Partitions, measurable partitions and disintegration

Partitions and σ -algebras

Let (X, \mathcal{F}) be a standard Borel space. A partition ξ of X always means a partition into measurable sets. $\xi(x) \in \xi$ is the element containing x. A set $A \in \mathcal{B}$ is ξ -saturated if $x \in A$ implies $\xi(x) \subseteq A$. Thus $A = \bigcup_{x \in A} \xi(x)$.

A partition ξ defines the σ -algebra of measurable ξ -satured sets,

$$\mathcal{F}_{\xi} = \{ A \in \mathcal{F} : A \text{ is } \xi \text{-saturated} \}$$

Example 1. If ξ is the partition into points then \mathcal{F}_{ξ} is the full σ -algebra. If $X = [0, 1]^2$ and ξ is the partition into vertical lines then $\mathcal{F}_{\xi} = \{A \times [0, 1] : A \subseteq Borel([0, 1])\}.$

One way to define a partition is as the atoms of a countably generated sub- σ -algebra: if $\mathcal{A} = \sigma(A_1, A_2, \ldots) \subseteq \mathcal{F}$ write $A^0 = A$ and $A^1 = X \setminus A$, and for $i \in \{0, 1\}^{\mathbb{N}}$ write

$$A^i = \bigcap_{k=1}^{\infty} A^{i_K}$$

Then define

$$\begin{aligned} \xi_{\mathcal{A}} &= \{A^i : i \in \{0, 1\}^{\mathbb{N}}\} \\ &= \{A \in \mathcal{F} : \forall i \in \mathbb{N} \in \mathcal{F}, A \subseteq C_i \text{ or } A \subseteq X \setminus C_i\} \\ &= \{A \in \mathcal{F} : \forall B \in \mathcal{F}, A \subseteq B \text{ or } A \subseteq X \setminus B\} \end{aligned}$$

This construction is related to the previous one by

$$\mathcal{F}_{\xi_{\mathcal{A}}} = \mathcal{A}$$

and if ξ is a partition and \mathcal{F}_{ξ} is countably generated then also $\xi = \xi_{\mathcal{F}_{\xi}}$. (These statements are exercises).

Example 2. If $X = \{0, 1\}^{\mathbb{N}}$ and \mathcal{A} is the σ -algebra determined by coordinates 2, 3, 4, ..., then $\xi_{\mathcal{A}}$ is the partition whose sets are pairs of points difference int heir forst coordinate.

Example 3. In general \mathcal{F}_{ξ} is not countably generated. For example if $T: X \to X$ is a measurable automorphism then the partition ξ into orbits consists of countable, hence measureble, sets, and \mathcal{F}_{ξ} is the σ -algebra of T-invariant sets. If μ is a non-atomic ergodic invariant measure for ξ then every orbit has measure 0 and every invariant set has measure 0 or 1, and to $\xi_{\mathcal{F}_{\xi}}$ contains an atom of measure 1, which cannot be an orbit.

Example 4. Let $A \in SL_d(\mathbb{Z})$ be a hyperbolic matrix, $V \leq \mathbb{R}^d$ the span of the expanding eigendirections, and ξ the partition of \mathbb{T}^d such that $x \sim y$ if and only if

 $x = y + v \mod 1$ for some $v \in V$. This is called the *partition into unstable leaves*. One can characterize it dynamically by the property that $x \sim y$ if and only if $d(T_A^{-n}x, T_A^{-n}y) \to 0$. In general, \mathcal{B}_{ξ} is not countably generated. For example for hyperbolic $A \in SL_2(\mathbb{Z})$, the expanding eignespace is a line of irrational slope, and ξ is the orbit ralation on the torus of the flow in this direction, which is ergodic. Therefore by the previous example, it is not countably generated.

Definition 5. A partition $\xi \subseteq \mathcal{B}$ is *measurable* if \mathcal{B}_{ξ} is countably generated.

Adding a measure to the picture

Now let μ be a probability measure on (X, \mathcal{F}) . We identify partitions and σ -algebras that differ on a zero-measure set.

Specifically, we say that $\xi = \xi' \mod \mu$ if there is a set $X_0 \subseteq X$ of full measure such that $\xi|_{X_0} = \xi'|_{X_0}$. This implies that $\mathcal{F}_{\xi} = \mathcal{F}_{\xi'} \mod \mu$.

We say that σ -algebras $\mathcal{A}, \mathcal{A}' \subseteq \mathcal{F}$ satisfy $\mathcal{A} \subseteq \mathcal{A}' \mod \mu$ if for every $A \in \mathcal{A}$ there exists $A' \in \mathcal{A}'$ with $\mu(A \triangle A') = 0$. If both $\mathcal{A} \subseteq \mathcal{A}' \mod \mu$ and $\mathcal{A}' \subseteq \mathcal{A} \mod \mu$ then $\mathcal{A} = \mathcal{A}' \mod \mu$.

