Partitions, measurable partitions and disintegration

Partitions and σ-algebras

Let (X, \mathcal{F}) be a standard Borel space. A partition ξ of X always means a partition into measurable sets. $\xi(x) \in \xi$ is the element containing x. A set $A \in \mathcal{B}$ is ξ-saturated if $x \in A$ impiles $\xi(x) \subseteq A$. Thus $A=\bigcup_{x \in A} \xi(x)$.

A partition ξ defines the σ-algebra of measurable ξ-satured sets,

$$
\mathcal{F}_{\xi}=\{A \in \mathcal{F}: A \text { is } \xi \text {-saturated }\}
$$

Example 1. If ξ is the partition into points then \mathcal{F}_{ξ} is the full σ-algebra. If $X=[0,1]^{2}$ and ξ is the partition into vertical lines then $\mathcal{F}_{\xi}=\{A \times[0,1]: A \subseteq$ $\operatorname{Borel}([0,1])\}$.

One way to define a partition is as the atoms of a countably generated sub-σ-algebra: if $\mathcal{A}=\sigma\left(A_{1}, A_{2}, \ldots\right) \subseteq \mathcal{F}$ write $A^{0}=A$ and $A^{1}=X \backslash A$, and for $i \in\{0,1\}^{\mathbb{N}}$ write

$$
A^{i}=\bigcap_{k=1}^{\infty} A^{i_{K}}
$$

Then define

$$
\begin{aligned}
\xi_{\mathcal{A}} & =\left\{A^{i}: i \in\{0,1\}^{\mathbb{N}}\right\} \\
& =\left\{A \in \mathcal{F}: \forall i \in \mathbb{N} \in \mathcal{F}, A \subseteq C_{i} \text { or } A \subseteq X \backslash C_{i}\right\} \\
& =\{A \in \mathcal{F}: \forall B \in \mathcal{F}, A \subseteq B \text { or } A \subseteq X \backslash B\}
\end{aligned}
$$

This construction is related to the previous one by

$$
\mathcal{F}_{\xi_{\mathcal{A}}}=\mathcal{A}
$$

and if ξ is a partition and \mathcal{F}_{ξ} is countably generated then also $\xi=\xi_{\mathcal{F}_{\xi}}$. (These statements are exercises).
Example 2. If $X=\{0,1\}^{\mathbb{N}}$ and \mathcal{A} is the σ-algebra determined by coordinates $2,3,4, \ldots$, then $\xi_{\mathcal{A}}$ is the partition whose sets are pairs of points differeing int heir forst coordinate.

Example 3. In general \mathcal{F}_{ξ} is not countably generated. For example if $T: X \rightarrow$ X is a measurable automorphism then the partition ξ into orbits consists of countable, hence measureble, sets, and \mathcal{F}_{ξ} is the σ-algebra of T-invariant sets. If μ is a non-atomic ergodic invariant measure for ξ then every orbit has measure 0 and every invariant set has measure 0 or 1 , and to $\xi_{\mathcal{F}_{\xi}}$ contains an atom of measure 1 , which cannot be an orbit.

Example 4. Let $A \in S L_{d}(\mathbb{Z})$ be a hyperbolic matrix, $V \leq \mathbb{R}^{d}$ the span of the expanding eigendirections, and ξ the partition of \mathbb{T}^{d} such that $x \sim y$ if and only if
$x=y+v \bmod 1$ for some $v \in V$. This is called the partition into unstable leaves. One can characterize it dynamically by the property that $x \sim y$ if and only if $d\left(T_{A}^{-n} x, T_{A}^{-n} y\right) \rightarrow 0$. In general, \mathcal{B}_{ξ} is not countably generated. For example for hyperbolic $A \in S L_{2}(\mathbb{Z})$, the expanding eignespace is a line of irrational slope, and ξ is the orbit ralation on the torus of the flow in thsi direction, which is ergodic. Therefore by the previous example, it is not countably generated.

Definition 5. A partition $\xi \subseteq \mathcal{B}$ is measurable if \mathcal{B}_{ξ} is countably generated.

