
Lifting measures

Let π : X → Y be a continuous map between compact metric spaces. If µ is a measure on
X then πµ is the measure on Y satisfying πµ(E) = µ(π−1(E)) for measurable E ⊆ Y (this
definition works also when X,Y are measurable spaces and π is measurable). Equivalently,

∀g ∈ C(Y )

ˆ
g dπµ =

ˆ
g ◦ π dµ

(in the measurable case one requires this for measurable bounded functions, say). The measure
πµ is called the push-forward of µ and is sometimes denotes π∗µ or π#µ.

Proposition 1. Let ν be a Borel probability measure on Y . Then there exists a Borel probability
measure µ on X such that πµ = ν, i.e. µ(π−1E) = ν(E) for all Borel sets E ⊆ Y .

Remark 2. µ need not be unique if π is not 1-1.

Remark 3. One can replace compactness by completeness, but then the theorem becomes much
more technical (requires descriptive set theory).

Proof No. 1 (almost elementary). Start by constructing a sequence νn of atomic measures on
Y with νn → ν weakly, i.e.

´
g dνn →

´
g dν for all g ∈ C(Y ). To get such a sequence, given

n choose a finite partition En of Y into measurable sets of diameter < 1/n (for instance cover
Y by balls Bi of radius < 1/n and set Ei = Bi \

⋃
j<iBj). For each E ∈ En choose xE and set

νn =
∑

E∈En ν(E) · δxE
. One may verify that νn → ν.

Now, each νn can be lifted to a probability measure µn on X such that πµn = νn: to see
this, if νn =

∑
wi · δyi

choose xi ∈ π−1(yi) (there may be many choices, choose one), and set
µn =

∑
wi · δxi .

Since the space of Borel probability measures on X is compact in the weak-* topology, by
passing to a subsequence we can assume µn → µ. Clearly µ is a probability measures; we claim
πµ = ν. It is enough to show that

´
g d(πµ) =

´
g dν for every g ∈ C(Y ). Using the identity´

g dνn =
´
g ◦ π dµn (which is equivalent to νn = πµn) we have

ˆ
g dν = lim

ˆ
g dνn =

ˆ
g ◦ π dµn =

ˆ
g ◦ π dµ =

ˆ
g d(πµ)

as claimed.

Proof No. 2 (function-analytic). . First a few general remarks. A linear functional µ∗ on C(X)
is positive if it takes non-negative values on non-negative functions. This property implies
boundedness: to see this note that for any f ∈ C(X) we have ‖f‖∞ − f ≥ 0, hence by linearity
and positivity µ∗(‖f‖∞)− µ∗(f) ≥ 0, giving

µ∗(f) ≤ µ∗(‖f‖∞) = ‖f‖∞ · µ
∗(1)

Similarly, using f + ‖f‖∞ ≥ 0 we get µ∗(f) ≥ −‖f‖∞. Combining the two we have |µ∗(f)| ≤
C ‖f‖∞, where C = µ∗(1).

Since a positive functional µ∗ is bounded it corresponds to integration against a regular signed
Borel measure µ, and since

´
f dµ = µ∗(f) ≥ 0 for continuous f ≥ 0, regularity implies that µ is

a positive measure. Hence a linear functional µ∗ ∈ C(X)∗ corresponds to a probability measure
if and only if it be positive and µ∗(1) = 1 (this is the normalization condition

´
1 dµ = 1).

We now begin the proof. Let ν∗ : C(Y ) → R be bounded positive the linear functional
g 7→

´
g dν. The map π∗ : C(Y )→ C(X), g 7→ g ◦ π, embeds C(Y ) isometrically as a subspace

V = π(C(Y )) < C(X), and lifts ν∗ to a bounded linear functional µ∗0 : V → R (given by
µ∗0(g ◦ π) = ν∗(g)).
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Consider the positive cone P = {f ∈ C(X) : f ≥ 0}, and let s ∈ C(X)∗ be the functional

s(f) = sup{0,−f(x) : x ∈ X}

It is easy to check that s is a seminorm, that s|P ≡ 0 and that −µ∗0(f) ≤ s(f) on V . Hence by
Hahn-Banach we can extend −µ∗0 to a functional −µ∗ on C(X) satisfying −µ∗ ≤ s, which for
f ∈ P implies µ∗(f) ≥ −s(f) = 0, so µ∗ is positive. By the previous discussion there is a Borel
probability measure µ such that

´
f dµ = µ∗(f); for f = g ◦ π this means that

ˆ
g dπµ =

ˆ
g ◦ π dµ = µ∗(g ◦ π) = µ∗0(g ◦ π) = ν∗(g) =

ˆ
g dν

so µ is the desired measure.
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