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These notes are based on lectures delivered in the summer school �Modern Dynamics
and its Interaction with Analysis, Geometry and Number Theory�, held in Bedlewo,
Poland, in the summer of 2011. The course is an exposition of Furstenberg's conjectures
on �transversality� of the maps x → ax mod 1 and x 7→ bx mod 1 for multiplicatively
independent integers a, b, and of the associate problems on intersections and sums of
invariant sets for these maps. The �rst part of the course is a short introduction to
fractal geometry. The second part develops the theory of Furstenberg's CP-chains and
local entropy averages, ending in proofs of the sumset problem and of the known case
of the intersections conjecture.
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1 Introduction

1.1 Main problem

Let [x]b denote the base-b representation of x ∈ [0, 1], i.e.

[x]b = 0.x1x2 . . . ⇐⇒ x =
∞∑
i=1

xib
−i

For fractions of the form k/bn there are two possible expansions, we choose the one
ending in 0s. These notes are about the deceptively simple question, what is the relation
between [x]a and [x]b for a 6= b? Algorithmically, converting between bases is a trivial
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operation. But in most cases it is entirely non-trivial to discern any relation between
the statistical or combinatorial properties of the expansion in di�erent bases.

There are two trivial cases where expansions in di�erent bases are closely related.
The �rst is when x is rational, in which case the sequence of digits is eventually periodic
in every base (there remain subtle questions about the period, but qualitatively these
expansions are all similar).

The second trivial case is when there is an algebraic relation between the bases.
Speci�cally, if [x]b = 0.x1x2 . . . and a = b2 then the expansion [x]a arises by grouping
the digits of [x]b into pairs. Indeed,

x =

∞∑
i=1

xib
−i =

∞∑
i=1

(bx2i−1 + x2i)(b
2)−i

Therefor, writing yi = bx2i−1 +x2i, we have [x]a = 0.y1y2 . . .. In a similar way, if a = bn

then we obtain [x]a from [x]b by grouping digits into blocks of length n.

De�nition 1.1. Integers a, b are multiplicatively dependent, denoted a ∼ b, if a, b are
powers of a common integer, i.e. a = ck1 and b = ck2 for some c, k1, k2 ∈ N (equivalently
log a/ log b ∈ Q). Otherwise they are multiplicatively independent, denoted a 6∼ b.

By the previous discussion, if a ∼ b then the expansions [x]a, [x]b are closely related
via the expansion in the base c ∈ N that satis�es a = ck1 , b = ck2 . A concrete manifes-
tation of this, due to W.Schmidt [18], is that if a ∼ b then x is normal1 in base a if and
only if it is normal in base b.

Having excluded two trivial cases, what remains is to understand the expansions of
numbers x ∈ R \ Q in bases a 6∼ b. This is an exceptionally hard problem and almost
nothing seems to be known. There is, however, a far-reaching conjecture by Furstenberg,
predicting that for a 6∼ b the expansions [x]a, [x]b cannot simultaneously have too low a
complexity. To state the conjecture we interpret the complexity of the digit sequence in
the standard way, as the growth rate of the number of distinct sub-sequences of a given
length. More precisely, a sub-block of length k of [x]b = 0.x1x2 . . . is a sub-sequence
xi, . . . , xi+k−1 ∈ {0, . . . , b− 1}k for some i. Let

ck(x; b) = #{distinct blocks of length k in [x]b}

Since every sub-block of length k + m of [x]b is the concatenation of sub-blocks of [x]b
of lengths k and m, one has

ck+m(x; b) ≤ ck(x; b) · cm(x; b)

and so the sequence 1
k logb ck(x; b) is subaddtive, and the limit

c(x; b) = lim
k→∞

1

k log b
log ck(x; b)

exists. This limit is referred to as the (normalized) b-adic complexity of x. Since 1 ≤
ck(x; b) ≤ bk, this normalization ensures that 0 ≤ c(x; b) ≤ 1.

1A number x is said to be normal in base b if the empirical statistics of the digit sequence [x]b is the
same as that of uniformly chosen i.i.d. digits.
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Example 1.2. .

1. Suppose x ∈ Q. Then [x]b is eventually periodic with some periodm, meaning that
there is an n and digits a1, . . . , an, b1, . . . , bm such that [x]b = 0.a1 . . . anb1 . . . bmb1 . . . bmb1 . . . bm . . .
It is clear that a block of length k appearing in [x]b at an index i ≥ n is determined
by i mod m, so ck(x; b) ≤ n+m, independently of k. Thus c(x) = 0.

2. Choose x = 0.x1x2 . . . by selecting xi uniformly at random from {0, . . . , b − 1},
independently of each other. Then with probability 1, every �nite block appears
as a sub-block in [x]b, so ck(x; b) = bk and c(x; b) = 1.

Conjecture 1.3 (Furstenberg 1970). If a 6∼ b and x ∈ [0, 1] \Q then

c(x; a) + c(x; b) ≥ 1

In other words, low complexity in one base b implies correspondingly high complexity
in every other base a 6∼ b.

It is worth noting that this conjecture is related to problems about integer expansions.
For example, Erdo®s has conjectured that there is an n0 such that for n > n0, the digit
2 appears in the base-3 expansion of 2n (see [4, 13]). Though as far as we know these
two conjectures are not related, Conjecture 1.3 does imply a stronger fact for certain
other pairs of bases: For example, that for every block w of binary digits, w appears in
[2n]10 for n > n0(w). See [6].

Little is known about Conjecture 1.3 itself, and we shall have little to say about
it here. However, in its place Furstenberg proposed two geometric conjectures. These
concern the intersections and linear projections of certain fractal sets, and their validity
would provide some support for the conjecture above. The purpose of these notes is to
present the state of the art on those problems (we postpone their precise statement to
Section 5).

1.2 Organization

We begin in Sections 2-4 with a brief introduction to dimension theory. In Section 5
we state the geometric conjectures and discuss some related problems. In Section 6
we develop Furstenberg's notion of a CP-chain. In Section 7 we prove what is known
about the intersections conjecture. In Section 8 we develop the method of local entropy
averages, and in Section 9 present the proof of the projections problem.

1.3 Pre-requisites

We assume the reader has some background in analysis and ergodic theory. Speci�cally
we freely use standard results in measure theory and ergodic theory, in particular the
ergodic and ergodic decomposition theorems, conditional expectation and martingale
convergence theorem. Some less well-known results of this nature are presented but
without proofs. We also rely on the basic properties of Shannon entropy, stating the
properties we need without proofs.

No background is assumed in fractal geometry.
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1.4 Conventions and notation

N = {0, 1, 2, . . .} and N+ = {1, 2, 3 . . .}. We equip Rd with the metric induced by the
sup norm ‖·‖∞. When convenient we omit mention of the σ-algebra of a measurable
space (it is by default the Borel algebra when the space is a topological space) and sets
and functions are implicitly assumed to be measurable when this is required. Spaces of
probability measures are given the weak-* topology when this makes sense. We follow
standard �big O� and �little o� notation

For the reader's convenience we summarize our main notation in the table below.

Br(x) The closed ball of radius r around x
P(X) Space of probability measures on X
|A| Diameter of a set A
Ddn (or Dn) Partition of Rd into n-adic cells (De�nition 2.6)
Dn(x), A(x) The element of the partition Dn (resp. A) that contains x.
dimM, dim Mankowski and Hausdor� dimension (De�nitions 2.1 and 2.11).
dim(µ, x) (Lower) pointwise dimension of µ at x (De�nition 3.1)

dimµ, dimµ Upper and lower dimension of measures (De�nition 3.8)
dimµ Exact dimension of µ (De�nition 3.9)
Πd,k Space of linear maps Rd → Rk.
πu,v The map πu,v(x) = ux+ v, x ∈ R.
`u,v The line {(x, y) ∈ R2 : y = ux+ v}.
µ, ν, η, θ Probability measures on Rd.
P,Q,R Distributions (probability measures on �larger� spaces).
fµ Push-forward of a measure µ by a map f .
LD Homothety mapping D ∈ Dn onto [0, 1)d.
µA Conditional measure of µ on A (assuming µ(A) > 0).
µA LAµA, the re-scaled version of µA (for A a cube)
Λ {0, . . . , b− 1}d (digits of d-dimensional b-adic coding)
Ω ΛN+ (symbolic coding space of [0, 1]d.
[a] Cylinder set corresponding to a ∈ Λn.
Cn Partition of Ω into cylinders [a] for a ∈ Λn.
σ Shift map, σ(x)n = xn+1.
µa µ[a] (for a ∈ Λn, assuming µ[a] > 0)

µa σnµa (for a ∈ Λn)
γ Symbolic coding γ : Ω→ [0, 1]d.
Φ Λ× P(Ω) (CP-space, De�nition 6.14).
F = {F(i.µ)}(i,µ)∈Φ Furstenberg kernel (De�nition 6.14).

H(µ,A), H(µ,A|B) Shannon entropy and conditional entropy.
em(µ, π, x), e(µ, π, x) De�nition 8.7
dime µ Entropy dimension, De�nition 9.1
µx,n, µ

x,n De�nition 9.5
em(P, π), e(P, π) De�nition 9.9
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2 Notions of dimension for sets

Fractal geometry is a branch of analysis concerned with the �ne-scale structure of sets
and measures, usually in Euclidean spaces. The most basic quantity of interest is the
dimension of a set. In this section we recall the de�nitions of Minkowski (or box)
dimension and Hausdor� dimension, and the relations between them. In the next section
we discuss the dimension of measures. For a more thorough introduction to fractal
geometry see Falconer [5] or the monograph of Mattila [15].

2.1 First example: middle-α Cantor sets

The word �fractal� is not a well de�ned mathematical notion, and many of the tools of
fractal geometry apply to arbitrary subsets of Euclidean space or a metric space. The
term often refers, however, to sets which possess some hierarchical structure or that are
invariant under some hyperbolic dynamics. Before giving general de�nitions, we begin
with the simplest examples.

Let 0 < α < 1. The middle-α Cantor set Cα ⊆ [0, 1] is de�ned by a recursive
procedure. For n = 0, 1, 2, . . . we construct a set Cnα which is a union of 2n closed
intervals, each of length ((1 − α)/2)n. To begin let C0

α = [0, 1]. Assuming that Cnα has
been de�ned and is the disjoint union of the closed intervals I1, . . . , I2n , set

Cn+1
α =

2n⋃
i=1

(I+

i ∪ I
−
i )

where I±i ⊆ Ii are the closed sub-intervals that remain after one removes the open
subinterval of relative length α from Ii (thus, if I = [a, a + r], then I− = [a, a + 1−α

2 r]
and I+ = [a− 1−α

2 r, a]).
Clearly C0

α ⊇ C1
α ⊇ . . . and the sets are compact, so the set

Cα =

∞⋂
n=0

Cnα

is compact and nonempty.
All of the sets Cα, 0 < α < 1, are mutually homeomorphic, since all are topologically

Cantor sets (i.e. compact and totally disconnected without isolated points). They all
are of �rst Baire category. And they all have Lebesgue measure 0, since one may verify
that Leb(Cnα) = (1 − α)n → 0. Hence none of these theories can distinguish between
them.

Nevertheless, qualitatively it is clear that Cα becomes �larger� as α → 0, since
decreasing α results in removing shorter intervals in the course of the construction. In
order to quantify this one uses dimension.

2.2 Minkowski dimension

Let (X, d) be a metric space. For A ⊆ X, the diameter of A is denoted |A| and given by

|A| = sup
x,y∈A

d(x, y)
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The simplest notion of dimension measures the growth of the number of sets of a given
diameter needed to cover a set.

De�nition 2.1. Let (X, d) be a metric space. For a bounded set A ⊆ X and δ > 0 let

N(A, δ) = min{k : A ⊆
k⋃
i=1

Ai and |Ai| ≤ δ}

The Minkowski dimension of A is

dimM(A) = lim
δ→0

logN(A, δ)

log(1/δ)

assuming the limit exists. We de�ne the upper and lower dimensions

dimM(A) = lim sup
δ→0

logN(A, δ)

log(1/δ)

dimM(A) = lim inf
δ→0

logN(A, δ)

log(1/δ)

Remark 2.2. .

1. dimMA = α means that N(A, δ) grows approximately like δ−α as δ → 0. More
precisely, dimMA = α if and only if for every ε > 0,

δ−(α−ε) < N(A, δ) < δ−(α+ε) for su�ciently small δ > 0

2. Clearly

dimMA ≤ dimMA

and dimMA exists if and only if the two are equal.

3. It is possible that dimMA = ∞. In fact, dimMA < ∞ implies that A it totally
bounded, and this is the same as compactness of the closure A.

4. Dimension is not a topological notion, rather, it depends on the metric. In Rd
we use the metric induced from the norm ‖·‖∞, but it is not hard to verify that
changing the norm changes N(A, δ) by at most a multiplicative constant, hence
does not change dimM.

Example 2.3. .

1. A point has Minkowski dimension 0, since N({x0}, δ) = 1 for all δ. More generally
N({x1, . . . , xn}, δ) ≤ n, so �nite sets have Minkowski dimension 0.

2. A box B in Rd can be covered by c · δ−d boxes of side δ, i.e. N(B, δ) ≤ cδ−d.
Hence dimB ≤ d for any bounded set B.
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3. If A ⊆ Rd has dimMA < d then Leb(A) = 0. Indeed, choose ε = 1
2(d− dimMA).

Then, for all small enough δ, there is a cover of A by δ−(dimM A+ε) sets of diameter
≤ δ. Since a set of diameter ≤ δ can itself be covered by a set of volume < cδd,
we �nd that there is a cover of A of total volume ≤ cδd · δ−(dimM A+ε) = cδε. Since
this holds for arbitrarily small δ, we conclude that Leb(A) = 0.

Equivalently, if A ⊆ Rd and Leb(A) > 0 then dimMA ≥ d. In particular, for a
bounded set E ⊆ Rd with non-empty interior we have dimME ≥ d, and also, by
the previous example, dimME ≤ d, so dimME = d.

4. A line segment in Rd has Minkowski dimension 1. More generally any bounded
k-dimensional embedded C1-submanifold of Rd has box dimension k.

5. Let us show, forCα as in Section 2.1, that dimMCα = log 2/ log(2/(1−α)). To get
an upper bound, notice that for δn = ((1−α)/2)n the construction of the sets Cnα
provides a cover of Cα by 2n disjoint intervals of length δn, hence N(Cα, δn) ≤ 2n.
If δn+1 ≤ δ < δn then clearly

N(Cα, δ) ≤ N(Cα, δn+1) ≤ 2n+1

On the other hand every set of diameter δ ≤ δn intersects at most two maximal
intervals in Cnα , and any cover of Cαn must intersect each of these intervals, hence

N(Cα, δ) ≥
1

2
· 2n

so for δn+1 ≤ δ < δn we have shown that

n log 2− log 2

(n+ 1) log(2/(1− α))
≤ logN(Cα, δ)

log 1/δ
≤ (n+ 1) log 2

n log(2/(1− α))

Taking δ → 0, we �nd that dimMCα = log 2/ log(2/(1− α)).

Proposition 2.4 (Properties of Minkowski dimension). 1. A ⊆ B =⇒ dimMA ≤
dimMB.

2. dimMA = dimMA.

3. dimMA depends only on the induced metric on A.

4. If f : X → Y is Lipschitz then dimM fA ≤ dimMA, and if f is bi-Lipschitz then

dimM fA = dimMA.

The proofs are easy consequences of the de�nition and are omitted (see the closely
related proof of Proposition 2.12 below).

Here is a simple but nontrivial application:

Corollary 2.5. For 1 < α < β < 1, the sets Cα, Cβ, are not C1-di�eomorphic, i.e.

there is no C1-di�eomorphism f of R such that fCα = Cβ.

Proof. If f : R→ R is a C1 di�eomorphism then f |Cα : Cα → f(Cα) is bi-Lipschitz, so
by part (4) of the proposition, dimM fCα = dimMCα. But for α 6= β, we have seen that

dimMCα =
log 2

log(2/(1− α))
6= log 2

log(2/(1− β))
= dimMCβ

so fCα 6= Cβ .
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2.3 Covering with cubes

We now specialize to Euclidean space and show that in the de�nition of Minkowski di-
mension, one can restrict to covers by convenient families of cubes, rather than arbitrary
sets. This is why Minkowski dimension is often called box dimension.

De�nition 2.6. Let b ≥ 2 be an integer. The partition of R into b-adic intervals is

Db = {[k
b
,
k + 1

b
) : k ∈ Z}

The corresponding partition of Rd into b-adic cubes is

Ddb = {I1 × . . .× Id : Ii ∈ Db}

(We suppress the superscript d when it is clear from the context). The covering number
of A ⊆ Rd by b-adic cubes is

N(X,Db) = #{D ∈ Db : D ∩X 6= ∅}

Lemma 2.7. For any integer b ≥ 2,

dimMX = lim
n→∞

1

n log b
logN(X,Dbn)

and similarly for dimM and dimM.

Proof. Since |D| = b−n for any D ∈ Dnb (recall that we are using the sup metric),

N(A, c · b−n) ≤ N(A,Dbn)

On the other hand every set B with |B| ≤ b−n can be covered by at most 2d cubes
D ∈ Dbn . Hence

N(A,Dbn) ≤ 2dN(A, b−n)

Substituting this into the limit de�ning dimM, and interpolating for b−n−1 ≤ δ < b−n

as in Example 2.3 5 above, the lemma follows.

2.4 Hausdor� dimension

Minkowski dimension is relatively simple to compute, but it is a rather coarse quantity
that is sometimes �too large�. For example, countable sets may have positive dimension:

dimM(Q ∩ [0, 1]) = dimM(Q ∩ [0, 1]) = dimM[0, 1] = 1

Worse yet, this can occur for closed countable sets. For example the Monkowski dimen-
sion of

A = {0} ∪ { 1

n
: n ∈ N}

is 1
2 . We leave the veri�cation to the reader.
Hausdor� dimension provides a better, albeit somewhat more complicated, notion of

dimension. To motivate the de�nition, observe that sets of positive Lebesgue measure
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in Rd are natural candidates to be considered fully d-dimensional, so one should look
for sets of dimension < d among the Lebesgue nullsets. Recall that such a nullset is just
a set with the property that it can be covered by balls whose total volume is arbitrarily
small, where the volume of a ball of radius r is proportional to rd . Imagine now that
we have a notion of �volume� for which the mass of a ball of radius r was of order rα.
Then a set of positive �volume� would be a candidate to have dimension ≥ α, and a set
of �volume� zero would be a candidate to have dimension ≤ α.

Although for α < d there is no canonical locally �nite2 measure on Rd for which
mass decays in this way, one can use this heuristic to de�ne the notion of a null set. The
following de�nition is the same as the de�nition of Lebesgue-null sets in Rd, except that
the contribution of each ball is rα instead of rd.

