Information and entropy

The information function

Let ξ be a countable partition of a probability space (X, \mathcal{F}) . The information function $I_{\xi} : X \to \mathbb{R}$ is

$$I_{\xi}(x) = -\log \mu(\xi(x))$$

Given a measurable partition η , the conditional information of ξ given η is the function $I_{\xi|\eta}: X \to \mathbb{R}$ given by

$$I_{\xi|\eta}(x) = -\log \mu_x^\eta(\xi(x))$$

Note that when $\eta(x) > 0$, we have $\mu_x^{\eta}(A) = \mu(A \cap \eta(x))/\mu(\eta(x))$, hence

$$I_{\xi|\eta}(x) = -\log \frac{\mu(\xi(x) \cap \eta(x))}{\mu(\eta(x))}$$

Also observe that $\mu_x^{\xi \lor \eta}(A) = \mu_x^{\eta}(A \cap \xi(x)) / \mu_x^{\eta}(\xi(x))$

Lemma 1.

- 1. $I_{\xi|\eta} = 0$ a.e. if and only if $\eta \succeq \xi \mod \mu$.
- 2. $I_{\xi|\eta} = I_{\xi}$ a.e. if and only if $\xi \perp \eta$.
- 3. $I_{\xi \lor \xi' \mid \eta} = I_{\xi \mid \eta} + I_{\xi' \mid \eta \lor \xi}$ a.e.

Theorem 2. Let ξ be a countable partition. If $\eta_1 \leq _2\eta \leq \ldots$ are measurable partitions and $\eta_{\infty} = \bigvee \eta_n$, or if $\eta_1 \succeq \eta_2 \succeq \eta_3 \ldots$ and $\eta_{\infty} = \bigwedge \eta_n$, then

$$I(\xi|\eta_n) \to I(\varepsilon|\eta_\infty) \qquad \mu\text{-}a.e$$

Proof. Immediate from $\mu_x^{\eta_n} \to \mu_x^{\eta_\infty}$ (w.r.t. the algebra of test functions 1_A , $A \in \xi$).

Entropy

The *entropy* of a countable partition ξ is

$$H_{\mu}(\xi) = \int I_{\xi} d\mu = -\sum_{A \in \xi} \mu(A) \log \mu(A)$$

The conditional entropy with respect to a measurable partition η is

$$H_{\mu}(\xi|\eta) = \int I_{\xi|\eta} d\mu$$

= $\int \left(\int I_{\xi|\eta} d\mu_x^{\eta} \right) d\mu(x)$
= $-\int \left(\sum_{A \in \xi} \mu_x^{\eta}(A) \log \mu_x^{\eta}(A) \right) d\mu(x)$
= $\int H_{\mu_x^{\eta}}(\xi) d\mu(x)$

Lemma 3.

- 1. $0 \le H(\xi), H(\xi|\eta) \le \infty$.
- 2. $H(\xi) = 0$ if and only if $\xi = \{X\} \mod \mu$, and $H(\xi|\eta) = 0$ if and only if $\eta \succeq \xi$

3.
$$H(\xi \lor \xi'|\eta) = H(\xi'|\eta) + H(\xi|\eta \lor \xi')$$

Proof. Exercise ((3) is proved by integrating the corresponding formula for information). \Box

Lemma 4.

- 1. If $\eta_1 \leq \eta_2$ are measurable partitions and ξ is countable then $H(\xi|\eta_1) \geq H(\xi|\eta_2)$. Equality if and only if $\mu_y^{\eta_2}(A_i)$ is constant $\mu_x^{\eta_1}$ -a.e. y, hence equal to $\mu_x^{\xi_1}(A_i)$ (ξ is conditionally independent of η_2 given η_1).
- 2. $H(\xi|\eta) \leq H(\xi)$ with equality if and only if ξ, \mathcal{B}_{η} are independent.
- 3. If $\xi = \{A_1, \ldots, A_k\}$ then $H(\xi) \le \log k$ with equality if and only if $\mu(A_i) = 1/k$.

Proof. These are consequences of (strict) convexity of $u(t) = t \log t$. Since $\eta_1 \leq \eta_2$ we have $\mu_x^{\eta_1} = \int \mu_y^{\eta_2} d\mu_x^{\eta_1}(y)$ a.s. (this can be verified by integrating functions against both measures and getting the same answer). Therefore by convexity, for every $A \in \xi$ we have $u(\mu_x^{\eta_1}(A)) \leq \int u(\mu_y^{\eta_2}(A)) d\mu_x^{\eta_1}(y)$. Summing over $A \in \xi$ this gives

$$H_{\mu_x^{\eta_1}}(\xi) \ge \int H_{\mu_y^{\eta_2}}(\xi) d\mu_x^{\eta_1}(y)$$

Integrating over x gives (1). The last part of (1) and also (2) follow by strict convexity. For (3) note that

$$-\frac{1}{k}\log k = u(\frac{1}{k}) = u(\sum \frac{1}{k}\mu(A_i)) \le \sum \frac{1}{k}u(\mu(A_i)) = -\frac{1}{k}H(\xi)$$

Equality holds if and only if all $\mu(A_i)$ are equal.

Lemma 5. If $\eta_1 \leq \eta_2 \leq \ldots$ are measurable partitions, ξ a countable partition, and $H(\xi|\eta_1) = \int I_{\xi|\eta_1} d\mu < \infty$, then

$$\int \sup_n I_{\xi|\eta_n} d\mu < \infty$$

Proof. See pp. 16-17 of Ledrappier's lecture slides.

Proposition 6.

1. If $\eta_1 \leq \eta_2 \leq \ldots$ and $\eta_{\infty} = \bigvee \eta_n$ are measurable partitions, ξ a countable partition, and $H(\xi|\eta_1) < \infty$, then $H(\xi|\eta_n) \searrow H(\xi,\eta_{\infty})$.

2. If $\eta_1 \succeq \eta_2 \succeq \ldots$ and $\eta_{\infty} = \bigwedge \eta_n$ are measurable partitions, ξ a countable partition, then $H(\xi|\eta_n) \nearrow H(\xi,\eta_{\infty})$.

Proof. (1) We know that $I_{\xi|\eta_n} \to I_{\xi|\eta_\infty}$ a.e. and the previous lemma allows us to integrate (dominated convergence). Montonicity by previous prop.

(2) We saw that $H_{m_x^{\eta_n}}(\xi) \geq \int H_{\mu_y^{\eta_{n+1}}}(\xi) d\mu_x^{\eta_n}(y)$. This means that $x \mapsto H_{\mu_x^{\eta_n}}(\xi)$ is a sub-martingale with respect to the decreasing sequence of σ -algebras \mathcal{B}_{η_n} . By a version of the martingale theorem the sequence converges a.e. and in L^1 if it makes sense.