Thus

ν = λ.
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To establish µ = λ, we look at the Fourier coe�cients, where convolution translates to

multiplication. For i 6= 0 we have

µ̂(i)2
k

= ν̂(i) = λ̂(i) = 0

Thus µ̂(i) = 0 for i 6= 0, so µ = λ. �

For ergodic measures positive dimension and positive entropy are equivalent con-

ditions. However, the condition that all ergodic components have positive entropy is

weaker; entropy behaves like the mean of the entropies of ergodic components, while

dimension behaves like the essential in�mum. Nevertheless, there is a simple reduction

which recovers the non-ergodic case.

Theorem 10.5 (Rudolph-Johnson [33, 18]). Let µ be a probability measure on [0, 1]
that is invariant under Tm and Tn, with m,n not powers of the same integer. Suppose

that all ergodic components of µ have positive entropy. Then µ=Lebesgue measure.

Proof. Fix t > 0 and let µ≥t denote the restriction of µ to the Tm-ergodic components

which have entropy at least t (and hence by (10.1) dimension at least t/ log m). Clearly

Tm preserves µ≥t. Also, since Tn is an automorphism of Tm it acts on the ergodic

components of (µ, Tm), and if a Tm-ergodic component ν is mapped to ν ′, then ν ′ is an

extension of ν, so h(ν ′, Tn) ≥ h(ν, Tn). Hence Tn preserves the ergodic components of

µ≥t, and thus it preserves µ≥t. It follows that µ≥t is Tm, Tn-invariant, and its dimension

is

dim∗ µ≥t = essinf
h(ν, Tm)
log m

≥ t

log m
> 0.

(the in�mum is over Tm-ergodic components of µ≥t). Hence by the previous theorem

µ≥t is Lebesgue measure. Since µ = lim µ≥t, we are done. �

11. Convolutions of Gibbs measures

11.1. Preliminaries. Let I = {fi : i ∈ Λ} be an iterated function system on the

interval [0, 1]. The IFS I is called a regular IFS if the following conditions hold:

(1) Regularity: There is ε > 0 such that each fi is a C1+ε map on a neighborhood

of [0, 1].
(2) Contraction and orientation: 0 < Dfi(x) < 1 for all i and all x ∈ [0, 1].
(3) Separation: The sets fi((0, 1)) are pairwise disjoint subsets of (0, 1).

We say that a closed set X ⊆ [0, 1] is a regular Cantor set if it is the attractor of a

regular IFS. This de�nition is more restrictive than the one in e.g. [24]. Our methods

can handle the more general setting with slight modi�cations, but for simplicity we

concentrate on the case above.

We recall the de�nition and some basic facts about Gibbs measures; a clearly written

introduction to this topic can be found in [6, Chapter 5]. Let Λ be a �nite set. If
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ϕ : ΛN → R is a Hölder-continuous function, then there exist a unique real number

P (ϕ) and a unique ergodic measure µϕ on ΛN, such that

(11.1) µϕ([x1 . . . xn]) = Θϕ

exp

−nP (ϕ) +
n∑

j=0

ϕ(T jx)

 ,

for all x ∈ ΛN, where T is the shift on ΛN. The number P (ϕ) is known as the topological

pressure of ϕ, and the measure µϕ as the Gibbs measure for the potential ϕ.

We say that two measures de�ned on the same measure space are C-equivalent if they

are mutually absolutely continuous and both Radon-Nikodym derivatives are bounded

by C; this is denoted by ∼C . If x, y are numbers, we also write x ∼C y to denote that

x ≤ Cy and y ≤ Cx.

Given a cylinder set [a] and a measure µ on ΛN, let µ[a] denote the probability

measure on ΛN given by

µ[a]([b]) =
1

µ([a])
µ([ab]).

This is the symbolic analogue of rescaling a measure on Rd.

While Gibbs measures are not generally product measures, they do satisfy a slightly

weaker property, which is the only one of their properties that we use:

Lemma 11.1. Let µ be a Gibbs measure on ΛN for some Hölder potential ϕ. Then

there is C = C(ϕ) > 0 such that for any word a ∈ Λ∗, µ ∼C µ[a].

Proof. It follows from (11.1) that

µ[a][b] =
µ[ab]
µ[b]

= Θϕ(µ[b]).

This shows that µ[a] and µ are C-equivalent for some C that depends on ϕ only. �

Motivated by the previous lemma, we say that a measure µ on ΛN is a C-quasi-

product measure if C > 0 and µ[a] ∼C µ for all a ∈ Λ∗ or, equivalently,

C−1µ([ab]) ≤ µ([a])µ([b]) ≤ Cµ([ab]).

