
Three lectures on information theory

Michael Hochman

These are expanded (but still rough) notes of lectures delivered for advanced under-
graduate students at the Hebrew University in September 2011. The notes primarily
cover source coding from a theoretical point of view: Shannon’s bound and Kraft’s in-
equality, basic properties of entropy, entropy of stationary processes, Shannon-McMillan
(“AEP”) for mixing Markov chains,, and the Lempel-Ziv algorithm. Some background
material on probability and Markov chains is included as well. Please send comments
to mhochman {ampersand} math.huji.ac.il.

Contents

1 Introduction 1

2 Codes 2

3 Optimal coding of random sources 5

4 Review: Probability spaces and random variables 7

5 Properties of entropy 9

6 Stationary processes 11

7 Markov processes 14

8 The Shannon-McMillan Theorem 18

9 The Lempel-Ziv algorithm for universal coding 21

1 Introduction

Information theory was essentially founded by Claude Shannon in his 1948 paper “A
mathematical theory of communication”. Although technology have changed a great

1

deal since then the basic model of how communication is carried out has not: a sender
wants to communicate a message to a receiver through a noisy channel. The process
can be decomposed into the following schematic diagram:

Sender: ω
source−−−−−→
coding

ω′
channel−−−−−−→
coding

ω′′
noisy−−−−−−→

channel
ω′′′

error correction−−−−−−−−−−−−→
and decoding

Receiver

Source coding “compresses” the message to be sent, making the message that will be
transmitted as short as possible; channel coding introduces redundancy, so that noise
can be detected or corrected; the channel introduces (random) noise into the message;
and the receiver tries to reverse these processes.

There are many variations, e.g. the receiver may be able to request that data be resent.
There are also related theories which can fit into the diagram such as encryption.

We will focus here on the first stage – source coding. Besides its role in communication
across a channel, it has obvious applications to data storage, and many applications in
other fields (for example it is closely related to entropy theory of dynamical system).

There are two variants, of source coding:

Lossless: we want to recover the message exactly, e.g. when compressing digital
data. Example: the “zip” compression program.

Lossy: we allow an ε-fraction of error when decoding. For example in music or
voice compression we are willing to lose certain frequencies which are inaudible
to us (hopefully). Example: mp3

In these lectures we focus on compression of the lossless kind.

First, after a short discussion of different types of codes, we will identify theoretical
limits on the amount of compression of a random source, and show that the optimal
average compression can be achieved within one bit. We then turn to codings of se-
quences of source symbols assuming that they are drawn from a stationary process (e.g.
i.i.d. process or Markov chain) and show that the asymptotic per-symbol compression
can be achieved with arbitrary small penalty. These coding methods are explicit but
are not efficient, and most importantly they depend on knowledge of the statistics of
the source. In the last part we will discuss universal coding, and present the Lempel-Ziv
compression algorithm which gives optimal asymptotic coding for any stationary input.
Along the way we will derive the definition of entropy and discuss its formal properties.

2 Codes

Notation and conventions Let Σn be the set of length-n sequences with symbols in
Σ, for σ ∈ Σn write σ = σ1σ2 . . . σn and abbreviate σ = σn1 . Let Σ∗ =

⋃∞
n=0 Σn, the

set of finite sequences, including the empty word ∅. Let |a| denote the length of |a|. If
a, b ∈ Ω∗ we write ab for their concatenation. All logarithms are to base 2.

Let Ω be a finite set of “messages”. We often assume Ω = {1, . . . , n}.

2

Definition 2.1. A code is a map c : Ω→ {0, 1}∗.

The word “code” also sometimes refers to the range of c. Sometimes it is useful to
analyze codes c : Ω→ Σ for other alphabets Σ but Σ = {0, 1} is the most common case
and we focus on it; the general case is similar.

Worst case bound: if we use words of length n to code messages, i.e. c : Ω→ {0, 1}`
for some `, and assuming c is 1-1, then |Ω0| ≤ 2`, or: ` ≥ log |Ω| (remember log = log 2).

Probabilistic model: 0 ≤ p(ω) ≤ 1 is a probability distribution on Ω, i.e.
∑
p(ω) = 1.

Definition 2.2. The mean coding length of c is
∑

ω∈Ω p(ω)|c(ω)|.

This is the expected coding length, and if we imagine repeatedly coding random (inde-
pendent) messages this is also the long-term number of bits per message which we sill
use (this observation uses the law of large numbers).

Definition 2.3. Given a code c : Ω → {0, 1}∗ its extension to Ω∗ is c∗ : Ω∗ → {0, 1}∗
given by c∗(ω1, . . . , ωn) = c(ω1) . . . c(ωn). We usually drop the superscript and just
write c(ω1 . . . ωn).

Definition 2.4. c is uniquely decodable if c∗ is 1-1.

Non-example: Let Ω = {u, v, w}. and the code u 7→ 0 v 7→ 00 w 7→ 1. since
c(uu) = c(v).

Definition 2.5. A marker u ∈ {0, 1}∗ is a word such that if u appears a a subword of
a ∈ {0, 1}∗ then its occurrences do not overlap.

Example: Any single symbol is a marker; 10 is a marker; 1010 is not a marker because
it has overlapping occurrences in 101010.

Definition 2.6. A Marker code is a code c(a) = uc′(a), where u is a marker, c′(a)
does not contain u, and c′ is injective (but (c′)∗ does not have to be).

Example: A code with codewords 01, 011, 0111 (the marker is 0); or 10000, 10001, 10010, 10011
(the marker is 100).

Marker codes are uniquely decodable because given an output a = c(ωn1), we can
uniquely identify all occurrences of the marker, and the words between them can be
decoded with (c′)−1 to recover a.

Marker codes also have the advantage that if we receive only a portion of the coding of
the a = c∗(ω1ω2 . . . ωN) (for example if the first k symbols are deleted and we receive
b = ak+1 . . . a|c∗(ωN

1)|), we can still recover part of the message – the same decoding
procedure works, except possibly the first few symbols of b will not be decoded.

Although they are convenient, marker codes are harder to analyze, and are subopti-
mal when coding single messages (although when coding repeated messages they are
asymptotically no worse than other codes). Instead we will turn to another class of
codes, the prefix codes.

A word a is a prefix of a word b is b = aa′ for some (possibly empty) word a′. Equiva-
lently a = b1 . . . b|a|.

3

Definition 2.7. A Prefix code is a code c such that if ω 6= ω′ then c(ω) is not a prefix
of c(ω′) or vice versa.

