Lectures on fractal geometry and dynamics

Michael Hochman*

May 15, 2012

Contents
1 Introduction
2 Preliminaries

3 Dimension
3.1 A family of examples: Middle-a Cantor sets . . . . . . ... ... ....
3.2 Minkowski dimension . . . . . . . . .. ..

3.3 Hausdorff dimension . . . . . . . . . ... o

4 Using measures to compute dimension
4.1 The mass distribution principle . . . . . .. .. .. ... ... ...
4.2 Billingsley’s lemma . . . . . . . . . ...
4.3 Frostman’slemma . . . ... ... ... ...
4.4 Productsets. . . . . . . . . e

5 Iterated function systems
5.1 The Hausdorff metric. . . . . . . .. . . .. .. ... ... ... .....
5.2 Tterated function systems . . . . . . ... ... L.
5.3 Self-similar sets . . . . . . . ...
5.4 Self-affinesets . . . . . . ...

6 Geometry of measures
6.1 The Besicovitch covering theorem . . . . . . . . ... . ... ... ....
6.2 Density and differentiation theorems . . . . . . ... ... ... .....
6.3 Dimension of a measure at a point . . . . . . .. ... ... .. ... ..

6.4 Upper and lower dimension of measures . . . . .. .. .. ........

*Send comments to mhochman@math.huji.ac.il

O = e W

13
13
15
18
22

25
25
26
32
36



6.5 Hausdorfl measures and their densities . . . . . . . . . . . .. ... ... 55

7 Projections 59
7.1 Marstrand’s projection theorem . . . . . . . ... ... L. 60
7.2 Absolute continuity of projections . . . . . ... ... 63
7.3 Bernoulli convolutions . . . . .. .. .. L L L L 65
7.4 Besicovitch projection theorem and Kenyon’s theorem . . .. .. .. .. 71

1 Introduction

Fractal geometry and its sibling, geometric measure theory, are branches of analysis
which study the structure of “irregular” sets and measures in metric spaces, primarily
R?. The distinction between regular and irregular sets is not a precise one but informally,
regular sets might be understood as smooth sub-manifolds of R*, or perhaps Lipschitz
graphs, or countable unions of the above; whereas irregular sets include just about
everything else, from the middle—% Cantor set (still highly structured) to arbitrary
Cantor sets (irregular, but topologically the same) to truly arbitrary subsets of R

For concreteness, let us compare smooth sub-manifolds and Cantor subsets of R,
These two classes differ in many aspects besides the obvious topological one. Manifolds
possess many smooth symmetries; they carry a natural measure (the volume) which has
good analytic properties; and in most natural examples, we have a good understanding
of their intersections with hyperplanes or with each other, and of their images under
linear or smooth maps. On the other hand, Cantor sets typically have few or no smooth
symmetries; they may not carry a “natural” measure, and even if they do, its analytical
properties are likely to be bad; and even for very simple and concrete examples we do
not completely understand their intersections with hyperplanes, or their images under
linear maps.

The motivation to study the structure of irregular sets, besides the obvious theo-
retical one, is that many sets arising in analysis, number theory, dynamics and many
other mathematical fields are irregular to one degree or another, and the metric and
geometric properties of these objects often provides meaningful information about the
context in which they arose. At the simplest level, the theories of dimension provide a
means to compare the size of sets which coarser notions fail to distinguish. Thus the
set of well approximable numbers = € R (those with bounded partial quotients) and the
set of Liouvillian numbers both have Lebesgue measure 0, but set of well-approximable
numbers has Hausdorff dimension 1, hence it is relatively large, whereas the Liouvillian
numbers form a set of Hausdorff dimension 0, and so are “rare”. Going deeper, however,

it turns out than many problems in dynamics and number theory can be formulated in



terms of bounds on the dimension of the intersection of certain very simple Cantor sets
with lines, or linear images of products of Cantor sets. Another connection to dynamics
arises from the fact that there is often an intimate relation between the dimension of an
invariant set or measure and its entropy (topological or measure-theoretic). Geometric
properties may allow us to single out physically significant invariant measures among the
many invariant measures of a system. Finer information encoded in an invariant mea-
sure may actually encode the dynamics which generated it, leading to rigidity results.
The list goes on.

Our goal in this course is primarily to develop the foundations of geometric mea-
sure theory, and we cover in detail a variety of classical subjects. A secondary goal is
to demonstrate some applications and interactions with dynamics and metric number
theory, and we shall accomplish this mainly by our choices of methods, examples, and
open problems which we discuss.

We assume familiarity with the basic results on metric spaces, measure theory and

Lebesgue integration.

2 Preliminaries

N={1,2,3...}. We denote by B,(z) the closed ball of radius r around x:

By(z} ={y : d(z,y) <r}

The open ball is denoted By (x); as our considerations are rarely topological is will
appear less often. We denote the indicator function of a set A by 14.

We work in R¢ or sometimes a complete metric space, and all sets are assumed
to be Borel, and all functions are Borel measurable, unless otherwise stated. Also, all
measures are Radon unless otherwise stated: recall that p is Radon if it is a Borel

measure taking finite values on compact sets. Such measures are regular, i.e.

w(E) = inf{u(U) : Uisopenand E C U}
= sup{u(K) : K is compact and K C E'}

3 Dimension

The most basic quantity of interest in connection to the small scale geometry of a
set in a metric space is its dimension. There are many non-equivalent notions with
this name. We shall consider the two main ones, Minkowski (box) dimension and

Hausdorff dimension. We give the definitions in general for metric spaces, but most of



our applications and some of the results in these sections will already be special to R

3.1 A family of examples: Middle-a Cantor sets

Before discussing dimension, we introduce one of the simplest families of “fractal” sets,
which we will serve to demonstrate the definitions that follow.

Let 0 < a < 1. The middle-a Cantor set C, C [0,1] is defined by a recursive
procedure. For n = 0,1,2,... we construct a set C, o which is a union of 2" closed
intervals, indexed by sequences i = i; ..., € {0,1}" and each of length ((1—«)/2)". To
begin let Co 0 = [0, 1] and I = [0, 1] (indexed by the unique empty sequence). Assuming
that Cy , has been defined and is the disjoint union of the 2" closed intervals I;, .,
i1...1n € {0,1}", divide each of the intervals into the two subintervals, I;, i, 0, Li;..i,1
I;, .. i, which remain after removing from I; the open subinterval with the same center

as I;, 4, and « times shorter. Finally let

Ca,n+1 = U Iz

i€{0,1}n+1
Clearly Co0 2 Cq1 2 ..., and since the sets are compact,
[o.¢]
Coc = ﬂ Coc,n
n=0

is compact and nonempty.