De�nition 2.8. Let A be a subset of a metric space. The α-dimensional Hausdor�

content Hα is

Hα(A) = inf{
∞∑
i=1

|Ai|α : A ⊆
∞⋃
i=1

Ai}

We say that A is α-null if Hα(A) = 0.

Remark 2.9. .

1. Hα is not a measure, and it is usually denoted H∞α in order to distinguish it from
Hausdor� measure. We shall not discuss Hausdor� measures here, and adopt the
simpler notation without the superscript ∞.

2. The de�nition of Hα does not require that the sets Ai have small diameter. When-
ever A is bounded one can cover it with a single set, and then Hα is �nite. For
unbounded sets Hα may be �nite or in�nite.

Lemma 2.10. If Hα(A) = 0 then Hβ(A) = 0 for β > α.

Proof. Let 0 < ε < 1. Then there is a cover A ⊆
⋃
Ai with

∑
|Ai|α < ε. Since ε < 1,

we know |Ai| ≤ 1 for all i. Hence∑
|Ai|β =

∑
|Ai|α|Ai|β−α ≤

∑
|Ai|α < ε

so, since ε was arbitrary, Hβ(A) = 0.

From the lemma it follows that for any A 6= ∅ there is a unique α0 such that
Hα(A) = 0 for α > α0 and Hα(A) > 0 for 0 ≤ α < α0.

De�nition 2.11. The Hausdor� dimension dimA of A is

dimA = inf{α : Hα(A) = 0}

Proposition 2.12 (Properties of Hausdor� dimension). .

2A measure is locally �nite if bounded Borel sets have �nite measure. In complete separable metric
spaces this implies that the measure is inner and outer regular as well, i.e. it is a so-called Radon
measure.
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1. A ⊆ B =⇒ dimA ≤ dimB.

2. A =
⋃∞
i=1Ai =⇒ dimA = supi dimAi .

3. dimA ≤ dimMA.

4. dimA depends only on the induced metric on A.

5. If f is a Lipschitz map X → X then dim fX ≤ dimX, and bi-Lipschitz maps

preserve dimension.

Proof. .

1. Clearly if B is α-null and A ⊆ B then A is α-null, and the claim follows.

2. Since Ai ⊆ A, by (1) we have dimA ≥ supi dimAi.

To show dimA ≤ supi dimAi, it su�ces to prove for α > supi dimAi that A is
α-null. This follows from the fact that each Ai is α-null by the same argument that
shows that a countable union of Lebesgue-null sets is Lebesgue null. Speci�cally,
for ε > 0 choose a cover Ai ⊆

⋃
j Ai,j with

∑
j |Ai,j |α < ε/2n. Then A ⊆

⋃
i,j Ai,j

and ∑
i,j

|Ai,j |α <
∑
i

ε

2i
< ε

Since ε was arbitrary, Hα(A) = 0.

3. Let β > α > dimMA and �x any small δ > 0. Then there is a cover A ⊆
⋃N
i=1Ai

with diamAi ≤ δ and N ≤ δ−α. Hence
∑N

i=1(diamAi)
β ≤

∑N
i=1 δ

β ≤ δ−αδβ =
δβ−α. Since δ was arbitrary, Hβ(A) = 0. Since β > dimMA was arbitrary (we can
always �nd suitable α), dimA ≤ dimMA.

We leave the proof of (4) and (5) to the reader.

Analogous to the fact that Minkowski dimension can be de�ned using boxes, we
have:

Lemma 2.13. The same notion of dimension is obtained if, for some integer b ≥ 2, in
the de�nition of Hα(A) , we restrict to covers {Ai} of A with Ai ∈

⋃
n∈NDbn.

We leave the proof to the reader. Note, however, that if we reverse the quanti�ers
and consider covers {Ai} such that there is an n with Ai ∈ Dn for all i, then rather than
Hausdor� dimension one ends up with lower Minkowski dimension.

Example 2.14. .

1. A point has dimension 0, so by the previous proposition countable sets have di-
mension 0. This and the examples at the beginning of Section 2.4 show that the
inequality dimA ≤ dimMA can be strict.

2. dimA ≤ d for any A ⊆ Rd. Indeed, since we can write A =
⋃
D∈D1

A ∩ D, by
Proposition 2.12 (2) it is enough to prove dimA∩D ≤ d for D ∈ Di. This follows
from the fact that by Example 2.3 (2), dimA ≤ dimMA ≤ d for any bounded
A ⊆ Rd.
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3. It is clear from the de�nition that Hd(A) = 0 if and only if Leb(A) = 0. It follows
that any A ⊆ Rd of positive Lebesgue measure (or even outer measure) satis�es
dimA ≥ d. Thus, by the previous example, such sets satisfy dimA = d.

4. A set A ⊆ Rd can have dimension d even when its Lebesgue measure is 0. Indeed,
we shall later show that Cα has the same Hausdor� and Minkowski dimensions.
Let A =

⋃
n∈NC1/n. Then dimA = supn dimC1/n = 1 (Proposition 2.12 (2)).

Hence dimA = 1. On the other hand Leb(C1/n) = 0 for all n, so Leb(A) = 0.

5. IfM is an embedded k-dimensional C1 submanifoldM of Rd, then it is bi-Lipschitz
equivalent to a subset of Rk with non-empty interior, so dimM = k.

3 Notions of dimension for measures

The Hausdor� dimension of a set is usually more di�cult to compute than the Minkowski
dimension. This is true even for very simple sets like the middle-α Cantor sets. One can
often obtain an upper bound on the Hausdor� dimension by computing the Minkowski
dimension, but in order to get a matching lower bound, if one exists, the appropriate
tool is often the construction of appropriate measures on the set. In this section we
develop this connection between the dimension of sets and measures.

3.1 The pointwise dimension of a measure

The de�nition of Hausdor� dimension of sets in Rd was motivated by an imaginary
�volume� which decays rα for balls of radius r. Although there is no canonical locally-
�nite measure with this property for α < d, we shall see below that there is a precise
connection between dimension of a set and the decay of mass of measures supported on
the set.

We restrict the discussion to sets and measures on Euclidean space. As usual let

Br(x) = {y : ‖x− y‖∞ ≤ r}

although one could use any other norm with no change to the results.

De�nition 3.1. The (lower) pointwise dimension of a measure µ at x is

dim(µ, x) = lim inf
r→0

logµ(Br(x))

log r
(1)

(note that dim(µ, x) =∞ for x /∈ suppµ).

Thus dim(µ, x) = α means that the decay of µ-mass of balls around x scales no
slower than rα, i.e. for every ε > 0, we have µ(Br(x)) ≤ rα−ε for all small enough r,
and that this α is the largest number with this property.

Remark 3.2. .

1. There is an analogous notion of upper pointwise dimension using limsup, but we
shall not have use for it here.
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2. In many of the cases we consider, the limit (1) exists. In that case µ is said to
have exact dimension α at x.

3. There is a natural stronger notion of decay of mass at a point, namely, it may
happen that for some α, the limit limµ(Br(x))/rα exists and is positive and �nite.
For α = d and a measure µ on Rd absolutely continuous with respect to Lebesgue
measure, or to a smooth volume on a submanifold, such decay is guaranteed µ-
a.e. by the Lebesgue di�erentiation theorem. It is a remarkable fact due to D.
Preiss [17] that if α is not an integer, then for any measure µ on Rd the limit
limµ(Br(x))/rα can exists only for x in a µ-nullset.

Example 3.3. .

1. If µ = δu is the point mass at u, then µ(Br(u)) = 1 for all r, hence dim(µ, u) = 0.

2. If λ is Lebesgue measure on Rd then λ(Br(x)) = crd for any x, and dim(µ, x) = d.

3. Let µ = λ + δ0 where λ is the Lebesgue measure on the unit ball. If x 6= 0
is in the interior of the unit ball, µ(Br(x)) = λ(Br(x)) for small enough r, so
dim(µ, x) = dim(λ, x) = d. One easily sees that the same local dimension occurs
also on the boundary of the unit ball. On the other hand µ(Br(0)) = λ(Br(0))+1,
so dim(µ, 0) = 0.

4. Let µ = µα on Cα denote the probability measure which gives equal mass to
each of the 2d intervals in the set Cnα introduced in the construction of Cα. Let
δn = ((1 − α)/2)n be the length of these intervals. Then for every x ∈ Cα, one
sees that Bδn(x) intersects at most two of the stage-n intervals and contains one
of them, so

2−n ≤ µ(Bδn(x)) ≤ 2−n+1

Hence

lim
n→∞

logµ(Bδn(x))

log δn
=

log 2

log(2/(1− α))

One obtains the same limit as δ → 0 continuously by observing that Bδn+1(x) ⊆
Br(x) ⊆ Bδn(x) whenever δn+1 ≤ r < δn. Hence dim(µα, x) = log 2/ log(2/(1−α))
for every x ∈ Cα.

The fundamental relation between pointwise dimension of a measure and Hausdor�
dimension of sets is given in the next proposition, before which we recall the well-known
Vitali covering lemma whose proof can be found e.g. in [15].

Lemma 3.4 (Vitali covering lemma). Let {Bi}i∈I be a collection of balls in Rd whose

radii are all less than some R. Then there is a subset J ⊆ I such that {Bj : j ∈ J} are
pairwise disjoint, and

⋃
i∈I Bi ⊆

⋃
j∈J 5Bj, where 5Bj is the ball with the same center

as Bj and 5 times the radius.

Proposition 3.5. Let µ ∈ P(Rd) and let A ⊆ Rd be a set with µ(A) > 0.

1. (Mass distribution principle) If dim(µ, x) ≥ α for all x ∈ A, then dimA ≥ α.

2. (Billingsley's lemma) If dim(µ, x) ≤ α for all x ∈ A then dimA ≤ α.

13



Remark 3.6. In the �rst part of the theorem one can clearly relax the hypothesis and only
require it to hold for µ-a.e x or even a positive µ-mass of x , since then the bound applies
to the subset A0 ⊆ A of points x for which it holds, and then dimA ≥ dimA0 ≥ α. It
is not possible to similarly relax the second part.

Proof. We prove the �rst statement. Suppose by way of contradiction that dimA < α
and let dimA < β < α. Applying Egorov's theorem to the limit in the de�nition of
dim(µ, x), we can �nd a subset of A of positive (actually, arbitrarily large) measure
where the convergence in 1 is uniform, and of course this set still has dimension < α.
Replacing A with this set we can assume that there is an r0 such that if r < r0 then
µ(Br(x)) < rβ for all x ∈ A.

For every δ > 0 there is a countable cover A ⊆
⋃
Ai such that

∑
|Ai|β < δ. We may

assume Ai ∩ A 6= ∅, since otherwise we can throw that set out. Let xi ∈ Ai ∩ A and
ri = |Ai|, so that Ai ⊆ Bri(xi). Also note that |Ai|β < δ, so ri < δ1/β . Hence, assuming
δ is small enough, implies ri < r0. We now have

µ(A) ≤
∑
i

µ(Ai) ≤
∑
i

µ(Bri(xi)) ≤
∑
i

rβi < δ

Since δ was an arbitrary small number we get µ(A) = 0, a contradiction.
Now for the second statement. Let ε > 0 and �x r0 > 0. Then by assumption, for

every x ∈ A we can �nd an r = r(x) < r0 such that Bx = Br(x) satis�es µ(Bx) ≥ rα+ε.
Apply the Vitaly lemma to choose a disjoint sub-collection {Bxi}i∈I ⊆ {Bx}x∈A such
that A ⊆

⋃
i∈I 5Bxi . Using the fact that |5Bxi | = 5 · |Bxi |, we have

Hα+2ε(A) ≤
∑
i∈I
|5Bxi |α+2ε

= 5α+2ε ·
∑
i∈I
|Bxi |α+2ε

≤ 5α+2ε · rε0
∑
i∈I

µ(Bxi)

≤ 5α+2ε · rε0 · µ(Rd)

Since µ is �nite and r0 was arbitrary, we �nd that Hα+2ε(A) = 0. Hence dimA ≤ α+2ε
and since ε was arbitrary, dimA ≤ α.

As an application we can now compute the dimension of the sets Cα from Section
2.1:

Corollary 3.7. dimCα = dimMCα = log 2/ log(2/(1− α)).

Proof. Let β = log 2/ log((1 − α)/2). We saw already that dimMCα ≤ β, and so
dimCα ≤ β. We also saw in Example 3.3 (4) that there is a measure µα on Cα with
dim(µ, x) ≥ β for x ∈ Cα, so by the proposition dimCα ≥ β. The claim follows.

The last argument is typical of computing the dimension of a set: generally one
obtains an upper bound using Minkowski dimension, and tries to �nd a measure on the
set which gives a matching lower bound.
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3.2 Dimension of measures

Having de�ned dimension at a point, we now turn to global notions of dimension for
measures. These are de�ned as the largest and smallest pointwise dimension, after
ignoring a measure-zero set of points.

De�nition 3.8. The upper and lower Hausdor� dimension of a locally �nite measure
µ are de�ned respectively by

dimµ = esssup
x∼µ

dim(µ, x)

dimµ = essinf
x∼µ

dim(µ, x)

If the pointwise dimension is µ-a.s. constant, i.e. dimµ = dimµ, then their common
value is the pointwise dimension of µ and is denoted dimH µ.

There is a stronger notion of dimension which is not always de�ned but, when it is,
is sometimes useful:

De�nition 3.9. If the limit in Equation (1) exists and is µ-a.s. independent of x, then
this value is called the exact dimension of µ and is denoted dimµ.

Clearly if µ is exact dimensional then dimµ = dimµ = dimµ, but the converse
implication is false.

Proposition 3.10. If µ is a locally �nite measure on Rd then dimµ = inf{dimA :
µ(Rd \A) = 0}.

Proof. Since µ is σ-�nite it is easy to reduce to the case that µ is a probability measure,
which we now assume. Write α = dimµ. If A is a Borel set with µ(A) = 1, then by
de�nition of dimµ for every ε > 0 there is a subset Aε ⊆ A such that dim(µ, x) ≥ α− ε
for x ∈ Aε, and µ(Aε) > 0. From the Proposition 3.5 (1) we have dimAε ≥ α− ε. Since
dimA ≥ dimAε, we have dimA ≥ α. Hence α ≤ inf{dimA : µ(A) = 1}. To prove
equality, let

A = {x ∈ Rd : dim(µ, x) ≤ α}

By de�nition of α = dimµ, we have µ(A) = 1. By Proposition 3.5(2), we know that
dimA ≤ α. Hence inf{dimA : µ(A) = 1} ≤ dimA ≤ α. This completes the proof.

A nearly identical argument gives:

Proposition 3.11. If µ is a locally �nite measure on Rd then dimµ = inf{dimA :
µ(A) > 0}.

Proof. Write α = dimµ. Clearly if µ(A) > 0 then after removing a set of measure 0
from A, we have dim(µ, x) ≥ α for x ∈ A, so by Proposition 3.5(1), dimA ≥ α. This
shows that α ≤ inf{dimA : µ(A) > 0}. For the converse direction �x ε > 0 and let

A = {x : dim(µ, x) ≥ α}

so µ(A) > 0. By Proposition 3.5(2), we know that dimA ≤ α. Hence inf{dimA :
µ(A) > 0} ≤ dimA ≤ α. This completes the proof.
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We have seen that the dimension of a set is no smaller than the dimension of the
measures it supports. There is a converse result which we do not prove, see [15]:

Theorem 3.12 (Frostman's lemma). If X ⊆ Rd is a Borel set and Hα(X) > 0 then

there is a measure µ on X such that dimµ ≥ α. In particular, for every ε > 0 there is

a probability measure µ supported on X such that dimµ > dimX − ε.

In general one cannot always �nd a measure µ on X with dimµ = dimX. Indeed, if
X =

⋃
Xn and Xn has dimension α− 1/n, then dimX = α, but by Theorem 3.11 any

measure of dimension α will satisfy µ(Xn) = 0 for all n and hence µ(X) ≤
∑
µ(Xn) = 0.

Corollary 3.13. for a Borel set X,

dimX = sup{dimµ : µ ∈ P(X)}

Proof. For µ ∈ P(X) we have dimX ≥ dimµ by Proposition 3.11, giving dimX ≥
sup{dimµ : µ ∈ P(X)}. The reverse inequality follows from Theorem 3.12.

3.3 Density theorems

For λ =Lebesgue measure on Rd, the Lebesgue density theorem states that if f ∈ L1(λ)
then for λ−a.e. x,

lim
r→0

1

crd

ˆ
Br(x)

f dλ = f(x)

(here c is the inverse volume of the unit ball, which in the ‖·‖∞ norm is just 2d).
For other measures µ one might expect that, if dim(µ, x) = α, then the same would

hold with rα in the denominator rather than rd. This is almost never the case (see
Remark 3.2(3)), but we have the following, where rα is replaced by µ(Br(x)), and
similarly along b-adic cells (rather than balls). We write

Db(x) = the unique D ∈ Db containing x

Theorem 3.14 (Di�erentiation theorems for measures). Let µ be a locally �nite measure

on Rd and f ∈ L1(µ). Then for µ-a.e. x we have

lim
r→0

1

µ(Br(x))

ˆ
Br(x)

f dµ = f(x)

and for any integer b ≥ 2,

lim
n→∞

1

µ(Dbn(x))

ˆ
Dbn (x)

f dµ = f(x)

Remark 3.15. .

1. The �rst of these results is due to Besicovtich and can be found e.g. in [15]. The
formulation makes sense in a general metric space, but the theorem does not hold
in this generality. The two main cases in which it holds are Euclidean spaces and
ultrametric spaces, in which balls of a �xed radius form a partition of the space.

16



2. The second statement is a consequence of the martingale convergence theorem,
since the ratio whose limit we are taking is nothing other than E(f | Dbn)(x).

Let µ be a measure on Rd and A a set with µ(A) > 0 and µ(Rd\A) > 0. Topologically,
A and its complement can be very much intertwined: for example both may be dense,
or even have positive measure in every open set. However, from the point of view of µ,
they become nearly separated when one gets to small enough scales.

Corollary 3.16 (Density theorems). If µ is a locally �nite measure on Rd and µ(A) > 0,
then for µ-a.e. x ∈ A,

lim
r→∞

µ(Br(x) ∩A)

µ(Br(x))
= 1

lim
n→∞

µ(Dbn(x) ∩A)

µ(Dbn(x))
= 1

Proof. Apply the previous theorem to the indicator functions 1A and 1Rd\A.

Corollary 3.17. If ν � µ are locally �nite measures on Rd then dim(ν, x) = dim(µ, x)
for ν-a.e. x. In particular, if µ(A) > 0 and ν = µ|A, then dim(µ, x) = dim(ν, x) at

ν-a.e. x.

