
Partitions, measurable partitions and disintegra-

tion

Partitions and σ-algebras

Let (X,F) be a standard Borel space. A partition ξ of X always means a
partition into measurable sets. ξ(x) ∈ ξ is the element containing x. A set
A ∈ B is ξ-saturated if x ∈ A impiles ξ(x) ⊆ A. Thus A =

⋃
x∈A ξ(x).

A partition ξ de�nes the σ-algebra of measurable ξ-satured sets,

Fξ = {A ∈ F : A is ξ-saturated}

Example 1. If ξ is the partition into points then Fξis the full σ-algebra. If
X = [0, 1]2 and ξ is the partition into vertical lines then Fξ = {A× [0, 1] : A ⊆
Borel([0, 1])}.

One way to de�ne a partition is as the atoms of a countably generated sub-
σ-algebra: if A = σ(A1, A2, . . .) ⊆ F write A0 = A and A1 = X \ A, and for
i ∈ {0, 1}N write

Ai =

∞⋂
k=1

AiK

Then de�ne

ξA = {Ai : i ∈ {0, 1}N}
= {A ∈ F : ∀i ∈ N ∈ F , A ⊆ Ci or A ⊆ X \ Ci}
= {A ∈ F : ∀B ∈ F , A ⊆ B or A ⊆ X \B}

This construction is related to the previous one by

FξA = A

and if ξ is a partition and Fξ is countably generated then also ξ = ξFξ . (These
statements are exercises).

Example 2. If X = {0, 1}N and A is the σ-algebra determined by coordinates
2, 3, 4, . . ., then ξA is the partition whose sets are pairs of points di�ereing int
heir forst coordinate.

Example 3. In general Fξ is not countably generated. For example if T : X →
X is a measurable automorphism then the partition ξ into orbits consists of
countable, hence measureble, sets, and Fξ is the σ-algebra of T -invariant sets.
If µ is a non-atomic ergodic invariant measure for ξ then every orbit has measure
0 and every invariant set has measure 0 or 1, and to ξFξ contains an atom of
measure 1, which cannot be an orbit.

Example 4. Let A ∈ SLd(Z) be a hyperbolic matrix, V ≤ Rd the span of the
expanding eigendirections, and ξ the partition of Td such that x ∼ y if and only if
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x = y+v mod 1 for some v ∈ V . This is called the partition into unstable leaves.
One can characterize it dynamically by the property that x ∼ y if and only if
d(T−nA x, T−nA y)→ 0. In general, Bξ is not countably generated. For example for
hyperbolic A ∈ SL2(Z), the expanding eignespace is a line of irrational slope,
and ξ is the orbit ralation on the torus of the �ow in thsi direction, which is
ergodic. Therefore by the previous example, it is not countably generated.

De�nition 5. A partition ξ ⊆ B is measurable if Bξ is countably generated.

Adding a measure to the picture

Now let µ be a probability measure on (X,F). We identify partitions and
σ-algebras that di�er on a zero-measure set.

Speci�cally, we say that ξ = ξ′ mod µ if there is a set X0 ⊆ X of full measure
such that ξ|X0 = ξ′|X0 . This implies that Fξ = Fξ′ mod µ.

We say that σ-algebras A,A′ ⊆ F satisfy A ⊆ A′ mod µ if for every A ∈ A
there exists A′ ∈ A′ with µ(A4A′) = 0. If both A ⊆ A′ mod µ and A′ ⊆
A mod µ then A = A′ mod µ.

When A,A′ are countably generated, if A = A′ mod µ then ξA = ξA′ mod µ
(Find generating sequences {Ci} and {C ′i} forA,A′ respectiely with µ(Ci4C ′i) =
0 and take X0 = X \

⋃
(Ci4C ′i)).

Lemma 6. For every σ-algebra A ⊆ F there is a countably generated sub-σ-
algebra A′ ⊆ A such that A = A′ mod µ.

Proof. Let d(A,B) = µ(A4B). This is a separable metric on F (this uses
the fact that (X,F) is standard Borel), so A ⊆ F is separable as well; choose a
countable dense sequence A1, A2, . . . ⊆ A and let A′ = σ({Ai}). It is an exercise
to show that A = A′ mod µ.

Remark 7. This shows that the property of being countably generated is not
preserved under equality mod µ! But of course, the property of being countably
generated mod µ, is.

Measure-valued integration

Given a measurable space (X,B), a family {νx}x∈X of probability measures on
(Y, C) is measurable if for every E ∈ C the map x 7→ νx(E) is measurable (with
respect to B). Equivalently, for every bounded measurable function f : Y → R,
the map x 7→

´
f(y) dνx(y) is measurable.

Given a measure µ ∈ P(X) we can de�ne the probability measure ν =´
νxdµ(x) on Y by

ν(E) =

ˆ
νx(E) dµ(x)

For bounded measurable f : Y → R this gives
ˆ
f dν =

ˆ
(

ˆ
f dνx) dµ(x)
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and the same holds for f ∈ L1(ν) by approximation (although f is de�ned only
on a set E of full ν-measure, we have νx(E) = 1 for µ-a.e. x, so the inner
integral is well de�ned µ-a.e.).

Example 8. Let X be �nite and B = 2X . Then
ˆ
νx dµ(x) =

∑
x∈X

µ(x) · νx

Any convex combination of measures on Y can be represented this way, so the
de�nition above generalizes convex combinations.