Example: 0, 10, 11 but in this example, you need to read from the beginning

Example: 01, 00, 100, 101, 1100, 1101, 1110, 1111

Lemma 2.8. Prefix codes are uniquely decodable.

Proof. Suppose u = u1 . . . un ∈ {0, 1}n is written as u = c(ω1) . . . c(ωm) = c(ω′1) . . . c(ω′m′).
Let r ≥ 0 be the largest integer such ωi = ω′i for 1 ≤ i < r. We want to show that
r = m = m′. Writing k =

∑
i<r |c(ωi)| this is equivalent to showing that k = n. If k 6= n

then uk+1 . . . un = c(ωr) . . . c(ωm) = c(ω′r) . . . c(ω
′
m′) is a non-empty word (in particular

r ≤ m and r ≤ m) and both c(ωr) and c(ω′r) are prefixes of uk+1 . . . un. This implies
that one is a prefix of the other. Since ωr 6= ω′r by definition of r, this contradicts the
fact that c is a prefix code. Hence k = n as required.

Our goal is to construct codes with optimal average coding length. Since average coding
length is determined by the lengths of codewords, not the codewords themselves, what
we really need to know is which lengths `1, . . . , `n admit a uniquely decodable codes
with these lengths.

Theorem 2.9. (Generalized Kraft inequality) Let `1, . . . , `n ≥ 1. Then the following
are equivalent:

1.
∑

2−`i ≤ 1

2. There is a prefix code with lengths `i.

3. There is a uniquely decodable code with lengths `i.

Proof. 2⇒3 was the previous lemma.

1⇒2: Let L = max `i and order `1 ≤ `2 ≤ . . . ≤ `n = L.

It is useful to identify
⋃
i≤L{0, 1}i with the full binary tree of height L, so each vertex

has two children, one connected to the vertex by an edge marked 0 and the other by
an edge marked 1. Each vertex is identified with the labels from the root to the vertex;
the root corresponds to the empty word and the leaves (at distance L from the root)
correspond to words of length L.

We define codewords c(i) = ai by induction. Assume we have defined ai, i < k with
|ai| = `i. Let

Ai = {aib : b ∈ {0, 1}L−`i}
Thus Ai is the set of leaves descended from ai, or the set of words of length L of
which ai is a prefix. We have |Ai| = 2L−`i . The total number of leaves descended form
a1, . . . , ak−1 is

|
⋃
i<k

Ai| ≤
∑
i<k

|Ai| =
∑
i<k

2L−`i < 2L

4

The strict inequality is because
∑

2−`i ≤ 1, and the sum above includes at least one
term less than the full sum.

Let a ∈ ΣL \
⋃
Ai and ak = a1 . . . a`k the length-`k prefix of a. For i < k, ai if ai is a

prefix of ak then, since `i ≤ `k, a
k is a child of ai and so a ∈ Ai, a contradiction. If

ak is a prefix of ai then since `i ≤ `k we have ai = ak and the same arrive at the same
contradiction. Therefore a1, . . . , ak is a prefix code.

3⇒1: Suppose c is uniquely decodable. Fix m. Then

(
∑

2−`i)m =
∑

(i1...im)∈Ωm

2−
∑m

j=1 `ij =
∑

(i1,...,im)∈Ωm

2−|c(i1,...,im)|

divide the codewords according to length:

=
Lm∑
`=1

∑
ω∈Ω≤m : c(ω)=`

2−` ≤
Lm∑
`=1

2−`2` = Lm

taking m-th roots and m→∞, this gives (1) .

3 Optimal coding of random sources

Objective: given (Ω, p), find code c such that
∑

ω∈Ω p(ω)`(c(ω)) is minimal.

Equivalently: find {`ω}ω∈Ω which minimize
∑
pω`ω subject to

∑
2−`ω ≤ 1.

Replace the integer variable `i by continuous real xi. We have the analogous optimiza-
tion problem (we can add dummy variables and assume we want

∑
2−xi = 1).

Lagrange equation:

L(x, λ) =
∑

pωxω − λ
(∑

2−xω − 1
)

so

pω − λ2−xω log 2 = 0∑
2−xω = 1

Summing the first equation over ω, and using
∑
pω = 1, we find

λ = 1/ log 2

so
xω = − log pω

and the “expected coding length” at the critical point is

−
∑

pω log pω

Note: we still don’t know this is the “global” max.

5

Definition 3.1. Entropy H(p1, . . . , pn) = −
∑
pi log pi.

Concavity: convex and strictly convex functions f , sufficient condition in R: f ′′ ≤ 0
(< 0), uniqueness of maxima of strictly concave function on an interval.

Example: log is concave

Theorem 3.2. If c is uniquely decodable then the expected coding length is ≥ H(p) and
equality is achieved if and only if pi = 2−`i.

Proof. Let `i be the coding length of i. We know that
∑

2−`ω ≤ 1. Consider

∆ = H(p)−
∑

pω`ω

= −
∑

pω (log pω + `ω)

Let rω = 2−`ω/
∑

2−`ω , so
∑
rω = 1 and `ω ≥ − log rω (because

∑
2−`ω ≤ 1).

∆ ≥ −
∑

pω (log pω − log rω)

= −
∑

pω

(
log

pω
rω

)
=

∑
pω

(
log

rω
pω

)
Using the concavity of the logarithm,

≥ log
∑

pω(
rω
pω

) = log 1 = 0

Equality occurs unless rω/pω = 1.

Theorem 3.3 (Achieving optimal coding length (almost)). There is a prefix code whose
average coding length is H(p1, . . . , pn) + 1

Set `ω = d− log pωe. Then∑
2−`ω ≤

∑
2− log pω =

∑
pω = 1

and since `ω ≤ − log pω + 1, the expected coding length is∑
pω`ω ≤ H(p) + 1

Thus up to one extra bit we achieved the optimal coding length.

6

4 Review: Probability spaces and random variables

This is a quick review of probability for those who never have taken a course on it.

A discrete probability space is a finite set Ω whose points are “world states”.

For example if we draw two cards from a deck then Ω could consist of all pairs of distinct
cards: {(i, j) : 1 ≤ i, j ≤ 52 , i 6= j}.

An event is a subset of Ω. For example, the event

A = {first card is jack of spades}

is a set of the form {i} × {1, . . . , 52} ⊆ Ω, where i represents jack of spades.

A probability distribution on Ω is a probability vector p = (pω)ω∈Ω, that is pω ≥ 0
and

∑
ω∈Ω pω = 1. We also write p(ω) = pω. We shall often use the word distribution

to refer to a probability vector in general.