All of the sets Cy, 0 < a < 1 are mutually homeomorphic, since all are topologically
Cantor sets (i.e. compact and totally disconnected without isolated points). They all
are of first Baire category. And they all have Lebesgue measure 0, since one may verify
that Leb(Cll) = (1 — a)™ — 0. Hence none of these theories can distinguish between
them.

Nevertheless qualitatively it is clear that C, becomes “larger” as o — 0, since
decreasing « results in removing shorter intervals at each step. In order to quantify this

one uses dimension.

3.2 Minkowski dimension

Let (X, d) be a metric space, for A C X let

|A| = diam A = sup d(z,y)
T,yeEA

A cover of A is a collection of sets £ such that A C UEeg E. A é-cover is a cover such

that |E| < ¢ for all £ € £. The simplest notion of dimension measures how many sets



of small diameter are needed to cover a set.

Definition 3.1. Let (X,d) be a metric space. For a bounded set A and 6 > 0 let

N(A,0) denote the minimal size of a d-cover of A, i.e.
k
N(A,0) =min{k : AC UAi and |A;] <4}
i=1

The Minkowski dimension of A is

. . log N(A,9)
Mdim(A4) = lim —————>~
di ( ) 6i>oo lOg(l/(S)

assuming the limit exists. If not we define the upper and lower dimensions

N . log N(A, )
M A = 1 —_—
) = e

Mdim(A) = liminf

Remark 3.2. .

1. Mdim A = « means that N(A,J) grows approximately as 6~% as § — 0; more
precisely, Mdim A = « if and only if for every € > 0,

67078 < N(4,68) <6+ for sufficiently small § > 0
2. Clearly
Mdim < Mdim
and Mdim exists if and only if the two are equal.

3. Minkowski dimension is not defined for unbounded sets and may be infinite for

bounded sets as well, though we will see that it is finite for bounded sets in R¢.

4. From the definitions it is immediate that N(A,d) < N(B,d) when A C B, conse-
quently,
Mdim A < Mdim B

and similarly for the upper and lower versions.

5. From the definition it is also clear that if 6 < ¢’ then N(A4,d) > N(A4,¢). In
particular if e \, 0 and e /ep11 < C < 00, then we can compute the limits int
he definition of Mdim and its variants along Jx. Indeed, for every § > 0 there is a



k = k(5) such that 441 < § < &g. This implies
N(Av 5k+1) < N(Aa 6) < N(Av Sk)

The assumption implies that log(1/6)/log(1/eys)) — 1 as 6 — 0, so the in-
equality above implies the claim after taking logarithms and dividing by log(1/9),

log(1/ex), log(1/ex+1)-
Example 3.3. .

1. A point has Minkowski dimension 0, since N ({zo},d) = 1 for all 5. More generally

N({zx1,...,zn},0) < n, so finite sets have Minkowski dimension 0.

2. A box B in R? can be covered by ¢ - 6~¢ boxes of side d, i.e. N(B,§) < cd~%
Hence dim B < d.

3. If A C R? has Mdim A < d then Leb(A) = 0. Indeed, choose £ = % (d — Mdim A).

5~ (Mdim A+e)

For all small enough ¢, there is a cover of A by sets of diameter < 4.

Since a set of diameter < § can itself be covered by a set of volume < ¢d¢, we find

Mdim A+¢e) _ o

that there is a cover of A of total volume < ¢d? . §( Since this

holds for arbitrarily small §, we conclude that Leb(A) = 0.

Equivalently, if A C R? and Leb(A) > 0 then Mdim A > d. In particular for a
box B we have, using (2), that Mdim B = d.

4. A line segment in R? has Minkowski dimension 1. A relatively open bounded
subset of a plane in R? has Minkowski dimension 2. More generally any compact

k-dimensional C''-sub-manifold of R% has box dimension k.

5. For C,, as before, Mdim C,, = log2/log(2/(1 — «)). Let us demonstrate this.

To get an upper bound, notice that for 6, = ((1 — «)/2)" the sets CJ! are covers
of Cy, by 2™ intervals of length §,,, hence N(Cl,dy,) < 2". If §,41 < § < 0, then
clearly

N(Cq,d) < N(Cq,bpy1) < 27+

On the other hand every set of diameter < ¢ can intersect at most two maximal
intervals in C?*! hence

N(Cy,8) > = - 2"

N | =

so for §p41 <6 < dp

(n—1)log2 < log N(Cy, ) < (n+1)log2
(n+1)log(2/(1—a)) = logl/d — nlog(2/(1 —a))




and so, taking 6 — 0, Mdim C,, = log2/log(2/(1 — a))
Proposition 3.4. Properties of Minkowski dimension:
1. Mdim A = Mdim A
2. Mdim A depends only on the induced metric on A.

8. If f: X =Y is Lipschitz then Mdim fA < Mdim A, and if f is bi-Lipschitz then
Mdim fA = Mdim A.

Proof. By inclusion Mdim A < Mdim A, so for the first claim we can assume that
Mdim A < co. Then N(A,e) = N(4,¢) for every ¢ > 0, because in general if A C
U~, A; then A C |J | A;, and if {A;} is a d-cover then so is {A4;}. This implies the
claim.

For the second claim, note that the diameter of a set depends only on the induced
metric, and if A C |J A; then A C (J(A;NA) and |4;NA| < |4;], s0 N(A4,€) is unchanged
if we consider only covers by subsets of A.

Finally if A C [JA; then f(A) C | f(A4;), and if ¢ is the Lipschitz constant of f
then |f(E)| < ¢|E|. Thus N(fA,ce) < N(A,e) and the claim follows. O

The example of the middle-a Cantor sets demonstrates that Mankowski dimension
is not a topological notion, since the sets Cy, all have different dimensions, but for
0 < a < 1 they are all topologically a Cantor set and therefore homeomorphic. On the
other hand the last part of the proposition shows that dimension is an invariant in the

bi-Lipschitz category. Thus,

Corollary 3.5. Forl < a < 8 <1, the sets Cy, Cg, are not bi-Lipschitz equivalent, and
in particular are not C-diffeomorphic, i.e. there is no bi-Lipschitz map f : Co — Cps.

