Syllabus, "Fractal geometry and dynamics"

The course will provide an introduction to fractal geometry and geometric measure theory. We will discuss applications to dynamics and metric number theory as time allows.

We will not follow any one textbook. Notes will be available from

 $math.huji.ac.il/\sim mhochman/courses/fractals-2012$

Other good sources are

- Kenneth Falconer, The geometry of fractal sets, Cambridge 1985
- Kenneth Falconer, Techniques in fractal geometry, Wiley 1997
- Pertti Mattila, "Geometry of sets and measures in Euclidean spaces", Cambridge 1995
- Christopher Bishop and Yuval Peres, "Fractal sets in probability and analysis", preprint, currently it can be found online if you google the title.

The following list of subjects is a superset of the material. We will cover the first few (unstarred) subjects in detail. This should take roughtly half of the course. We will cover a selection of topics from the starred sections as time allows.

Basic definitions and examples

Minkowski and Hausdorff dimension Mass distribution principle and Billingsley's lemma Frostman's lemma Product sets

Fractals constructed by iteration

Iterated function systems Self-similar sets Self-affine sets

Geometry of measures

Differentiation and density theorems

Hausdorff measures

Local dimension of a measure

Projection theorems

Marstrand projection theorem and extensions

Absolute continuity of projections

Projections at the critical dimension, Kenyon's theorem

Bernoulli convolutions

Intersection theorems (*)

General intersection theorems

Schmidt games and sets of large intersection, badly approximable numbers

Thickness, sums of badly approximable numbers

Kakeya sets and the Kakeya conjecture

Furstenberg sets

Thermodynamic formalism (*)

Gibbs measures

Regular Cantor sets

Local methods (*)

Furstenberg homogeneous sets and galleries

Intersections of $\times m$ - and $\times n$ -invariant sets

Tangent measures and densities

Cassels-Schmidt theorem on normal numbers in Cantor sets