The probability of an event is

P (A) =
∑
ω∈A

p(ω)

For example if all point have equal mass then p(ω) = 1/|Ω| and p(A) = |A|/|Ω|.

Example: In the card example above we give all pairs equal weight, then p(i, j) =
(52 · 51)−1.

Properties:
p(∅) = 0 p(Ω) = 1

0 ≤ p(A) ≤ 1

A ⊆ B =⇒ p(A) ≤ p(B)

p(A ∪B) = p(A) + p(B)− p(A ∩B)

p(A ∪B) ≤ p(A) + p(B)

A ∩B = ∅ =⇒ p(A ∪B) = p(A) + p(B)

p(Ω \ A) = 1− p(A)

and more generally for finite sums:

Ai ∩ Aj = ∅ =⇒ p(∪Ai) =
∑

p(Ai)

A random variable is a function X : Ω→ Ω′. Often but not always Ω′ = R. We can
think of X as a measurement of the world; X(ω) is the value of the measurement when
the world is in state ω.

Example: in the card example, X(i, j) = i would be the value of the first card, and
Y (i, j) = j the value of the second card.

7

We write
p(X = x) = p({ω ∈ Ω : X(ω) = x}) = p(X−1(x))

for the probability that X takes the value x. We can also define events using RVs:

{0 ≤ X ≤ 1} = {ω ∈ Ω : 0 ≤ X(ω) ≤ 1}

The probability vector dist(X) = {p(X = x)}x is often called the distribution of X
and can be thought of as a distribution on the range of X. All questions involving only
X are determined by this probability vector. We also will abbreviate

p(x) = p(X = x) p(y) = p(Y = y) p(x, y) = p((X, Y) = (x, y))

etc., when it is typographically clear what RV we mean

Given pair X, Y of random variables, we can consider the random variable (X, Y). The
joint distribution of X and Y is the distribution

dist(X, Y) = (p(X = x, Y = y))x,y

This may be thought of as a probability distribution on the range of the RV (X, Y).
This definition to finite families of random variables.

The conditional distribution dist(X|Y = y) of X given Y = y is defined by

p(x|y) = p(X = x|Y = y) =
p((X, Y) = (x, y))

P (Y = y)

or equivalently:

P (X = x, Y = y) = p(Y = y) · p(X = x|Y = y)

We can think of this as a probability distribution on the set {Y = y}, determined by
restricting p to this set, and considering the random variable X|{Y=y}.

Example: in the card example suppose all pairs are equally likely. Then p(X = i) =
1/52 but P (X = i|Y = j) = (51 · 52−1/52−1 = 1/51 because on the set {Y = j} the
value of X is equally likely to be any of the remaining i 6= j but it cannot be = j. This
corresponds to the intuition that if we choose i, j from a deck one at a time, the second
choice is constrained by the first.

Example: independent coin toss and roll of die

Example: coin toss followed by fair or unfair die, depending on head/tail.

two random variables are independent if p(x, y) = p(x)p(y). In general a sequence
X1, . . . , XN of RVs is independent if for any two disjoint subsets of indices I, J ⊆
{1, . . . , N}, we have

p((xi)i∈I , (xj)j∈J) = p((xi)i∈I) · p((xj)j∈J)

8

5 Properties of entropy

We already encountered the entropy function

H(t1, . . . , tk) = −
∑

ti log ti

We use the convention 0 log 0 = 0, which makes t log t continuous on [0, 1].

The entropy of a finite-valued random variable X is

H(X) = h(dist(X)) = −
∑
x

p(X = x) log p(X = x)

Note: h(X) depends only on the distribution of X so if X ′ is another RV with the
same distribution, H(X) = H(X ′).

Interpretation: H(X) is the amount of uncertainty in X, or the amount of random-
ness; it is also how hard it is to represent the value X on average.

Lemma 5.1. H(·) is strictly concave.

Remark if p, q are distributions on Ω then tp+ (1− t)q is also a distribution on Ω for
all 0 ≤ t ≤ 1.

Proof. Let f(t) = −t log t. Then

f ′(t) = − log t− 1

f ′′(t) = −1

t

so f is strictly concave on (0,∞). Now

H(tp+(1−t)q) =
∑
i

f(tpi+(1−t)qi) ≥
∑
i

(tf(pi) + (1− t)f(qi)) = tH(p)+(1−t)H(q)

with equality if and only if pi = qi for all i.

Lemma 5.2. If X takes on k with positive probability. Then 0 ≤ H(X) ≤ log k. the
left is equality if and only if k = 1 and the right is equality if and only if dist(X) is
uniform, i.e. p(X = x) = 1/k for each of the values.

Proof. The inequality H(X) ≥ 0 is trivial. For the second, note that since H is concave
on the convex set of probability vectors it has a unique maximum. By symmetry this
must be (1/k, . . . , 1/k).

Definition 5.3. The joint entropy of random variables X, Y is H(X, Y) = H(Z)
where Z = (X, Y).

9

The conditional entropy of X given that another random variable Y (defined on the
same probability space as X) takes on the value y is is an entropy associated to the
conditional distribution of X given Y = y, i.e.

H(X|Y = y) = H(dist(X|Y = y) = −
∑
x

p(X = x|Y = y) log p(X = x|Y = y)

The conditional entropy of X given Y is the average of these over y,

H(X|Y) =
∑
y

p(Y = y) ·H(dist(X|Y = y))

Example: X, Y independent 1
2
, 1

2
coin tosses.

Example: X, Y correlated coin tosses.

Lemma 5.4. .

1. H(X, Y) = H(X) +H(Y |X)

2. H(X, Y) ≥ H(X) equality iff Y func. of X.

3. H(X|Y) ≤ H(X) equality iff X, Y indep.

Proof. Write

H(X, Y) = −
∑
x,y

p((X, Y) = (x, y)) log p((X, Y) = (x, y))

=
∑
y

p(Y = y)
∑
x

p(X = x|Y = y)

(
− log

p((X, Y) = (x, y))

p(Y = y)
− log p(Y = y)

)
= −

∑
y

p(Y = y) log p(Y = y)
∑
x

p(X = x|Y = y)

−
∑
y

p(Y = y)
∑
x

p(X = x|Y = y) log p(X = x|Y = y)

= H(Y) +H(X|Y)

Since H(Y |X) ≥ 0, the second inequality follows, and it is an equality if and only if
H(X|Y = y) = 0 for all y which Y attains with positive probability. But this occurs if
and only if on each event {Y = y}, the variable X takes one value. This means that X
is determined by Y .

