Final exam in "Fractal Geometry and Dynamics" (80852) ## Instructions - You have 3 weeks to complete this exam. You can start at any time; You must submit the solution up to 3 weeks from when you start but **no later than** August 30, 2012. You can **submit a hardcopy** to Orly in the student office or **an electronic copy** by email directly to me (mhochman@math.huji.ac.il). - You may **not** discuss the exam with other people. - It is **ok** to use course notes, books etc. but the solution you submit must be **your own** work. - Please write legibly! ## Part 1 Solve 3 of the following 4 problems (11% each). - a) Let $\varphi_i: [0,1] \to [0,1]$ be the (nonlinear) contractions $\varphi_1(x) = x/(4+2x)$ and $\varphi_2(x) = 1/(2+x)$. Let $\Phi = \{\varphi_1, \varphi_2\}$ and let K be the attractor of the IFS Φ . Show that $\log 2/\log 9 \le \dim K \le 1/2$. (Can you give better bounds?). - b) Compute the dimension α of the set of $x \in [0,1]$ whose binary digits do not have a limiting frequency, i.e. $$X = \{ \sum_{n=1}^{\infty} a_n 2^{-n} : a_n \in \{0, 1\}, \lim \inf \frac{1}{n} \sum_{i=1}^{n} a_i < \lim \sup \frac{1}{n} \sum_{i=1}^{n} a_i \}$$ Is there an α -regular measure giving X positive measure? c) Let v_x be the vertical line passing through (x,0) and h_y the horizontal line passing through (0,y). Consider the McMullen carpet X with the pattern Show that $X \cap v_x$ contains at most two points for every $x \in \mathbb{R}$, and hence has dimension 0, but that dim $X \cap h_y = 1/(2\log_2 3)$ for Lebesgue-a.e. $y \in [0,1]$. (Can you propose a construction with dim $X \cap h_y = \alpha$ for Lebesgue-a.e. y, and a given value of $\alpha \in [0,1]$?). d) Show that if $X \subseteq [0,1]^d$ is compact and dim X = d, then $[0,1]^d \in \mathcal{G}_X$ (where \mathcal{G}_X is the gallery determined by X). ## Part 2 Complete the proofs of 2 of the following 3 sections (33% each). ## 2.A. How does the dimension of a self-similar set depend on the IFS? For an IFS Φ we write X_{Φ} for its attractor. Recall that Φ satisfies strong separation if $\varphi X_{\Phi} \cap \psi X_{\Phi} = 0$ for distinct $\varphi, \psi \in \Phi$. **Proposition 1.** Let $\Phi = \{\varphi_i\}_{i \in \Lambda}$ be an IFS consisting of contracting similarities on \mathbb{R}^d and $\alpha = \overline{\text{Mdim}} X_{\Phi}$. Show that for every $\varepsilon > 0$ there is an IFS $\Phi' \subseteq \bigcup_{k=1}^{\infty} \bigcup_{i_1, \dots, i_k \in \Lambda^k} \varphi_{i_1 \dots i_k}$ satisfying strong separation and dim $X_{\Phi'} \ge \alpha - \varepsilon$. **Prove the proposition**. (Suggestion: consider an appropriate subset of the $\varphi_{i_1...i_k}$ with contraction approximately equal to some small r). Corollary 2. For Φ as above, dim $X_{\Phi} = Mdim X_{\Phi}$. **Prove the corollary** (Note that we know that $\dim X_{\Phi} = \operatorname{Mdim} X_{\Phi}$ if the open set condition holds; the point here is that there is no separation assumption). Now fix the dimension d of \mathbb{R}^d and the index set Λ ($|\Lambda| \geq 2$), and consider the space \mathcal{F} of all IFSs $\Phi = \{\varphi_i\}_{i \in \Lambda}$ consisting of (contracting) similitudes. \mathcal{F} can be identified with $|\Lambda|$ -tuples of similitudes and the space of similitudes can be identified with $(0,1) \times O(d) \times \mathbb{R}^d$, where O(d) is the space of orthogonal $d \times d$ matrices and (r, U, a) corresponds to the similitude $x \mapsto rUx + a$. Thus \mathcal{F} inherits a topology from the product $((0,1) \times O(d) \times \mathbb{R}^d)^{\Lambda}$. **Lemma 3.