Example 9. Any measure µ on (X,B) the family {δx}x∈X is measurable since
δx(E) = 1E(x), and µ =

´
δx dµ(x) because

µ(X) =

ˆ
1E(x)dµ(x) =

ˆ
νx(E) dµ(x)

In this case the parameter space was the same as the target space.
In particular, this representation shows that Lebesgue measure on [0, 1] is

an integral of ergodic measures for the identity map.

Example 10. X = [0, 1] and Y = [0, 1]2. For x ∈ [0, 1] let νx be Lebesgue
measure on the �ber {x} × [0, 1]. Measurability is veri�ed using the de�nition
of the product σ-algebra, and by Fubini's theorem

ν(E) =

ˆ
νx(E)dµ(x) =

ˆ 1

0

ˆ 1

0

1E(x, y)dy dx =

ˆ ˆ
E

1dxdy

so ν is just Lebesgue measure on [0, 1]2.
One could also represent ν as

´
νx,y dν(x, y) where νx,y = νx. Written this

way each �ber measure appears many times.

Disintegration

We now reverse the procedure above and study how a measure may be decom-
posed as an integral of other measures. Speci�cally, we will study the decom-
position of a measure with respect to a partition.

Example 11. Let (X,B, µ) be a probability space and let ξ = {P1, . . . , Pn} be
�nite or countable partition of it. For simplicity assume also that µ(Pi) > 0.
let µξx denote the conditional measure on ξ(X), i.e. µx = 1

µ(P(x))µ|P(x). Then

it is easy to check that µ =
´
µx dµ(x).

Our goal is to give a similar decomposition of a measure with respect to
an in�nite (usually uncountable) partition of X. Then the partition elements
E ∈ E typically have measure 0, and the formula 1

µ(E)µ|E no longer makes

sense. As in probability theory one can de�ne the conditional probability of an
event E given that x ∈ E as the conditional expectation E(1E |P) evaluated at
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x (conditional expectation is reviewed in the Appendix). This would appear to
give the desired decomposition: de�ne µx(E) = E(1E |E)(x). For any countable
algebra this does give a countably additive measure de�ned for µ-a.e. x. The
problem is that µx(E) is de�ned only for a.e. x but we want to de�ne µx(E)
for all measurable sets. Overcoming this problem is a technical but nontrivial
chore which we do not undertake here, but which gives the following result.

Theorem 12. Let (X,F) be a standard Borel space, ξ a measurable partition

and E = Bξ ⊆ B the corresponding countably generated sub-σ-algebra and ξ.
Then there is an E−measurable family {µξy}y∈X ⊆ P(X) such that µξy is sup-

ported on E(y) and

µ =

ˆ
µξy dµ(y)

i.e. for every f ∈ L2(µ), we have f ∈ L1(µξx) for µ-a.e. x andˆ
fdµ =

ˆ (ˆ
fdµξx

)
dµ(x)

Furthermore if {µ′y}y∈X is another such system then µξy = µ′y a.e.

Note that E-measurability has the following consequence: For µ-a.e. y, for
every y′ ∈ ξ(y) we have µy′ = µy (and, since since µy(ξ(y)) = 1, it follows that

µξy′ = µξy for µξy-a.e y
′).

De�nition 13. The representation µ =
´
µξy dµ(y) in the proof is often called

the disintegration of µ over E (or ξ).

The Martingale theorem

Assume that (X,F) is endowed with a countable family {fn} of bounded mea-
surable test functions generating F (e.g. when X is compact, a dense set of
continuous functions). We de�ne convergence of measures µn → µ on X by´
fkdµn →

´
fkdµ for all k.

Let ξ1 � ξ2 � ξ3 . . . be measurable partitions and ξ∞ =
∨
ξn the coarsest

common re�nement, given by ξ∞(x) =
⋂∞
n=1 ξn(x). Then ξ∞ is measurable.

Theorem 14 ("Forward" Martingale theorem). If ξ1 � ξ2 � ξ3 . . . are measur-

able partitions, and ξ∞ =
∨
ξn, then

µξnx → µξ∞x µ-a.e. x

Let ξ1 � ξ2 � ξ3 � . . . be measurable partitions, let B∞ =
⋂
Bξn mod µ

be a countably generated σ-algebra and ξ∞ = ξB∞ ; we denote ξ∞ =
∧
ξn, and

note that it is measurable, but de�ned mod µ (because B∞ is only de�ned mod
µ).

Theorem 15 ("Backward" Martingale theorem). Let ξ1 � ξ2 � ξ3 � . . . be
measurable partitions, let B∞ =

⋂
Bξn mod µ be a countably generated σ-algebra

and ξ∞ = ξB∞ . Then

µξmx → µξ∞x µ-a.e. x
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Remark 16. Note that in general, ξ∞(x) 6=
⋃
ξn(x). For example let X =

{0, 1}N with the product measure µ with marginal ( 12 ,
1
2 ). Let ξn denote the

partition according to coordinates n, n + 1, n + 2, . . .. Then B∞ =
⋂
Bξn is

trivial mod µ, by the Kolmogorov 0, 1-law, and ξ∞ is trivial (consists of a set
of full measure and a nullset). On the other hand, for every x,

⋃
ξn(x) is a

countable set consisting of all which eventually agree with x
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