A few comments about this notion are in order. It is easy to see that the sup-

port of a quasi-product measure on ΛN is ΞN for some subset Ξ ⊆ Λ. Thus by

replacing Λ by Ξ we can always assume that quasi-product measures are globally

supported. Each Tnµ is C-equivalent to µ, and taking any weak-* limit point ν of
1
n

(
µ + Tµ + T 2µ + . . . + Tn−1µ

)
, as n →∞, we obtain a T -invariant measure equiva-

lent to µ and with Radon-Nikodym derivative bounded between C−1 and C. Also, it

is easy to show that µ has a rudimentary mixing property: there is a constant K such

that if A,B are sets then µ(TnA ∩ B) > Kµ(A)µ(B) for large enough n. It follows

that the same is true of ν, perhaps with a di�erent constant, and so ν is ergodic. It

follows now that ν, and hence µ, are exact dimensional.
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Finally, we transfer these notions to the geometric attractor: A Gibbs measure on X

is the projection of a Gibbs measure on ΛN under the coding map. In the same way we

de�ne quasi-product measures on X. Thus, Gibbs measures on X are quasi-product

measures.

We have the following slight strengthening of Theorem 1.4:

Theorem 11.2. Theorem 1.4 holds for quasi-product measures µi on the attractors

Xi.

For notational simplicity we prove Theorem 11.2 for d = 2; the proof is the same in

higher dimensions. The structure of the proof resembles that of Theorem 1.6, but is

technically more di�cult. The main di�erences are, �rst, that micromeasures of Gibbs

measures on regular IFSs are harder to relate to the original measure; and, second,

that moving the open set around Π2,1 is more involved due to nonlinearity of the IFSs.

In the next section we present some standard tools for dealing with these problems.

Before embarking on the proof we explain the its relation to Moreira's proof of (1.3)

in the strictly non-linear case. The key device there was the so-called Scale Recurrence

Lemma (SRL) of [24]. This technical result, which relies on the non-linearity of the

system, gives information about the quotients

diam(f (1)
a ([0, 1]))

diam(f (2)
b ([0, 1]))

for many (but not all) pairs a ∈ Λ∗1, b ∈ Λ∗2. In the proof one uses only the pairs of

words that are �good� in the sense of the SRL in order to construct subsets X ′
i ⊆ Xi

which approximate Xi well in dimension, but have zero measure with respect to any

Gibbs measure. Hence it seems unlikely that Moreira's proof can be adapted to give

information about convolutions of Gibbs measures. Our proof uses the machinery of

CP processes in place of the SRL, speci�cally in the proof of Proposition 11.8. After

that our proof follows Moreira's original argument.

11.2. Limit geometries and micromeasures. Throughout this sub-section, I =
{fi : i ∈ Λ} is a regular IFS with attractor X, and µ is a C-quasi-product measure

on X. By de�nition, µ = Φη, where Φ is the coding map and η is a C-quasi-product

measure on ΛN.

Given a closed interval [a, b], denote by T[a,b] the unique orientation-preserving a�ne

map sending [a, b] to [0, 1]. If f : [0, 1] → R is a continuous injection, write

Tf = Tf([0,1])

and

f∗ = Tff.
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Hence f∗ is a bijection of [0, 1]. Also, for a ∈ Λ∗ write

I(a) = fa([0, 1]).

The following simple lemma is a consequence of the separation assumption on the IFS

and C-equivalence.

Lemma 11.3. For every a ∈ Λ∗,

µI(a) ∼C fa(µ).

Proof. For any b ∈ Λ∗,

µI(a)(I(ab)) =
µ(I(ab))
µ(I(a))

∼C µ(I(b)) = (faµ) (I(ab)).

Since {I(ab)} is a basis of closed sets of X ∩ I(a), this yields the lemma. �

The following result goes back to Sullivan [34], with an explicit proof given by Bed-

ford and Fisher [2]. It will be a key tool in the proof, in particular allowing us to

describe the micromeasures of a Gibbs measure.

Theorem 11.4. For every left-in�nite sequence x = (. . . x−2x−1), the sequence of

rescaled di�eomorphisms (fx−n · · · fx−1)
∗ converges in the C1 topology to a di�eomor-

phism Fx : [0, 1] → [0, 1], uniformly in x. In particular, the map x 7→ Fx is continuous.

In this case, the sets Fx(X) are known as limit geometries of X. We also refer to

the maps Fx themselves as limit di�eomorphisms.