The last inequality follows from concavity:

H(X|Y) =
∑
y

p(Y = y)H(dist(X|Y = y))

≤ H(
∑
y

p(Y = y)dist(X|Y = y))

= H(X)

and equality if and only if and only if dist(X|Y = y) are all equal to each other and to
dist(X), which is the same as independence.

10

There is a beautiful axiomatic description of entropy as the only continuous functional
of random variables satisfying the conditional entropy formula. It is formulated in the
following exercise:

Exercise. Suppose that Hm(t1, . . . , tm) are functions on the space of m-dimensional
probability vectors, satisfying

1. H2(·, ·) is continuous,

2. H2(1
2
, 1

2
) = 1,

3. Hk+m(p1, p2, . . . pk, q1, . . . , qm) = (
∑
pi)Hk(p

′
1, . . . , p

′
k)+(

∑
qi)Hm(q′1, . . . , q

′
k), where

p′i = pi/
∑
pi and q′i = qi/

∑
qi.

Then Hm(t) = −
∑
ti log ti.

6 Stationary processes

Recall that we write Xj
i = XiXi+1 . . . Xj, etc.

A random process is a sequence of random variables X1, . . . , XN , taking values in
the same space Ω0. Given such a sequence it is always possible to assume that the
probability space is ΩN

0 with the distribution dist(XN
1). Conversely, if p is a distribution

on ΩN , define random variables Xn by Xn(ωN1) = ωn.

We will want to talk about infinite sequences X∞1 of random variable. To do so requires
defining probability distributions on the space ΩN

0 of infinite sequences and this requires
more sophisticated tools (measure theory). There is a way to avoid this however if
we are only interested in questions about probabilities of finite (but arbitrarily long)
subsequences, e.g. about the probability of the event {X7

2 = X17
12}. Formally, we define

a stochastic process X∞1 to be a sequence of probability distributions pN on ΩN
0 , N ∈ N,

with the property that if M > N then for any xN1 ∈ ΠN
0 ,

pN(xN1) =
∑

xMN+1∈ΩM−N
0

pM(xM1)

Given any finite set of indices I ⊆ N and xi ∈ Ω0, i ∈ I, let N > max I, and define

p(Xi = xi for i ∈ I) =
∑

yN1 ∈ΩN
0 : yi=xi for i∈I

pN(yN1)

Using the consistency properties of pN it is easy to see that this is independent of N .
This definition allows us to use all the usual machinery of probability on the sequence
X∞1 whenever the events depend on finitely many coordinates 1 . . . N ; in this case we
are working in the finite probability space ΩN

0 but we can always enlarge N as needed
if we need to consider finitely many additional coordinates.

We are mainly interested in the following class of processes:

11

Definition 6.1. A stationary process is a process X∞1 such that for every a1 . . . ak,
and every n,

p(Xk
1 = ak1) = p(Xn+k−1

n = ak1)

That is, if you know that the sequence a occurred, this does not give you any information
about when it occurred.

Example: If we flip a fair coin over and over and we are told that the sequence 1111
occurred, we can’t tell when this happened.

Example: If we flip a fair coin for the first hundred flips and then flip an unfair one
(biased towards 1) from then on and are told that 1111 occurred, it is more likely to
come from times ≥ 100 than times < 100. This process is not stationary.

Example (product measures): More generally let Ω = {1, . . . , n} and q = (qi)i∈Ω a
probability vector and let

q(Xj
i = xji) =

j∏
k=i

qxk

This defined a stationary stochastic process called the i.i.d. process with marginal
q.

Remark “Physically” stationary processes correspond to physical processes in equi-
librium. Although many real-world phenomena are not in equilibria generally given
enough time they approach an equilibrium and stationary processes are a good ideal-
ization of the limiting equilibrium, and useful for its analysis.

Our next goal is to discuss the entropy of stationary processes.

Lemma 6.2. If an+m ≤ an+am and an ≥ 0 then lim 1
n
an exists and equals inf 1

n
an ≥ 0.

The proof is an exercise!

Lemma 6.3. For a stationary process, limn→∞
1
n
H(X1, . . . , Xn) exists and is equal to

limn→∞H(X1|Xn
2).

Proof. Notice that

H(Xm+n
1) = H(Xm

1) +H(Xn
m+1|Xn

1)

≤ H(Xm
1) +H(Xn

m+1)

= H(Xm
1) +H(Xn−m

1)

by stationarity. Thus an = H(Xn
1) is subadditive and the limit exists.

Now,

H(Xm
1) =

m∑
i=1

H(Xi|Xm
i+1) =

m∑
i=1

H(X1|X i
2)

12

again by stationarity. Also, the sequence H(X1|X i
2) is decreasing in i and bounded

below, hence H(X1|Xn
2)→ h for some h ≥ 0. Therefore we have

lim
1

n
H(Xn

1) = lim
1

n

n∑
i=1

H(X1|X i
2) = h

because the Cesaro averages of a convergent sequence converge to the same limit.

Definition 6.4. The mean entropy h(X∞1) of a stationary process X∞1 is the limit
above.

Example: if Xi are i.i.d. with marginal p then H(Xm
1) = mH(p); this is because

H(Y, Z) = H(Y) + H(Z) when Y, Z are independent, and we can iterate this for the
independent sequence X1 . . . Xm. Therefore h(X∞1) = H(p).

Definition 6.5. Let c : ΩN
0 → {0, 1}∗ be a uniquely decodable code. The per-symbol

coding length of c on a process XN
1 is

1

N

∑
xN1 ∈ΩN

p(xN1)|c(xN1)|

i.e. the average coding length divided by N .

If X∞1 is stationary then 1
N
H(XN

1) ≥ h(X∞1), because by subaditivity, h is the de-
creasing limit of 1

N
H(XN

1). Therefore h is a lower bound on the per-symbol coding
length.

Corollary 6.6. If X∞1 is a stationary process then for every ε > 0 there it is possible
to code Xk

1 with per-symbol coding length h+ ε.

Proof. For large enough N we have H(XN
1) ≤ N(h+ ε/2). We have seen that there is

a (prefix) code for XN
1 with average coding length ≤ N(h + ε) + 1, so the per symbol

coding length is h+ ε/2 + 1/N < h+ ε when N is large enough.

Thus for stationary processes it is possible to asymptotically approach the optimal
coding rate.