** Let $\Phi_n \to \Phi$ and suppose that Φ satisfies strong separation. Then so does Φ_n for all large enough n. Prove the lemma. **Theorem 4.** Let $\delta: \mathcal{F} \to [0,\infty)$ be the map $\Phi \mapsto \dim X_{\Phi}$. Show that δ is lower semi-continuous, i.e. that if $\Phi_n \to \Phi$ then $\liminf_{n\to\infty} \delta(\Phi_n) \geq \delta(\Phi)$. #### Prove the theorem Let $F \subseteq \mathbb{R}^d$ be the one-dimensional Sierpinski gasket and let $F_t = \pi_t F$, where $\pi_t(x, y) = tx + y$. We know from Marstrand's theorem that dim $F_t = 1$ for Lebesgue-a.e. t. We can now prove that the set of t satisfying this is large also in the sense of Baire category: Corollary 5. Show that there is a dense G_{δ} set of t such that dim $F_t = 1$. **Prove the corollary** (Suggestion: it is enough to show that $\{t : \dim F_t > 1 - \varepsilon\}$ contains an open dense set). Remark. For a general compact set $E \subseteq \mathbb{R}^2$ the set $\{t : \dim \pi_t E = \min\{1, \dim E\}\}$ has full measure (Marstrand) but does not need to contain a dense G_{δ} . Also, the corollary is true for any self-similar set, although the proof given above does not work except when the contractions of the IFS do not include rotations (why?). ## 2.B. Dimension conservation for homogeneous fractals ## Prove the following theorem: **Theorem 6.** Let $Z \subseteq [0,1]^2$ be compact and homogeneous. Let $\pi(x,y) = x$. Prove that there exists a point $x \in \pi Z$ with $\dim(Z \cap \pi^{-1}(x)) \ge \dim Z - \operatorname{Mdim} \pi Z$. Suggestion: there is more than one way to prove this, but you may want to use the following facts (if you do you should prove them): 1. The family of all minisets of vertical fibers of X is a gallery: i.e. the family $$\mathcal{F} = \{ \emptyset \neq Y \subseteq [0,1]^2 \cap (r(\pi^{-1}(y) \cap X) + a) : y \in \mathbb{R} , r \ge 1, a \in \mathbb{R}^2 \}$$ is a gallery. 2. If μ_n are probability measures on sets of the form $X \cap \pi^{-1}(I_n) \neq \emptyset$ for some intervals I_n with $|I_n| = 2^{-n}$, then any weak-* accumulation point $P \in \mathcal{P}(\Phi)$ of $P_n = \frac{1}{n} \sum_{k=1}^n T_F^n \delta_{(0,\mu_n)}$ has the property that $\sup p \nu \in \mathcal{F}$ for P-a.e. ν . ## 2.C. Badly approximable numbers in self-similar sets A number $x \in \mathbb{R}$ is called badly approximable if there is a constant c > 0 such that $$|x - \frac{m}{n}| \ge \frac{c}{n^2}$$ for all $m, n \in \mathbb{Z}$ We will denote the set of badly approximable numbers by Γ . (If you have not seen it before this definition may seem arbitrary, but Γ is an important object in Diophantine approximation. It is, in a sense, a generalization of the set of algebraic numbers: Liouville showed that any irrational algebraic number α as the property above. Elements of Γ are also characterized as those numbers whose partial quotients in the continued fraction expansion of x are bounded). In this problem you will prove the following theorem: **Theorem 7.