Adding a measure to the picture

Now let μ be a probability measure on (X, \mathcal{F}). We identify partitions and σ-algebras that differ on a zero-measure set.

Specifically, we say that $\xi=\xi^{\prime} \bmod \mu$ if there is a set $X_{0} \subseteq X$ of full measure such that $\left.\xi\right|_{X_{0}}=\left.\xi^{\prime}\right|_{X_{0}}$. This implies that $\mathcal{F}_{\xi}=\mathcal{F}_{\xi^{\prime}} \bmod \mu$.

We say that σ-algebras $\mathcal{A}, \mathcal{A}^{\prime} \subseteq \mathcal{F}$ satisfy $\mathcal{A} \subseteq \mathcal{A}^{\prime} \bmod \mu$ if for every $A \in \mathcal{A}$ there exists $A^{\prime} \in \mathcal{A}^{\prime}$ with $\mu\left(A \triangle A^{\prime}\right)=0$. If both $\mathcal{A} \subseteq \mathcal{A}^{\prime} \bmod \mu$ and $\mathcal{A}^{\prime} \subseteq$ $\mathcal{A} \bmod \mu$ then $\mathcal{A}=\mathcal{A}^{\prime} \bmod \mu$.

When $\mathcal{A}, \mathcal{A}^{\prime}$ are countably generated, if $\mathcal{A}=\mathcal{A}^{\prime} \bmod \mu$ then $\xi_{\mathcal{A}}=\xi_{\mathcal{A}^{\prime}} \bmod \mu$ (Find generating sequences $\left\{C_{i}\right\}$ and $\left\{C_{i}^{\prime}\right\}$ for $\mathcal{A}, \mathcal{A}^{\prime}$ respectiely with $\mu\left(C_{i} \triangle C_{i}^{\prime}\right)=$ 0 and take $\left.X_{0}=X \backslash \bigcup\left(C_{i} \triangle C_{i}^{\prime}\right)\right)$.

Lemma 6. For every σ-algebra $\mathcal{A} \subseteq \mathcal{F}$ there is a countably generated sub- σ algebra $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\mathcal{A}=\mathcal{A}^{\prime} \bmod \mu$.
Proof. Let $d(A, B)=\mu(A \triangle B)$. This is a separable metric on \mathcal{F} (this uses the fact that (X, \mathcal{F}) is standard Borel), so $\mathcal{A} \subseteq \mathcal{F}$ is separable as well; choose a countable dense sequence $A_{1}, A_{2}, \ldots \subseteq \mathcal{A}$ and let $\mathcal{A}^{\prime}=\sigma\left(\left\{A_{i}\right\}\right)$. It is an exercise to show that $\mathcal{A}=\mathcal{A}^{\prime} \bmod \mu$.

Remark 7. This shows that the property of being countably generated is not preserved under equality $\bmod \mu!$ But of course, the property of being countably generated $\bmod \mu$, is.

Measure-valued integration

Given a measurable space (X, \mathcal{B}), a family $\left\{\nu_{x}\right\}_{x \in X}$ of probability measures on (Y, \mathcal{C}) is measurable if for every $E \in \mathcal{C}$ the map $x \mapsto \nu_{x}(E)$ is measurable (with respect to \mathcal{B}). Equivalently, for every bounded measurable function $f: Y \rightarrow \mathbb{R}$, the map $x \mapsto \int f(y) d \nu_{x}(y)$ is measurable.

Given a measure $\mu \in \mathcal{P}(X)$ we can define the probability measure $\nu=$ $\int \nu_{x} d \mu(x)$ on Y by

$$
\nu(E)=\int \nu_{x}(E) d \mu(x)
$$

For bounded measurable $f: Y \rightarrow \mathbb{R}$ this gives

$$
\int f d \nu=\int\left(\int f d \nu_{x}\right) d \mu(x)
$$

and the same holds for $f \in L^{1}(\nu)$ by approximation (although f is defined only on a set E of full ν-measure, we have $\nu_{x}(E)=1$ for μ-a.e. x, so the inner integral is well defined μ-a.e.).