There are several drawbacks still. First, we reached within ε of the per-symbol optimal
length but we chose ε in advance, once the code is fixed it will not improve further.
Second, the coding is still inefficient in the sense that we need to construct a code for
inputs ΩN

1 and this is a very large set; if we were to store the code e.g. in a translation
table it would become unreasonably large very quickly. Third, we use knowledge of
the distribution of XN

1 in constructing our codes; in many cases we do not have this
information available, i.e. we want to code input from an unknown process. All these
problems can be addressed: we will see later that there are universal algorithms with
asymptotically optimal compression for arbitrary stationary inputs.

13

7 Markov processes

We will now restrict the discussion to the class of irreducible Markov chains. This is
a much smaller class than general stationary processes but it is still quite large and is
general enough to model most real-world phenomena.

Definition 7.1. A Markov transition law or Markov kernel on Ω = {1, . . . , n} is
a function i→ pi(·) where pi is a probability vector on Ω.

A transition kernel can also be represented as a matrix

A = (pij) pij = pi(j)

A third way to think of this is as weights on the directed graph with vertex set Ω; from
vertex i the edges are labeled pi(j).

Using the third point of view, imagine starting at a (possibly random) vertex i0 and
doing a random walk for N steps (or ∞ steps) according to these edge probabilities.
This gives a stochastic process XN

1 such that, given that we are in at time n we move
to j at time n+ 1 with probability pin(j). Assuming our initial distribution was q, the
probability of taking the path xk1 is

p(Xk
1 = xk1) = q(x1)px1(x2) . . . pxk−1

(xk)

Note that if we define p this way it satisfies (by definition)

p(Xk = xk|Xk−1
1 = xk−1

1) =
q(x1)px1(x2) . . . pxk−1

(xk)

q(x1)px1(x2) . . . pxk−1
(xk−1)

= pxk−1
(xk)

Note that the conditional probability above does not depend on xk−2
1 , only on xk−1.

Thus only the present state influences the future distribution; there is no
influence from the past.

Notice that starting from q,

p(X2 = x2) =
∑
x!

p(X2 = xx|X1 = x1) · p(Xk−1 = xk−1)

=
∑
x1

px1x2qx1

= (qA)x2

where q is a row vector and A as above. More generally

p(X3 = x3) =
∑
x2

p(X3 = x3|X2 = x2)p(X2 = x2)

=
∑
x2

px2(x3) · (qA)x2

=
∑
i

(qA)ipix3

= (qA2)x3

14

and in general
p(Xk = j) = (qAk)j

so
dist(Xk) = qAk

Definition 7.2. A stationary distribution q is a distribution such that qA = A.

Lemma 7.3. If q is a stationary distribution then the Markov process started from X∞1
is stationary.

Proof. Note that
dist(Xk) = qAk = dist(X1)

Hence

p(Xm
k = xmk) = p(Xk = xk)

m∑
i=k+1

pxi−1
(xi) = p(X1 = xk)

m∑
i=k+1

pxi−1
(xi) = p(X

m−k−1)
1 = xk1

Lemma 7.4. If q is stationary then h(X∞1) =
∑
qiH(pi(·)) = H(X2|X1).

Proof. .

H(Xk
1) = H(X1) +

k∑
i=1

H(Xi|X i−1
1)

= H(X1) +
k∑
i=1

H(Xi|Xi−1)

by the Markov property. Since H(Xi|Xi−1) = H(X2|X1) =
∑
qiH(pi(·)), the result

follows by dividing by k and sending k →∞.

Assumption pij > 0 for all i, j. We then say that the Markov chain is mixing.

This assumption is restrictive; it would suffice to assume irreducibility, i.e. that for
every i, j there is some k such that (Ak)i,j > 0 (in terms of the random walk on Ω0 this
means that for all i, j there is positive probability to go from i to j in a finite number of
steps). All the statements below hold in the irreducible case but the proofs are simpler
assuming pi,j > 0 for all i, j.

Theorem 7.5. There is a unique stationary measure q. Furthermore, for any initial
distribution q′, if Y ∞1 is the chain started from q′, then q′n = dist(X ′n)→ q exponentially
fast in `1.

15

First proof. . From the Perron-Frobenius theorem on positive matrices we know that
A has a maximal eigenvalue λ which is simple and is the only eigenvalue with positive
eigenvectors. When A acts on the left there is an eigenvector (1, . . . , 1) with eigenvalue
1 so we must have λ = 1. Thus there is a positive left eigenvector q = qA which we
may assume satisfies

∑
qi = 1.

Notice that if r is a probability vector then rA is as well, so rAk 6→ 0. We can write
r = sq + tv, where v is in the sum of generalized eigenspaces of eigenvalues of modulus
< 1. Since vAk → 0, but rAk 6→ 0, we have s 6= 0. So

rAk = sq + tvAk → sq

Since rAk is a probability vector, s = 1, and so rAk → q. Clearly the convergence is
uniform in the space of probability measures (in fact it is exponential).

Second proof. Let ∆ denote the space of probability vectors in Rn. Then q 7→ qA maps
∆→ ∆. Note that ∆ is closed, so it is a complete metric space.

Consider the subspace V = {v :
∑
vi = 0}. If v ∈ V let I = {i : vi > 0} and

J = {j : vj < 0}. Thus since v ∈ V ,∑
i∈I

vi = −
∑
j∈J

vj

Therefore, ∑
i∈I

vi = −
∑
j∈J

vj ≥ ‖v‖1 > ‖v‖∞

Now, for each k,

(vA)k =
∑
i∈I

vipik +
∑
j∈J

vjpjk

each of these sums is ≤ ‖v‖∞ in absolute values, their signs are opposite, and each is
≥ δ ‖v‖∞, where

δ = min pij > 0

Therefore,
(vA)k ≤ (1− δ) ‖v‖∞

Now if q, q′ ∈ ∆ then q − q′ ∈ V so

‖qA− q′A‖∞ = ‖(q − q′)A‖∞ ≤ (1− δ) ‖q − q′‖∞

so A : ∆→ ∆ is a contraction. Hence there is a unique fixed point q, satisfying q = qA,
and for any q′ ∈ A, q′Ak → q exponentially fast.

Theorem 7.6 (Law of large numbers). Let f = f(x0 . . . xk) be a function f : Ωk → R.
Let Yi = f(Xi . . . Xi+k) and let a =

∑
p(Y = y) · y be the average of Y . Then

p

(∣∣∣∣∣ 1

M

M∑
m=1

Ym − a

∣∣∣∣∣ > ε

)
→ 0 as M →∞

16

Proof. Replacing f by f − a we can assume f = 0.