Proof. Let dν = f · dµ where 0 ≤ f ∈ L1(µ), so that ν(Br(x)) =
´
Br(x) f dµ. Taking

logarithms in the di�erentiation theorem we have

lim
r→0

(log ν(Br(x))− logµ(Br(x))) = log f(x) ν-a.e. x

Since 0 < f(x) < ∞ for ν-a.e. x, upon dividing the expression in the limit by log r
the di�erence tends to 0, so the pointwise dimensions of µ, ν at x coincide. The second
statement follows from the �rst.

Corollary 3.18. If µ = ν0 + ν1 is a locally �nite measure on Rd then

dimµ = max{dim ν0,dim ν1}
dimµ = min{dim ν0,dim ν1}

and similarly if µ =
∑∞

i=1 νi (with sup and inf instead of max and min, respectively).

Proof. Choose pairwise disjoint sets A0, A01 and A1 such that µ|A01 is equivalent to both
ν1|A01and ν2|A01 , but µ|A1 ⊥ ν0 and µ|A0 ⊥ ν1. By the previous corollaries, for µ-a.e.
x ∈ A01 we have dim(µ, x) = dim(ν1, x) = dim(ν2, x), while for µ-a.e. x ∈ A0 we have
dim(µ, x) = dim(ν0, x) and for µ-a.e. x ∈ A1 we have dim(µ, x) = dim(ν1, x). The claim
follows from the de�nitions.

Pointwise dimension of a measure can also be de�ned using decay of mass along
b-adic cells rather than balls:

De�nition 3.19. The b-adic pointwise dimension of µ at x is

dimb(µ, x) = lim inf
n→∞

− logµ(Dbn(x))

n log b
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Proposition 3.20. Let µ be a locally �nite measure on Rd. Then dim(µ, x) = dimb(µ, x)
for µ-a.e. x.

Proof. We have Dbn(x) ⊆ Bb−n(x), so µ(Dbn(x)) ≤ µ(Bb−n(x)) and hence dimb(µ, x) ≥
dim(µ, x) for every x ∈ suppµ.

We want to prove that equality holds a.e., hence suppose it does not. Then we can
�nd an α and ε > 0, and a set A with µ(A) > 0, such that dimb(µ, x) > α + 2ε and
dim(µ, x) < α + ε for x ∈ A. By further reducing the set A, we may, by Egorov's
theorem, assume that the limit (3.1) de�ning pointwise dimensions converges uniformly
for x ∈ A.

Let ν = µ|A. By the previous corollary, dim(µ, x) = dim(ν, x) for ν-a.e. x ∈ A, and
since µ(Dbn(x)) ≥ ν(Dbn(x)) we a-priori have dimb(ν, x) ≥ dimb(µ, x). For x ∈ A,

Bb−k(x) ⊆
⋃
{D : D ∈ Dbkand D ∩Bb−k(x) 6= ∅}

The union contains 2d sets, and by uniformity, for k large enough, each has ν-mass
< b−k(α+2ε). Hence

ν(Bb−k(x)) ≤ 2d · b−k(α+2ε)

On the other hand, since dim(ν, x) < α + ε, for large enough k we have ν(Bb−k(x)) ≥
b−k(α+ε), which is a contradiction.

4 Products, projections and slices

4.1 Product sets

The following holds in general metric spaces but for simplicity we prove it for Rd.

Proposition 4.1. If X ⊆ Rd, Y ⊆ Rd′ , then

dimMX × Y = dimMX + dimM Y

Proof. A b-adic cell in Rd×Rd′ is the product of two b-adic cells from Rd,Rd′ . It follows
that

N(X × Y,Dd+d′

b ) = N(X,Ddb ) ·N(Y,Dd′b )

Taking logarithms and inserting this into the de�nition of dimM gives the claim.

The behavior of Hausdor� dimension with respect to products is more complicated
than that of Minkowski dimension. In general, we have

Proposition 4.2. dim(X × Y ) ≥ dimX + dimY for any X ⊆ Rd and Y ⊆ Rd′.
Similarly, for locally �nite measures µ, ν on Rd,Rd′ , respectively, we have

dimµ× ν ≥ dimµ+ dim ν

dimµ× ν ≥ dimµ+ dim ν
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Proof. We prove the second statement �rst. Since Dd+d′
n (x, y) = Ddn(x)×Dd′n (y),

dimb(µ× ν, (x, y)) = lim inf
n→∞

− logµ× ν(Dd+d′

2n (x, y))

n log b

= lim inf
n→∞

−
log
(
µ(Ddn(x)) · ν(Dd′n (y))

)
n log b

= lim inf
n→∞

(
logµ(Ddn(x))

n log b
+

log ν(Dd′n (y))

n log b

)
≥ dimb(µ, x) + dimb(ν, y)

The claim follows.
For the �rst statement, apply Frostman's lemma (Theorem 3.12) to obtain, for each

ε > 0, measures µε on X and νε on Y with dimµε ≥ dimX− ε and dim νε ≥ dimY − ε.
Then µε × νε is supported on X × Y so

dim(X × Y ) ≥ dim(µε × νε) ≥ dimµε + dim νε ≥ dimX + dimY − 2ε

As ε was arbitrary the claim follows.

There are examples in which the inequality is strict, see [15]. However, we have the
following condition for equality:

Proposition 4.3. If dimX = dimMX and dimY = dimM Y then

dimX × Y = dimMX × Y = dimX + dimY

Remark 4.4. It is enough to require equality of the Mankowski and Hausdor� dimension
of one of the sets X,Y , but we will not prove this fact here. See [15].

Proof. We have

dimMX × Y ≥ dimX × Y
≥ dimX + dimY

= dimMX + dimM Y

= dimMX × Y

so we have equalities throughout.

4.2 Projections and slices

A classical and much-studied aspect of fractal geometry concerns the behavior of sets
A ⊆ Rd under intersection with a�ne subspaces (�slices� of the set), and under taking
the image by a linear map π : Rd → Rk (�projection�). These problems are dual in the
sense that for linear maps π, preimages π−1(y) are a�ne subspaces, and heuristically
the size of the �bers/slices A∩π−1(A) should complement the size of the image π(A), as
occurs by basic linear algebra when A = Rd or when A < Rd is itself an a�ne subspace.

Let Πd,k denote the set of linear maps π : Rd → Rk of full-rank. For projections,
there is, �rst, a trivial bound:
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Lemma 4.5. Let A ⊆ Rd and π ∈ hom(Rd,Rk). Then dimπA ≤ min{k, dimA}.
Similarly, if µ ∈ P(Rd) and π ∈ Πd,k then dim(πµ, πx) ≤ dim(µ, x) for all x ∈ suppµ,
and in particular dimπµ≤ dimµ.

Proof. Since πA ⊆ Rk we have dimπA ≤ k. Since linear maps are Lipschitz, dimπA ≤
dimA. The �rst claim follows. For the second observe that there is a constant c > 0 such
that for every x ∈ suppµ and r > 0, we have Bcr(x) ⊆ π−1(Br(πx)) (in the Euclidean
norm this constant is 1. For ‖·‖∞ the constant is 1/

√
d). Hence

(πµ)(Br(πx)) ≥ µ(Bcr(x))

The inequality dim(πµ, πx) ≤ dim(µ, x) is a consequence of this, and from this the
inequality dimπµ ≤ dimµ follows.

Strict inequality can occur. For example if A = A1 × A2 and π(x, y) = x, then
πA = A1. If dimA2 > 0 we will have dimA1 < dimA1 + dimA2 ≤ dimA.

However, strict inequality dimπA < dimA is a rather exceptional situation. To
motivate this statement, consider a set X ⊆ R2 and let πθ be the orthogonal projection
to the line of slope θ with the x-axis. Then for x, y ∈ X, the distance of the images
πθ(x), πθ(y) is usually of order ‖x− y‖: e.g. |πθx − πθy| ≥ δ ‖x− y‖ for all but a δ-
fraction of the directions θ. Heuristically, this means that for a randomly chosen θ, the
map πθ will behave, with high probability, like a bi-Lipschitz map when restricted to
any �large� subset of X (i.e. all of X if dimX ≤ 1, or a 1-dimensional subset of X if
dimX > 1). This is, essentially, why one expects the image to be as �large as it can be�.

This heuristic takes the following precise form. Let Πd,k denote the space of surjective
linear maps Rd → Rk, and parametrize it as the set of k×d matrices with rank k, which
is an open subset of Rdk. The volume measure on Rdk then induces a measure class on
Πd,k, and it is this measure class we refer whenever speaking of a.e. projection. The
following is known generically as Marstrand's theorem, see e.g. [15] for sets, for measures
see [12].

Theorem 4.6 (Marstrand [15]). Let A ⊆ Rd be a Borel set. Then

dim(πA) = min{k,dimA}

for a.e. π ∈ Πd,k. Similarly, for µ ∈ P(Rd),

dimπµ = min{k, dimµ}

for a.e. π ∈ Πd,k.

Together with the previous lemma this says that the image of a set is typically �as
large as it can possibly be�.

To motivate the dual statement about intersections, let us start with an apparently
di�erent problem of estimating the (box) dimension of the intersection of two sets A,B ⊆
[0, 1] whose (box) dimensions are α, β, respectively. Choose an interval I ∈ Dn, I ⊆ [0, 1],
randomly and uniformly. Each interval is chosen with probability 1/n, and A intersects
roughly nα of them, so the probability of a random interval intersecting A is nα−1.
Similarly the probability of intersecting B is nβ−1. Now, suppose that A and B are
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�independent� at scale 1/n in the sense that the probability that a random interval I ∈
Dn, I ⊆ [0, 1], intersects bothA andB is the product of the probabilities that it intersects
each individually. Then this probability is nα−1 · nβ−1 = n(α+β−1)−1. If α+ β − 1 > 0,
this is the probability associated to a set of box dimension α+ β − 1. If α+ β − 1 ≤ 0,
this is (less than) the probability associated to a set of box dimension 0. Thus, under
the stated independence assumption, we expect dim(A ∩B) = max{0, α+ β − 1}.

To relate this to the slice problem, note that the line ` = {y = ux + v} intersects
X = A × B in a set that is, up to a scaling of the metric, the same as (uA + v) ∩ B.
When u, v are chosen randomly it is at least plausible that uA + v and B may display
the kind of independence needed in the discussion above. This leads one to expect that
for a generic line ` ⊆ R2 we should have dim((A×B) ∩ `) ≤ max{0, α+ β − 1}.

Something like this is indeed the case. Parametrize n-dimensional a�ne subspaces
as W = π−1(y), where π ∈ Πd,k and y ∈ Rd−n are distributed independently according
to Lebesgue measure (this measure is equivalent to the usual measure class on the
Grassmanian). The following is Marstrand's slice theorem (more re�ned versions exist
for measures, but we omit them).

Theorem 4.7. Let A ⊆ Rd be Borel. Then

dim(A ∩W ) ≤ max{0, dimA+ n− d}

for a.e. n-dimensional a�ne subspace W ⊆ Rd.

Remark 4.8. .

1. We cannot expect an equality here, since there will generally be an in�nite-measure
set of a�ne subspaces which do not intersect A at all. Strict inequality can also
happen for subspaces W which intersect A non-trivially. A counterexample is
again given by product sets: if A = A1 × A2 ⊆ R2 and dimA < 1 then the
theorem predicts that typically dim(A ∩W ) = 0, while some lines parallel to the
axes intersect A in copies of A1 and A2, and these may have positive dimension.

2. Combining the two theorems, a.e. π ∈ Πd,k and a.e. y ∈ Rk, writing W = π−1(y),
we �nd

dimπA+ dim(A ∩W ) ≤ min{k,dimπA}+ max{0, dimA+ (d− k)− d}
= dimA

The projections π and subspaces W for which the conclusions of the theorems above fail
are said to be exceptional. In general, the exceptional set can be badly behaved from a
topological point of view. In particular, the map π → dimπA is measurable but does
not generally have any continuity properties, and likewise the map W 7→ dim(W ∩ A).
Bounds exist for the dimension of the set of exceptional maps π and subspacesW , but in
general they can be large, e.g. uncountable, dense Gδ subsets of their respective spaces,
etc. For more information see e.g. [15].

Contrary to the �wild� situation for general sets, for �naturally de�ned� sets, it is
believed that the only exceptions should be those that are necessary by algebraic or
combinatorial reasons. Much progress has been made in this direction recently, at least
with regard to projections. We will see one such case in Section 9.
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5 Furstenberg's conjecture revisited

5.1 The map x 7→ bx mod 1

We now return to Conjecture 1.3. We shall re-state it in terms of the dynamics of the
maps fb : [0, 1]→ [0, 1] given by

fbx = bx mod 1

By an invariant set for fb we mean a closed non-empty subset X ⊆ [0, 1] satisfying
fbX ⊆ X. Such sets represent sets of constraints on digit expansions: For any invariant
set X there is a set L of �nite words in the symbols 0, . . . , b− 1 such that X is precisely
the set of points x ∈ [0, 1] which can be represented in base-b by a sequence containing no
word w ∈ L as a sub-block. Conversely, any set such set L gives rise, by this procedure,
to a closed and fb-invariant set X (although X it may be empty). For example, for b = 3
and L the set consisting of the single length-1 sequence 1, the corresponding set X is the
middle-1

3 Cantor set, C1/3. This method of de�ning invariant sets if very �exible and
hints at the richness of the family of invariant sets, and indeed there is a great variety
of invariant sets. Nevertheless, in many ways these sets are well behaved.

Proposition 5.1. If X ⊆ [0, 1] is fb-invariant then dimMX exists and is equal to dimX.

We will prove this in Section 7.2, but note here that the existence of dimM can be
proved by showing that logN(X,Dbn) is a subadditive sequence, much as was done for
cn(x, b) in Section 1.

Corollary 5.2. If X,Y ⊆ [0, 1] are, respectively, fa and fb invariant, then dimX×Y =
dimX + dimY .

Proof. Combine the previous proposition and Proposition 4.3.

5.2 Dynamical re-statement of Conjecture 1.3

The complexity of digit expansions was de�ned in the introduction. We now re-interpret
it in terms of the orbit of x under the map fb(x) = bx mod 1, which we denote by

Ob(x) = {fnb (x) : n = 0, 1, 2 . . .}

Lemma 5.3. ck(x; b) = N(Ob(x),Dbk).

Proof. A block of digits w1 . . . wk ∈ {0, . . . , b−1}k appears as a consecutive sub-block of
the expansion [x]b if and only if it appears as the initial k digits of fnb (x) = bnx mod 1
for some n. Equivalently, there is an n such that fnb x ∈ [m/bk, (m+1)/bk) ∈ Dbk , where
m =

∑k
i=1wib

i−1 is the integer whose base-b expansion is w1 . . . wn. Since m is in 1-1
correspondence with its digit sequence ω1 . . . ωk, the claim follows.

Corollary 5.4. c(x; b) = dimOb(x).
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Proof. By the de�nition of c(x; b), the previous lemma and Proposition 5.1

c(x; b) = lim
k→∞

ck(x; b)

k log b

= lim
k→∞

logN(O(x),Dbk)

k log b

= dimMOb(x)

= dimMOb(x)

= dimOb(x)

Thus, Conjecture 1.3 is equivalent to the following:

Conjecture 5.5. If a 6∼ b and x ∈ [0, 1] \Q then

dimO(fa, x) + dimO(fb, x) ≥ 1

Remark 5.6. Let us show again, in dynamical language this time, that the two hypotheses
are necessary.

1. If x = k
m ∈ Q for k,m ∈ N, then bnx mod 1 can be written as k′/m for some

integer 0 ≤ k′ < m. Therefore the orbit of x under any of the maps fb is a closed,
�nite set of dimension is 0, so the the conclusion of the conjecture is false.

2. For any b and n we have fnb = fbn , so

Ob(x) =

n−1⋃
i=0

f ib(Obn(x))

=
n−1⋃
i=0

f ib(Obn(x))

If A ⊆ [0, 1] then f ib(A) =
⋃
I∈Dbi

(bi(A ∩ I) mod 1), which is the union of a�ne

images of the elements of a countable (in fact, �nite) decomposition of A. Since
a�ne maps preserve dimension, dimA = dim f ibA. It follows that dimObn(x) =

dimOb(x), and in particular, if dimOb(x) < 1
2 , then the conclusion of the conjec-

ture fails for the bases bn and bm for any m,n ∈ N. Hence the assumption a 6∼ b
cannot be weakened to a 6= b.

Essentially all the instances in which we can con�rm Conjecture 5.5 occur when x
has dense orbit under one of the maps, say fb. In this case dimOb(x) = 1 and the
conjecture holds trivially for every other base a. Since Lebesgue-a.e. x has a dense
orbit, and, by general results in topological dynamics, the set of points with dense orbit
is a dense Gδ, it follows that the conjecture is satis�ed by typical points both in the
sense of measure and topology. It is important to note, however, that the set of points
with non-dense orbit is large in many senses, e.g. it is dense, uncountable and has full
Hausdor� dimension. Almost nothing is known about the conjecture for such points.

One way to re-phrase a special case of the conjecture is as follows. Consider the
middle-1

3 Cantor set C1/3. Since the f3-orbit of every x ∈ C1/3 remains in C1/3, a-priori
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c(x; 3) ≤ dimC1/3 = log 2/ log 3, so Conjecture 5.5 predicts that all x ∈ C1/3 \ Q have

dimO2(x) ≥ 1 − log 2/ log 3 = 0.36907 . . .. No such estimates are known, and, again,
what we do know arises from the existence of points in C1/3 whose f2-orbit is dense.
Questions about the existence of such points have a long history, going back to Cassels
and Schmidt [2, 18, 11, 10], leading up to

Theorem 5.7 (Cassels, Schmidt, Host, Hochman-Shmerkin). Let µ be a measure which

is fb-invariant. If dimµ > 0 and a 6∼ b, then µ-a.e. x equidistributes for Lebesgue

measure under fa. In particular if X ⊆ [0, 1] is closed and fb-invariant and if dimX > 0
then there exist x ∈ X whose fa-orbit is dense under every a 6∼ b.

At the same time, many fb-invariant set also contain points which do not have dense
fa-orbits. For instance, the following was proved by Broderick, Bugeaud, Fishman,
Kleinbock and Weiss [1]

Theorem 5.8. The set of numbers in C1/3 which are not normal in any base has full

dimension (i.e. log 2/ log 3).

Thus, the situation in C1/3 vis-a-vis density or non-density of orbits under f2, is
precisely the relativization of the situation in the interval [0, 1]: almost every point,
with respect to natural measures, has dense f2-orbit, but there is a full-dimensional set
of exceptions. It is a remarkable fact that, as far as we know, there are no explicit
example either of a point x ∈ C1/3 whose f2-orbit is dense, or x ∈ C1/3 \ Q whose
f2-orbit is not dense!