Next, we specialize to Euclidean space. First we note that, although the same
topological space can have different dimensions depending on the metric, changing the
norm on R? does not have any effect, since the identity map is bi-Lipschitz, all norms on
R? being equivalent. Second, as we shall see next, in R? one can compute the Minkowski
dimension using covers by convenient families of cubes, rather than arbitrary sets. This

is why Minkowski dimension is often called box dimension.

Definition 3.6. Let b > 2 be an integer. The partition of R into b-adic intervals is

k k+1
Dy=Al-,——) : k€L
The corresponding partition of R? into b-adic cubes is

Dgl:{llx...xld:liel)b}



(We suppress the superscript d when it is clear from the context). The covering number
of A C R¢ by b-adic cubes is

N(X,Dy) =#{D €Dy : DNX # 0}

Lemma 3.7. For any integer b > 2,

1
Mdim X = lim log N (X, Dyn)
n—oo nlogb

and similarly for Mdim and Mdim.

Proof. Since D € Dy has |[D| = ¢-b™" (in fact for the norm ||| the constant is ¢ = 1,

for other norms it depends on d), we find that
N(A,c-b™") < N(A,Dyn)

On the other hand every set B with |B| < b™" can be covered by at most 2¢ cubes
D € Dy». Hence
N(A, Dy) < 2¢N(A,b7")

Substituting this into the limit defining Mdim, and interpolating for b=""! < § < b™"
as in Example 3.3 (5), the lemma follows. O

Example 3.8. Let £ C N. The upper and lower densities of E are

- 1
d(E) = limsup ﬁ|Eﬁ {1,...,n}|

n—oo

d(E) = liminf S|EN{L,... 0}
n

n—0o0

Let -
Xg = {Z 27"z, : xy,=0ifn ¢ E and x, € {0, 1} otherwise}
n=1

We claim that Mdim Xg = d(F) and Mdim X = d(F). Indeed, for each initial
sequence 1 ... T, the set of numbers of the form > | 27", consist of a single level-k
dyadic interval plus one point. Thus the number of level-k dyadic intervals needed to
cover Xp is, to within a factor of 2, equal to the number of sequences x; ...z whose
digits satisfy the condition in the definition of Xg. The number of such sequences is

precisely 21801k} In summary, we have found that

olEN{L,..n}| < N(Xg,Dp) <2- ol EN{1,...,n}|



Taking logarithms and dividing by n, we see that the asymptotics of %log N(Xg,Dy)
are the same as of 2|EN{1,...,n}|, as claimed.

In particular, since one easily has sets EC N with d(E) < d(E) we see that the lower
and upper Minkowski dimension need not coincide. There are even sets with d(E) =0
and d(FE) = 1, so we can have Mdim X = 0 and Mdim X = 1.

One may vary the definition of dimension in various ways. One of these is the

following, which we leave as an exercise:

Lemma 3.9. One obtains the same notion of dimension if, in the definition of N(A,J),

one considers balls of radius § centered at points in A (rather than sets of diameter d).

3.3 Hausdorff dimension

Minkowski dimension has some serious shortcomings. One would want the dimension
of a “small” set to be 0, and in particular that a countable set should satisfy this.

Minkowski dimension does not have this property. For example,

Mdim(Q N [0,1]) = Mdim QN [0, 1] = Mdim[0,1] = 1
One can also find examples which are closed, for instance
1
A:{O}U{ﬁ : n €N}

Indeed, in order to cover A with balls of radius e, we will need precisely one ball for
each point 1/k such that |1/k —1/(k +1)| > 2. This is equivalent to 1/k(k + 1) > 2e,
or: k < 1/4/2e. On the other hand all other points of A lie in the interval [0,+/2¢],
which can be covered by O(1/y/2¢) e-balls. Thus N(A,¢) ~ 1/v/2¢, so Mdim A = 1/2.

These examples, being countable, also demonstrate that Minkowski dimension be-
haves badly under countable unions: letting A; be the initial segment of length ¢ of some
enumeration of the sets above, we see that A} C Ay C ... but Mdim A4; 4 Mdim | A4;.

A better notion of dimension is provided by the definition below. The main disad-
vantage is that it is more complicated to describe and to compute.

To motivate the definition, recall that a set A C R? is small in the sense of a
nullset with respect to Lebesgue measure if for every € > 0 there is a cover of A by
balls By, Ba, ... such that > vol(B;) < e. The volume of a ball B is c- |B|%, so this is

equivalent to

A is Lebesgue-null <= inf{z |E|? : € is cover of A by balls} =0 (1)
Eeé&

9



Since every set of diameter t is contained in a ball of diameter 2¢, one may consider
general covers on the right hand side.

Now we pretend that there is a notion of a-dimensional volume. The “volume” of
a ball B would be or order |B|%, and we can define when a set is small with respect to

this “volume”:

Definition 3.10. Let (X, d) be a metric space and A C X. The a-dimensional Haus-

dorff content HS, is

Ho (A) = inf{z |E|* : £ is a cover of A}
Ece

We say that A is a-null if HE (A) = 0.

Note that HE (A) < |A|* so HEL(A) < oo when A is bounded. For unbounded sets
‘HS may be finite or infinite.

One can do more than define a-null sets: a modification of HS, leads to an “a-
dimensional” measure on Borel sets in much the same way that the infimum in (1)
defines Lebesgue measure (H2 itself is not a measure when 0 < a < d, since for
example on the line we have HZ ([0,1)) + HS ([1,2)) # HL([0,2)) for av < 1). These
measures, called Hausdorff measures, will be discussed in section 6.5, at which point
the reason for the “oo” in the notation will be explained. At this point the notion of

a-null sets is sufficient for our needs.
Lemma 3.11. If HS (A) = 0 then HE(A) =0 for B> a.

Proof. Let 0 < € < 1. Then there is a cover {4;} of A with ) |4;|* < e. Since € < 1,

we know |A;| <1 for all i. Hence

DA = YA AP < Y Al <

so, since € was arbitrary, ’HgO(A) =0. O

Consequently, for any A # () there is a unique ag such that H (A) = 0 for a > g
and HS (A) > 0 for 0 < a < ag (the value at a = ag can be 0, positive or co).

Definition 3.12. The Hausdorff dimension dim A of A is

dimA = inf{a : HI(A) =0}
= sup{a : H(A) > 0}

Proposition 3.13. Properties:

10



. ACB — dimA <dimB.

A=UA; = dim A = sup,dim 4;.
dim A < Mdim A.
dim A depends only on the induced metric on A.

If f is a Lipschitz map X — X then dim fX < dim X, and bi-Lipschitz maps

preserve dimension.

Proof. .

1.