Lemma 7.7 (Chevyshev inequality). If Z is a real random variable with mean 0 and∑
p(Z = z) · z2 = V then p(|Z| ≥ δ) < V

δ2
.

Proof. p(|Z| ≥ δ) = p(Z2 ≥ δ2). If we denote this value by π then clearly

V =
∑
z

p(Z = z) · z2

≥
∑

z:z2≥δ2
p(Z = z) · z2

≥
∑

z:z2≥δ2
p(Z = z)δ2

= p(Z2 ≥ δ2)δ2

= p(|Z| ≥ δ)δ2

Returning to the proof of the theorem, we want to show that

p

(1

M

M∑
m=1

Ym

)2

> ε2

→ 0 as M →∞

Note (
1

M

M∑
m=1

Ym

)2

=
1

M2

M∑
r,s=1

YrYs

Lemma 7.8. EYrYs → 0 as s− r →∞.

Proof. We know that dist(Xs+k
s |Xr = xr)→ dist(Xs+k

s) as s−r →∞, and so the same
is true for dist(Ys|Xr = xr). Since

EYrYs =
∑
yr,ys

p((Yr, Ys) = (yr, ys)) · yr · ys

=
∑
yr,ys

p(Yr = yr)p(Ys = ys|Yr = yr) · yr · ys

=
∑
yr

p(Yr = yr) · yr
∑
ys

p(Ys = ys|Yr = yr) · ys

=
∑
xr+s
r

p(Yr = f(xr+sr)) · f(xr+sr) ·
∑
ys

p(Ys = ys|Xr+k
r = xr+kr) · ys

Each of the inner sums converges to p(Ys = ys) as s − r → ∞. So the inner sums
converge to EYs = 0. Thus the whole sum converges to 0.

17

Returning to the proof of the theorem, let δ > 0 and let d ∈ N such that E(YrYs)| < δ
if |s− r| > d. Now,

E

(
1

M

M∑
m=1

Ym

)2

= E
1

M2

M∑
r,s=1

YrYs

=
1

M2

M∑
r,s=1

EYrYs

as M →∞, all but dM of the pairs 1 ≤ r, s ≤M are such that |r − s| ≤ d, so

≤ dM ‖f‖2
∞

M2
+

∑
1≤r,s≤M , |r−s|>d

|E(YrYs)|

≤ d ‖f‖2
∞

M2
+
δM2

M2

This is < 2δ when M is large enough. Now apply the first lemma.

8 The Shannon-McMillan Theorem

The LLN says that most sequences for a stationary process have the same “statistics”
(e.g. each symbol or block of symbols appear in roughly the right proportion). The
following theorem says that in fact most sequences of a given length have roughly
the same probability, and this probability is determined by the mean entropy of the
process.

We assume now that X∞1 is a stationary mixing Markov chain, and h = h(X∞1) is its
mean entropy.

Theorem 8.1 (Shannon-McMillan). For every ε > 0, if N is large enough, then there
is a set TN ⊆ ΩN (“typical” points) such that p(TN) > 1− ε and for every xN1 ∈ TN ,

2−(h−ε)N ≤ p(xN1) ≤ 2−(h+ε)N

In particular, for large enough N ,

2(h−ε)N ≤ |TN | ≤ 2(h+ε)N

and for every pair of words in TN have probabilities within a factor of 4εN of each other.

Proof for independent processes. Let us first discuss the first claim in the case p = qN

is a product measure with marginal q = (qω)ω∈Ω0 . Then for any xN1 ,

p(xN1) =
N∏
i=1

qxi =
∏
ω∈Ωo

q#{1≤i≤N :xi=ω}
ω

18

Taking logarithms and dividing by N ,

− log p(xN1) = −
∑
ω∈Ω0

1

N
#{1 ≤ i ≤ N : xi = ω} log qω

By the LLN, with high probability,

| 1
N

#{1 ≤ i ≤ N : xi = ω} − qω| < ε

This proved the claim.

Proof for Markov chains.

1

N
log p(x1 . . . xN) = log

(
q(x1)px1(x2)px2(x3) · . . . · pxN−1

(xN)
)

=
1

N
log q(x1) +

1

N

N−1∑
i=1

log pxi(xi+1)

By the LLN, on a set TN of probability p(TN) > 1− ε the average above is within ε of
the mean value, which is

E(log pX1(X2)) =
∑
x1,x2

p(x1x2) log px1(x2)

=
∑
x1

q(x1)
∑
x2

px1(x2) log px1(x2)

= −
∑

qiH(pi(·))
= −h(X∞1)

We found that for xN1 ∈ TN ,

−h− ε ≤ 1

N
log p(xN1) ≤ −h+ ε

which is the same as
2−(h−ε)N ≤ p(xN1) ≤ 2−(h+ε)N

For the bounds on the size of TN , note that

1 ≥ p(TN) ≥ |TN | · 2−(h+ε)N

which gives |TN | ≤ 2(h+ε)N ; and

1− ε ≤ p(TN) ≤
∑

xN1 ∈TN

p(XN
1) ≤ |TN |2−(h−ε)N

so for N large, |TN | ≥ (1−ε)2(h−ε)N ≥ 2(h−2ε)N . Replacing ε by ε/2 gives the claim.

19

Remark. The conclusion of the SM theorem is also sometimes called the asymptotic
equipartition property (AEP) because it says that for large n the seqeuences in Ωn

0

mostly have almost equal probabilities.

Corollary 8.2. If AN ⊆ ΩN
0 and |AN | ≤ 2(h−ε)N then p(AN)→ 0.

Proof. Let 0 < δ < ε and TN as above for δ. Then

p(AN) = p(AN ∩ TN) + p(AN \ TN)

≤ p(AN ∩ TN) + p(ΩN
0 \ TN)

Now, for large enough N we know that p(Ω \ Tn) = 1− p(Tn) ≤ δ. On the other hand
p(xN1) ≤ 2−(h−δ)N for xN1 ∈ TN so

p(AN ∩ TN) ≤ |AN |2−(h−δ)N = 2−(ε−δ)N → 0

QED.