5.3 Furstenberg's conjectures on projections and intersections

Suppose that X ⊆ [0, 1] is fa-invariant and Y⊆ [0, 1] is fb-invariant, a 6∼ b, and dimX+
dimY < 1. Conjecture 5.5 predicts that X ∩ Y ⊆ Q. Indeed, note that if x ∈ X then
Ob(x) ⊆ X, and hence dimOb(x) ≤ dimX, and similarly for y ∈ Y . Thus, if there were
x ∈ (X ∩ Y ) \Q then by the conjecture we would have

1 ≤ dimOa(x) + dimOb(x) ≤ dimX + dimY < 1

which is impossible. In particular, the conjecture implies that dim(X ∩ Y ) = 0.
Now, X∩Y is, up to a linear change of coordinates, the intersection of the product set

X×Y with the line ` = {x = y}. Also, by Proposition 4.3, dimX×Y = dimX+dimY .
Thus, Conjecture 5.5 implies that

dim(X × Y ) < 1 =⇒ dim((X × Y ) ∩ `) = 0

In other words, the particular line ` = {x = y} behaves like a Lebesgue-typical line,
since, by Theorem 4.7, for a.e. line `′,

dim((X × Y ) ∩ `′) = max{0, dimX × Y + 1− 2} = 0

Furstenberg has proposed that for products X × Y as above, the exceptional set of
lines should not only have measure zero, but should in fact consist only of the trivial

exceptions (i.e. lines parallel to the axes). Let

`u,v = {y = ux+ v}
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Conjecture 5.9. Let X ⊆ [0, 1] be closed and fa-invariant and Y ⊆ [0, 1] closed and

fb-invariant, and a 6∼ b. Then for all v and u 6= 0,

dim((X × Y ) ∩ `u,v) ≤ max{0,dimX + dimY − 1}

In view of the heuristic for the slice theorem described in Section 4.2, this conjecture
is another expression of the mutual independence of the structure of fa- and fb-invariant
sets.

While much is known about generic slices, very little is known about speci�c slices,
and the conjecture remains open except for a partial result by Furstenberg which is an
easy consequence of the main result of [6, Theorem 4], though apparently the derivation
has not appeared in print.

Theorem 5.10. If X,Y are as in Conjecture 5.9, and if dimX + dimY < 1/2, then
for every u 6= 0,

dim((X × Y ) ∩ `u,v) = 0

We prove this in Section 7.4. The case dimX+dimY > 1
2 remains completely open.

In view of the heuristic relation between slices and projections, it is natural to ask
about the �dual� version of the conjecture. This problem, also raised by Furstenberg,
was recently settled by Hochman and Shmerkin [9], following earlier work by Peres and
Shmerkin [16]. Let πu : R2 → R be given by

πu(x, y) = ux+ y

Theorem 5.11. If X,Y are as in Conjecture 5.9, then for every u 6= 0,

dimπ(X × Y ) = min{1,dimX + dimY }

The proof is given in Section 9.4.

6 CP-chains

6.1 Warm-up: a random walk on measures

In our study of fb-invariant sets, a central tool will be Furstenberg's notion of a CP-
chain [6, 7].3 Roughly speaking, this is a random walk on the space of probability
measures which at each step jumps from a measure to a suitably re-scaled �piece� of the
measure. This framework allows one to view a measure on Rd as a point in an appropriate
dynamical system, with the dynamics representing magni�cation, and provides useful
language for describing the recurrence of features of the measure at smaller and smaller
scales. Su�ciently regular recurrence of features at di�erent scales gives a very powerful
generalization of �self-similarity�, or of the hierarchical structure that is present in many
examples (such as the sets Cα from Section 2.1). Furthermore, the method of local
entropy averages, developed in Section 8, allows one to derive geometric information
about the initial measure from the statistics of these orbits.

3Our terminology and de�nitions di�er slightly from the original ones in form but not substance.
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To �x notation, let b ≥ 2 be an integer and for µ ∈ P([0, 1]d) and for D ∈ Db with
µ(D) > 0, denote the conditional measure of µ on D by

µD =
1

µ(D)
µ|D

that is, µD(A) = 1
µ(D)µ(A ∩D). This measure is, naturally, supported on D, and it is

useful to �re-scale� it back to the unit cube. Thus, let LD : D → [0, 1)d be the unique
homothety4 from D onto [0, 1)d and let

µD = LDµD

The random walk on measures, alluded to above, can now be described as follows.
Starting at some µ0 ∈ P([0, 1]d), we jump to µ1 = (µ0)D1 for a b-adic cell D1 ∈ Ddb
that is chosen randomly with probability proportional to its mass µ(D1). Repeating this
process, from µ1 we jump to µ2 = (µ1)D2 for a b-adic cell D2 ∈ Db chosen randomly with
probability proportional to µ1(D2). Continuing in this way we obtain a random sequence
of measures µn, each of which is of the form µn+1 = (µn)Dn+1 for some Dn+1 ∈ Db. It
is not hard to check that µn = (µ0)D

′
n where D′n ∈ Dbn is a decreasing sequence of b-

adic cubes whose intersection is a point x. Thus (µn)∞n=1 describes the �scenery� that is
observed as one descends to x along dyadic cubes. One can also verify that the random
point x arising as above is distributed according to the original measure µ (this is proved,
in a slightly modi�ed setting, in Proposition 6.18 below).

While this description is heuristically correct, there are various complications which
require us to replace the random walk above with a random walk on a suitable symbolic
space. The next few sections are devoted to describing this setup more precisely, and to
a discussion of some elementary geometric implications.

6.2 Measures, distributions and measure-valued integration

For a compact metric space X let P(X) denote the space of Borel probability measures
on X, with the weak-* topology:

µn → µ ⇐⇒
ˆ
f dµn →

ˆ
f dµ for all f ∈ C(X)

This topology is compact and metrizable.
If (X,B, Q) is a probability space then a function X → P(X), x 7→ Px, is measurable

if for every A ∈ B, the map x 7→ Px(A) is measurable. The measure-valued integral
R =

´
Px dQ(x) ∈ P(X) is de�ned by the formula

R(A) =

ˆ
Px(A) dQ(x)

It is a direct veri�cation that this is a probability measure on (X,B). Alternatively,
when X is compact one can also use the Riesz representation theorem to de�ne R as
the measure corresponding to the positive linear functional C(X)→ R given by

f 7→
ˆ (ˆ

f(y) dPx(y)

)
dQ(x)

4A homothety L : Rd → Rd is a map of the form L(x) = rx+ b, r ≥ 0.
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In what follows, we shall use the terms measure and distribution both to refer to
probability measures. The term measure will refer to measures on Rd or on sequence
spaces, while the term distribution will refer to measures on larger spaces, such as P(Rd)
(in this example a distribution is a measure on the space of measures).

6.3 Markov chains

In probabilistic language, a process is a family of random variables de�ned on a common
(often unspeci�ed) probability space. Given an X-valued process ξ0, ξ1, ξ2, . . ., with un-
derling probability distribution Q, the distribution of a sub-sequence ξn, ξn+1, . . . , ξn+k,
which is a probability measure on Xk+1, is denote by DistQ(ξn, . . . , ξn+k). Similarly,
DistQ(ξn+1|ξ1 . . . ξn) denotes the conditional distribution of the random variable ξn+1

given ξ1, . . . , ξn, which is a P(X)-valued random variable determined by the values of
(ξ1, . . . , ξn). If these values are (x1, . . . , xn) we denote the conditional distribution by
DistQ(ξn+1|ξ1 = x1, . . . , ξn = xn). When there is no risk of confusion we drop the
subscript Q, and generalize the notation in obvious ways.

In this section we recall some basic de�nitions and properties relating to Markov
chains, which are processes describing a �random walk� on a space X, in which, from a
point x ∈ X, one jumps to a randomly chosen point which depends (only) on x. These
probabilities are encoded in a Markov kernel:

De�nition 6.1. A Markov kernel on a compact metric space. is a continuous5 map
P : X → P(X), denoted P = {Px}x∈X , which to each point x ∈ X assigns a distribution
Px ∈ P(X).

Given a Markov kernel P = {Px}x∈X and a random (or non-random) initial point
ξ0 ∈ X, a random walk ξ0, ξ1, . . . can be generated inductively: assuming we have reached
ξn at time n, jump to a random point ξn+1 whose distribution is Pξn . The resulting
sequence (ξn)∞n=0 is characterized as follows.

De�nition 6.2. A process (ξn)∞n=0 of X-valued random variables is a Markov chain

with transition kernel P = {Px}x∈X and initial distribution Q ∈ P(X) if

Dist(ξ0) = Q

Dist(ξn+1|ξ0 . . . ξn) = Pξn a.s.

It is often convenient to have a more concrete representation of the random variables
ξn and of the underlying probability space. The standard way to do this is to consider the
space XN of in�nite paths (x0, x1, . . .) whose coordinates are in X, and let ξn : XN → X
denote the coordinate projections, ξn(x) = xn.

De�nition 6.3. The Markov chain distribution with transition kernel {Px}x∈X and
initial distribution Q ∈ P(X) is the unique distribution Q̃ ∈ P(XN) such that the co-
ordinate projections ξn : XN → X form a Markov chain with transition kernel {Px}x∈X
and initial distribution Q.

5Often less than continuity is required of the map x 7→ Px, but for us continuity is convenient and
we shall assume it.
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Remark 6.4. .

1. Given Q and {Px}x∈X , the existence and uniqueness of Q̃ is demonstrated as fol-
lows. For uniqueness, note that Q̃ is determined by its marginalsQn = Dist(ξ0, . . . , ξn)
on Xn+1, and by the properties in De�nition 6.2 these marginals are characterized
by the property that for f ∈ C(Xn+1),

ˆ
f dQn =

ˆ ˆ
. . .

ˆ
f(x0, x1, . . . , xn) dPxn−1(xn) . . . dPx0(x1) dQ(x0)

For existence, one can check that for Qn ∈ P(Xn+1) de�ned as above, the dis-
tribution Qn+1 extends Qn in the obvious sense, and hence by standard measure
theory has a (unique) extension to XN.

2. If Q̃ is as in the de�nition, then the random variables ξn on the probability space
(XN, Q̃) form a Markov chain in the sense of De�nition 6.2. Conversely if (ξn)∞n=0

is a Markov chain in the sense of De�nition 6.2, then their joint distribution is a
Markov chain distribution.

De�ne an operator TP : P(X)→ P(X) by

TPQ =

ˆ
Px dQ(x)

This is a continuous and a�ne map. Note that if Q = δx0 then TPQ = Px0 . More
generally, if (ξn)∞n=1 is a Markov chain and we denote Qn = Dist(ξn), then we have the
relation Qn+1 = TPQn, because

Qn+1(A) = P(ξn+1 ∈ A)

= E(P (ξn+1 ∈ A | ξ1, . . . , ξn))

= E(Pξn(A))

=

ˆ
Px(A) dQx(x)

= (TPQn)(A)

In particular, by induction Qn = TnPQ0.

De�nition 6.5. A stationary distribution Q for the transition kernel {Px}x∈X is a �xed
point for TP .

Lemma 6.6. Stationary distributions exist.

Proof. Begin with any initial distribution Q, and let

QN =
1

N

N∑
n=1

TnPQ
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Then QN ∈ P(X). Since P(X) is compact, there is a convergent subsequence QNk →
Q′ ∈ P(X). Then by continuity of TP ,

TPQ
′ −Q′ = lim

k→∞
TP (

1

Nk

Nk∑
n=1

TnPQ)− lim
k→∞

1

Nk

Nk∑
n=1

TnPQ =

= lim
k→∞

(
1

Nk

Nk∑
n=1

Tn+1
P Q− 1

Nk

Nk∑
n=1

TnPQ

)

= lim
k→∞

1

Nk
(TNk+1
P Q−Q)

= 0

Remark 6.7. .

1. In general there can be many stationary distributions.

2. In the proof one could also de�ne each QN using a di�erent initial distribution
Q0,N depending on N , i.e. QN = 1

N

∑N
n=1 T

n
PQ0,N . The same argument shows

that accumulation points of QN are stationary distributions.

De�ne the shift σ : XN → XN in the usual way,

(σx)n = xn+1

.

Lemma 6.8. Q is stationary for a kernel {Px} if and only if the Markov chain distri-

bution Q̃ ∈ P(XN), started from Q, is shift-invariant.

Proof. Endow XN with the distribution Q̃ and let ξn denote the random variables given
by the coordinate projections from XN. Note that shift-invariance is equivalent to

Dist(ξ0, . . . , ξk) = Dist(ξn, . . . , ξn+k) for all n, k ∈ N

Suppose that Q̃ is shift invariant. Since Dist(ξn) = TnPQ, applying the above with n = 1
and k = 0,

TPQ = Dist(ξ1) = Dist(ξ0) = Q

so Q is stationary.

Suppose now that Q is stationary. Fix n and k and let Qn = TnPQ denote the distri-

bution of ξn under Q̃. By the de�ning properties of Q̃ it is clear that Dist(ξn, . . . , ξn+k)
is the same as the distribution of the �rst k+ 1 terms of the Markov chain when started
from Qn. If Q is stationary then Qn = Q0, so Dist(ξ0, . . . , ξk) = Dist(ξn, . . . , ξn+k),
and since n, k were arbitrary this implies shift invariance.

De�nition 6.9. A stationary distribution Q is ergodic if Q̃ is ergodic with respect to
the shift.
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More intrinsically, Q is ergodic if for every A ⊆ X with Q(A) > 0, for Q-a.e. x, the
random walk started from x will reach A after �nitely many steps.

Our last task in this section is to show that the ergodic components of a stationary
Markov chain distribution are also Markov chain distributions, and for the same kernel.
In order to establish this it is necessary to extend our de�nitions to allow Markov chains
that extend backward in time as well as forward.

De�nition 6.10. A distribution R ∈ P(XZ) is a Markov chain distribution for a tran-
sition kernel {Px}x∈X if Dist(ξn+1|ξn−k, . . . , ξn) = Pξn a.s., for all n ∈ Z and k ∈ N.

Evidently, the restriction of a two-sided Markov chain distribution to the positive
coordinates is a Markov chain distribution in the previous sense. One cannot always
extend a Markov chain distribution Q̃ ∈ P(XN) to a two-sided one, but if Q̃ is shift-
invariant then one always can do so. Indeed, it is a general fact that if R ∈ P(XN) is
shift-invariant then there is a unique shift-invariant distribution R± ∈ P(XZ), called
the natural extension of R, characterized by the property that DistR±(ξn, . . . , ξn+k) =

DistR(ξ0, . . . , ξk). Evidently, if Q̃ is Markov then Q̃± is a Markov chain in the sense
just de�ned.

Lemma 6.11. R ∈ P(XZ) is a Markov chain distribution with transition kernel {Px}x∈X
if and only if

DistR(ξn|ξn−1, ξn−2, . . .) = Pξn−1 a.s. (2)

Proof. If (2) holds for some n then we obtain DistR(ξn|ξn−1, . . . , ξn−k) = Pξn−1 for all k

by taking expectation over the variables (ξi)
n−k−1
i=−∞ . On the other hand if R is a Markov

chain with transitions {Px}, then for any Borel set A ⊆ X, by the martingale theorem
with R-probability one we have

Pξn−1(A) = PR(ξn ∈ A|ξn−1, ξn−2, . . . , ξn−k) −−−→
k→∞

PR(ξn ∈ A|ξn−1, ξn−2, . . .)

which gives the other direction.

Theorem 6.12. Let Q̃ ∈ P(XN) be a stationary Markov chain distribution for transition

kernel P . Then the ergodic components of Q̃ are a.s. Markov chain distributions for P .

Proof. Consider the distribution R = Q̃± ∈ P(XZ) which is the natural extension
of Q̃. Let I denote the σ-algebra of σ-invariant Borel sets in XZ. For a sequence
x = (xi)

∞
−∞, let Rx denote the ergodic component of R to which x belongs. Now,

for any n ∈ Z the sequence (xi)
n
i=−∞ determines the atom of I to which x belongs

(up to R-probability zero), or equivalently, it determines Rx. This can be seen by
applying the ergodic theorem �backwards� in time to a dense countable set of functions
f ∈ C(XZ), and noting that (xi)

n
i=−∞ determines their ergodic averages and hence

the ergodic component. Therefore, by Lemma 6.11, for any Borel set A ⊆ X, with
R-probability one,

Pxn−1(A) = PR(ξn ∈ A | ξn−1 = xn−1, ξn−2 = xn−2, . . .)

= PR(ξn ∈ A | ξn−1 = xn−1, ξn−2 = xn−2, . . . , I)

= PRx(ξn ∈ A | ξn−1 = xn−1, ξn−2 = xn−2, . . .)

which means, by the same lemma,that Rx is Markov with kernel P .

30



As a corollary, we �nd that the ergodic stationary distributions for P are precisely
the extreme points of the convex, compact set of stationary distributions for P .

6.4 Symbolic coding

If one tries to describe the random walk outlined in Section 6.1 using the formalism of
the last section, one arrives at the kernel (Fµ)µ∈P([0,1]d) given by Fµ =

∑
D∈Db µ(D)·δµD ,

under which µ ∈ P([0, 1]d) goes to µD with probability µ(D). Unfortunately this is not
really a kernel, since µ 7→ Fµ is discontinuous.6 For this reason we work instead in a
symbolic space which represents [0, 1]d, and in which the random walk corresponding to
the one above becomes a bona-�de Markov chain.

We begin by describing the symbolic coding. Fix a base b and the dimension d of
the Euclidean space we work in, and let

Λ = {0, . . . , b− 1}d

This is a set of integer vectors in Rd, and will serve as digits in the b-adic representation
of points in [0, 1]d. Let

Ω = ΛN+

endowed with the product topology (with Λ discrete), which makes Ω compact and
metrizable. We often denote elements of Ω by ĩ = (i1, i2 . . .). On the other hand
we denote �nite sequences without parentheses: a = a1 . . . ak ∈ Λk. The cylinder

corresponding to such an a = a1 . . . an is the closed and open set

[a] = {i ∈ Ω : i1 . . . ik = a1 . . . ak}

These form a basis for the topology, and we denote by

Cn = {[a] : a ∈ Λn}

the partition of Ω into cylinders de�ned by words of length n.
This setup codes the unit cube [0, 1]d as follows. For ĩ = (i1, i2, . . .) ∈ Ω with

coordinates ik = (ik,1, . . . , ik,d) ∈ Rd we de�ne

γ(̃i) =
∞∑
k=1

ikb
−k

More explicitly,

γ(̃i) = (

∞∑
k=1

ik,1b
−k,

∞∑
k=1

ik,2b
−k, . . . ,

∞∑
k=1

ik,db
−k)

Thus the i-th coordinate of γ(̃i) is given in base-b notation by 0.i1,ii2,ii3,i . . .. In par-
ticular this shows that the map γ : Ω → [0, 1]d is surjective. On the other hand, since
numbers of the form k/bn, k, n ∈ N, have two base-b representations, it also shows that
γ is not 1-1. Rather, the set of points x ∈ [0, 1]d with multiple perimages under γ is

6The discontinuity is already evident in each of the maps µ 7→ µD, D ∈ Db. For example, let b = 2,
D = [1/2, 1) and let µn = δ1/2−1/n and µ = δ1/2. Then µn → µ but µDn = δ1−2/n 6→ δ0 = µD.
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precisely the set of x having a coordinate of the form x = k/bn. This set is a countable
union of a�ne subspaces which form the boundaries of the b-adic cubes.