Clearly if B is a-null and A C B then A is a-null, the claim follows.

Since A; C A, dim A > sup,; dim A; by (1).

To show dim A < sup,dim A4;, it suffices to prove for a > sup,; dim A4; that A
is a-null. This follows from the fact that each A; is a-null in the same way
that Lebesgue-nullity is stable under countable unions: for € > 0 choose a cover
A; C Ai,j with Zj ‘Ai7j|a < 5/2". Then A C Ui,j Ai,j and Zi,j ’Ai7j|a < €. Since
e was arbitrary, HS (A) = 0.

Let 8 > a > MdimA and fix any small 6 > 0. Then there is a cover A C Ufil A;
with diam 4; < 6§ and N < 6. Hence Y.V (diam 4;)7 < SN 68 < §-26F =
§8-a. Since § was arbitrary, HEO(A) = 0. Since f > Mdim A was arbitrary (we
can always find suitable «), dim A < Mdim A.

This is clear since if A C (JA; then A C (J(A; N A) and |4; N A| < |A;|. Hence
the infimum in the definition of HS, is unchanged if we consider only covers by
subsets of A.

If ¢ is the Lipschitz constant of f then |f(F)| < ¢|E|. Thus if A C |JA; then
fA) C UF(A:) and 3 |F (A" < e* 30| Ail". Thus HE(f(A)) < HE(A) and

the claim follows.

O]

It is often convenient to restrict the sets in the definition of Hausdorfl content to

other families of sets, such as balls or b-adic cubes. The following easy result allows us
to do this. Let £ be a family of sets and for A C X define

HE(A,E) =inf{)_|E|* : {Ei}32, C € is a cover of A}

11



Lemma 3.14. Let £ be a family of subsets of X and suppose that there is a constant
C such that every bounded set A C X can be covered by < C' elements of £, each of
diameter < C|A|. Then for every set A C X and every a > 0,

Mo (A) < HE(A, ) < CTFOHG(A) (2)
In particular HE, (A) = 0 if and only if HS (A, E) =0, hence

dimA = inf{a: HL(AE) =0}
= sup{a : H(A,E) >0}

Proof. The left inequality in (2) is immediate from the definition, since the infimum in
the definition of HS (A, E) is over fewer covers than in the definition of H% (A4). On
the other hand if F is a cover of A then we can cover each F' € F by < C sets F € £
with |E| < C|F|. Taking the collection ' C & of these sets we have > . [F|* <
clras rer [F|%, giving the other inequality. The other conclusions are immediate. [J

In particular, the family of open balls, the family of closed balls, and the family of

b-adic cubes all satisfy the hypothesis, and we shall freely use them in our arguments.
Example 3.15. .

1. A point has dimension 0, so (3) implies that countable sets have dimension 0.

This shows that the inequality dim < Mdim can be strict.

2. Any A C R? has dim A < d. It suffices to prove this for bounded A since we
can write A = (Jpcp, AN D, and apply part (2) of the proposition. For bounded
A, let A C [—r,r]¢ for some r. From (1) and (4) of the proposition, we have
dim A < dim[—r,7]? < Mdim[—r, 7]¢ = d.

3. [0,1]? has dimension 1, and more generally any set in R? of positive measure
Lebesgue, has dimension d. This follows since H4(A) = 0 if and only if Leb(A) = 0.

4. Combining the last two examples, any set in R? of positive Lebesgue measure has

dimension d.

5. A set A C R? can have dimension d even when its Lebesgue measure is 0. In-
deed, we shall later show that C, has the same Hausdorff and Minkowski di-
mensions. Let A = |J,cyCi/p- Then dimC < 1 because A C [0,1], but
dim A > sup,, dim Cy,, = 1. Hence dim A = 1. On the other hand Leb(C},) =0
for all n, so Leb(A) = 0.

12



6. By considering the intrinsic volume form on a k-dimensional C' sub-manifold
M of R?, and using local coordinates to get an upper bound on the Minkowski

dimension, one can show that dim M = k.

7. A real number x is Liouvillian if for every n there are arbitrarily large integers

p, q such that

These numbers are extremely well approximable by rationals and have various in-

teresting properties, for example, irrational Liouville numbers are transcendental.

Let L C R denote the set of Liouville numbers. We claim that dim L = 0. It is
not hard to see that it suffices to prove this for L N[0, 1]. Now given n and any
qo, the collection of balls

p 1 p
L, =1 - g T ] q¢>q...,0<p<gq

qa (g

covers L N[0, 1], and so for a > 2/n,

oo o0 oo
S Y =Y a2 )
g=q0 0<p<q q=qo0 q=q0

and the right hand side is arbitrarily small when ¢qq is large, because the series
converges. Hence H% (L N[0, 1]) < oo for a > 2/n, so dim(L N10,1]) > 2/n. Since
n was arbitrary, dim(L N [0, 1]) = 0.

As a simple corollary, we find that the set of transcendental numbers is strictly

larger than L (in fact, very much larger).

4 Using measures to compute dimension

The Mankowski dimension of a set is often straightforward to compute, and gives an
upper bound on the Hausdorff dimension. Lower bounds on the Hausdorff dimension
are trickier to come by. The main method to do so is to introduce an appropriate
measure on the set. In this section we discuss some relations between the dimension of

sets and the measures support on them.

4.1 The mass distribution principle

Definition 4.1. A measure p is a-regular if u(B,(x)) < C - r® for every z,r.

13



For example, Lebesgue measure on R? measure is d-regular. The length measure on

a line in R? is 1-regular.
Proposition 4.2. Let u be an a-reqular measure and p(A) > 0. Then dim A > a.

Proof. We shall show that HE (A) > C'- u(A) > 0, from which the result follows. Note
that u(E) < 2%C - |E|*, since a non-empty set F is contained in a ball of radius 2|E]|.
Therefore if A C [J;2, A; then

SO < (200) S A = (2°C) " u(4) > 0 0
We can now complete the calculation of the dimension of C,. Write

B log 2
- log(2/(1-a))

We already saw that Mdim C, < S so, since dim C, < Mdim C,, we have an upper
bound of 8 on dim C,,.

Let pt = piq on C, denote the measure which gives equal mass to each of the 2¢
intervals in the set C? introduced in the construction of Cy. Let 6, = ((1 — «)/2)" be

the length of these intervals. Then for every x € C,, one sees that Bs, (z) contains one

s

of these intervals and at most a part of one other interval, so
#(Bs, (2)) <2277 = C -

Using the fact that Bs

have

i1 (2) € Br(z) € Bs, (r) whenever 6,11 <1 < 6, for x € C, we

< C'rP

p(B(x)) < (B, () < C -0 < C- ()P 65,

Hence by the mass distribution principle, dim C, > . Since this is the same as the
upper bound, we conclude dim C,, = .