Heuristically, the reason for the validity of Sullivan's Theorem is the following: when

composing fx−n ◦ · · · ◦fx−1 , the strongest nonlinear distortion comes from the �rst map

applied, fx−1 . Since each map is a contraction, fx−i is applied to an interval of length

exponentially small in i. As i gets large, the nonlinear e�ect of fx−i becomes negligible

(the details of this argument require C1+ε-regularity of the contractions).

Note that when the contractions are similarities the maps Fa are all the identity,

and Sullivan's Theorem becomes trivial.

If x ∈ Λ−N, one may consider the conjugated IFS

Ix = {FxfiF
−1
x : i ∈ Λ},

whose attractor is the limit geometry Fx(X). More generally, if Φx is the coding map

for Ix, then Φx = FxΦ.

Corollary 11.5. (i) Choose a ∈ Λ∗, and write a = (. . . aa) ∈ Λ−N. Then fafaf
−1
a

is an a�ne map with derivative λ(fa).
(ii) Let g ∈ C1([0, 1], R), and consider the conjugated IFS I ′ = {gfig

−1 : i ∈ Λ}.
Then for any x ∈ Λ−N, Ix = I ′x. In particular, this holds when g is itself a

limit di�eomorphism Fy.
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Proof. (i) Write Tn = Tfan , where an is the n-fold concatenation of a. We have

fafaf
−1
a = lim

n
Tnfanfaf

−1
a

= lim
n

(
TnT−1

n+1

)
Tn+1fan+1f−1

a

= lim
n

TnT−1
n+1,

which is a�ne as a limit of a�ne maps. The last assertion follows since λ(·) is

conjugacy-invariant.

(ii) Limit di�eomorphisms are clearly invariant under a�ne changes of coordinates

and, being an in�nitesimal property of the IFS, therefore also under smooth changes

of coordinates. �

Next, we state a version of the well-known principle of bounded distortion. For the

rest of the section, the constants implicit in the O(·) notation depend only on the IFSs

involved.

Proposition 11.6. Let I = {fi : i ∈ Λ} be a regular IFS. Then for any �nite word

a ∈ Λ∗ and any i, j ∈ Λ,

dist(I(ai), I(aj)) = Θ(|I(a)|),

and

|I(ai)| = Θ(|I(a)|).

The next step is to relate µ to its micromeasures. Recall that the family of mi-

cromeasures of a measure η on Rk is denoted 〈η〉. The following theorem is analogous

to Proposition 9.1:

Proposition 11.7. For any ν ∈ 〈µ〉 which is not supported on {0, 1}, there is a limit

di�eomorphism F and an interval J such that

Fµ ∼C µJ

Proof. By de�nition, there are intervals In ⊆ [0, 1] such that

ν = lim
n→∞

µIn ,

where µI = TI(µI) is the rescaling of µI back to the unit interval. For each n let a(n)

be a minimal word such that I(a(n)) ⊆ In (there could be several such words; pick

one of them). Since ν is not supported on {0, 1}, this is well-de�ned for large n, and

moreover |In| = O(|I(a(n))|) by bounded distortion (i.e. Proposition 11.6).

By Lemma 11.3, writing fn = fa(n) ,

µI(a(n)) ∼C f∗nµ.
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On the other hand, for each n there is an interval Jn (corresponding to the relative

position of I(a(n)) inside In) such that |Jn| = Θ(1), and

µI(a(n)) = TJn((µIn)Jn .)

By passing to a subsequence we can assume that Jn converges to an a�ne map J , and

f∗n to a limit di�eomorphism F . Taking weak limits yields the proposition. �

11.3. Proof of Theorem 11.2. Throughout this section, µ1, µ2 are quasi-product

measures associated to regular IFSs Ii = {f (i)
j : j ∈ Λi}, i = 1, 2. We write µ = µ1×µ2

and

γ = min(1,dim µ).

We say that F : [0, 1]2 → [0, 1]2 is a limit di�eomorphism if F = F1 × F2 where Fi is a

limit di�eomorphism for Ii.

We next state the main three steps in the proof of Theorem 11.2. The �rst one is,

as usual, a topological version of the projection theorem, which does not require any

minimality assumptions; compare with Proposition 9.3. Given a measure ν on Rd and

α ≥ 0, let

(11.2) Uα(ν) = interior{g ∈ C1(supp µ, Rk) : dim∗ gν > α}.

Note that these sets are by de�nition open, though a priori may be empty.

Proposition 11.8. For every ε > 0, there exists a limit di�eomorphism F such that

Uγ−ε(Fµ) contains a dense (and automatically open) subset of Π2,1.

