Lifting measures

Let 7 : X — Y be a continuous map between compact metric spaces. If u is a measure on
X then 7y is the measure on Y satisfying 7u(FE) = u(r~1(E)) for measurable E C Y (this
definition works also when X, Y are measurable spaces and 7 is measurable). Equivalently,

Vg e C(Y) /gdwu:/gowdu

(in the measurable case one requires this for measurable bounded functions, say). The measure
mp is called the push-forward of p and is sometimes denotes ., or w4 p.

Proposition 1. Let v be a Borel probability measure on'Y . Then there exists a Borel probability
measure i on X such that tp = v, i.e. p(n 1 E) = v(E) for all Borel sets E CY.

Remark 2. p need not be unique if 7 is not 1-1.

Remark 3. One can replace compactness by completeness, but then the theorem becomes much
more technical (requires descriptive set theory).

Proof No. 1 (almost elementary). Start by constructing a sequence v, of atomic measures on
Y with v, — v weakly, i.e. [gdv, — [gdv for all g € C(Y). To get such a sequence, given
n choose a finite partition &, of ¥ into measurable sets of diameter < 1/n (for instance cover
Y by balls B; of radius < 1/n and set E; = B; \ Uj<i Bj). For each E € &, choose g and set
Vp = ZEGS” V(E) - 65,. One may verify that v, — v.

Now, each v,, can be lifted to a probability measure u,, on X such that mu, = v,: to see
this, if v, = > w; - §,, choose z; € 7! (y;) (there may be many choices, choose one), and set

Since the space of Borel probability measures on X is compact in the weak-* topology, by
passing to a subsequence we can assume u, — u. Clearly u is a probability measures; we claim
mp = v. It is enough to show that [gd(mu) = [ gdv for every g € C(Y). Using the identity
[ gdv,, = [ gomdu, (which is equivalent to v, = mu,,) we have

/gduzlim/gdl/n:/gowdun:/gOWdu:/gd(Wu)

as claimed. 0O

Proof No. 2 (function-analytic). . First a few general remarks. A linear functional p* on C(X)
is positive if it takes non-negative values on non-negative functions. This property implies
boundedness: to see this note that for any f € C(X) we have || f||., — f > 0, hence by linearity

and positivity 1" (|| f]l.) — #*(f) > 0, giving
1) < ([ flloe) = 1 f 1l - #7(1)

Similarly, using f + [|f| ., = 0 we get u*(f) > — || f||..- Combining the two we have |u*(f)| <
C|| fll o> where C' = p*(1).

Since a positive functional p* is bounded it corresponds to integration against a regular signed
Borel measure i, and since [ fdu = p*(f) > 0 for continuous f > 0, regularity implies that u is
a positive measure. Hence a linear functional p* € C'(X)* corresponds to a probability measure
if and only if it be positive and p*(1) = 1 (this is the normalization condition [ 1dp = 1).

We now begin the proof. Let v* : C(Y) — R be bounded positive the linear functional
g+~ [gdv. The map 7 : C(Y) — C(X), g — g on, embeds C(Y) isometrically as a subspace
V =n(C(Y)) < C(X), and lifts v* to a bounded linear functional pf : V- — R (given by
po(g om) =v(g))-



Consider the positive cone P = {f € C(X) : f > 0}, and let s € C(X)* be the functional
S(f) = sup{0, —f(z) : z € X}
It is easy to check that s is a seminorm, that s|p = 0 and that —pi(f) < s(f) on V. Hence by
Hahn-Banach we can extend —puf to a functional —p* on C(X) satisfying —p* < s, which for

f € P implies pu*(f) > —s(f) = 0, so p* is positive. By the previous discussion there is a Borel
probability measure p such that [ fdu = p*(f); for f = g on this means that
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so  is the desired measure. O