Specializing to R, the analogous results are true if we define regularity in terms of
the mass of b-adic cubes rather than balls. The proofs are also the same, using Lemma

3.14, and we omit them.
Definition 4.3. p is a-regular in base b if u(D) < C' - b~" for every D € Dyn.
Proposition 4.4. If u is a-regular in base b then dim u > «.

Example 4.5. Let £ C N and let Xg

oo
XEg = {Z 27"z, 2y =01if n ¢ E, and z,, € {0,1} otherwise}

n=1
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In Example 3.8 we saw that Mdim F = d(E) = liminf 1|E N {1,...,n}. We now
will show that this is also the Hausdorff dimension. We may assume FE in infinite,
since if not then X is finite and the claim is trivial. Let &, be independent random
variables where &, =0 if n ¢ E and X,, € {0,1} with equal probabilities if n € E. The
random real number £ = 0.£1&> ... belongs to X so, since Xg is closed, the distribution
measure pu of ¢ is supported on Xg. Hence u gives positive mass only to those D € Dy,
whose interiors intersect X g, and that all such intervals are given equal mass, namely
w(D) = 27 1EM{LnH If o < d(E) then by definition na < |[EN{1,...,n}| for all large

enough n, and hence there is a constant Cy, such that
w(D) < Cy-27%%=C, - |D|*  forall D € Dy

so u is a-regular in the dyadic sense. Since u(Xg) = 1, by the mass distribution
principle, dim Xg > «a. Since this is true for all o < d(FE), we have dim Xp > d(E).
Since dim X < Mdim X = d(F), we have equality throughout.

4.2 Billingsley’s lemma

In R? there is a very useful generalization of the mass distribution principle due to
Billingsley, which also gives a lower bound on the dimension. We formulate it using
b-adic cubes, although the formulation using balls holds as well.

We write Dy, (z) for the unique element D € D, (x) containing z, so that Dy (z),
n=1,2,...,is a sequence of dyadic cubes decreasing to x. We also need the following
lemma, which is one of the reasons that working with b-adic cubes rather than balls is

so useful:

Lemma 4.6. Let £ C U;;O:o Dyn be a collection of b-adic cubes. Then there is a sub-

collection F C € whose elements are pairwise disjoint and |JF = |JE.

Proof. Let F consist of the maximal elements of £, that is, all E € £ such that if £/ € £
then F ¢ E’. Since every two b-adic cubes are either disjoint or one is contained in
the other, F is a pairwise disjoint collection, and for the same reason, every = € |J €& is

contained in a maximal cube from &, hence JF = J€. O

Proposition 4.7 (Billingsley’s lemma). If u is a finite measure on R%, A C RY with
u(A) > 0, and suppose that for some integer base b > 2,

1 Dyn
a1 < liminf —Og,u( b ()

minf = et < ap for everyxz € A (3)

Then a1 < dim A < as.
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Proof. We first prove dim A > «3. Let € > 0. For any = € A there is an ng = ng(x)

depending on z such that for n > ny,
p(Dyn () < (b77)* 77

Thus we can find an ng and a set A. C A with u(A:) > 0 such that the above holds for
every x € A; and every n > ng. It follows that u|4. is (a1 — ¢)-regular with respect to
b-adic partitions, and hence dim A; > a7 —e. Since dim A > dim A, and € was arbitrary,
dim A > a;.

Next we prove dim A < ai. Let € > 0 and fix ng. Then for every « € A we can find
an n = n(x) > ng and a cube D, € Dyn(z) such that p(D,) > (b~")*2T¢. Apply the
lemma to choose a maximal disjoint sub-collection {Dy, }ier € {Dy}zea, which is also
a cover of A. Using the fact that |D,,| = C - b="®) we have

HETE(A) < 30D, [

el
_ Z(b_n(xi))a2+2€
el
< b_nOZ/L(D:vi)
iel
< b p(RY)

Since p is finite and ny was arbitrary, we find that H3212¢(A) = 0. Hence dim A <

a9 + 2¢ and since ¢ was arbitrary, dim A < «s. O

Remark 4.8. The condition that the left inequality in (3) hold for every x € A can be
relaxed: if it holds on a set A’ C A of positive measure, then the proposition implies
that dim A’ > «a, so the same is true of A. In order to conclude dim A < s, however,
it is essential that (3) hold at every point. Indeed every non-empty set supports point
masses, for which the inequality holds with as = 0, and this of course implies nothing
about the set.

As an application we shall compute the dimension of sets of real numbers with
prescribed frequencies of digits. For concreteness we work in base 10. Given a digit
0 <wu<9and a point z € [0,1], let x = 0.x12223 ... be the decimal expansion of z and
write

fulz) = Tim S#{1<i<n:a = u}

n—o0 N
for the asymptotic frequency with which the digit v appears in the expansion, assuming
that the limit exists.

A number z is called simply normal if f,(x) = 1/10 for all v = 0,...,9. Such
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numbers may be viewed as having the statistically most random decimal expansion
(“simple” because we are only considering statistics of single digits rather than blocks
of digits. We will discuss the stronger version later.). It is a classical theorem of Borel
that for Lebesgue-a.e. = € [0,1] is simply normal; this is a consequence of the law
of large numbers, since when the digit functions z; : [0,1] — {0,...,9} are viewed as
random variables, they are independent and uniform on {0, ...,9}.

However, there are of course many numbers with other frequencies of digits, and it
is natural to ask how common this is, i.e. how large these sets are. Given a probability

vector p = (po,...,p9) let
N(p)={z€10,1] : fu(z) =py for u=0,...,9}

Also, the Shannon entropy of p is

9
- Z pi log p;
i=0

where 0log0 = 0 and the logarithm by convention is in base 2.
Proposition 4.9. dim N(p) = H(p)/log 10.

Proof. Let 1 denote the product measure on {0, ... ,9}N with marginal p, and let u
denote the push-forward of i by (u1,ug,...) = Yoo 4;107%. In other words, u is the
distribution of a random number whose decimal digits are chosen i.i.d. with marginal
.