Application to coding. Fix ε and a large N and let TN be as above. Suppose we
code xN1 by

c(xN1) =

{
0i xN1 ∈ TN
1j otherwise

where i is the index of xN1 in an enumeration of TN and j is the index in ΩN
0 . We code

i with the same number of bits log |TN | even if it we can do so with fewer bits (e.g.
i = 1 is coded as 00 . . . 0001), and similarly j is coded using log |Ω0| bits. Then c is
a prefix code since once the first bit is read, we know how many bits remain in the
codeword. Since i is represented with log |TN | ≤ (h+ ε)N bits, and j in N log |Ω0| bits,
the expected coding length is

p(TN)(1 + (h+ ε)N) + (1− p(TN))N log |Ω0| = (1− ε)(h+ ε+
1

N
)N + ε log Ω0N

≤ (h+ ε+
1 + log |Ω0|

N
)N

so the rate per symbol is ≈ h+ ε, approaching optimal.

This procedure explains “why” it is possible to code long stationary sequences effi-
ciently: with N fixed and large we are essentially dealing with a uniform distribution
on a small set TN of sequences. This procedure however still uses knowledge of the distri-
bution to construct the set TN (also the procedure is very inefficient). We next present
the algorithm of Lempel and Ziv which is asymptotically optimal on any stochastic
process and efficient.

20

9 The Lempel-Ziv algorithm for universal coding

It is convenient to formulate the following algorithm with an infinite input sequence
x∞1 and infinite output y∞1 . The algorithm reads blocks of symbols and outputs blocks.
If the input is finite it is possible that the last block of input symbols was too short to
produce a corresponding output block. This “leftover” input can be dealt with in many
ways, but this is not related to the main goal which is to understand the asymptotics
when the input is long. So we ignore this matter.

The following algorithm reads the input and produces (internally) a sequence of words
z1, z2, . . . which are a unique parsing of the input: that is, for each r,

x1 . . . xn(r) = z1 . . . zr

where n(r) =
∑r

i=1 |zi|, and zi 6= zj for i 6= j. The parsing is constructed as fol-

lows. Define z0 = ∅ (the empty word). Assuming we have read the input x
n(r−1)
1

and defined the parsing z0, z1, . . . , zr−1 of it, the algorithm continues to read symbols
xr(n−1)+1 . . . xr(n−1)+2, . . . from the input until it has read a symbol xn(r) such that the

x
n(r)
n(r−1)+1 does not appear among z0, . . . , zr−1. It then defines zr = x

n(r)
n(r−1)+1. By defi-

nition this is a unique parsing. Also note that there is a unique index ir < r such that
zr = zirxn(r) (if not then the we can remove the last symbol from zr and obtain a word
which does not appear among z0, . . . , zr−1 contradicting the definition of zr).

After defining zr the algorithm outputs the pair (ir, xn(r)); thus the output is a sequence
of pairs as above. We shall discuss below how this pair is encoded in binary bits.

First, here is the algorithm in pseudo-code:

Algorithm 9.1 (Lempel-Ziv coding). Input: x1x2x3 . . . ∈ ΩN
0 , Output: a sequence

(ir, yr) ∈ N× {0, 1}, r = 1, 2, . . ., with ir < r.

z0 := ∅ (the empty word).

- n := 0.

- For r := 1, 2, . . . do

- Let k be the largest integer such that xn+k
n+1 = zm for some m ≤ r.

- Output (m,xn+k+1).

- zr+1 := xn+k+1
n+1 .

- r := r + 1.

- n := n+ k + 1.

Example Suppose the input is

001010011010111101010

21

The parsing z1, z2, . . . , z8 is:

0; 01; 010; 011; 0101; 1; 11; 01010

and the output is

(0, 0), (1, 1), (2, 0), (2, 1), (3, 1), (0, 1), (6, 1), (5, 0)

Notice that the sequence zr constructed in the course of the algorithm satisfies x1x2 . . . =
z1z2 . . . and each (ir, yr) output at stage r of the algorithm satisfies ir < r and zr = ziryr.
Thus we can decode in the following way:

Algorithm 9.2 (Lempel-Ziv decoding). Input (ir, yr) ∈ N × {0, 1}, r = 1, 2 . . ., such
that ir < r; Output x1x2 . . . ∈ {0, 1}N.

- Let z0 := ∅.

- For r := 1, 2, . . . do

- Let zr = ziryr.

- Output zr

Exercise: Verify that this works in the example above.

Coding the pairs into binary. We want to produce a binary sequence, so we want
to code the outputs (ir, yr) as binary strings. One way is to write down the binary
expansion of the integer ir followed by the bit yr but this does not form a prefix code.
To fix this we must choose a prefix code for encoding integers. One can either do this
abstractly using a version of the Kraft theorem for infinite sets, or use the following
methods:

Prefix code for integers: given i ∈ N let a1 . . . ak ∈ {0, 1}k denote its binary rep-
resentation, so k = dlog ie, and let b = b1 . . . bm be the binary representation of k, so
m = dlog ke. Define

c̃(i) = b1b1b2b2 . . . bmbm01a1 . . . ak

Decoding: In order to decode c̃(i) , read pairs of digits (bi, b
′
i) until we read the pair

(bn, b
′
n) = (0, 1). Let b = b1 . . . bn. Let k be the integer with binary representation b.

Read k more symbols a = a! . . . ak and let i be the word with binary representation a.
Output i.

Thus this is a prefix code whose length on input i is

|c̃(i)| = 2(dlog dlog iee+ 1) + dlog ie = (1 + o(1)) log k

bits.

Also for u ∈ Ω0 define c̃(y) = j, where Ω0 = {ω1, . . . , ω|Ω0|} is some enumeration and
y = ωj. Thus c̃(y) = dlog |Ω0|e.

22

Analysis From now on assume that the pairs (ir, yr) output by the Lempel-Ziv algo-
rithm are encoded as c̃(ir)c̃(yr) ∈ {0, 1}∗. Since ir < r this is now a binary string of
length (1 + o(1)) log r. Let xn1 be the input to LZ and suppose the algorithm ran r
steps, defining the words z1, . . . , zr and outputting r pairs (di, yi), i = 1 . . . r (encoded
as above). We have the estimate

c(xn1) ≤ r · (1 + o(1)) log r

The crucial point is to analyze r

Theorem 9.3 (Asymptotic optimality of LZ coding). Let X∞1 be a stationary mixing
Markov chain. For every ε > 0,

p(xn1 : r log r > (h+ ε)n)→ 0 as n→∞

Heuristic Suppose the words zi in the coding are “typical”, so there are 2hk words of
length k. Then

n =
r∑
i=1

|zi| =
∑
`

∑
i:|Zi|=`

` =
L∑
`=1

`2h`

where L is chosen so that equality holds. Thus n ≈ L2hL, so L ≤ log n/h and

r =
L∑
`=1

2h` ≈ 2hL ≈ n/L ≤ hn/ log n

Hence
r log r ≤ r log n ≤ hn

The formal proof will take some time.