In the presence of a measure the non-injectivity of γ can often be corrected by
ignoring a nullset. For µ ∈ P(Rd), we say that γ is 1-1 µ-a.e. if γ−1(x) is a singleton for
µ-a.e. x. By the above this is the same as requiring that µ(∂D) = 0 for all D ∈ Dbn ,
n ∈ N. If this is the case, then there is a unique µ̃ ∈ P(Ω) with γµ̃ = µ, and we
sometimes say then that γ is 1-1 µ̃-a.e.

For a sequence a ∈ Λn, it is also clear that γ([a]) = D, where D ∈ Dbn is the unique
element containing

∑n
k=1 akb

−k. Thus, up to topological boundaries, the partition Cn
and Dbn are identi�ed under γ, and in particular, if γ is 1-1 µ-a.e. for some µ ∈ P([0, 1]d)
then γ([a]) and D as above agree up to a µ-nullset, and the partitions Cn and Dbn are
identi�ed up to nullsets by γ.

6.5 Symbolic magni�cation of measures

Let σ : Ω→ Ω again denote the shift map

(σω)j = ωj+1

For a ∈ Λn de�ne the map La : [a]→ Ω by

La = σn|[a]

This is a homeomorphism [a] → Ω preserving the sequence structure. The map La
induces a map on measures, P([a])→ P(Ω), by push-forward. We denote this map also
by La. Given a measure µ ∈ P(Ω) and a ∈ Λn we often write µ[a] instead of µ([a]).
Assuming that µ[a] > 0, we de�ne

µa =
1

µ[a]
µ|[a]

and
µa = Laµa

These are both probability measures on Ω.
The maps La : [a]→ Ω are the symbolic analogs of the homotheties LD : D → [0, 1]d,

D ∈ Ddbn , de�ned in Section 6.1. Furthermore, if γ is is 1-1 µ-a.e. then for a ∈ Λn and
D ∈ Dbn such that D = γ[a] µ-a.e. we have

γ(µa) = (γµ)D

γ(µa) = (γµ)D

Thus, the operation µ 7→ µa is the analog of the Euclidean �zooming in� operation.

Lemma 6.13. For any µ ∈ P(Ω) and any a1 . . . an ∈ Λn, b1 . . . bm ∈ Λm, we have

µa1...an [b1 . . . bm] =
µ[a1 . . . anb1 . . . bm]

µ[a1 . . . an]
(3)

µa1...anb1...bm = (µa1...an)b1...bm (4)
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and

µ[a1 . . . an] =
n∏
k=1

µa1...ak−1 [ak] (5)

Proof. For the �rst identity, calculate:

µa1...an [b1 . . . bm] =
µ([a1 . . . an] ∩ σ−n[b1 . . . bm])

µ[a1 . . . an]
=
µ[a1 . . . anb1 . . . bm]

µ[a1 . . . an]

For the second, note that for any c1 . . . cr ∈ Λr, by several applications of (3),

µa1...anb1...bm [c1 . . . cr] =
µ[a1 . . . anb1 . . . bmc1 . . . cr]

µ[a1 . . . anb1 . . . bm]

=
µ[a1 . . . an]

µ[a1 . . . anb1 . . . bm]
· µa1...an [b1 . . . bmc1 . . . cr]

=
1

µa1...an [b1 . . . bm]
· µa1...an [b1 . . . bmc1 . . . cr]

= (µa1...an)b1...bm [c1 . . . cr]

Since a measure is determined by the mass it gives to cylinders [c1 . . . cr], this implies
(4). Finally, by (3) again,

µ[a1 . . . an] =

n∏
k=1

µ[a1 . . . ak]

µ[a1 . . . ak−1]

=
n∏
k=1

µa1...ak−1 [ak]

6.6 CP-chains

Let us now return to the random walk on measures that was outlined in Section 6.1. In
symbolic terms, it corresponds to the kernel {Pµ}µ∈P(Ω) given by

Pµ =
∑
i∈Λ

µ[i] · δµi

Unlike its Euclidean relative, the map µ 7→ Pµ is continuous, so P is a true kernel,
but it is still not the �right� random walk to consider. The reason is that the sequence
of measures that one sees when one descends along nested cylinder sets does not tell
us which cylinder sets were chosen, and this information will be important to us later
on. To demonstrate this shortcoming, consider Ω = {0, 1}N+ with the uniform product
measure µ. Then µa = µ for every a ∈ {0, 1}N+ , and so Q = δµ is stationary for the
kernel described above and the associated Markov chain is trivial. On the other hand,
in the course of generating the Markov chain in this example, one chooses, at each step,
a symbol a ∈ {0, 1} uniformly and independently of previous choices. This random
sequence of symbols mirrors µ itself, and we shall see that this connection is general and
can be exploited to great bene�t.

Thus, in order to keep track of these choices, we enlarge the state space and modify
the kernel in the following way.
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De�nition 6.14. The CP-space7 is the (compact and metrizable) space

Φ = Λ× P(Ω)

The Furstenberg Kernel F : Φ→ P(Φ) is given by

F(i,µ) =
∑
j∈Λ

µ([j]) · δ(j,µj)

Informally, the transition from (i, µ) ∈ Φ occurs by �rst choosing j ∈ Λ with probability
µ([j]), and then moving to (j, µj).

Remark 6.15. .

1. There may be j ∈ Λ for which µj is unde�ned, but in this case the transition to
(j, µj) occurs with probability 0.

2. The symbol i does not play any role in the de�nition of F(i,µ). Rather, it records
�where we came from�. The symbol j ∈ Λ �to which we go� is recorded in the
resulting state (j, µj).

3. (i, µ) 7→ F(i,µ) is continuous.

De�nition 6.16. A (symbolic) CP-distribution is a stationary distribution for F . A
sequence of random variables (ξn)∞n=0 representing the associated Markov chain is called
a CP-chain. The associated measure on ΦN is called the CP-chain distribution.

If P ∈ P(Φ) = P(Λ×P(Ω)) is a CP-distribution, we often shall identify it with the
marginal distribution of P on its second coordinate, P(Ω). Thus for f : P(Ω) → R we
may write

´
f(ν)dP (ν) instead of

´
f(ν)dP (i, ν).

Example 6.17. .

1. Let µ = µ
N+

0 denote a product measure on Ω = ΛN+ . Clearly µi = µ for all i ∈ Λ

with µ[i] > 0, and one may verify that the distribution
∑b−1

i=0 µ[i]δ(i,µ) is stationary.

2. More generally, any σ-invariant measure µ ∈ P(Ω) gives rise to two kinds of
stationary distributions. The �rst is P =

´
δ(ω1,δσω) dµ(ω), which is by de�nition

supported on atomic measures of the form δω. Then

TFP =

ˆ
TF δ(ω1,δσω) dµ(ω)

=

ˆ
δ(ω2,δσ2ω) dµ(ω)

=

ˆ
δ((σω)1,δσ(σω)) dµ(ω)

=

ˆ
δ(ω1,δσω) dµ(ω)

= P

where in the second-to-last equality used the shift-invariance of µ; so P is station-
ary.

7CP stands for Conditional Probability.
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3. The second distribution arising from σ-invariant measure µ is more interesting.
Let Ω̃ = ΛZ, let τ : Ω̃ → Ω denote the projection ω̃ 7→ (ω1ω2 . . .) ∈ Ω to the
positive coordinates, and let µ̃ ∈ P(Ω̃) denote the natural extension of µ, which
is the unique σ-invariant measure on Ω̃ such that τ µ̃ = µ. Let F− denote the
σ-algebra on Ω̃ generated by the coordinates i ≤ 0 and [ω̃]F− the atom containing
ω̃, i.e.

[ω̃]F− = {η̃ ∈ Ω̃ : η̃i = ω̃i for all i ≤ 0} ∼= Ω

There is a family of conditional measures {µω̃}, measurable with respect to F−,
such that µω̃ is supported on [ω̃]F− , and

µ̃(A) =

ˆ
µω̃(A) dµ̃(ω̃)

This family is de�ned a.e. and is unique up to measure 0 changes. Informally,
given coordinates (ω̃i)i≤0 describing the �past�, the measure µω̃ ∈ P(Ω) is the
conditional distribution of (ω̃i)i≥1 (note that µω̃ depends only on the negative
coordinates).

Since µ̃ is σ-invariant, if ω̃ ∈ Ω̃ is distributed according to µ̃, then the distribution
of µσω̃ is the same as µω̃. On the other hand clearly µσω̃ = (µω̃)[ω1], and the
conditional probability of ω1 = a given (ω̃i)i≤0 is by de�nition µω̃[a]. Hence
conditioned on (ω̃i)i≤0, the distribution of µσω̃ is TF (µω̃), so the distribution P =´
δ(ω̃0,µω̃) dµ̃(ω̃) is stationary.

It is interesting to note that this distribution coincides with the previous one when
µ has entropy 0 with respect to the shift (equivalently, when πµ ∈ P([0, 1]) has
dimension 0). Then the measures µω̃ reduce to points: the in�nite past completely
determines the future, and P is again supported on point masses distributed ac-
cording to µ.

One of the crucial properties of CP-chains is that they describe �zooming in� on a
measure along nested cylinders which are chosen with the probabilities assigned by the

original measure. This property is called adaptedness.

Proposition 6.18. Let (in, µn)∞n=0 denote the CP-chain with initial distribution Q ∈
P(Φ) (so here in, µn to denote random variables). Then for every n and a1 . . . an ∈ Λn,

P(i1 . . . in = a1 . . . an|µ0) = µ0[a1 . . . an] (6)

In particular, conditioned on µ0, the random point ĩ = (i1, i2, . . .) ∈ Ω is distributed

according to µ0.

Proof. By de�nition of the transition kernel F , with probability one, µk = µikk−1 for all

k, so by iterating Equation (4) we have µk−1 = µ
i1...ik−1

0 . This means that µ0, i1 . . . ik−1

determine µk−1, and that assuming (i1 . . . ik−1) = (a1 . . . ak−1) we also have µk−1 =
µ
a1...ak−1

0 . Hence by the Markov property,

P(ik = ak|µ0 , (i1 . . . ik−1) = (a1 . . . ak−1)) = P(ik = ak|µk−1 = µ
a1...ak−1

0 )

= µ
a1...ak−1

0 [ak]
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which, using Equation (5) and the law of total probability, implies

P(i1 . . . in = a1 . . . an|µ0) =

n∏
k=1

P(ik = ak|µ0 , (i1 . . . ik−1) = (a1 . . . ak−1))

=

n∏
k=1

µ
a1...ak−1

0 [ak]

= µ0[a1 . . . an]

This gives the �rst statement. The second is immediate from the �rst, since, con-
ditioned on µ0, the distribution of ĩ = (i1, i2, . . .) is determined by the probabilities
P(̃i ∈ [a1 . . . an]|µ0), which by the above are the same as µ0[a1 . . . an].

6.7 Shannon information and entropy

Let µ be a probability measure on a probability space (X,F) and A = {Ai}i∈N a �nite
or countable measurable partition of X. The information function Iµ,A : X → R of µ
and A is

Iµ,A(x) = − logµ(A(x))

where as usual A(x) is the atom of A containing x. The Shannon entropy of A is the
mean value of the information function:

H(µ,A) =

ˆ
Iµ,A(x) dµ(x)

= −
∑
A∈A

µ(A) logµ(A)

with the convention 0 log 0 = 0.
Intuitively, H(µ,A) measures how ��nely� A partitions the probability space (X,µ),

or how uniformly µ is spread out among the atoms. This is evident from the following
basic properties, which we do not prove (see e.g. [3]):

Lemma 6.19. (Elementary properties of entropy)

1. 0 ≤ H(µ,A), with equality if and only if µ is supported on a single atom of A.

2. If µ is supported on k of the atoms of A then H(µ,A) ≤ log k, with equality if and

only if µ gives mass 1/k to each of these k atoms.

3. H(·,A) is concave: if 0 < p < 1 then

H(pµ+ (1− p)ν,A) ≥ pH(µ,A) + (1− p)H(ν,A)

and equality holds if and only if µ(A) = ν(A) for A ∈ A.

4. H(·,A) is �almost convex�: if 0 < p < 1 then

H(pµ+ (1− p)ν,A) ≤ pH(µ,A) + (1− p)H(ν,A)−H(p)

where H(p) = −p log p− (1− p) log(1− p).
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One technical problem which we shall encounter later when estimating entropy is
that the function (µ,m) 7→ 1

mH(µ,Dm) is not continuous (it is continuous when µ
is restricted to the space of non-atomic measures, but not uniformly so). However,
continuity does hold in an asymptotic sense: if m is large then small changes to µ and
m have only mild e�ect on the entropy. The following lemmas make this precise.

Lemma 6.20. Let µ ∈ P(Rd) and m ∈ N.

1. (Approximation) If νn → µ weak-* then lim sup |H(νn,Dm) − H(µ,Dm)| ≤ C1,

where C1 depends only on d.

2. (Translation) If ν(·) = µ(· + x0) then |H(µ,Dm)−H(ν,Dm)| < C2, where C2

depends only on d.

3. (Change of scale) If C−1
3 m ≤ m′ ≤ C3m, then |H(µ,Dm)−H(µ,Dm′)| ≤ C4,

where C4 depends only on C3 and d.

Finally, the following important inequality is essentially a consequence of convexity
of the information function:

Lemma 6.21. Let (pj), (qj) be probability vectors with qj = 0 =⇒ pj = 0. Then

−
∑

j pj log qj ≥ −
∑

j pj log pj.

6.8 Geometric properties of CP-distributions

Recall that γ : Ω = ΛN+ → [0, 1]d is the geometric coding map. We denote elements of
ΦN by (̃i, µ̃) = (in, µn)∞n=0 ∈ ΦN (these are now elements of the sequence space, not a
sequence of random variables).

De�nition 6.22. If P ∈ P(Φ) is a CP-distribution we denote by P ′ ∈ P(P([0, 1]d)) the
distribution P ′ = γτP , where τ : Φ→ P(Ω) is the projection to the second component.
We call P ′ the geometric version of P , and say that it is a geometric CP-distribution.

Our �rst task is to address the non-injectivity of γ. Let

Ω(k) = {(in)∞n=1 ∈ Ω : (in)k = b− 1 for all n = 1, 2, . . .}

Note that δ(Ω(k)) is a face of the cube [0, 1]d. The next lemma allows us to assume that
the measures of a CP-distribution make γ : Ω→ [0, 1]d a.e. injective.

Lemma 6.23. Let P be an ergodic CP -distribution. Then the probability that γµ,
µ ∼ P , gives positive mass to ∂D for some D ∈ Ddb is 0 or 1. In the latter case γµ is

P -a.s. supported on a face of the cube of the form xk = 1 for some k = 1, . . . , d, and
correspondingly µ is supported on the set Ω(k). In this case P can be identi�ed with a

CP-distribution constructed in dimension d− 1 (that is, with Ω = ({1, . . . , b− 1}d−1)N+

etc.).

Proof. Consider the shift-invariant and ergodic distribution P̃ ∈ P(ΦZ) corresponding
to P . For each k write

Ak = {(̃i, µ̃) ∈ ΦN : ĩ ∈ Ω(k)}
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Since σ−1Ω(k) ⊆ Ω(k) is shift invariant so is Ak, and hence by ergodicity, P̃ (Ak) = 0 or
1. By the previous proposition,

P̃ (Ak) =

ˆ
1Ak (̃i, µ̃) dP̃ (̃i, µ̃)

=

ˆ
1Ω(k) (̃i) dP̃ (̃i, µ̃)

=

ˆ ˆ
1Ω(k) (̃i) dµ0(̃i) dP (µ0)

=

ˆ
µ(Ω(k)) dP (µ)

Hence, either P̃ (Ak) = 1, in which case µ is supported on Ω(k), P -a.s., or else P̃ (Ak) = 0,
in which case µ gives Ω(k) mass 0, P -a.s. The corresponding statement for πµ and faces
of [0, 1]d follows.

Finally, if P (Ak) = 1 one can use the natural identi�cation of Ω(k) with ({0, . . . , p−
1}d−1)N to identify P to a CP-distribution of dimension d− 1.

We assume henceforth that µ(Ω(k)) = 0 a.s. for all k = 1, . . . , d. As a consequence,
γ : Ω → [0, 1]d is µ-a.e. 1-1 for P -typical µ, and γ[a] is equal, up to γµ-measure 0, an
actual b-adic cell, not the closure of one.

Our next goal is to obtain an expression for the dimension of γµ when µ ∈ P(Ω) is a
typical measure for a CP-distribution P . A key lemma for us will be the representation
of the mass of long cylinders as an ergodic-like average. De�ne the function I : ΦZ → R
by

I (̃i, µ̃) = − logµ0(C1(̃i))

= − logµ0[i1]

This is of course just the information function Iµ0,C1 evaluated at ĩ (see Section 6.7).

Lemma 6.24. If (in, µn) ∈ ΦN satis�es µn = µinn−1 for all n, then, writing µ = µ0 and

ĩ = (i‘, i1, . . .),

logµ[i1 . . . in] =

n−1∑
j=0

I(σj (̃i, µ̃)) (7)

Proof. Immediate by taking logarithms in the identity µ[i1 . . . in] =
∏n
k=1 µ

i1...ik−1 [ik]
(Equation (5)), and using the fact that µi1...ik−1 = µk−1 (which follows from the de�nition
of the Furstenberg and Equation (4), as in the proof of Proposition 6.18).

Lemma 6.25. Let P ∈ P(ΩΦ) and P̃ ∈ P(ΦZ) the corresponding CP-chain distribution.