For z = 0.z125. .. it is clear that u(Dign(x)) = PzyPay - - - P SO if & € N(p) then

log f(Dron (z))
—nlog 10 loglo nz 08 Pa;

9

1 1
e — — 1< < N i 'l u
IOgloqu(”#{ <i<n:x=u} 0gp>

1
- E 1

= log o Zpu log pu)

1

= H
log 10 (p)

The claim now follows from Billingsley’s lemma. O

Corollary 4.10. The dimension of the non-simply-normal numbers is 1.
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Proof. Let p. = (1/10 —¢,...,1/10 — €,1/10 + 10¢). Then H(p.) — log10, and so
dim N(p:) — 1. Since N(p.) is contained in the set of non-simply-normal numbers, the

conclusion follows. OJ

As an exercise, the reader may show that the set of numbers for which the digit

frequencies does not exist is also 1.

4.3 Frostman’s lemma

In the examples above we were fortunate enough to find measures which gave optimal
lower bounds on the dimension of the sets we were investigating, allowing us to compute

their dimension. It turns out that this in not entirely a matter of luck.

Theorem 4.11 (Frostman’s “lemma”). If X C R? is closed and H (X) > 0, then

there is an a-reqular probability measure supported on X.

Corollary 4.12. Ifdim X = « then for every 0 < 8 < « there is a B-reqular probability

measure (1 on X.

The corollary is not true for 8 = «. Indeed, if X = JX,, and dimX,, = a — 1/n
then dim X = «, but any a-regular measure p must satisfy p(X,) = 0 for all n (since
if 1(X,) > 0 then dim X,, > « by the mass distribution principle), and hence pu(X) <
S j(X,) = 0.

In order to prove the theorem we may assume without loss of generality that X C
[0, 1]¢. Indeed we can write can intersect X with each of the level-0 dyadic cubes, writing
X =Upep, XN D, and we saw the he proof of Proposition 3.13 that if 2 (X N D) =
0 for each D in the union then HZ (X) = 0. Thus there is a D € Dy for which
HS (X N D) > 0, and by translating X we may assume that D = [0, 1]%.

For the proof, it is convenient to transfer the problem to a symbolic representation
of [0, 1]d. This machinery will be used frequently later on, and we now pause to develop
it. Let A = {0,1}¢ and let 7 : AN — [0, 1]? denote the map

m(w) = i 27wy,
n=1

For d = 1 this just the map 7y that associates to each sequence of binary digits the
number with this binary representation; for d > 1 note that ({0, 1}4)N = ({0, 1}N)d and
7 is just the map that applies 7y to each component {0, 1} in ({0, 1})4. The map 7 is
onto (e.g. since 7 is): for x = (z1,...,24) € [0,1]? we may develop each coordinate x;
in binary representation as x; = 0.2;1 2223 . . . and set wy, = (Z1n, ..., T4n). But 7 is not

1-1: if z has coordinates which are dyadic rationals there will be multiple pre-images.
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The space AN can be given the metric
d(w,n) =27" for n = min{k > 0 : wg+1 # Mk+1}

This metric is compatible with the product topology, which is compact, and with respect
to it 7 is Lipschitz (we leave this as an exercise), and in particular continuous. Thus
every closed subset X C [0, 1]¢ lifts to a closed the subset 77 1(X) of AN, and conversely,
every closed (and hence compact) subset of Y C AN projects via 7 to the X = 7(Y)
closed subset of [0, 1] (again, this association is not 1-1 but this will not be a problem).

For wi,...,wy, € A, the cylinder set [w ...w,] C AN is

[wl...wn}:{neAN SN M =W Wi}

We allow the empty sequence of symbols, denoted ¢, thus [¢] = AN. The metric d has
been defined so that [w; ...wy] = By—n(n) for every n € [wy ...wy], and the diameter of

this ball is 27", so cylinder sets are closed. For each n the family of sets
Cn=A{la] : a € A"}

forms a finite partition of AN, so the complement of [a] is the union of finitely many
closed sets; so cylinder sets are also open.

One may verify that the image 7|w; . ..wy,] is the closure of the dyadic cube D € D,
containing Y 1" 2 iw; = 0.wy . .. wy, which is a set of diameter v/d - 27", and the pre-
image 7~ 1(D) of any level-n dyadic cell D € D, intersects at most 2¢ level-n cylinder

sets. From the definitions we easily have the following:
Lemma 4.13. Let 7 : AN — [0,1]¢ be as above.

1. If Y C AN is closed and X = 7Y (in particular, if Y = 771(X)), then Mdim X =
MdimY, dimX = dimY and ¢; < HE(X)/HE (7~ H(X)) < c2 for constants
0 < c1,c0 < o0 depending only on d.

2. If w is a probability measure on AN and v = wpu, then p is a-reqular if and only if

v is a-reqular (in 2-adic sense).

Thus, Theorem 4.11 is equivalent to the analogous statement in AN. It is the latter

statement that we will prove:

Theorem 4.14. LetY C AN be a closed set with HE (Y') > 0. Then for every 0 < 8 < a

there is a B-reqular probability measure supported on'Y .

We will construct the measure in the theorem by constructing appropriate finite

approximations of it and taking a limit. We begin by describing the technical details of
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this process. Let A* = |J;2 ;| A™ denote the set of finite sequences over A, including the
empty sequence ¢, and AS" = J,,,, AF the set of sequences of length < n. Let |af
denote the length of a. o

Let A, denote the algebra generated by the cylinders [a] for a € AS". Since for
k < n every C € C}, is the union of the cylinders C’ € C, intersecting C it follows easily
that A, is the family of finite unions of elements of C,. In particular all elements of A,
are open and compact.

Each A, is a finite algebra and hence a o-algebra. Since A, C A,.1, the family

A=,2, A, is a countable algebra that is not a o-algebra. However,

Lemma 4.15. Fvery finitely additive measure p on A extends to a o-additive measure
on the Borel sets of AN,

Proof. Since A consists of open sets and contains all cylinder sets (i.e. all balls) it
generates the Borel o-algebra. Thus the statement will follow if we show that (AN, A, 1)
satisfies the conditions of the Caratheodory extension theorem, namely® that if ...C,, D
Chn+1 ... is a decreasing sequence in A and (2, Cp, = 0 then pu(C,) — 0. But this
holds trivially, since each C,, is compact so (2, C,, = 0 implies that C,, = ), and
hence u(Cy,) = 0, for all large enough n. O

The previous lemma is the reason that working in AN is more convenient than
working in [0, 1]%. In the latter space the union |JDan is also a countable algebra, but

the extension theorem doesn’t automatically hold.