** Let $X \subseteq \mathbb{R}$ be a self-similar set of positive dimension. Then $\dim(X \cap \Gamma) = \dim X$; in particular $X \cap \Gamma \neq \emptyset$. For each k let A_k be a disjoint family of compact subsets of \mathbb{R} and write $$d_k = \max_{A \in \mathcal{A}_k} |A|$$ We say that $\{A_k\}_{k=0}^{\infty}$ is treelike if it satisfies the following properties: - 1. $A_0 = \{A_0\}$ consists of a single set. - 2. For every $k \geq 0$ and $U, V \in \mathcal{A}_k$, either U = V or $U \cap V = \emptyset$. - 3. For every $k \geq 1$ and every $U \in \mathcal{A}_k$ there exists $V \in \mathcal{A}_{k-1}$ with $U \subseteq V$. - 4. For every $k \geq 1$ and every $U \in \mathcal{A}_k$ there exists $W \in \mathcal{A}_{k+1}$ with $W \subseteq U$. 5. $d_k \to 0$ as $k \to \infty$ (here $|A| = \operatorname{diam}(A)$. Denote $\bigcup A_k = \bigcup_{E \in A_k} E$. Clearly $\emptyset \neq \bigcup A_{k+1} \subseteq \bigcup A_k$, so $$A_{\infty} = \bigcap_{k=0}^{\infty} \bigcup \mathcal{A}_k$$ is a non-empty compact set. Notice that \mathcal{A}_k is totally disconnected and that the family $\{U \cap A_\infty : U \in \bigcup_{k=0}^\infty A_k\}$ forms a basis of closed and open sets for the induced topology on A_∞ . Let μ be a finite measure on \mathbb{R} and suppose that $$\mu(A) > 0$$ for every $A \in \bigcup_{k=0}^{\infty} \mathcal{A}_k$ Note that then $A_{\infty} \subseteq \text{supp}\mu$. Define $$\Delta_k = \min_{U \in \mathcal{A}_k} \frac{\mu(\bigcup \{V \in \mathcal{A}_{k+1} : V \subseteq U\})}{\mu(U)}$$ Note that $0 < \Delta_k < \infty$ for all k. **Proposition 8.** Suppose that $\{A_k\}$ is treelike and μ , Δ_k are as above. Then there exists a finite measure ν with $supp\nu = A_{\infty}$ such that for any $x \in A_{\infty}$, $$\dim(\nu, x) \ge \dim(\mu, x) - \limsup_{k \to \infty} \frac{\sum_{i=0}^{k} \log \Delta_i}{\log d_k}$$ In particular, for any open set U intersecting A_{∞} , $$\dim(U \cap A_{\infty}) \ge \inf_{x \in U} \dim(\mu, x) - \limsup_{k \to \infty} \frac{\sum_{i=0}^{k} \log \Delta_i}{\log d_k}$$ **Prove the proposition** (Hint: Let \mathcal{B} denote the σ -algebra of Borel sets on A_{∞} and $\mathcal{B}_0 \subseteq \mathcal{B}$ the sub-algebra generated by the sets $U \cap A_{\infty}$, $U \in \mathcal{A}_k$, $k \geq 0$. Define a finitely additive measure ν_0 on \mathcal{A} by the condition that if $U \in \mathcal{A}_k$ then the mass of $U \cap A_{\infty}$ is distributed among the sets $V \cap A_{\infty} \subseteq U$, $V \in \mathcal{A}_{k+1}$ in the same proportion as the μ -mass of U is distributed among the sets $V \subseteq U$, $V \in \mathcal{A}_{k+1}$. Extend ν_0 to \mathcal{B} to obtain ν . Show that ν has the desired properties.). **Proposition 9.