Identify Π2,1\{πx, πy} with R\{0} via s → πs(x, y) = x + sy (the latter is not

technically an element of Π2,1 but there is an obvious identi�cation). This is similar

but not the same as the identi�cation in Section 10. Given K � 1, write

IK = [−K,−K−1] ∪ [K−1,K].

Using the irreducibility assumption to move the open and dense set around as usual

(but with some extra technical complications), one obtains:

Proposition 11.9. If additionally the minimality condition in Theorem 1.4 holds, then

for every ε > 0 and every K > 1 there is a limit di�eomorphism F such that

{πs : s ∈ IK} ⊆ Uγ−ε(Fµ).

A priori, this holds for just one limit di�eomorphism F = F1 × F2. But this auto-

matically implies it holds in fact for all limit di�eomorphisms:

Proposition 11.10. Under the hypotheses of Proposition 11.9, for every ε > 0, every
K > 1, and every limit di�eomorphism F ,

{πs : s ∈ IK} ⊆ Uγ−ε(Fµ).
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Before proving these propositions we use them to deduce Theorem 11.2.

We say that a map A : R2 → R2 is a�ne diagonal if it is a�ne with a diagonal

linear part. In this case, we can write A = HD, where H is an homothety and

D(x, y) = (x, ay) for some a ∈ R. We refer to a as the eccentricity of A.

Lemma 11.11. Let ν, τ be two measures on Rd, and suppose that Aν ∼C τQ for some

a�ne diagonal map A and some set Q with τ(Q) > 0. Then for any α,

Uα(ν) ⊇ {gA : g ∈ Uα(τ)},

Uα(ν) ∩Π2,1 ⊇ {πsa : πs ∈ Uα(τ)},

where a is the eccentricity of A.

Proof. The �rst part is immediate. For the second, note that if D(x, y) = (x, ay)
then πsD = πas, and note that homotheties commute with linear maps and preserve

dimension. �

Proof of Theorem 11.2 (assuming Proposition 11.10). By Corollary 3.9, it is enough to

show that

dim∗(π(µ1 × µ2)) ≥ γ.

Fix ε > 0 and K > 1 for the rest of the proof. For i = 1, 2 let x(i) ∈ Λ−N
i , and write

Fi = Fx(i) , F = F1 × F2. Since, by Proposition 11.10,

(11.3) {πs : s ∈ IK} ⊆ Uγ−ε(Fµ),

we have by compactness of IK and openness of Uγ−ε(Fµ) that the same is true if one

replaces F by a su�ciently close di�eomorphism. Since the convergence of f∗yn...y1
to

Fy is uniform, it follows that that for su�ciently long initial segments a1, a2 of x(1), x(2)

(where the threshold length is also independent of x(i)), if we write f∗ = f∗a1
× f∗a2

,

then (11.3) holds with f∗µ instead of Fµ.

By the principle of bounded distortion, we can choose the lengths of ai such that

I(a1), I(a2) have lengths which di�er by a factor of O(1), and still ensure that the length
of both is bounded above independently of other parameters. Consider now the a�ne

diagonal map A = TI(a1) × TI(a2), i.e. A is such that f∗ = Af , where f = fa1 × fa2 .

By construction the eccentricity of A is O(1). Since A(fµ) = f∗µ, we get from Lemma

11.11 that

{πs : s ∈ IK/O(1)} ⊆ Uγ−ε(fµ).

Recall that fµ ∼C µI(a1)×I(a2) by the quasi-product property. We may cover supp(µ)
by rectangles of the form I(a1) × I(a2), with a1, a2 chosen to be long enough for the

above to hold. Thus since, ε and K were arbitrary, the proof is complete. �

11.4. Proofs of the remaining propositions.
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Proof of Proposition 11.8. The proof is analogous to the proof of Proposition 9.3. We

apply Theorem 7.10 to obtain an ergodic CP-chain (µn, Qn)∞n=1 such that almost surely

µ1 ∈ 〈µ〉 and dim µ1 = dim µ. Hence, we can �nd a micromeasure ν such that dim ν ≥
dim µ, and the conclusion of Corollary 8.5 applies to ν: given ε > 0, the family Uγ−ε(ν)
has dense intersection with Π2,1.

By compactness, ν = ν1 × ν2, where νi ∈ 〈µi〉. By Proposition 11.7, we can �nd

a limit di�eomorphism F , an a�ne diagonal map A, and a rectangle Q, such that

Aµ ∼C νQ. The proposition then follows from Lemma 11.11. �

For the proof of Proposition 11.9 we need the following lemma:

Lemma 11.12. Suppose U ⊆ R \ {0}, and

{πs : s ∈ U} ⊆ Uα(µ).