Then
´
I dP̃ =

´
H(µ, C1)dP (µ).
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Proof. Using Proposition 6.18, we calculate:

ˆ
I dP̃ = −

ˆ
logµ0[i1] dP̃ (̃i, µ̃)

=

ˆ (
−
ˆ

logµ0[i1] dµ0(̃i)

)
dP (µ̃)

=

ˆ
H(µ0, C1) dP (µ̃)

=

ˆ
H(µ, C1) dP (µ)

Proposition 6.26. Let P be an ergodic CP-distribution with geometric version P ′. Then
P ′-a.e. µ is exact dimensional and the dimension is given by

dimµ =
1

log b

ˆ
H(µ, C1) dP (µ)

Proof. By the previous proposition, we may assume that γµ(∂Dbn) = 0 for P -a.e. µ,
since otherwise reduce to a lower-dimensional situation.

Let us �rst re-state our objective, which is to show that for P -typical µ, for γµ-a.e.
x,

lim
n→∞

1

n log b
log γµ(Dbn(x)) =

1

log b

ˆ
H(µ, C1) dP (µ)

By de�nition, the point x = γ(̃i) is distributed according to γµ if ĩ ∈ Ω is distributed
according to µ. Hence, using the fact that γµ(Dbn(x)) = µ[i1 . . . in], what we need to
prove is that for P -a.e. µ, for µ-a.e. ĩ ∈ Ω,

lim
n→∞

1

n
logµ[i1 . . . in] =

ˆ
H(µ, C1) dP (µ) (8)

Let P̃ ∈ P(ΦN) be the CP-chain distribution corresponding to P . Then by Proposition
6.18, choosing µ according to P and ĩ ∈ Ω according to µ is the same as choosing
(in, µn)∞n=0 according to P̃ and taking µ = µ0 and ĩ = (i1i2 . . .). Thus we need to prove
(8) for a.e. µ, ĩ chosen in this way.

The proof is now completed by noting that by (7), 1
n logµ[i1 . . . in] = 1

n

∑n−1
j=0 I(σj (̃i, µ̃)),

which, by the ergodic theorem, converges to
´
I dP a.s. over choice of (̃i, µ̃). By Lemma

6.25, this integral is just
´
H(µ, C1) dP (µ), as claimed.

De�nition 6.27. If P is an ergodic CP-distribution we denote by dimP the a.s. di-
mension of γµ for µ ∼ P .

7 Invariant sets and their intersections

7.1 Constructing CP-distributions from fb-invariant sets

Recall that Cn is the partition of Ω = ΛN into cylinders of length n. We generally denote
elements of Ω by ĩ = (i1, i2, . . .).
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Lemma 7.1. Let µ ∈ P(Ω). Then

H(µ, CN ) =

ˆ N−1∑
n=0

H(µi1...in−1 , C1) dµ(̃i)

In particular, writing PN = 1
N

∑N−1
n=0 T

n
F δ(0,µ) ∈ P(Φ),

1

N
H(µ, CN ) =

ˆ
H(τ, C1) dPN (τ)

Proof. The poof is a computation based on taking logarithms in the identity µ([i1 . . . in]) =∏n−1
k=0 µ

i1...in [in+1] (Equation (5)) and integrating. In more detail, using the identity
µ =

∑
[a]∈Cn µ|[a], we have

1

N
H(µ, Cn) =

1

N

ˆ
(− logµ[i1, . . . , iN ]) dµ(̃i)

=
1

N

ˆ N−1∑
n=0

(− logµi1...in [in+1]) dµ(̃i)

=
1

N

ˆ N−1∑
n=0

∑
[a]∈Cn

(− logµa[in+1]) dµ|[a](̃i)

=
1

N

N−1∑
n=0

∑
[a]∈Cn

µ([a]) ·
ˆ

(− logµa[j1]) dµa(j̃)

=
1

N

N−1∑
n=0

∑
[a]∈Cn

µ[a] ·H(µa, C1)

=
1

N

ˆ N−1∑
n=0

H(µj1...jn , C1) dµ(j̃)

The second claim follows from the �rst, since by Proposition 6.18, and writing i−1 = 0
(arbitrarily), we have

PN =
1

N

N−1∑
n=0

ˆ
δ(in−1,µ

i1...in−1 ) dµ(̃i)

7.2 Dimension of invariant sets

Before discussing intersections of sets we prove a result about a single fb-invariant set
which we shall later use, and which also provides a self-contained proof of the coincidence
of Minkowski and Hausdor� dimension for such sets.

Theorem 7.2. Let X ⊆ [0, 1] be a closed, fb-invariant set with dimMX = α. Then there

is a b-adic ergodic CP-distribution P such that γν is supported on X, and dim γν = α,
P -a.s..
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Proof. Write α = dimMX. From the de�nition of box dimension there is a sequence
Nk →∞ such that

Ik = {D ∈ Dbnk : X ∩D 6= ∅}

satis�es
1

Nk
log |Ik| →

α

log b

We pass to Ω. Let

Un = {a ∈ An : γ[a] ∩ I 6= ∅ for some I ∈ In}

so that 1 ≤ |Uk|/|Ik| ≤ 2, and hence 1
Nk

log |Uk| → α/ log b. For a ∈ Uk let ya ∈
[a] ∩ γ−1X be a representative point and set

νk =
1

|Uk|
∑
a∈Uk

δya

Clearly
1

|Nk|
H(νk, CNk) =

1

Nk
log |Uk| →

α

log b

Next, run the Furstenberg chain from time 0 to time Nk starting at (0, νk). We
obtain distributions Pk given by

Pk =
1

Nk

Nk−1∑
n=0

TnF δ(0,νk)

Since P(Φ) is compact, by passing to a further subsequence we may assume that Pk → P ,
and we have seen in the proof of Lemma 6.6 and the remark following it that P is F -
stationary, i.e. is a CP-distribution.

We claim thatγν is supported on X P -a.s. Indeed, since X is closed and γ is
continuous, the set {ν ∈ P(ΛN) : γν(X) = 1} is closed in the weak-* topology, and so
it is enough to show that Pk-a.e. ν satis�es γν(X) = 1. To see this we must show that
for each 0 ≤ n ≤ Nk and a ∈ An, the measure γ(νak ) is supported on X. Indeed, γ(νk),
and hence γ(νk|γ[a]), are supported on X, and since fnb X ⊆ X, we also have that

γ(νak ) = γ(σk((νk)|[a]) = fnb (γ(νk|π[a]))

is supported on X, as desired.
On the other hand, H(·, C1) : P(Ω)→ R is continuous8. We thus have

ˆ
H(τ, C1) dP (τ) = lim

k→∞

ˆ
H(τ, C1) dPk(τ)

= lim
k→∞

1

|Nk|
H(νk, CNk)

=
α

log b

8The function H(·,Dbn) : P ([0, 1]d) → R is not continuous; this is another reason we passed to a
symbolic model.
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Since P is the integral of its ergodic components, there is a set of positive measure of
ergodic components P ′ of P with

´
H(τ, C1) dP ′(τ) ≥ α/ log b and γν is supported on

X for P ′-a.e. ν. The claim then followsby Corollary 6.26.

Proposition 4.3 follows form the theorem above.

7.3 Eigenfunctions

Let X0 be a compact metric space, X = XN
0 , and σ : X → X the shift map de�ned

in the usual way. Let µ ∈ P(X) be a σ-invariant and ergodic probability measure. A
function f : X → S1 = {z ∈ C : |z| = 1} is called an eigenfunction for (X,µ, σ) with
eigenvalue λ ∈ S1 if f(σx) = λf(x) for µ-a.e. x.

In the situation above, write R : S1 → S1 for the rotation map R(z) = λz. Then
R ◦ f = f ◦ σ, so the measure ν = fµ is R-invariant: Rν = Rfµ = fσµ = fµ = ν.
In particular if λ is not a root of unity then the only R-invariant measure on S1 is
normalized Lebesgue measure,9 and so ν must be this measure.

We require a slight generalization of the situation above where f is set-valued. Let H
denote the space of closed, non-empty subsets of S1, which can be made into a compact
metric space using the Hausdor� metric

dH(A,B) = min{ε > 0 : A ⊆ B(ε) and B ⊆ A(ε)}

where A(ε) = {x : d(x, a) < ε}.
We say that a measurable function f : X → H is an eigenfunctions with eigenvalue

λ if f(σx) = λf(x) for µ-a.e. x, where on the right-hand side λf(x) = {λz : z ∈ f(x)}.
We exclude the trivial case that f(x) = S1 a.e., for which the equation holds for any
λ ∈ S1.

Lemma 7.3. Let f : X → H be an eigenfunction. Then there is a set E ∈ H such that

f(x) is a rotation of E for µ-a.e. x.

Proof. S1 acts continuously on H by rotations, with ρ ∈ S1 acting by E 7→ ρE. By the
eigenfunction property, f(x), f(σx) lie in the S1-same orbit, so by ergodicity fµ must
be supported on a single S1-orbit in H. This was the claim.

Lemma 7.4. Let f : X → H be an eigenfunction with eigenvalue λ which is not a root of

unity. Then for any set U ⊆ S1 of positive Lebesgue measure, µ(x : f(x) ∩ U 6= ∅) > 0.

Proof. Let E ∈ H be as in the previous lemma. Suppose �rst that E has no rotational
symmetries, i.e. ρE 6= E for all ρ ∈ S1 \ {1}. Then for µ-a.e. x. we have f(x) = ρE for
a unique ρ = ρ(x) ∈ S1. It is easy to see that this implies that ρ = ρ(x) is measurable in
x (this uses the fact that E is closed), and we have ρ(σx)E = f(σx) = λf(x) = λρ(x)E,
so ρ is an eigenfunction with eigenvalue λ. Choose z0 ∈ E and set f ′(x) = ρ(x)z0, which
is also an eigenfunction with eigenvalue λ and satis�es that f ′(x) ∈ f(x) a.s. Now, f ′µ
is normalized Lebesgue measure on S1, hence f ′µ(U) > 0. This means by de�nition that

9Indeed such a measure ν must be invariant under z 7→ λnz for all n ∈ N, and if λ is not a root
of unity, {λn}n∈Z is dense in S1, so ν is an invariant measure under group translations in the compact
group S1, and so must be Haar measure.
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µ(x : f ′(x) ∈ U) > 0. But f ′(x) ∈ f(x) µ-a.s., so the event {x : f ′(x) ∈ U} is a.s.
contained in the event {x : f(x) ∩ U 6= ∅}, and the lemma follows.

In general let G denote the group of rotational symmetries of E, i.e. those ρ ∈ S1

such that ρE = E. Since E is closed so is G, and since E 6= S1 also G 6= S1, so G, being
a proper closed subgroup of S1, is �nite, and consists of roots of unity of some order
N . Let ϕ : S1 → S1 the map z 7→ zN . It is then easy to check that Ẽ = ϕE has no
rotational symmetries (any such symmetry could be lifted to a symmetry of E that is
not in G, a contradiction). Now de�ne f̃ = ϕf . This is an H-valued eigenfunction with
eigenvalue λN , and f̃(x) = Ẽ µ-a.e.. Thus by the �rst case discussed above, if V ∈ S1

has positive Lebesgue measure then µ(x : f̃(x) ∩ V 6= ∅) > 0. Taking V = ϕU (which
is measurable since ϕ is a local homeomorphism) and using the fact that f̃(x) ∩ V 6= ∅
if and only if f(x) ∩ U 6= ∅ we obtain the claim.

Corollary 7.5. For f , λ as in the previous lemma, for any set X ′ ⊆ X of full measure,

f(X ′) has full Lebesgue measure (and is Lebesgue measurable).

Proof. The only subtlety here is thee issue of measurability. By the theorems of Egorov
and Lusin, we can �nd compact subsets X ′n ⊆ X on which f is continuous and, µ(X ′ \⋃
X ′n) = 0. Write X ′′ =

⋃
X ′n, so X

′′has full measure. Also, f(X ′n) are compact, so
f(X ′′) =

⋃
f(X ′n) is measurable. By the previous lemma (applied to U = S1 \ f(X ′′))

we �nd that f(X ′′) has full Lebesgue measure. Since f(X ′) ⊇ f(X ′′), this implies that
f(X ′) is Lebesgue measurable and of full measure.

7.4 Furstenberg's intersection theorem

In this section we prove Theorem 5.10. Suppose that X is fa invariant, Y is fb-invariant,
and a 6∼ b. Let

`u,v = {(x, y) ∈ R2 : y = ux+ v}

be a line, u 6= 0. Fix α and let

U = {u > 0 : dim ((X × Y ) ∩ `u,v) ≥ α for some v}

As a �rst observation, we claim that if U 6= ∅ then U is dense in [0,∞). Indeed,
suppose that u ∈ U and write E = (X × Y ) ∩ `u,v. Applying the map fa × id to E and
using the invariance of X × Y under this map, we obtain

fa × id(E) ⊆ (fa × id)(X × Y ) ∩ (fa × id)`u,v = (X × Y ) ∩ (fa × id)`u,v

The set fa × id(`u,v) is the union of �nitely many line segments of slope u/a, hence by

the above, fa × id(E) is a subset of a union of the form
⋃k
i=1 `u/a,vi . Since fa × id is

piecewise bi-Lipschitz, dim(fa × id(E)) = dimE = α. Hence one of the line segments
`u/a,vi intersects X × Y in a set of dimension ≥ α, i.e., u/a ∈ U . Similarly, applying
id×fb to E, we �nd that there is a line segment `ba,v′ which intersects X × Y in a set
of dimension ≥ α, so bu ∈ U . In short, U is invariant under multiplication by b and
1/a, or equivalently, logU = {log u : u ∈ U} is invariant under addition of log b and
subtraction of log a. Since log b/ log a /∈ Q, it is a well known fact that follows that logU
is dense in R, i.e. that U = [0,∞).
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The next theorem says that in the last paragraph density can be improved to full
Lebesgue measure. We �rst consider how a measure µ ∈ P([0, 1]) can be a�nely em-
bedded in X × Y . Let ϕu,v : [0, 1]→ T2 denote the a�ne embedding

ϕu,v(t) = (t, ut+ v mod 1)

For µ ∈ P([0, 1]), let

L(µ) = {u ∈ (0,∞) : ϕu,vµ is supported on X × Y for some v}

This is a closed set. We make two observations.

Lemma 7.6. If u ∈ L(µ) then bu ∈ L(µ). Similarly, if ν ∈ P(ΛN) and u ∈ L(πν) then

bu ∈ L(πν).

Proof. For any u, v, observe that (id×fb) ◦ϕu,v = ϕbu,v′ for some v′. The claim follows.

Lemma 7.7. If u ∈ L(µ), and if I ∈ Da satis�es µ(I) > 0, then u/a ∈ L(µI). Similarly,

if ν ∈ P(ΛN), u ∈ L(πν) and ν([i]) > 0, then u/a ∈ L(π(νi)) .

Proof. Let I = [ka ,
k+1
a ) and ψ(t) = 1

a t + k
a . Let v ∈ R be such that ϕu,vµ is supported

on X × Y . Since ψµI = µ|I , it follows that ϕu,vψµI is also supported on X × Y . But a
calculation shows that ϕu,vψ(t) = ϕu/a,v′ for some v′ ∈ R. The claim follows, and the
second part is proved similarly.

Theorem 7.8 (Furstenberg 1970). Let X be closed and fa invariant, let Y be closed and

fb-invariant, and a 6∼ b. Suppose that dimM((uX + v) ∩ Y ) = α > 0 for some u, v ∈ R.
Then for a.e. u′ ∈ R there is a v′ = v′(u′) such that dim((u′X + v′) ∩ Y ) ≥ α.

Proof. Assume without loss of generality that b > a. We begin as in the proof of Theorem
7.2. Start with measures µk supported in (uX+v)∩Y with 1

Nk
H(µk,DaNk )→ α. Lifting

µk to νk ∈ P(Ω) using a-adic coding and running the a-adic Furstenberg operator Nk

steps starting from (0, νk), we obtain a sequence Pk ∈ P(Φ) of distributions; after
passing to a subsequence we can assume they converge to a a-adic CP-distribution P
with

´
I dP ≥ α. Replacing P by an appropriate ergodic component we can assume that

P is an ergodic CP-distribution and
´
I dP ≥ α, hence by Corollary 6.26, dim γν ≥ α

for P -a.e. ν.
Since µk is supported on (uX + v) ∩ Y y, we have u ∈ L(µk), so by the lemmas

preceding the theorem, for every i ∈ Λn with µ([i]) > 0 we have u/an ∈ L(γ(µi1,...,ink ))),

and hence bmu/an ∈ L(γ(µi1...ink )) for all m. If n is large enough that u/an < 1, then
there is an m such that bmu/an ∈ [1, b]. Thus, if for µ ∈ P([0, 1]) we set

U(µ) = L(µ) ∩ [1, b]

then U(π(νi1,...,ink )) 6= ∅ for all large enough k, n and i ∈ Λn for which νik is de�ned. It
follows that Pk(ν : U(γν) 6= ∅) → 1 as k → ∞, and since µ 7→ U(µ) is continuous, we
�nd that

P (ν : U(γν) 6= ∅) = 1
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Next, note that if ω = (in, νn)∞n=0 is a typical sequence in the Markov chain started
from P , then again by the lemmas preceding the theorem, since ν1 = νi10 and b > a,

u ∈ U(πν0) =⇒
{

u
a ∈ U(πν1) if ua ≥ 1
bu
a ∈ U(πν1) if ua < 1

=⇒ b(logb u−logb a) mod 1 ∈ U(γν1)

Thus if we de�ne the set-valued function de�ne f : ΦN → H by

f((in, νn)∞n=0) = {e2πi logb u : u ∈ U(γν0)}

then, by the above,

f(σω) ⊇ e−2πi logb af(ω)

By ergodicity, we must a.s. have f(σω) = e2πi logb af(ω).

Finally, with respect to the ergodic shift-invariant distribution P̃ ∈ P(ΦN) corre-
sponding to P , the function f is an H-valued eigenfunction with eigenvalue e2πi logb a,
which, since a 6∼ b, this is not a root of unity. By Corollary 7.5, the image of

W = {ω ∈ ΦN : dim γν0 ≥ α}

under f has full Lebesgue measure. But this precisely means that for Lebesgue-a.e. u
there is a measure µ with dimµ ≥ α, and a v, such that ϕu,vµ is supported on X × Y .
This proves the theorem.

We can now prove the results on intersections that we stated earlier:

Theorem 7.9 (Furstenberg). Let X be closed and fa invariant, let Y be closed and

fb-invariant, and a 6∼ b. If dimX + dimY < 1
2 then dim((uX + v) ∩ Y ) = 0 for all

u, v ∈ R.

