Automorphisms of tori

$\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$ as a group and as a topological space. The metric is the "flat" metric

$$
d\left(\mathbb{Z}^{d}+u, \mathbb{Z}^{d}+v\right)=\min \left\{\|w\|: w+u-v \in \mathbb{Z}^{d}\right\}
$$

We identify \mathbb{T}^{d} with $[0,1)^{d}$, which is a fundamental domain for the projection $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d} / \mathbb{Z}^{d}$, or with $[0,1]^{d}$ from which \mathbb{T}^{d} arises also by identifying opposite sides.

A character of \mathbb{T} is a funciton of the form $e_{n}: x \mapsto \exp (2 \pi i\langle x, n\rangle)$ where $n \in \mathbb{Z}^{d}$ and $x \cdot n$ denotes inner product. These are well defined and are group homomorphisms from \mathbb{T} to the unit circle. It is easy to see that they are continuous and separate points, and a product of characterisis again a character. Hence the linear span of the characters is dense in the sup norm on $C\left(\mathbb{T}^{d}\right)$, and dense in $L^{2}(\mu)$ for any measure μ on \mathbb{T}^{d}. Also, characters are orthogonal with respect to the volume, since for each fixed y,

$$
\begin{aligned}
\int e_{n}(x) \overline{e_{m}}(x) d x & =\int e_{n}(x+y) \overline{e_{m}}(x+y) d \mu(x) d x \\
& =\int \exp (2 \pi i\langle y, n\rangle) e_{n}(x) \exp (2 \mu i\langle y,-m\rangle) \overline{e_{m}}(x) d x \\
& =\exp (2 \pi i\langle y, n-m\rangle) \int e_{n} \overline{e_{m}}
\end{aligned}
$$

Thus $\langle y, n-m\rangle \in \mathbb{Z}$ for all $y \in \mathbb{R}^{d}$ which can occur only if $m=n$. Thus, $\left\{e_{m}\right\}_{m \in \mathbb{Z}^{d}}$ forms an orthonormal basis for $L^{2}\left(\mathbb{T}^{d}, v o l\right)$ (they are of unit modulus, hence for normalized volume have unit length), and every $f \in L(v o l)$ can be written uniquely as

$$
f=\sum_{n \in \mathbb{Z}^{d}} a_{n} e_{n} \quad \text { with } \sum a_{n}^{2}=\|f\|_{2}^{2}
$$

Let $A \in S L_{d}(\mathbb{Z})$. Then A maps \mathbb{Z}^{d} injectively to itself, and A induces a group automorphism of \mathbb{T}^{d} to itself: indeed, it induces a well-defined map because $\mathbb{Z}^{d}+u=\mathbb{Z}^{d}+v$ if and only if $u-v \in \mathbb{Z}$ if and only if $A u-A v=A(u-v) \in \mathbb{Z}$ if and only if $A\left(\mathbb{Z}^{d}+u\right)=A\left(\mathbb{Z}^{d}+v\right)$. In particular, $A u$ is a representative of $A\left(\mathbb{Z}^{d}+u\right)$. The fact that A acts on \mathbb{T}^{d} as a group automorphism is now trivial to check.
A preserves the volume measure on \mathbb{T}^{d}. One can see this either using the fact that its Jacobian is A, hence has determinant 1; or from uniqueness of Haar measure, since the volume is invariant and so is the push-forward of the volume by A.

Proposition 1. $A \in S L_{d}(\mathbb{Z})$ acts ergodically on \mathbb{T}^{d} if and only if it has no roots of unity among its eigenvalues.

Proof. Suppose that A has no roots of unity among its eigenvalues. Then for $u \in \mathbb{Z}^{d}$ and $0 \neq n \in \mathbb{N}$ we have $A^{n} u \neq u$, for otherwise A^{n} would have

1 as an eivenvalue, implying a root of unity of order n is an eigenvalue of A. Now, to show that A is ergodic we must show that there are no invariant non-constant vectors in $L^{2}(v o l)$. Suppose then that f is A-invariant and write $f=\sum_{n \in \mathbb{Z}^{d}} a_{n} e_{n}$. Then using $e_{n} \circ A(x)=e_{n}\left(A^{*} x\right)$, we have

$$
\sum a_{n} e_{n}=f=A f=\sum a_{n} \cdot A e_{n}=\sum a_{n} e_{A^{*} n}
$$

By uniqueness of the expassion we conclude that $a_{A^{*} n}=a_{n}$ for all n. Since $\left\{A^{*} n\right\}_{n \in \mathbb{N}}$ is infinite for $n \neq 0$, it follows from $\sum\left|a_{n}\right|^{2}<\infty$ then $a_{n}=0$ except when $n=0$. Thes $f=a_{0} e_{0}$ is constant.