Then for any limit di�eomorphism F there is a t = t(F ) = Θ(1) such that

{πts : s ∈ U} ⊆ Uα(Fµ).

Proof. This is very similar to the proof of Theorem 11.2 above: one uses the fact

that, up to a�ne rescaling and C-equivalence, the limit measure Fµ is C1-close to the

restriction of µ to a small rectangle Q of eccentricity Θ(1). Since Uα(µQ) ⊇ Uα(µ),
and the rescaling induced on Π2,1 by pre-composition with TQ transforms πs to πts,

where t is the eccentricity of Q, the lemma follows by applying this procedure to a

sequence of rectangles Qn of side length tending to 0 and eccentricities converging to

some t = Θ(1). �

Proof of Proposition 11.9. To begin, note that a priori we cannot �move around� the

dense set given by Proposition 11.8 as done in e.g. Proposition 9.4, since for this we

need the action of an a�ne map, and the IFSs involved are a priori nonlinear. Instead

we linearize the relevant map in each IFS by passing to a new limit geometry.

We �rst present the proof in the case λ(f (1)
a1 )/λ(f (2)

a2 )/ /∈ Q for some ai ∈ Λ∗i . By

iterating the IFSs and relabeling we may then assume that λ(f (1)
1 )/λ(f (2)

1 )/ /∈ Q
Let F = F1 × F2 be the limit di�eomorphism given by Proposition 11.8. The

conjugated IFS I ′i = {Fif
(i)
j F−1

i : j ∈ Λi} satis�es the same hypotheses as the original

one. Let x = (. . . , 1, 1) ∈ Λ−N
i . By Corollary 11.5(i), the �rst map in each limit

IFS (Ii)x is a�ne. But by Corollary 11.5(ii), (Ii)x = (I ′i)x. On the other hand,

by Lemma 11.12, the conclusion of Proposition 11.8 is inherited by (I ′i)x. We have

therefore shown that there is no loss of generality in assuming that the conjugated

IFSs {g(i)
j = Fif

(i)
j F−1

i : j ∈ Λi} are such that g
(1)
1 , g

(2)
1 are a�ne. Moreover, we still

have

(11.4) λ
(
g
(1)
1

)
/λ
(
g
(2)
1

)
/∈ Q.
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Now we are ready to cover the whole of IK by using the action of g
(1)
1 ×g

(2)
1 on Uγ−ε(Fµ).

By (11.4), the collection of eccentricities of the (a�ne diagonal) maps

gn1,n2 :=
(
g
(1)
1

)n1

×
(
g
(2)
1

)n2

is dense in (0,∞). Also note that

g−1
n1,n2

(Fµ)Qn1,n2
∼C Fµ,

where Qn1,n2 = gn1,n2([0, 1]2). It then follows from Lemma 11.11 that there is N such

that

{πs : s ∈ IK} ⊆
N⋃

n1,n2=1

Uγ−ε((Fµ)Qn1,n2
).

Pick N1, N2 ≥ N such that the eccentricity of gN1,N2 is less than, say, 2. By the above,

Uγ−ε

(
(Fµ)QN1,N2

)
contains {πs : s ∈ IK}. But then using Lemma 11.11 again we

conclude that Uγ−ε(Fµ) contains {πs : s ∈ IK/2}, as desired.
In the general case we can still, by minimality and Proposition 11.8, �nd ai ∈ Λ∗i ,

i = 1, 2, and an N such that

IK ⊆
N⋃

n1,n2=1

{
λ
(
f (1)

a1

)n1

λ
(
f (2)

a2

)−n2

t : πt ∈ Uγ−ε(Fµ)
}

.

By Lemma 11.12 the same holds after passing to the limit IFSs which linearize the

maps f
(i)
ai , at the cost of replacing IK by IΩ(K). The argument then proceeds in the

same manner as before. �

Proof of Proposition 11.10. By Lemma 11.12, if Uα(µ) contains {πs : s ∈ IK}, then
the same is true with K replaced by Ω(K) and µ replaced by Fµ for any limit dif-

feomorphism F . We know that Uα(Gµ) contains IK for some limit di�eomorphism G.

Thus Corollary 11.5(ii) and the previous observation applied to the conjugated IFSs

{Gif
(i)
j G−1

i : i ∈ Λi} (i.e. to the measure Gµ) yield the result. �
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