Write c(xn1) = z1 . . . zr for the partition obtained by the LZ algorithm, so r = r(xn1) is
random and also depends on n. Fix ε > 0.

For (i,m) ∈ Ω0 × N, let ri,m denote the number of blocks among z1, . . . , zr which are
of length m and are preceded in xn1 by the state i. Thus

r =
∑
i∈Ω0

n∑
m=1

ri,m

The key to the proof is the following remarkable combinatorial fact. It is convenient to
assume that the chain began at time 0, so we can condition on the value of X0.

Proposition 9.4 (Ziv’s inequality). log p(xn1 |x0) ≤ −
∑
ri,m log ri,m.

Note: The right hand side is a purely combinatorial quantity, independent of the
transition probabilities of the Markov chain.

23

Proof. Let ji denote the index preceding the first symbol of zi.

p(xn1 |x0) =
r∏
i=1

p(zi|xji)

so

log p(xn1 |x0) =
r∑
i=1

log p(zi|xji)

=
∑
x∈Ω0

∑
m

∑
i:|zi|=m,xji=x

log p(zi|x)

=
∑
x

∑
m

rx,m
∑
i:...

1

rx,m
log p(zi|x)

≤
∑
x

∑
m

rx,m log

(
1

rx,m

∑
p(zi|x)

)
by concavity, since in the inner sum there are rx,m terms. But since this is a unique
parsing, the inner sum now sums to ≤ 1. So

≤
∑
x

∑
m

rx,m log(1/rx,m)

Corollary 9.5. p (
∑

x

∑
m rx,m log rx,m ≤ (h+ ε)n)→ 1 as n→∞

Proof. By Shannon-McMillan it follows that

p(log p(xn1 |x0) < −(h+ ε)n)→ 0 as n→∞

(using the fact that p(xn1) =
∑

x0
p(x0)p(xn1 |x0); we leave it as an exercise). The corollary

is now trivial from the previous proposition.

Recall that we would like to prove that

p (r log r ≤ (h+ ε)n)→ 1 as n→∞

This follows from the corollary above and the following proposition, which is purely
combinatorial:

Proposition 9.6. Either r < (n log n)2 or else r log r ≤ (1 + o(1))
∑

x,m rx,m log rx,m

Indeed, assuming this is true, in the first situation we have

1

n
c(xn1) =

r log r

n
≤ 1

log n
→ 0

24

and this implies when n is large that we are coding xn1 using an arbitrarily small number
of bits per symbol. In the alternative case the previous lemma applies and we get the
optimality theorem.

We note that the inequality r log r ≤ (1 + o(1))
∑

x

∑
m rx,m log rx,m in the proposition

does not hold in general. For example one can imagine a unique parsing of xn1 in which
there is one word zi of each length, r ∼

√
n and r log r ≥

√
n, while log rx,m = 0 so∑

x,m rx,m log rx,m = 0. The assumption r ≥ n/(log n)2 precludes such behavior (from
the proof one sees that even a much weaker assumption is enough).

The proof of the proposition is requires on two lemmas.

Lemma 9.7. r ≤ (1 + o(1)) n
logn

.

Proof. Fix r and let n̂ denote the smallest possible value with which this r is consistent.
Clearly if ` is the length of some zi then this implies that every word in

⋃
`′<` Ω`′

0 appears
among the zj, since otherwise we could replace zi with one of these words and obtain
a smaller total length . Thus is a k and m < |Ω0|k+1 such that

r =
∑
i≤k

|Ω0|i +m

(note that k →∞ as r →∞) and also

n̂ =
∑
i≤k

i|Ω0|i + (k + 1)m

so

r ≤
∑
i≤k

|Ω0|i +m ≤ n̂

k

On the other hand
n̂ ≤ C(k + 1)|Ω0|k+1

so
log n̂ ≤ (k + 1) + log(C · (k + 1)) = (1 + o(1))(k + 1) as r →∞

so

r ≤ (1 + o(1))
n̂

log n̂
≤ (1 + o(1))

n

log n

since t/ log t is increasing for t ≥ 1.

Lemma 9.8. Most of the contribution to r comes from blocks with relatively short
length, in the sense that ∑

i∈Ω0

∑
m>nε/2

ri,m ≤ n1−ε/2

25

Proof. We have

n =
∑
i

∑
m

mri,m

≥
∑
i

∑
m>nε/2

mε/2ri,m

= mε/2
∑
i

∑
m>nε/2

ri,m

Proof of the proposition. We want to show that most of the contribution to the sum∑
i,m ri,m log ri,m comes from terms with log ri,m ∼ log r. Let

I = {(i,m) ∈ Ω0 × N : log ri,m > (1− ε) log r}

We estimate
∑

(i,m)∈I ri,m. Let’s look at the complementary sum:

∑
(i,m)/∈I

rim log ri,m =
∑
i

 ∑
m>nε/2,log ri,m≤(1−ε) log r

ri,m +
∑

m<nε/2,log ri,m≤(1−ε) log r

ri,m

≤

∑
i

n1−ε/2 +
∑

m<nε/2

r1−ε

= |Ω0|

(
n1−ε/2 + nε/2r1−ε)

≤ C · n1−ε/2

Therefore, ∑
i,m

ri,m log ri,m ≥
∑

(i,m)∈I

ri,m log ri,m

≥ (1− ε) log r
∑

(i,m)∈I

ri,m

= (1− ε) log r · (r − n1−ε/2)

= (1− ε− o(1))r log r

In the last line we used r ≥ n/(log n)2 � n1−ε/2

Combining the last few lemmas, we have proved asymptotic optimality of the
Lempel-Ziv algorithm.

Remark: There is a stronger version of the SM theorem, called the Shannon-McMillan-
Breiman, which states that

lim
n→∞

− 1

n
log p(xn1) = h a.s.

(the SM theorem says this happens in probability). Using this the same argument
shows that that 1

n
|c(xn1)| → h a.s.

26

Remark: It is also possible to analyze the behavior of the algorithm on an individual
sequence x ∈ ΩN

0 and show that it is asymptotically optimal among all finite-state
compression algorithms. See LZ78

Remark: We described an algorithm which searches all the way “back in time” for
instances of a word. In practice one wants to limit the amount of data which is stored.
In many implementation a “sliding block window” is used so as not to store all the
previous data, and instead we look for repetitions only some number of symbolic into
the past. This means that there will be some repetitions among the zi but it still
performs well in practice.

27