Conversely, if A has a root of unity then A^{n} has 1 as an eigenvalue for some $n \in \mathbb{N}$. Hence there is a rational vector $u \neq \emptyset$ satisfying $A^{n} u=u$, and we can assume it is an integer vector. Then $\sum_{i=0}^{n-1} e_{\left(A^{*}\right)^{i} u}$ is invariant and nontrivial.

Lemma 2. Let $\beta \neq 0$, let

$$
U=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and let $B=\beta I+U$ be a $d \times d$ matrix in Jordan form with a single Jordan block and eigenvalue β. Then for any every $\varepsilon>0$, for every large enough n we have for all $u \in \mathbb{R}^{d}$,

$$
e^{-\varepsilon n} \cdot|\beta|^{-n} \cdot\|u\| \leq\left\|B^{n} u\right\| \leq e^{\varepsilon n} \cdot|\beta|^{n} \cdot\|u\|
$$

Proof. It is formally equivalent to prove the inequalities with a multiplicative error depending only on β and the dimension of the matrix.

Since βI and U commute, and $U^{d}=0$, by the binomial theorem

$$
B^{n}=\sum_{\ell=0}^{n}\binom{n}{\ell} \beta^{n-\ell} U^{\ell}=\sum_{\ell=0}^{d-1}\binom{n}{\ell} \beta^{n-\ell} U^{\ell}
$$

hence

$$
\left\|B^{n}\right\| \leq \sum_{\ell=0}^{d-1} n^{\ell}\|U\|^{\ell} \beta^{n-\ell}=O_{d, \beta}\left(|\beta|^{n} \cdot e^{\varepsilon n}\right)
$$

This gives the right inequality. By the same reasoning applied to B^{-1} we have

$$
\left\|B^{-n}\right\|=O_{d, \beta}\left(|\beta|^{-n} e^{\varepsilon n}\right)
$$

giving the left inequality.
If $A \in S L_{d}(\mathbb{Z})$ write $\mathbb{R}^{d}=\oplus V_{i}$ with $\left.A\right|_{V_{i}}$ a jordan block with eigenvalue α_{i}. Let $x=\sum x_{i}$ with $x_{i} \in V_{i}$. Define

$$
\|x\|_{A}=\sum\left\|x_{i}\right\|_{2}
$$

This is a norm on \mathbb{R}^{d} so is uniformly equivalent to the Euclidean norm. Then

$$
\left\|A^{n} x\right\|_{A}=\max _{i}\left\|A^{n} x_{i}\right\|
$$

and $A^{n} x_{i}$ obeys the bounds in the previous lemma.
Proposition 3. If A has no roots of unity, then $h_{\text {vol }}(A)=\sum m_{i} \max \left\{0, \log \lambda_{i}\right\}$.
Proof. The norm $\|\cdot\|_{A}$ descends to \mathbb{T}^{d}, we define Boqwen balls with respect to it. Clearly $\operatorname{vol}\left(B^{n}(x, \varepsilon)\right)=\operatorname{vol}\left(B^{n}(0, \varepsilon)\right.$. Let $\varepsilon>0$ and define

$$
B_{+}^{n}=\left\{x=\sum x_{i}: x_{i} \in V_{i} \text { and }\left\|x_{i}\right\|<\varepsilon e^{\varepsilon n} \max \left\{1, \lambda_{i}^{n}\right\}^{-1}\right\}
$$

If $x=\sum x_{i}$ as above and $\left\|A^{n} x\right\|_{A}<\varepsilon$ then $\left\|A^{n} x_{i}\right\|<\varepsilon$ and by the lemma, assuming n is large enough, we have $e^{-\varepsilon n}\left|\alpha_{i}\right|^{n}\left\|x_{i}\right\|<\left\|A^{n} x_{i}\right\|<\varepsilon$, hence $\left\|x_{i}\right\|<$ $\varepsilon e^{\varepsilon n}\left|\alpha_{i}\right|^{-n} \leq \varepsilon e^{\varepsilon n} \max \left\{1,\left|\alpha_{i}\right|^{n}\right\}^{-1}$. It follows that for all alrge enough n,

$$
B^{n}(0, \varepsilon) \subseteq B_{+}^{n}
$$

Similarly, define

$$
B_{-}^{n}=\left\{x=\sum x_{i}: x_{i} \in V_{i} \text { and }\left\|x_{i}\right\|<\varepsilon e^{-\varepsilon n} \max \left\{1, \lambda_{i}^{n}\right\}^{-1}\right\}
$$