When $\mathcal{A}, \mathcal{A}'$ are countably generated, if $\mathcal{A} = \mathcal{A}' \mod \mu$ then $\xi_{\mathcal{A}} = \xi_{\mathcal{A}'} \mod \mu$ (Find generating sequences $\{C_i\}$ and $\{C'_i\}$ for $\mathcal{A}, \mathcal{A}'$ respectively with $\mu(C_i \triangle C'_i) = 0$ and take $X_0 = X \setminus \bigcup (C_i \triangle C'_i)$).

Lemma 6. For every σ -algebra $\mathcal{A} \subseteq \mathcal{F}$ there is a countably generated sub- σ -algebra $\mathcal{A}' \subseteq \mathcal{A}$ such that $\mathcal{A} = \mathcal{A}' \mod \mu$.

Proof. Let $d(A, B) = \mu(A \triangle B)$. This is a separable metric on \mathcal{F} (this uses the fact that (X, \mathcal{F}) is standard Borel), so $\mathcal{A} \subseteq \mathcal{F}$ is separable as well; choose a countable dense sequence $A_1, A_2, \ldots \subseteq \mathcal{A}$ and let $\mathcal{A}' = \sigma(\{A_i\})$. It is an exercise to show that $\mathcal{A} = \mathcal{A}' \mod \mu$.

Remark 7. This shows that the property of being countably generated is not preserved under equality mod μ ! But of course, the property of being countably generated mod μ , is.

Measure-valued integration

Given a measurable space (X, \mathcal{B}) , a family $\{\nu_x\}_{x \in X}$ of probability measures on (Y, \mathcal{C}) is measurable if for every $E \in \mathcal{C}$ the map $x \mapsto \nu_x(E)$ is measurable (with respect to \mathcal{B}). Equivalently, for every bounded measurable function $f: Y \to \mathbb{R}$, the map $x \mapsto \int f(y) d\nu_x(y)$ is measurable.

Given a measure $\mu \in \mathcal{P}(X)$ we can define the probability measure $\nu = \int \nu_x d\mu(x)$ on Y by

$$\nu(E) = \int \nu_x(E) \, d\mu(x)$$

For bounded measurable $f: Y \to \mathbb{R}$ this gives

$$\int f \, d\nu = \int \left(\int f \, d\nu_x\right) d\mu(x)$$

and the same holds for $f \in L^1(\nu)$ by approximation (although f is defined only on a set E of full ν -measure, we have $\nu_x(E) = 1$ for μ -a.e. x, so the inner integral is well defined μ -a.e.).

Example 8. Let X be finite and $\mathcal{B} = 2^X$. Then

$$\int \nu_x \, d\mu(x) = \sum_{x \in X} \mu(x) \cdot \nu_x$$

Any convex combination of measures on Y can be represented this way, so the definition above generalizes convex combinations.

Example 9. Any measure μ on (X, \mathcal{B}) the family $\{\delta_x\}_{x \in X}$ is measurable since $\delta_x(E) = 1_E(x)$, and $\mu = \int \delta_x d\mu(x)$ because

$$\mu(X) = \int \mathbb{1}_E(x) d\mu(x) = \int \nu_x(E) \, d\mu(x)$$

In this case the parameter space was the same as the target space.

In particular, this representation shows that Lebesgue measure on [0, 1] is an integral of ergodic measures for the identity map.

Example 10. X = [0,1] and $Y = [0,1]^2$. For $x \in [0,1]$ let ν_x be Lebesgue measure on the fiber $\{x\} \times [0,1]$. Measurability is verified using the definition of the product σ -algebra, and by Fubini's theorem

$$\nu(E) = \int \nu_x(E) d\mu(x) = \int_0^1 \int_0^1 1_E(x, y) dy \, dx = \int \int_E 1 dx dy$$

so ν is just Lebesgue measure on $[0, 1]^2$.

One could also represent ν as $\int \nu_{x,y} d\nu(x,y)$ where $\nu_{x,y} = \nu_x$. Written this way each fiber measure appears many times.

Disintegration

We now reverse the procedure above and study how a measure may be decomposed as an integral of other measures. Specifically, we will study the decomposition of a measure with respect to a partition.

Example 11. Let (X, \mathcal{B}, μ) be a probability space and let $\xi = \{P_1, \ldots, P_n\}$ be finite or countable partition of it. For simplicity assume also that $\mu(P_i) > 0$. let μ_x^{ξ} denote the conditional measure on $\xi(X)$, i.e. $\mu_x = \frac{1}{\mu(\mathcal{P}(x))}\mu|_{\mathcal{P}(x)}$. Then it is easy to check that $\mu = \int \mu_x d\mu(x)$.

