## Take-home exam in "Ergodic theory and Fractal geometry" (80763),

## Spring 2015

## Instructions

- From the moment you read the exam you have one week to complete it.
- In order to receive a grade you must submit the exam by October 1, 2015. Submit a hard-copy to me in person or by email (mhochman@math.huji.ac.il).
- You may read any text you want before or during the exam, including presentations of the material covered in the course, but if you come across a solution to one of the problems in the exam you may NOT read it!
- There are 4 problems. You may either solve 3 out of the 4 problems, in which case each is worth $33 \frac{1}{3}$ points; or you may solve all 4 , then each is worth 30 points, and the final grade will be $\max \{$ exam grade, 100$\}$. The passing grade for BA students is 60 , for MA students it is 80 .
- It is recommended to review the material before starting the exam!

Do not hesitate to contact me with questions.
GOOD LUCK.

## Problem 1

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function and $\mu$ a compactly supported, invariant and ergodic probability measure for $f$. Suppose that $f^{\prime} \neq 0$ on the support of $\mu$ and that $\lambda=\int \log \left|f^{\prime}\right| d \mu>0$. Show that

$$
\operatorname{dim} \mu=\frac{h_{\mu}(f)}{\lambda}
$$

i.e. the pointwise dimension of $\mu$ exists $\mu$-a.e. and is equal to $h_{\mu}(f) / \lambda$.

Note: $f$ is conformal, so as a map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ its derivative is a similarity (a scalar times a $2 \times 2$ rotation matrix).

## Problem 2

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a diffeomorphism that maps the unit square $R=[0,1]^{2}$ to the region depicted in the image below, so that $R \cap f(R)$ consists of two rectangles $R_{0}, R_{1}$ of width $\alpha$ and height 1 . Assume that on $R_{i}$ the function $f^{-1}$ has the form $x \mapsto\left(\begin{array}{cc}\alpha^{-1} & 0 \\ 0 & \beta^{-1}\end{array}\right) x+c_{i}$, with $0<\alpha<1<\beta$ and $c_{0}, c_{1} \in \mathbb{R}^{2}$.


1. Describe the intersections $R \cap f(R) \cap f^{2}(R)$ and, in general, $\bigcap_{i=0}^{n} f^{i}(R)$. (A drawing and short explanation suffice). Similarly describe $R \cap f^{-1}(R)$ and $\bigcap_{i=-n}^{0} f^{i}(R)$, and finally, describe $\bigcap_{i=-n}^{n} f(R)$.
2. Let

$$
\Omega=\bigcap_{i=-\infty}^{\infty} f^{i}(R)
$$

This is a compact $f$-invariant set. Show that $(\Omega, f)$ is isomorphic to $\left(\{0,1\}^{\mathbb{Z}}, S\right)$ where $S$ is the shift, i.e. construct a homeomorphism $\pi:\{0,1\}^{\mathbb{Z}} \rightarrow \Omega$ such that $\pi S=S f$.
3. Apply the Oseledets theorem to $\Omega \ni x \mapsto D f(x) \in G L(2, \mathbb{R})$ and describe the resulting exponents and subspaces.
4. Show that if $\mu \in \mathcal{P}(\Omega)$ is an $f$-invariant and ergodic probability then it has pointwise dimension a.e., and express this dimension in terms of $h_{\mu}(f)$ and $\alpha, \beta$. (Hint: the analysis is similar to
what we did for automorphisms of the 2-torus; if you take this approach you can formulate an appropriate Brin-Katok lemma without proving it. Alternatively you can use the model $(\Omega, S)$ directly).

## Problem 3

Let $A \in S L_{d}(\mathbb{Z})$ be hyperbolic (no eigenvalues of modulus 1) and $T=T_{A}$ the induced map on $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$. Let $W^{+}, W^{-}$, be the sum of the generalized eigenspaces of $A$ associated to eigenvalues of magnitude $>1$ (respectively $<1$ ). Let $\mathcal{W}^{ \pm}$be the corresponding partitions of $\mathbb{T}^{d}$ (i.e. $y \in \mathcal{W}^{ \pm}(x)$ if $y=x+w \bmod 1$ for some $\left.w \in \mathcal{W}^{ \pm}\right)$. Let $\mu$ be an invariant and ergodic probability measure for $T$.

Show that the following are equivalent:

1. $h_{\mu}(T)=0$
2. $\operatorname{dim}(\mu, x)=0 \mu$-a.e.
3. For every partition $\mathcal{V}$ subordinate to $\mathcal{W}^{+}$(equivalently $\mathcal{W}^{-}$),

$$
\mu_{x}^{\mathcal{V}}=\delta_{x} \quad \mu \text {-a.e. } x
$$

## Problem 4

Let $U \subseteq \mathbb{R}^{d}$ be open and $f: U \rightarrow U$ a diffeomorphism (so $f^{-1}$ is also differentiable). Let $\mu$ be a compactly supported ergodic probability measure for $f$. Apply Oseledets's theorem to $x \mapsto D f(x) \in$ $G L_{d}(\mathbb{R})$ to obtain $\lambda_{1}<\ldots<\lambda_{k}$ and linear subspaces $\{0\} \neq V_{1}^{x} \leq V_{2}^{x} \leq \ldots \leq V_{k}^{x}=\mathbb{R}^{d}$ such that for $\mu$-a.e. $x$ we have

$$
\frac{1}{n} \log \left\|D f^{n}(x) v\right\| \rightarrow \lambda_{i} \quad \text { for all } v \in V_{x}^{i} \backslash V_{x}^{i-1}
$$

and $D f(x) V_{i}^{x}=V_{i}^{f(x)}$ (in the equation we set $V_{0}^{x}=\{0\}$. Note that the notation differs frmo that int he proof of the theorem, it is more in line with the statement of Corollary 2.3 in Sarig's notes).

Suppose that $g: U \rightarrow U$ is a diffeomorphism also preserving $\mu$. Apply the Oseledets theorem to $x \mapsto D g(x)$ to obtain corresponding $\sigma_{1}<\ldots<\sigma_{m}$ and $W_{1}^{x} \leq \ldots \leq W_{m}^{x}$.

Assume now that $f, g$ commute, that is $f \circ g=g \circ f$.

1. Show that $V_{i}^{g(x)}=D g(x) V_{i}^{x}$ ( $\mu$-a.e. $x$ ).
2. Assume now that each $V_{i}$ and $W_{i}$ is 1-dimensional, so $m=k=d$. Show that there is a permutation $\pi$ of $\{1, \ldots, k\}$ such that $V_{i}^{x}=W_{\pi(i)}^{x}$.
3. Under the assumptions of (2), must we have $\pi=i d e n t i t y$ ? Must we have $\lambda_{i}=\sigma_{\pi(i)}$ ?