If $x=\sum x_{i} \in B_{-}^{n}$ then for each i, for large enough n by the lemma, $\left\|A^{n} x_{i}\right\| \leq$ $e^{\varepsilon n}\left|\alpha_{i}\right|^{n}\left\|x_{i}\right\|<\varepsilon$ so

$$
B_{n}^{-} \subseteq B^{n}(0, \varepsilon)
$$

Now,

$$
\begin{aligned}
\operatorname{vol}\left(B_{+}^{n}\right) & =c \cdot \varepsilon^{k} e^{\varepsilon k n} \prod \max \left\{1, \lambda_{i}\right\}^{-n m_{i}} \\
\operatorname{vol}\left(B_{-}^{n}\right) & =c \cdot \varepsilon^{k} e^{\varepsilon k n} \prod \max \left\{1, \lambda_{i}\right\}^{-n m_{i}}
\end{aligned}
$$

Taking logarithms and dividing by n, and letting $n \rightarrow \infty$ we find that

$$
\left\lvert\, \limsup _{n \rightarrow \infty}-\frac{1}{n} \log \operatorname{vol}\left(B^{n}(x, \varepsilon)-\sum m_{i} \max \left\{0, \ln \lambda_{i}\right\} \mid \leq c \cdot \varepsilon\right.\right.
$$

Letting $\varepsilon \rightarrow 0$ and using the Brin-Katok lemma, the proposition is proved.
Proposition 4. If $A \in S L_{d}(\mathbb{Z})$ and μ is an ergodic invariant measure on \mathbb{T}^{d} then

$$
h_{\mu}\left(T_{A}\right) \leq \sum m_{i} \max \left\{0, \ln \lambda_{i}\right\}
$$

Proof. Let $\varepsilon, \delta>0$ and set

$$
E_{n}=\left\{x \in \mathbb{T}^{n}: e^{-n(h+\delta)}<\mu\left(B^{n}(x, \varepsilon)\right)<e^{-n(h-\delta)}\right\}
$$

When ε is small enough, for large enough n we have $\mu\left(E_{n}\right)>\frac{1}{2}$. Choose a maximal set $F_{n} \subseteq E_{n}$ with

$$
B^{n}(x, \varepsilon / 2) \cap B^{n}(y, \varepsilon / 2)=\emptyset \quad \text { for distinct } x, y \in E_{n}
$$

Then

$$
\left|F_{n}\right| \leq \min \left\{\operatorname{vol}\left(B^{n}(x, \varepsilon): x \in E_{n}\right\}^{-1} \leq c \cdot\left(\frac{2}{\varepsilon}\right)^{k} e^{\varepsilon k n} \prod \max \left\{1, \lambda_{i}\right\}^{n m_{i}}\right.
$$

But by maximality, $\bigcup_{x \in F_{n}} B^{n}(x, \varepsilon)$ covers E_{n} so $\mu\left(\bigcup_{x \in F_{n}} B^{n}(x, \varepsilon)\right) \geq 1 / 2$ so

$$
\left|F_{n}\right| \geq \frac{1}{2} e^{-n(h+\delta)}
$$

Sombining these two inequalities, which hold for all large enough n, arbitrarily small ε and arbitrary $\delta>0$, gives the result.

Definition 5. $A \in S L_{d}(\mathbb{R})$ is hyperbolic if none of its eigenvalues has modulus 1.

For a 2×2 matrix, if it has no roots of unity, it is hyperbolic, with eigenvalues $\lambda>1$ and $0<\lambda^{-1}<1$.

Theorem 6. Let μ be an invariant measure on \mathbb{T}^{2} for a hyperbolic 2×2 matrix A. Then μ is exact dimensional and its dimension is $2 h_{\mu}(A) / \ln \lambda$.

Proof. Let

$$
B^{ \pm n}(x, \varepsilon)=\left\{y: d\left(A^{i} x, A^{i} y\right)<\varepsilon \text { for }-n \leq i \leq n\right\}
$$

Then by a variant of Brin-Katok,

$$
\lim _{\varepsilon \rightarrow 0} \lim \sup -\frac{1}{2 n} \log B^{ \pm n}(x, \varepsilon)=\lim _{\varepsilon \rightarrow 0} \lim \inf -\frac{1}{2 n} \log B^{ \pm n}(x, \varepsilon)=h_{\mu}(A)
$$

Now note that there is a constant c such that

$$
B^{ \pm n}\left(x, c^{-1} \varepsilon\right) \subseteq B\left(x, \varepsilon \lambda^{-n}\right) \subseteq B^{ \pm n}(x, c \varepsilon)
$$

It follows that
$2 \lim \sup -\frac{1}{2 n} \log B^{ \pm n}\left(x, c^{-1} \varepsilon\right) \leq \lim \sup \frac{\ln B\left(x, \varepsilon \lambda^{n}\right)}{\ln \varepsilon \lambda^{n}} \leq 2 \lim \sup -\frac{1}{2 n} \log B^{ \pm n}(x, c \varepsilon)$
Letting $\varepsilon \rightarrow 0$ we obtain

$$
\limsup \frac{\ln B(x, r)}{\ln r}=2 h_{\mu}(T)
$$

For the lininf the calculation is the same.