Example 8. Let X be finite and $\mathcal{B}=2^{X}$. Then

$$
\int \nu_{x} d \mu(x)=\sum_{x \in X} \mu(x) \cdot \nu_{x}
$$

Any convex combination of measures on Y can be represented this way, so the definition above generalizes convex combinations.

Example 9. Any measure μ on (X, \mathcal{B}) the family $\left\{\delta_{x}\right\}_{x \in X}$ is measurable since $\delta_{x}(E)=1_{E}(x)$, and $\mu=\int \delta_{x} d \mu(x)$ because

$$
\mu(X)=\int 1_{E}(x) d \mu(x)=\int \nu_{x}(E) d \mu(x)
$$

In this case the parameter space was the same as the target space.
In particular, this representation shows that Lebesgue measure on $[0,1]$ is an integral of ergodic measures for the identity map.

Example 10. $X=[0,1]$ and $Y=[0,1]^{2}$. For $x \in[0,1]$ let ν_{x} be Lebesgue measure on the fiber $\{x\} \times[0,1]$. Measurability is verified using the definition of the product σ-algebra, and by Fubini's theorem

$$
\nu(E)=\int \nu_{x}(E) d \mu(x)=\int_{0}^{1} \int_{0}^{1} 1_{E}(x, y) d y d x=\iint_{E} 1 d x d y
$$

so ν is just Lebesgue measure on $[0,1]^{2}$.
One could also represent ν as $\int \nu_{x, y} d \nu(x, y)$ where $\nu_{x, y}=\nu_{x}$. Written this way each fiber measure appears many times.

Disintegration

We now reverse the procedure above and study how a measure may be decomposed as an integral of other measures. Specifically, we will study the decomposition of a measure with respect to a partition.

Example 11. Let (X, \mathcal{B}, μ) be a probability space and let $\xi=\left\{P_{1}, \ldots, P_{n}\right\}$ be finite or countable partition of it. For simplicity assume also that $\mu\left(P_{i}\right)>0$. let μ_{x}^{ξ} denote the conditional measure on $\xi(X)$, i.e. $\mu_{x}=\left.\frac{1}{\mu(\mathcal{P}(x))} \mu\right|_{\mathcal{P}(x)}$. Then it is easy to check that $\mu=\int \mu_{x} d \mu(x)$.

Our goal is to give a similar decomposition of a measure with respect to an infinite (usually uncountable) partition of X. Then the partition elements $E \in \mathcal{E}$ typically have measure 0 , and the formula $\left.\frac{1}{\mu(E)} \mu\right|_{E}$ no longer makes sense. As in probability theory one can define the conditional probability of an event E given that $x \in E$ as the conditional expectation $\mathbb{E}\left(1_{E} \mid \mathcal{P}\right)$ evaluated at
x (conditional expectation is reviewed in the Appendix). This would appear to give the desired decomposition: define $\mu_{x}(E)=\mathbb{E}\left(1_{E} \mid \mathcal{E}\right)(x)$. For any countable algebra this does give a countably additive measure defined for μ-a.e. x. The problem is that $\mu_{x}(E)$ is defined only for a.e. x but we want to define $\mu_{x}(E)$ for all measurable sets. Overcoming this problem is a technical but nontrivial chore which we do not undertake here, but which gives the following result.
Theorem 12. Let (X, \mathcal{F}) be a standard Borel space, ξ a measurable partition and $\mathcal{E}=\mathcal{B}_{\xi} \subseteq \mathcal{B}$ the corresponding countably generated sub- σ-algebra and ξ. Then there is an \mathcal{E}-measurable family $\left\{\mu_{y}^{\xi}\right\}_{y \in X} \subseteq \mathcal{P}(X)$ such that μ_{y}^{ξ} is supported on $\mathcal{E}(y)$ and

$$
\mu=\int \mu_{y}^{\xi} d \mu(y)
$$

i.e. for every $f \in L^{2}(\mu)$, we have $f \in L^{1}\left(\mu_{x}^{\xi}\right)$ for μ-a.e. x and