Proof. Suppose the conclusion were false. Let p denote the map

p : R2 × R2 \ {(z, z) : z ∈ R2} → S1

(z′, z′′) 7→ z′ − z′′

‖z′ − z′′‖
,

that ends a pair of vectors z′, z′′ to the (oriented) direction that they determine. Then
the previous line means that the image of (X × Y )2 under p has full Lebesgue measure,
and hence dim p((X×Y )2) = 1. On the other hand p is smooth, hence locally Lipschitz,
hence cannot increase dimension, so

dim p((X × Y )2) ≤ dim(X × Y )2 = 2 dim(X × Y ) = 2(dimX + dimY )

By assumption this is less than 1, a contradiction.
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7.5 Kakeya-type problems

The argument used in the last theorem solves the intersections conjecture when dimX+
dimY < 1

2 and raises the following problem:

Problem 7.10. Suppose Z ⊆ R2 is a set such that in every (or almost every) direction
there is a line ` with dim(Z ∩ `) ≥ α. When can one conclude that dimZ ≥ 1 + α?

If the answer were a�rmative for products of the form CZ = X × Y with X,Y as
in Theorem 5.10, then the intersections conjecture would follow from that theorem.

Although Fubini-type heuristics would lead one to believe that the answer is a�r-
mative in general, but this is not the case, see [19]. It is an open problem to �nd the
best lower bound on dimZ in terms of α. However, known examples do not rule out the
possibility that the answer is a�rmative for the sets of the form X ×Y that interest us.

It is worth noting that the problem is related to the following well-known problem:

Conjecture 7.11 (Kakeya). If Z ⊆ Rd is a set which contains a line segment in every

direction, then dimZ = d.

In dimension d = 2 there is relatively elementary proof, see e.g. Falconer [5]. For
d ≥ 3 the conjecture remains open. For a comprehensive, though slightly outdated,
survey, see Tom Wol�'s article [19], which also contains a discussion of Problem 7.10.

8 Local approach to dimension of projections

8.1 Martingale di�erences and their averages

We recall some standard tools from probability and analysis.

De�nition 8.1. Let (Ω,B, µ) be a probability space. A �ltration F = (Fn)n∈N is a
sequence F1 ⊆ F2 ⊆ . . . ⊆ B of sub-σ-algebras. A sequence of measurable functions
f1, f2, . . . is adapted to (Fn)n∈N if fn is Fn-measurable.

De�nition 8.2. Let (Ω,B, µ) be a probability space, (Fn) a �ltration. A sequence {fn}
of L1-functions is called a martingale di�erence sequence10 if it is adapted to (Fn) and
E(fn|Fn−1) = 0.

Starting with an L1 sequence (gn) adapted to (Fn), one obtains a martingale di�er-
ence sequence by setting fn = gn − E(gn|Fn−1).

The only fact we need about martingale di�erences is a consequence of the following
ergodic-like theorem for orthogonal functions.

Theorem 8.3. Let (Ω,B, µ) be a probability space and (fn) be a martingale di�erence

sequence, fn ∈ L2, such that supn ‖fn‖2 <∞. Then 1
N

∑N
i=1 fi → 0 a.s. and in L2.

10The reason for this terminology is that if (fn) is a martingale di�erence sequence, then FN =∑N
n=1 fn is an martingale (i.e. FN is FN measurable and E(FN |Fn−1) = Fn−1, and conversely, if (FN )

is a martingale adapted to (Fn) then fn = Fn − Fn−1 is a martingale di�erence sequence).
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The proof is similar to the standard proof of the law of large numbers for independent
random variables using Kolmogorov's inequality (which is usually states for i.i.d. random
variables, but is valid with the same proof for martingale di�erences). Note also that
L2-martingale di�erence sequences also form an orthogonal sequence in L2, and together
with norm-boundedness this is enough to ensure that the averages converge a.e. to 0.
In fact one can do with even weaker non-correlation conditions, see e.g. [14].

Corollary 8.4. Let (gn) be a sequence of functions and (Fn) a �ltration such that for

some p and every 0 ≤ k < p, the sequence (gnp+k) is a martingale di�erence sequence

for (Fnp+k), and supn ‖gn‖2 <∞. Then 1
N

∑N
i=1 gi → 0 a.s. and in L2.

Proof. For any N we can write N = N0p+ k0 for 0 ≤ k0 < p, and then

1

N

N∑
i=1

gi =
N0

N

k0∑
k=0

(
1

N0

N0∑
i=1

gip+k

)
+
N0

N

p−1∑
k=k0+1

(
1

N0

N0−1∑
i=1

gip+k

)

Since by the previous theorem, 1
N

∑N
i=1 gip+k → 0 a.s. and in L2 for each 0 ≤ k < p, and

since there are p terms in the sum and N0
N →

1
p as N →∞, the corollary follows.

8.2 Local entropy averages

Throughout this section and the coming ones we �x an implicit (arbitrary) integer
parameter b ≥ 2 and suppress it in our notation.

The following theorem allows one to compute the dimension of a measure µ at a
typical point x via the average behavior of the measure on the b-adic cells Dbn(x) de-
scending to x. The motivation is dynamical, inasmuch as one can think of this sequence
of measures as an orbit in a dynamical system, and this dynamical viewpoint is precisely
what underlies the computation of dimension in Proposition 6.26. Unlike that propo-
sition, however, the theorem below works in complete generality with no dynamical
assumptions, and this is precisely its utility.

Theorem 8.5 (Local entropy averages lemma). Let µ ∈ P(Rd) and p ∈ N. Then for

µ-a.e. x,

dim(µ, x) = lim inf
N→∞

1

N

N−1∑
n=0

1

p log b
H(µDbpn (x),Dbp(n+1))

Proof. For convenience, for n < 0 we re-de�ne Dn to be the trivial partition of Rd.
Consider the information function of µDbn (x) with respect to the partition Dbn+p , which
we denote by

Ibn(x) = − log
µ(Dbn+p(x))

µ(Dbn(x))

Thus
H(µDbpn (x),Dbp(n+1)) = E(Ibpn | Dbpn)(x)

and the terms of the averages 1
N

∑N−1
n=0 (E(Ibpn | Dbnp)− Ibpn) are a sequence of L2-

bounded11 martingale di�erences for the �ltration12 (Dn). By Theorem 8.4 they converge

11To verify L2 boundedness, note that the function x log2 x, which arises when integrating the second
power of the information function, is bounded on [0, 1].

12We identify Dn with the σ-algebra generated by its atoms.
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µ-a.e. to 0. Finally, we have already encountered the identity

logµ(DbpN (x)) =

N−1∑
n=0

log
µ(Dbpn(x))

µ(Dbp(n−1)(x))

= −
N−1∑
n=0

Ibpn(x)

which combined with the above a.s. limit shows that for µ-a.e. x,

dim(µ, x) = lim inf
N→∞

− logµ(D(bp)N (x))

N log bp

= lim inf
N→∞

1

N

N−1∑
n=0

1

p log b
H(µDbpn (x),Dbp(n+1))

It is often better to average in single steps rather than steps of p. For this we have:

Lemma 8.6. Let µ ∈ P(Rd) and p ∈ N. Then for µ-a.e. x,

dim(µ, x) = lim inf
N→∞

1

N

N∑
n=1

1

p
H(µDdbn (x),D

d
bn+p)

Proof. The proof of the last theorem is easily adapted to show for every 0 ≤ k < p that

dim(µ, x) = lim inf
N→∞

1

N

N∑
n=1

Ibpn+k(x) µ-a.e.

Averaging over k gives the claim.

8.3 Dimension of coordinate projections

The local entropy averages lemma bounds dimµ in terms of the average entropy of
the measures µDbn (x), n ∈ N. In the next three sections our objective is to obtain an

analogue for linear images of measures. Thus, for µ ∈ P(Rd) and π ∈ Πd,k a linear map
Rd → Rk, we would like to bound dimπµ in terms of the mean behavior of the sequences
µDbn (x) for µ-typical x, and, speci�cally, the entropy of their π-images.

De�nition 8.7. If µ ∈ P(Rd) and π : Rd → Rk is a linear map, then for x ∈ Rd and
m ∈ N write

em(µ, π, x) = lim inf
N→∞

1

N

N∑
n=1

1

m log b
H(π(µDdbn (x)),D

k
bn+m)

and
e(µ, π, x) = lim sup

m→∞
em(µ, π, x)

Although it is not obvious from the de�nition, the sequence em(µ, π, x), m ∈ N, is
µ-a.e. convergent, but we will not use this fact.
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Theorem 8.8. Let µ ∈ P([0, 1]d) and let π(x1, . . . , xd) = (x1, . . . , xk) be the coordinate

projection Rd → Rk. If p ∈ N and ep(µ, π, x) ≥ α for µ-a.e. x then dimπµ ≥ α. In

particular, dimπµ ≥ essinfx∼µ e(µ, π, x).

Proof. Let Ei = π−1Dki , so that µ(Ei(x)) = πµ(Dki (πx)). Since a πµ-typical point y ∈ Rk
is obtained as the projection πx of a µ-typical point x ∈ Rd, our goal is to show that

dim(πµ, πx) = lim inf
n→∞

logµ(Ebn(x))

n log b
≥ α µ-a.e. x

Let

Jbn = − log
µ(Ebn+p(x))

µ(Ebn(x))

Note that
∑N−1

n=0 Jbpn(x) = − logµ(EbpN (x)). Also, Jbn is Ebn+p-measurable, and since
Dbn+p re�nes Ebn+p , it is also Dbn+p-measurable. Arguing now just as in the proof of the
local entropy averages lemma (Theorem 8.5), we conclude that for every 0 ≤ k < p,

d(πµ, πx) = lim inf
N→∞

1

N

N−1∑
n=0

1

m log b
E(Jbp(n+1)+k |Dbpn+k)(x) µ-a.e. x (9)

Now �x x and let D = Dbi(x) and E = Ebi(x), and let E1, . . . , Er ∈ Ebi+p denote the cells
such that µ(Ej) > 0. Write qj = µE(Ej) and pj = µD(Ej), so that Jbi takes the value
qj on Ej . Both (qj) and (pj) are probability vectors, and since D ⊆ E also µD � µE
and hence qj = 0 implies pj = 0. Thus, from the de�nitions and Lemma 6.21 applied to
the vectors (pj), (qj),

E(Jbi |Dbi)(x) =

ˆ
Jbi(y) dµD(y)

=
∑
j

µ(Ej) · Jbi |Ej

= −
∑
j

pj log qj

≥ −
∑
j

pj log pj

= H(µD, Ebi+p)

Inserting this into Equation (9) completes the proof.

8.4 Changing coordinates

The proof of Theorem 8.8 relied on the fact that Dd
ak+p

re�nes π−1Dkan . This holds
when π is a coordinate projection, but not for general linear maps. In order to treat
the general case we now investigate how the local behavior of entropy changes when we
change to a dyadic partition in a new coordinate system. We shall state things a little
more generally, since it is not much harder to do so.

Recall that a partition B re�nes a partition A if every A ∈ A is a union of elements
of B. A sequence (An) of partitions is re�ning if An+1 re�nes An for all n.
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De�nition 8.9. Let (X,µ) be a probability space. Let (An), (Bn) be re�ning sequences
of partitions of X. We say that (Bn) asymptotically re�nes (An) (with respect to µ) if
for every ε > 0 there is an s ∈ N such that

lim inf
N→∞

1

N

N∑
n=1

1{Bn+s(x)⊆An(x)} > 1− ε µ-a.e. x

Trivial situations aside, the simplest method to ensure that one partition asymptot-
ically re�nes another is to randomly perturb one of the partitions. The example that
interests us is that of b-adic partitions for di�erent coordinate systems on Rd. To be
precise, �x some orthogonal basis u1, . . . , ud of Rd and let ξ ∈ [0, 1]d be chosen randomly
according to Lebesgue measure. Let En = En(ξ) denote the (random) partition of Rd
which is the n-adic partition with respect to the coordinate system whose origin is ξ and
whose principal axes are in directions u1, . . . , ud (we continue to write Ddn for standard
n-adic partitions). Observe that En(ξ) = En(0) + ξ, where for a partition E and x ∈ Rd
we write E + x = {E + x : E ∈ E}.

Proposition 8.10. Let µ ∈ P(Rd) and let En = En(ξ) be the random partitions described

above for a given orthogonal basis of Rd. Then almost surely (over the choice of ξ), for
every base b, the partitions (Ddbn) asymptotically re�ne (Ebn).

Proof. A point x ∈ Rd is said to be normal if the sequence bnx mod 1 ∈ [0, 1]d equidis-
tributes for Lebesgue measure on [0, 1]d; if x ∈ [0, 1]d is chosen randomly according to
an absolutely continuous measure, it is a.s. normal. Since the Lebesgue measure of the
δ-neighborhood of ∂([0, 1]d) tends to 0 as δ → 0, for every ε > 0 there is a δ > 0 such
that, for a normal point x,

lim
N→∞

1

N

N∑
n=1

1{bn·d(x,∂Dbn (x))≤δ} < ε (10)

Denote by Uξ the isometry of Rd given by the composition of translation by −ξ and
the linear map given by ui 7→ ei. Note that Uξ maps Ebn = Ebn(ξ) to Dbn . Since ξ is
chosen from an absolutely continuous distribution, any �xed x, the distribution of Uξx
is absolute continuous, and hence Uξx is a.s. (over the choice of ξ) normal. Choosing
x randomly according to µ and applying Fubini's theorem, for a.e. choice of ξ we �nd
that Uξx is normal for µ-a.e. x. Thus (10) implies that for every ε > 0 there is a δ > 0
such that

lim
N→∞

1

N

N∑
n=1

1{bn·d(Uξx,∂Dbn (x))≤δ} < ε

which translates to

lim
N→∞

1

N

N∑
n=1

1{bn·d(x,∂Ebn (x))≤δ} < ε µ-a.e. x (11)

Fix ε and corresponding δ as above, and choose s so that every I ∈ Ddbn+s has
diameter less than b−nδ. Observe that if x, n are such that bn · d(x, ∂Ebn(x)) > δ then
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Ddbn+s(x) ⊆ Ebn(x). From this and the inequality (6) we conclude that

lim
N→∞

1

N

N∑
n=1

1Dbn+s (x)⊆Ebn (x) ≥ 1− ε µ-a.e. x

which is what we wanted to prove.

De�nition 8.11. For partitions A,B of a space X and A ⊆ X write

N(A,B) = #{B ∈ B : A ∩B 6= ∅}

and

N(A,B) = max{N(A,B) : A ∈ A}

De�nition 8.12. Let K be a convex set. A function G : K → [0,∞) is is said to have
convexity defect δ if αG(v) + (1 − α)G(w) ≥ G(αv + (1 − α)w) − δ for every v, w ∈ K
and 0 ≤ α ≤ 1.

It is elementary that ifG has convexity defect δ, thenG(
∑`

i=1 αivi) ≥
∑`

i=1 αiG(vi)−
δ dlog2 `e for every convex combination

∑`
i=1 αivi.

In our application we will consider functionsG : P([0, 1]d)→ R of the form 1
pH(·, En),

for suitable partitions En and a parameter p, n. Since the entropy function H has
convexity defect 1, such functions all have the same defect δ = 1/p (uniformly in n).

Theorem 8.13. Let µ ∈ P([0, 1]d) and let (An), (Bn) be re�ning sequences of partitions
such that (Bn) asymptotically re�nes (An) (w.r.t. µ). Let Cn = An∨Bn. Then for every

ε > 0 there is an s such that the following holds.

1. For any sequence Gn : P([0, 1]d)→ [0,M ] of concave functions,

lim inf
N→∞

1

N

N∑
n=1

Gn+s(µCn(x)) ≥ lim inf
N→∞

1

N

N∑
n=1

Gn(µBn(x))− εM µ-a.e. x

2. If ` = supn∈NN(An,Bn+s) < ∞ and Gn : P([0, 1]d) → [0,M ] are almost-convex

functions with common defect δ, then

lim inf
N→∞

1

N

N∑
n=1

Gn+s(µCn(x)) ≤ lim inf
N→∞

1

N

N∑
n=1

Gn(µBn(x))+εM+δ dlog2 `e µ-a.e. x

3. If ` and Gn satisfy the combined hypotheses of (1) and (2), then∣∣∣∣∣lim inf
N→∞

1

N

N∑
n=1

Gn(µBn(x))− lim inf
N→∞

1

N

N∑
n=1

Gn+s(µCn(x))

∣∣∣∣∣ ≤ 2εM+δ dlog `e µ-a.e. x

The same statements hold with lim sup in place of lim inf.
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Proof. Fix ε, and choose s as in the De�nition 8.9 for the sequences {An}, {Bn}. De�ne
fn, gn : [0, 1]d → [0,M ] by

fn(x) = 1{Bn+s(x)⊆An(x)}

gn(x) = Gn+s(µBn+s(x)) · fn(x)

By our choice of s,

lim inf
N→∞

1

N

N∑
n=1

fn(x) > 1− ε (12)

Since Cn = An ∨ Bn and the sequences (An) and (Bn) are re�ning, Bn+s(x) ⊆ An(x) if
and only if Bn+s(x) ⊆ Cn(x), so

fn(x) = 1{Bn+s(x)⊆Cn(x)}

Finally, note that fn, gn are Cn+s-measurable (because Cn+s re�nes Bn+s).
We prove the �rst claim. Write

µCn(x) =
∑

B∈Bn+s

µCn(x)(B) · µB∩Cn(x)

=
∑

B∈Bn+s,B⊆Cn(x)

µCn(x)(B) · µB +
∑

B∈Bn+s,B 6⊆Cn(x)

µCn(x)(B) · µB∩Cn(x)

By non-negativity and concavity of Gn+s,

Gn+s(µCn(x)) ≥
∑

B∈Bn+s,B⊆Cn(x)

µCn(x)(B) ·Gn+s(µB)

or equivalently (using fn(x) = 1{Bn+s(x)⊆Cn(x)}),

Gn+s(µCn(x)) ≥ E(gn|Cn)(x)

Since gn is Cn+s-measurable and bounded uniformly in n, by the last inequality and the
ergodic theorem for martingale di�erences (Corollary 8.4),

lim inf
N→∞

1

N

N∑
n=1

Gn+s(µCn(x)) ≥ lim inf
N→∞

1

N

N∑
n=1

E(gn|Cn)(x)

= lim inf
N→∞

1

N

N∑
n=1

gn(x) µ-a.e. x (13)

Using 0 ≤ Gn ≤M , we have

gn(x) = Gn+s(µBn+s(x))− (1− fn(x))Gn+s(µBn+s(x))

≥ Gn+s(µBn+s(x))−M(1− fn(x))

so with the help of Equation (12),

lim inf
N→∞

1

N

N∑
n=1

gn(x) ≥ lim inf
N→∞

1

N

N∑
n=1

(
Gn+s(µBn+s(x))−M(1− fn(x))

)
≥ lim inf

N→∞

1

N

N∑
n=1

Gn(µBn+s(x))−Mε µ-a.e. x
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Combined with (13), this completes the proof.
For the second part, write c = δ dlog2 `e. Using almost-convexity and Gn+s ≤M we

have

Gn+s(µCn(x)) ≤
∑

B∈Bn+s,B⊆Cn(x)

µCn(x)(B) ·Gn+s(µB)

+
∑

B∈Bn+s,B 6⊆Cn(x)

µCn(x)(B) ·Gn+s(µB) + c

≤
∑

B∈Bn+s,B⊆Cn(x)

µCn(x)(B) ·Gn+s(µB)

+
∑

B∈Bn+s,B 6⊆Cn(x)

µCn(x)(B) ·M + c

= E(gn|Cn) +M · (1− E(fn|Cn)(x)) + c

Since fn, gn are Cn+s-measurable, we again use the ergodic theorem for martingale
di�erences again (Corollary 8.4), equation (12), and the trivial inequality gn(x) ≤
Gn+s(µBn+s(x)),

lim inf
N→∞

1

N

N∑
n=1

Gn+s(µCn(x)) ≤ lim inf
N→∞

1

N

N∑
n=1

E(gn|Cn)

+ M · (1− lim sup
N→∞

1

N

N∑
n=1

E(fn|Cn)(x)) + c

≤ lim inf
N→∞

1

N

N∑
n=1

gn(x)

+ M · (1− lim inf
1

N

N∑
n=1

fn(x)) + c

< lim inf
N→∞

1

N

N∑
n=1

gn(x) + εM + c

≤ lim inf
N→∞

1

N

N∑
n=1

Gn+s(µBn+s(x)) + εM + c

Changing the index from n+ s to n in the last inequality gives the claim.
The third statement is a formal consequence of the �rst two. The versions using

lim sup instead of lim inf are identical.