** Let X be a self-similar set for an IFS $\Phi = \{\varphi_i\}$ on \mathbb{R} satisfying the open set condition. Let μ be the self-similar measure defined by the probability vector $p_i = r_i^{\alpha}$, where r_i is the contraction ratio of φ_i and $\alpha = \dim X = \dim X$. Show that there exist constants $c_2 > c_1 > 1$ such that for every interval I centered in X, $$c_1|I|^{\alpha} \le \mu(I) \le c_2|I|^{\alpha}$$ in particular there are constants $c'_1, c'_2 > 0$ such that for $x \in X$, $$c_1't^{\alpha} < \frac{\mu(B_{tr}(x))}{\mu(B_r(x))} < c_2't^{\alpha}$$ **Prove the Proposition** (we proved the upper bound in the first inequality in class, you only need to justify the lower bound). From now on we work in \mathbb{R} . Let X, μ, α, c_1, c_2 be as in the proposition. **Lemma 10.** For all sufficiently small $\beta > 0$ (depending on μ) the following holds. Let $x \in X$, r > 0 and let $y \in \mathbb{R}$. Then there is a point $x' \in X \cap B_r(x)$ such that $B_{\beta r}(x') \subseteq B_r(x) \setminus B_{\beta r}(y)$. #### Prove the lemma. **Proposition 11.** There exists a (small) c > 0, depending on μ , so that for every sufficiently small $\delta > 0$ the following holds. Let $x \in X$, r > 0 and let $Y \subseteq \mathbb{R}$ be a set with $|y - y'| \ge \delta r/c$ for distinct $y, y' \in Y$. Then there is a subset $X' \subseteq X$ such that the family $\mathcal{B} = \{B_{\delta r}(x')\}_{x' \in X'}$ is pairwise disjoint, $\bigcup \mathcal{B} \subseteq B_r(x) \setminus \bigcup_{y \in Y} B_{\delta r}(y)$, and $\mu(\bigcup \mathcal{B}) > c \cdot \mu(B_r(x))$. **Prove the proposition** (Suggestion: Apply the Besicovitch lemma to the family $\{B_{\delta r}(z): z \in X, B_{\delta r}(z) \subseteq B_r(x)\}$ and use the previous lemma. It may simplify things to write out the statement for r=1 first). Let $$\Gamma_c = \{ x \in \mathbb{R} : |x - \frac{m}{n}| \ge \frac{c}{n^2} \text{ for all } m, n \in \mathbb{Z} \}$$ so $\Gamma = \bigcup_{c>0} \Gamma_c$. In order to prove that $\dim \Gamma \cap X = \dim \Gamma$ for every self-similar set X satisfying the open set condition, it is enough to show that $\dim X \cap \Gamma_c \to \dim X$ as $c \searrow 0$. Fix X and μ . Let c be the constant from Proposition 11, and let $\delta = 1/M^2$ for a sufficiently large $M \in \mathbb{N}$ that the proposition applies. Construct by induction on $k \geq 0$ a treelike system $\{\mathcal{A}_k\}$, with \mathcal{A}_k consisting of disjoint balls of radius c/M^{2k} centered in X, and such that $\Delta_k \geq c$. Start with an arbitrary $x_0 \in X$ and $\mathcal{A}_0 = \{B_c(x_0)\}$. For the induction step, assume that we have defined \mathcal{A}_k already, and apply Proposition 11 to each ball $B_r(x) \in \mathcal{A}_k$ and the set $$Y_k = \{ \frac{m}{n} : M^k < n \le M^{k+1} \}$$ (use elementary algebra to show that Y_k has the required properties.) Take A_{k+1} to be the collection of resulting balls. Verify that $\{A_k\}$ has the stated properties and is treelike, and that $A_{\infty} \subseteq X \cap \Gamma_{c/M^2}$. Use Proposition 8 to prove that dim $A_{\infty} \to \dim X$ as the parameter $M \to \infty$. **Derive** Theorem 7 (you may use Proposition 1 also if you did not prove it). Remark 12. There are a few special cases where one can also show that $X \setminus \Gamma$ is large (in fact has positive dim X-dimensional Hausdorff measure); for example this is the case for the middle-1/3 Cantor set.