$$
\int f d \mu=\int\left(\int f d \mu_{x}^{\xi}\right) d \mu(x)
$$

Furthermore if $\left\{\mu_{y}^{\prime}\right\}_{y \in X}$ is another such system then $\mu_{y}^{\xi}=\mu_{y}^{\prime}$ a.e.
Note that \mathcal{E}-measurability has the following consequence: For μ-a.e. y, for every $y^{\prime} \in \xi(y)$ we have $\mu_{y^{\prime}}=\mu_{y}$ (and, since since $\mu_{y}(\xi(y))=1$, it follows that $\mu_{y^{\prime}}^{\xi}=\mu_{y}^{\xi}$ for μ_{y}^{ξ}-a.e y^{\prime}).
Definition 13. The representation $\mu=\int \mu_{y}^{\xi} d \mu(y)$ in the proof is often called the disintegration of μ over \mathcal{E} (or ξ).

The Martingale theorem

Assume that (X, \mathcal{F}) is endowed with a countable family $\left\{f_{n}\right\}$ of bounded measurable test functions generating \mathcal{F} (e.g. when X is compact, a dense set of continuous functions). We define convergence of measures $\mu_{n} \rightarrow \mu$ on X by $\int f_{k} d \mu_{n} \rightarrow \int f_{k} d \mu$ for all k.

Let $\xi_{1} \preceq \xi_{2} \preceq \xi_{3} \ldots$ be measurable partitions and $\xi_{\infty}=\bigvee \xi_{n}$ the coarsest common refinement, given by $\xi_{\infty}(x)=\bigcap_{n=1}^{\infty} \xi_{n}(x)$. Then ξ_{∞} is measurable.

Theorem 14 ("Forward" Martingale theorem). If $\xi_{1} \preceq \xi_{2} \preceq \xi_{3} \ldots$ are measurable partitions, and $\xi_{\infty}=\bigvee \xi_{n}$, then

$$
\mu_{x}^{\xi_{n}} \rightarrow \mu_{x}^{\xi_{\infty}} \quad \text {-a.e. } x
$$

Let $\xi_{1} \succeq \xi_{2} \succeq \xi_{3} \succeq \ldots$ be measurable partitions, let $\mathcal{B}_{\infty}=\bigcap \mathcal{B}_{\xi_{n}} \bmod \mu$ be a countably generated σ-algebra and $\xi_{\infty}=\xi_{\mathcal{B}_{\infty}}$; we denote $\xi_{\infty}=\bigwedge \xi_{n}$, and note that it is measurable, but defined $\bmod \mu\left(\right.$ because \mathcal{B}_{∞} is only defined \bmod $\mu)$.
Theorem 15 ("Backward" Martingale theorem). Let $\xi_{1} \succeq \xi_{2} \succeq \xi_{3} \succeq \ldots$ be measurable partitions, let $\mathcal{B}_{\infty}=\bigcap \mathcal{B}_{\xi_{n}} \bmod \mu$ be a countably generated σ-algebra and $\xi_{\infty}=\xi_{\mathcal{B}_{\infty}}$. Then

$$
\mu_{x}^{\xi_{m}} \rightarrow \mu_{x}^{\xi_{\infty}} \quad \text {-a.e. } x
$$

Remark 16. Note that in general, $\xi_{\infty}(x) \neq \bigcup \xi_{n}(x)$. For example let $X=$ $\{0,1\}^{\mathbb{N}}$ with the product measure μ with marginal $\left(\frac{1}{2}, \frac{1}{2}\right)$. Let ξ_{n} denote the partition according to coordinates $n, n+1, n+2, \ldots$ Then $\mathcal{B}_{\infty}=\bigcap \mathcal{B}_{\xi_{n}}$ is trivial $\bmod \mu$, by the Kolmogorov 0 , 1-law, and ξ_{∞} is trivial (consists of a set of full measure and a nullset). On the other hand, for every $x, \bigcup \xi_{n}(x)$ is a countable set consisting of all which eventually agree with x