Corollary 8.14. Let µ ∈ P(Rd), let b ≥ 2 and let (D′bn)∞n=1, (D′′bn)∞n=1 be b-adic parti-

tions of Rd relative to di�erent orthogonal coordinate systems. Then for every ε > 0, if
Gn : P([0, 1]d)→ [0,M ] are concave and almost convex with common defect δ, then

lim sup
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

Gn(µD′bn (x))−
1

N

N∑
n=1

Gn(µD′′bn (x))

∣∣∣∣∣ ≤ 2εM +Oε(δ) µ-a.e. x
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Proof. Let (Ebn)∞n=1 be a b-adic partition with respect to a randomly perturbed coordi-
nate system. By Proposition 8.10, (Ebn) asymptotically re�nes both (D′bn) and (D′′bn),
and clearly N(D′bn , Ebn+s) = N(D′′bn , Ebn+s) = O(b−sd). The corollary now follows by
part (3) of the previous theorem for the pairs (D′bn), (Ebn) and (D′′bn), (Ebn), and from the
triangle inequality.

8.5 Dimension of general projections

We now give the general case of Theorem 8.8 for non-coordinate projections. As before
the base we �x an integer base b ≥ 2 and suppress it in our notation.

Theorem 8.15. Let µ ∈ P(Rd) and π : Rd → Rk a linear map of full rank. Then

dimπµ ≥ essinfx∼µ e(µ, π, x).

Proof. Choose a coordinate system in Rd with respect to which π is the coordinate
projection to Rk, and let En be the corresponding n-adic partition of Rd. We may
assume that π−1Dkbn re�nes Ebn (if this is not the case initial, a translation and scaling
of the coordinates in Rk achieve it without changing dimπµ).

Fix ε > 0 and m and de�ne Gn : P([0, 1]d)→ [0, 1] by

Gn(ν) =
1

m log b
H(πν,Dkbn+m)

By basic properties of entropy, this function is concave and has convexity defect δ =
1

m log b . By Corollary 8.14, and assuming m is also large in a manner depending on ε, for
µ-a.e.. x,

lim inf
N→∞

1

N

N∑
n=1

1

m
H(π(µEbn (x)),Dkbn+m) ≥ em(µ, π, x)− 2ε−Oε(

1

m log b
)

By our choice of En and Theorem 8.8 this implies

dimπµ ≥ em(µ, π, x)− 2ε−Oε(
1

m log b
)

Now taking the limsup over m, and then the in�mum over ε, for µ-a.e. x

dimπµ ≥ lim sup
m→∞

em(µ, π, x) = e(µ, π, x)

The claim follows.

9 Projections of dynamically de�ned sets and measures

We are �nally ready to study the dimension of projections of typical measures for CP-
distributions, and prove Theorem 5.11.
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9.1 More on entropy and dimension

A natural notion of dimension is the following:

De�nition 9.1. The entropy dimension dime µ of µ ∈ P(Qd) is

lim
n→∞

H(µ,Dn)

log n

assuming the limit exists; if not we de�ne dimeµ and dimeµ using lim sup and lim inf,
respectively.

Often it is convenient to compute entropy dimension along an exponential subse-
quence of ns:

Lemma 9.2. For every integer b ≥ 2,

dime µ = lim
n→∞

H(µ,Dbn)

n log b

and similarly for upper and lower entropy dimension.

Proof. Each m is bounded between bn−1 and bn for some n = n(m). Using Lemma 6.20,
for such a pair we see that |H(µ,Dbn) −H(µ,Dm)| < C. The desired equality follows
since n(m) log b/ logm→ 1 as m→∞.

Entropy dimension and pointwise dimension are related by the following:

Proposition 9.3. dimµ ≤ dimeµ

Proof. By Fatou's lemma,

lim inf
n→∞

ˆ
− logµ(D2n(x))

n log 2
dµ(x) ≥

ˆ
lim inf
n→∞

− logµ(D2n(x))

n log 2
dµ(x)

=

ˆ
dim(µ, x) dµ(x)

≥ dimµ

Remark 9.4. The inequality above can be strict, and in general there is no relation
between entropy dimension and dimµ. However, if α(x) = limr→0 logµ(Br(x))/ log r
exists at µ-a.e. point then dime µ =

´
α(x) dµ(x).

9.2 Dimension of projections of with local statistics

We have seen that for measures on [0, 1]d arising from ergodic CP-distributions, the
dimension can be expressed in terms of the mean entropy of Ddb (Corollary 6.26). Our
goal in this section and the next is to obtain a similar formula for the dimension of linear
projections.

Recall the notation µD, µ
D from Section 6.6. It is convenient to introduce a short-

hand notation:
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De�nition 9.5. For a �xed base b ≥ 2 and µ ∈ P(Rd),

µx,n = µDbn (x)

µx,n = µDbn (x)

whenever they are de�ned.

Note that we have suppresses the base b in the notation.

De�nition 9.6. µ ∈ P([0, 1]d) generates a distribution P ∈ P(P([0, 1]d)) in base b, if
for µ-a.e. x the sequence (µx,n)∞n=0 equidistributes for P , i.e.

1

N

N−1∑
n=0

δµx,n → P weak-* as N →∞

In other words,

1

N

N−1∑
n=0

f(µx,n)→
ˆ
f dP for all f ∈ C(P([0, 1]d))

The main examples of measures satisfying the previous de�nition arise from geomet-
ric versions of CP-distributions (recall De�nition 6.22):

Lemma 9.7. Let P ∈ P(Φ) be an ergodic base-b symbolic CP-distribution and P ′ its
geometric marginal. Then for P ′-a.e. µ, the measure µ generates P ′ at µ-a.e. x.

Proof. We assume as always that P -a.e. µ gives no mass to the boundaries of b-adic
cells.

Let P̃ ∈ P(ΦN) correspond to P and let Q ∈ P(P(Ω)) denote the projection of P to
the second coordinate of Φ = Λ×P(Ω). By the ergodic theorem, for P̃ -a.e. (̃i, µ̃) ∈ ΦN,

lim
N→∞

1

N

N−1∑
n=0

δµn = Q (weak-*)

Write π : Ω → [0, 1]d for the symbolic coding. Since π is continuous we can apply it to
the limit above and conclude that for P̃ -a.e. (̃i, µ̃),

P ′ = πQ = π( lim
N→∞

1

N

N−1∑
n=0

δ
µ
i1...in
0

) = lim
N→∞

1

N

N−1∑
n=0

δπµn (weak-*)

Since µn = µi1...in0 (see the proof of Proposition 6.18) and π(µi1...in0 ) = (πµ0)πĩ,n (since
the boundaries of b-adic cells are µ-null), this implies that µ0 generates P ′ at x = πĩ.
Conditioned on µ0 the point ĩ is distributed according to µ0 (Proposition 6.18), so x = πĩ
is distributed according to πµ0, hence πµ0 generates P ′. This happens for P̃ -a.e. (̃i, µ̃),
which is equivalent to what we wanted to prove.

Remark 9.8. There is also a converse: if µ ∈ P(Rd) generates a distribution P at µ-a.e.
point, then P is the geometric marginal of a CP-distribution. We do not use or prove
this fact, see [8].
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We now turn to the study of projections.

De�nition 9.9. For P ∈ P(P([0, 1]d)) and a linear map π : Rd → Rk write

em(P, π) =
1

m log b

ˆ
H(πν,Dbm) dP (ν)

and

e(P, π) = lim sup
m→∞

em(P, π)

Theorem 9.10. Let µ ∈ P(Rd) be a measure that generates P in base b. Let π ∈ Πd,k.

Then

dimπµ ≥ e(P, π)

In particular, if P is an ergodic CP-distribution, then P -a.e. µ satis�es dimπµ ≥
e(P, π).

Proof. For x. Write

Px,N =
1

N

N∑
n=1

δµx,n

and assume that Px,N → P weak-* , which holds for µ-a.e. x. Note that by Lemma
6.20,

H(π(µx,n),Dkbn+m) = H(π(µx,n),Dkbm) +O(
1

m
)

Therefore, by the same lemma and the fact that Px,N → P weak-* ,

em(µ, π, x) = lim inf
N→∞

1

N

N∑
n=1

1

m log b
H(π(µx,n),Dkbn+m)

= lim inf
N→∞

1

N

N∑
n=1

1

m log b
H(π(µx,n),Dkbm) +O(

1

m
)

= lim inf
N→∞

ˆ
1

m log b
H(πν,Dkbm) dPN (ν) +O(

1

m
)

≥ em(P, π)−O(
1

m
),

so for µ-a.e. x,

e(µ, π, x) = lim sup
m→∞

em(µ, π, x) ≥ lim sup
m→∞

(
em(P, π)−O(

1

m
)

)
= e(P, π).

Applying Theorem 8.15, we have dimπµ ≥ essinfx∼µ e(µ, π, x) ≥ e(P, π), as claimed.

The second statement is immediate from the �rst using the fact that a.e. measure for
a geometric, ergodic CP-distribution generates the distribution along b-adic cells.

57



9.3 Semicontinuity of dimension for CP-distributions

We now consider typical measures for a ergodic CP-distribution, which, by Lemma 9.7.
The following proposition shows that such for measures the lower bound on dimension
that was given in Theorem 9.10 is an equality.

Proposition 9.11. Let P ∈ P(P([0, 1]d)) be the geometric marginal of an ergodic base-b
CP-distribution and π ∈ Πd,k. Then

dimπµ = e(P, π) for P -a.e. µ

and

e(P, π) = lim
n→∞

en(P, π)

(i.e., the limsup in the de�nition of e(P, π) is a limit).

Proof. P -a.e. µ satis�es the hypothesis of Theorem 9.10 with the distribution P . There-
fore,

e(P, π) = lim sup
n→∞

en(P, π)

≥ lim inf
n→∞

en(P, π)

= lim inf
n→∞

1

n log b

ˆ
H(πµ,Dbn) dP (µ)

≥
ˆ

lim inf
n→∞

1

n log b
H(πµ,Dbn) dP (µ)

=

ˆ
dime πµ dP (µ)

≥
ˆ

dimπµ dP (µ)

≥ e(P, π)

(The �rst equality is the de�nition of e(P, π); the second is trivial; the third is the
de�nition of en(P, π); the fourth is Fatou's lemma; the �fth is the de�nition of entropy
dimension; the sixth is Proposition 9.3 (which is another application of Fatou); and the
seventh is Theorem 9.10). Thus all are in fact equalities. In particular

lim sup
n→∞

en(P, π) = lim inf
n→∞

en(P, π)

so limn→∞ en(P, π) exists. We also conclude thatˆ
dimπµ dP (µ) = e(P, π)

Since dimπµ ≥ e(P, π) for P -a.e. µ, this implies that e(P, π) = dimπµ for P -a.e. µ, as
claimed.

Theorem 9.12. Let P ∈ P(P([0, 1]d)) be the geometric version of an ergodic base-b
CP-distribution. Then π → e(P, π) is lower semi-continuous, i.e.

lim
n→∞

πn = π =⇒ lim inf
n→∞

e(P, πn) ≥ e(P, π)
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Proof. It su�ces to show that there is a neighborhood of π in which, for every δ > 0,
e(P, π′) > e(P, π)− δ.

Fix k and π and note that there is a neighborhood U = Uπ,k ⊆ Πd,k of π such that
for π′ ∈ U and any measure τ ∈ P([0, 1]d),

| 1

k log b
H(πτ,Dbk)− 1

k log b
H(π′τ,Dbk)| < C

k

Taking µ to be a P -typical measure and applying Theorem 9.10 to it, we �nd that
dimπ′µ > ek(P, π) − δk − C

k , where δk → 0 as k → ∞. But from this and Proposition
9.3 it follows that for large enough r,

1

r log b
H(π′µ,Dbr) > ek(P, π)− δk −

C

k

Therefore for large r,

er(P, π
′) ≥ ek(P, π)− δk −

C

k

Hence

e(P, π′) = lim
r→∞

er(P, π
′) ≥ ek(P, π)− δk −

C

k

This inequality holds for all π′ ∈ Uπ,k, and since the right hand side tends to e(P, π) as
k→∞, the claim follows.

Remark 9.13. For P -typical µ we have dimπµ = e(P, π) (Proposition 9.11). Hence
there is semicontinuity of the projected dimension when one randomizes over µ. It is
not known if for P -a.e. µ the function π → dimπµ coincides with π 7→ e(P, π).

Lemma 9.14. If P is the geometric version of an ergodic CP-distribution then e(P, π) =
min{k,dimP} for a.e. π ∈ Πd,k.

Proof. Let α denote the dimension of P -typical measures. By Marstrand's projection
theorem (Theorem 4.6), for any measure µ ∈ P([0, 1]d) with dimµ = α, for a.e. π ∈ Πd,k

we have dimπµ = min{k, α}. Since dimµ = α for P -a.e. µ, the conclusion follows by
Fubini.

Corollary 9.15. Let P ∈ P(P([0, 1]d)) be a the geometric version of an ergodic CP-

distribution, and µ a measure which generates P at a.e. point. Then for every ε there

is a dense open set of projections π ∈ Πd,k such that dimπµ > min{k,dimP} − ε. In

particular, the set {π ∈ Πd,k : dimπµ = min{k, dimP}} contains a dense Gδ.

Proof. Let α denote the dimension of P -typical measures. By Lemma 4.5 e(P, π) ≤
min{k, α} for every π ∈ Πd,k. Thus min{k, α} is an upper bound for e(P, ·) : Πd,k → R,
and by the last theorem this upper bound is attained on a set of full measure, and hence
on a dense subset of Πd,k. Since the set of maxima of a lower semi-continuous function
is a Gδ and e(P, ·) is lower semi-continuous, the conclusion follows.
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9.4 Projections of products of fa- and fb-invariant sets

For u ∈ R we again write

πu(x, y) = ux+ y

Lemma 9.16. Let E ⊆ R2, u ∈ R and s, t ∈ N we have

dimπu((fs × ft)(E)) = dimπus/tE

Proof. On each cell I × J , I ∈ Ds, J ∈ Dt the map fs × ft|[0,1]2 is a�ne and given by
(x, y) 7→ (sx, tx) + a for some a = aI,J ∈ R2. Thus

πu(fs × ft|I×J(x, y)) = πu((sx, ty) + a)

= usx+ ty + πua

= t · πus/t(x, y) + πu(a)

= ψI,J ◦ πus/t(x, y)

where ψ is an a�ne map of R which, being bi-Lipschitz, preserves dimension. Therefore

dimπu(fs × ft(E ∩ (I × J))) = dimπsu/t(E ∩ (I × J))

Since E =
⋃
I∈Ds,J∈Dt(E ∩ (I × J)), the claim follows by Lemma 2.12 (2).

Theorem 9.17. Let X be closed and fa invariant, let Y be closed and fb-invariant, and
a 6∼ b. Then dimπu(X × Y ) = min{1,dimY + dimX} for every u 6= 0.

Proof. Let Z = X × Y and for each ε > 0. We wish to show that dimπuZ >
min{1,dimZ} − ε. Now, for any m,n ∈ N the set Z is invariant under fam × fbn =
fma × fnb , so by the Lemma 9.16,

dimπuZ = dimπu((fma × fnb )(Z)) = dimπu·am/bnZ for all m,n ∈ N

Therefore it su�ces to show that dimπuam/bnZ > min{1, dimZ}− ε for some m,n ∈ N.
By assumption log a/ log b /∈ Q, so am/bn is dense in R+. Therefore it su�ces to show
that the set

Uε = {π ∈ Π2,1 : dimπZ > min{1, dimZ} − ε}

has non-empty interior.

To show this we construct an ergodic base-a CP-distribution P such that dimP =
dimZ and for P -a.e. µ there is a u ∈ R+ such that, writing L(x, y) = (x, uy) mod 1, the
measure Lµ is supported on Z. We �rst note that Z has equal box and Hausdor� di-
mension (since X,Y have this property), so 1

k log a logN(Z,Dak)→ dimZ. We construct
a CP-distribution as in the proof of Theorem 7.8, starting from measures µk ∈ P(Z)
such that H(µk,Dak) = logN(Z,Dak), and passing to an ergodic component for which
dimP ≥ dimZ, and in fact there is equality because P -a.e. µ satis�es Lµ(Z) = 1, a
fact also proved as in Theorem 7.8.

Let us now replace P with its geometric version. Fixing a P -typical µ, we know from
Theorems 9.10 and 9.12 that πv 7→ dimπvµ is bounded below by a lower semi-continuous
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function which is a.e. equal to min{1, dimZ}, so, for the measure µ′ = Lµ|Z , the map
πv 7→ dimπvµ

′ is bounded below by a similar function, and in particular the set

Ṽε = {π ∈ Π2,1 : dimπµ′ > min{1, dimZ} − ε}

is open and non-empty (in fact dense) in Π2,1. Since dimπZ ≥ dimπµ′ for all π ∈ Π2,1,

we have Ṽε ⊆ Vε, so Vε, as desired.

Remark 9.18. One can show that the same result holds for products of invariant mea-
sures, but establishing a relation between the product measure and an appropriate CP-
distribution requires a little more work, see [9].
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