Lemma 4.16. Forn € N let ju,, be a measure on (AN, A,) taking values in [0,1]. Then
there is a subsequence ny, — oo and a countably additive measure p on (AN, Borel) such
that pin, ([a]) — wn([a]) for every a € A*.

Proof. Since A is countable, by a diagonal argument we can find a subsequence n; and
a function p : A — [0, 1] such that py, ([a]) — p([a]) for a € A*. For any two disjoint
sets A/, A” € A we have A', A" € A, for all large enough k, hence p,, (A" U A”) =
pin, (@) + pin, (A”) for all large enough k. Taking the limit as k — oo the same holds
for p, so p is finitely additive, and by the previous lemma it extends to a countably

additive Borel measure. O

We now turn to the proof of Theorem 4.14 itself. Let Y C AN be closed with
Hgo(Y) > 0. For each n, we say that a measure p on A, is admissible if for every k <n

'Often the Caratheodory condition is stated as follows: if A, € A are disjoint and A = |JA, € A
then p(An) — p(A). To pass between this and the condition in the proof, consider Cp, = A\ U], Ai;
in the other direction, given C,, set Co = AN and let A, = Cp_1 \ Ch.

20



and a € A,
27Bk if [a)NY #0

0 otherwise

p(la]) < { (4)

This condition ensures in particular that u takes values in [0, 1].

The admissible measures on A,, form a subset of [0,1]*" defined by the weak in-
equalities above and the linear conditions (A" U A”) = u(A") + p(A”) for all disjoint
pairs A’, A” € A,,. This shows that the set of admissible measures is closed. Also, the
map p — pu(AY) is a projection from [0, 1] to one coordinate, so it is continuous. Thus
we can choose a measure p, on A, for which un(AN) is maximal among all admissible
measures on A, (no uniqueness is claimed).

Let u be a (countably additive) measure on (AN, Borel) which arises as a sub-

sequential limit p = lim p,,, as in the previous lemma. It is immediate that

p(lar .. ax)) = lim g, (a1 ...

k—o0 0 otherwise

ak])g{ 270k if [a] Y £ 0

Hence p is B-regular. Furthermore, since Y is closed, for every w € AN\ Y there is a
small ball around w disjoint from Y. Equivalently there is a cylinder set containing w

that is disjoint from Y. Hence

AN\Y = | [d

[a]NY =0

Since the union is countable, we conclude that (AN \Y) = 0.
To complete the proof we must show that p(Y) > 0, which by the above is the same
as u # 0. To this end we shall prove

Lemma 4.17. p,(AY) > Hgo(Y) for eachn=1,2,....
Once proved it will follow that (AN) = lim p,,, (AN) > HE, (V) > 0, so pu # 0.

Proof. Fix n. First we claim that for every w € AN there is some 0 < k < n such
that equality holds in (4) for a = wy...wy. For suppose not; then there is a point
w = wiwy ... such that u(wy...ws]) < 27P% for all 0 < k < n. Define

1
c= §min{2_5k—un([w1...wk]) :0< k:gn}

so that ¢ > 0, and let p/ = py, + ¢+ d,. Then p’ is admissible on A, since (4) holds
for a = wy...wg by choice of ¢, and for @ = a;...ar # wi...w, it holds because
w(lar...a)) = pwn(lar ... ax]). But now u'(A™) = p,(AN) + ¢, contradicting maximality
of fiy,.
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Thus for every w = wiwsy ... € Y we have at least one cylinder set C,, = [wy ... wg]
with 0 < k < n and such that u,([w; ...ws]) = 27°%. Let € = {E,},cy be the cover of
Y thus obtained. Lemma 4.6 provides us with a disjoint subcover F of Y. For F € F
we have u(F) = 277" = |F|%, hence

HEY) < DO IFI = w(F) = u(Y) = p(A")

FeF FeF

as claimed. O

It may be of interest to note that the argument in the proof above is a variant of
the max flow/min cut theorem from graph theory. To see this, identify the cylinder set
sla], a € A=, with the nodes of a weighted tree of height n + 1, such that there is an
edge of weight 27A% from a; ...ay to a; .. . 00k+1. What we showed in the last lemma
is that the maximal flow from the root [w] = AN to the set of leaves [a], a € A", is
equal to the weight minimal cut, and that the weight of any cutset is bounded below
by Ho(Y). See 77.

We have proved Frostman’s lemma for closed sets in R¢ but the result is known
far more generally for Borel sets in complete metric spaces. See Mattila ?? for further

discussion.

4.4 Product sets

We restrict the discussion to R, although the results hold in general metric spaces.

Proposition 4.18. If X C R% and Y C R* are bounded sets then

MdimX xY < MdimX +MdimY
Mdim X xY > Mdim X +MdimY

if at least one of Mdim X, MdimY exist these are equalities.

Proof. A b-adic cell in R? x R? is the product of two b-adic cells from R% R?, and it is
simple to verify that

N(X xY,Dy) = N(X,Dy) - N(Y, D)

taking logarithms and inserting this into the definition of Mdim, the claim follows from

properties of limsup and liminf. O

The behavior of Hausdorff dimension with respect to products is, however, more

complicated. In general we have:
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Proposition 4.19. dim X +dimY < dim(X xY) < dim X + MdimY'.

Proof. Write « =dim X and f =dimY.

We first prove dim(X xY) > a+f. Let € > 0 and apply Frostman’s lemma to obtain
measure an (« —e¢)-regular probability measure p. supported on X and a (8 —¢)-regular
probability measure v, supported on Y. Then 6. = u. X v. is a probability measure
supported on X x Y. We claim that it is (a+ 3 — 2¢)-regular. Indeed, assuming without
loss of generality that we are using the *° norm on all spaces involved, for (z,y) € X XY
we have B, (z,y) = By(x) X By(y) so

0=(By(x,y)) < pe(Br(2)) - pe(Br(y)) < C1ro7% - CorP= = 4972

Hence by the mass distribution principle, dim X x Y > a + 8 — 2¢, and since € was
arbitrary, dim X xY > a+ .