Our goal is to give a similar decomposition of a measure with respect to an infinite (usually uncountable) partition of X. Then the partition elements $E \in \mathcal{E}$ typically have measure 0, and the formula $\frac{1}{\mu(E)}\mu|_E$ no longer makes sense. As in probability theory one can define the conditional probability of an event E given that $x \in E$ as the conditional expectation $\mathbb{E}(1_E|\mathcal{P})$ evaluated at x (conditional expectation is reviewed in the Appendix). This would appear to give the desired decomposition: define $\mu_x(E) = \mathbb{E}(1_E|\mathcal{E})(x)$. For any countable algebra this does give a countably additive measure defined for μ -a.e. x. The problem is that $\mu_x(E)$ is defined only for a.e. x but we want to define $\mu_x(E)$ for all measurable sets. Overcoming this problem is a technical but nontrivial chore which we do not undertake here, but which gives the following result.

Theorem 12. Let (X, \mathcal{F}) be a standard Borel space, ξ a measurable partition and $\mathcal{E} = \mathcal{B}_{\xi} \subseteq \mathcal{B}$ the corresponding countably generated sub- σ -algebra and ξ . Then there is an \mathcal{E} -measurable family $\{\mu_y^{\xi}\}_{y \in X} \subseteq \mathcal{P}(X)$ such that μ_y^{ξ} is supported on $\mathcal{E}(y)$ and

$$\mu = \int \mu_y^\xi \, d\mu(y)$$

i.e. for every $f \in L^2(\mu)$, we have $f \in L^1(\mu_x^{\xi})$ for μ -a.e. x and

$$\int f d\mu = \int \left(\int f d\mu_x^{\xi} \right) d\mu(x)$$

Furthermore if $\{\mu'_y\}_{y \in X}$ is another such system then $\mu^{\xi}_y = \mu'_y$ a.e.

Note that \mathcal{E} -measurability has the following consequence: For μ -a.e. y, for every $y' \in \xi(y)$ we have $\mu_{y'} = \mu_y$ (and, since since $\mu_y(\xi(y)) = 1$, it follows that $\mu_{y'}^{\xi} = \mu_y^{\xi}$ for μ_y^{ξ} -a.e y').

Definition 13. The representation $\mu = \int \mu_y^{\xi} d\mu(y)$ in the proof is often called the *disintegration* of μ over \mathcal{E} (or ξ).

The Martingale theorem

Assume that (X, \mathcal{F}) is endowed with a countable family $\{f_n\}$ of bounded measurable test functions generating \mathcal{F} (e.g. when X is compact, a dense set of continuous functions). We define convergence of measures $\mu_n \to \mu$ on X by $\int f_k d\mu_n \to \int f_k d\mu$ for all k.

Let $\xi_1 \leq \xi_2 \leq \xi_3 \dots$ be measurable partitions and $\xi_{\infty} = \bigvee \xi_n$ the coarsest common refinement, given by $\xi_{\infty}(x) = \bigcap_{n=1}^{\infty} \xi_n(x)$. Then ξ_{∞} is measurable.

Theorem 14 ("Forward" Martingale theorem). If $\xi_1 \leq \xi_2 \leq \xi_3 \dots$ are measurable partitions, and $\xi_{\infty} = \bigvee \xi_n$, then

$$\mu_x^{\xi_n}
ightarrow \mu_x^{\xi_\infty} \qquad \mu\text{-a.e. } x$$

Let $\xi_1 \succeq \xi_2 \succeq \xi_3 \succeq \ldots$ be measurable partitions, let $\mathcal{B}_{\infty} = \bigcap \mathcal{B}_{\xi_n} \mod \mu$ be a countably generated σ -algebra and $\xi_{\infty} = \xi_{\mathcal{B}_{\infty}}$; we denote $\xi_{\infty} = \bigwedge \xi_n$, and note that it is measurable, but defined mod μ (because \mathcal{B}_{∞} is only defined mod μ).

Theorem 15 ("Backward" Martingale theorem). Let $\xi_1 \succeq \xi_2 \succeq \xi_3 \succeq \dots$ be measurable partitions, let $\mathcal{B}_{\infty} = \bigcap \mathcal{B}_{\xi_n} \mod \mu$ be a countably generated σ -algebra and $\xi_{\infty} = \xi_{\mathcal{B}_{\infty}}$. Then

$$\mu_x^{\xi_m} \to \mu_x^{\xi_\infty} \qquad \mu\text{-}a.e. \ x$$

Remark 16. Note that in general, $\xi_{\infty}(x) \neq \bigcup \xi_n(x)$. For example let $X = \{0, 1\}^{\mathbb{N}}$ with the product measure μ with marginal $(\frac{1}{2}, \frac{1}{2})$. Let ξ_n denote the partition according to coordinates $n, n + 1, n + 2, \ldots$ Then $\mathcal{B}_{\infty} = \bigcap \mathcal{B}_{\xi_n}$ is trivial mod μ , by the Kolmogorov 0, 1-law, and ξ_{∞} is trivial (consists of a set of full measure and a nullset). On the other hand, for every $x, \bigcup \xi_n(x)$ is a countable set consisting of all which eventually agree with x