For the other inequality let ¢ > 0. Since H%(X) = 0 we can find a cover X C
U2, A; with 3] A;]%¢ < ¢, and in particular |A;| < !/ for each i. For each i, there is
acover A;1,..., A N(v,|a;)) of Y by N(Y,[A;]) sets of diameter |A4;|. Assuming ¢ is small
enough, using |4;] < '/ and the definition of § we have that [N (Y, |4;|)| < |A4;|~(+)
for each 7. Thus {A4; x A, ;} is a cover of X x Y satisfying

oo N(Y,|A;) 00 00
DD A x AR = AT ATEIN(Y A < DA < e
=1 j=1 i=1 =1
This shows that HS T2 (X x Y) =0, so dim X X Y < a + $3, as desired. O

Corollary 4.20. Ifdim X = Mdim X or dimY = MdimY then
dimX XY =MdimX xY =dim X +dimY

Proof. We have

MdimX xY > dimX xY
> dimX +dimY
= Mdim X + MdimY
= MdimX xY
so we have equalities throughout. O

To show that this discussion hasn’t been for nothing, let us construct an example of
a set X C [0,1] with dim(X x X) > 2dim X. Recall that for £ C N the set Xg is the

23



set of z € [0, 1] whose n-th binary digit is 0 if n ¢ E, and otherwise may be 0 or 1. We
saw in Example 4.5 that dim Xg = d(E) where d(E) = liminf 1|EN{1,...,n}|. Now
let £, F C N be the sets

E = Nn G[(2n)!,(2n+1)!)
n=1

o0
F = Nn [Jl@n+1)@2n)
n=1
These sets are complementary, and it is clear that d(F) = d(F) = 0, so dim Xg =

On the other hand observe that for any every = € [0,1] there are 1 € Xg and
xo € Xp such that x1 + x2 = =z, since for x; we can take the number whose binary
expansion is the same as that of z at coordinates in F but 0 elsewhere, and similarly for
xo using F. Writing 7(x, y) = z+y, we have shown that 7(X xY’) D [0, 1] (in fact there
is equality). But 7 is a 1-Lipschitz map R x R - R, so dim X x Y > dim7(X xY) >
dim[0,1] = 1.

Remark 4.21. There is a slight generalization of Proposition 4.19 using the notion of

packing dimension, which is defined by

pdim X = inf{sup Mdim X; : {X;};2, is a partition of X'}
%

This notion is designed to fix the deficiency of box dimension with regard to countable
unions, since it is easy to verify that pdim|J A,, = sup,, pdim A,,. We will not discuss it
much but note that pdim is a natural notion of dimension in certain contexts, and can
also be defined intrinsically in a manner similar to the definition of Hausdorff dimension,
which is the one that is usually given. In particular, note that if Y = J;2 | Y, then by

the previous theorem,

[e.e]
dim X x Y = dim U (X xY,) <sup(dim X + Mdim Y;,) = dim X + sup Mdim Y,
n n

n=1

Now optimize over partitions Y = (JY,, and using the definition of pdim, we find that
dim X x Y <dim X 4 pdimY
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5 Iterated function systems

The middle-a Cantor sets and some other example we have discussed have the common
feature that they are composed of scaled copies of themselves. In this section we will

consider such examples in greater generality.

5.1 The Hausdorff metric

Let (X, d) be a metric space. For € > 0 write
A® ={z e X : d(x,a) < ¢ for some a € A}

If A,B C X, we say that A is e-dense in B if for every b € B there is an a € A with
d(a,b) < e. This is equivalent to B C A Let 2% denote the space of compact,
non-empty subsets of X and define the Hausdorff distance dy on 2% by

dg(A,B) =inf{e >0 : AC B® and B C A®)}

That is, dg(A,B) < ¢ if A is e-dense in B and B is e-dense in A. Heuristically this
means that A, B look the same “at resolution €”. This distance should not be confused

with the distance of a point from a set, defined as usual by
d(z,A) = inf{d(z,a) : a € A}

In general, d(z, A) # d({z}, A), for example if x € A and |A| > 2 then d(z, A) = 0 but
d({z}, A) > 0.

If (X,d) is complete, then a closed set A is compact if and only if it is totally
bounded, i.e. for every € > 0 there is a cover of A by finitely many sets of diameter €.

The proof is left as an exercise.

Proposition 5.1. Let (X,d) be a metric space and di as above.
1. dy is a metric on 2X.
2. If A, € 2% and Ay D A3 D ... then A, — (00, An
3. If (X,d) is complete then dy is complete.

4. An — A if and only if A is the set of limits a = lima,, of convergent sequences
an € Ap.

5. If (X, d) is compact, (2%,d) is compact.
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Proof. Clearly d(A,B) > 0. If z € A\ B then, since B is closed, d(z, B) = § > 0, and
hence A ¢ B9 so d(A, B) > 0; this establishes positivity. Symmetry it trivial from
the definition. Finally note that (A)(®) C A9 50 A € B®) and B € C) implies
A C C=+9) | This leads to the triangle inequality.

Suppose A, are decreasing compact sets and let A = (| A,. Obviously A C A,
so for every £ > 0 we must show that 4, C A® for all large enough n. Otherwise,
for some ¢ > 0, infinitely many of the sets A’ = A, \ A®) would be non-empty. This
is a decreasing sequence of compact sets so, if they are not eventually empty, then
A" =02, Al # 0. But then A’ C X\ A® and also A’ = 02, 4, C N2, 4, = 4,
which is a contradiction.

Suppose now that (X, d) is complete and A,, € 2% is a Cauchy sequence. Let

An,oo = U Ak

k>n

We claim that A, are compact. Since A, o is closed and X is complete, we need
only show that it is totally bounded, i.e. that for every € > 0 there is a cover of A,
by finitely many e-balls. To see this note that, since {A;} is Cauchy, there is a k such
that A; C A,(:/ Y for every j > k. We may assume k > n. Now by compactness we
can cover Uf:n A; by finitely many e/2-balls. Taking the cover by balls with the same
centers but radius e, we have covered A,(:/ 2 as well, and therefore all the A;, 7 > k.
Thus A, « is totally bounded, and so compact.

The sequence A, o is decreasing so A, o — A = ()72 An.o- Since A, is Cauchy,
it is not hard to see from the definition of A,  that d(A,, Ay o) — 0. Hence A,, — A.

If A’ denotes the set of accumulation points of sequences a, € A,, then A, =
A"U g, Ak so A" C A. The reverse inequality is also clear, so A = A’

FinaIly, supposing that X is compact. Let € > 0 and let X, C X be a finite e-dense
set of points. One may then verify without difficulty that 2%¢ is e-dense in 2%, so 2%
is totally bounded. Being complete, this shows that it is compact. ]

5.2 TIterated function systems

Let (X,d) be a complete metric space. A contraction is a map f: X — X such that

d(f(x), f(y)) < p-dz,y)

for some 0 < p < 1. In this case we say that f has contraction p (in general there is
no optimal value which can be called “the” contraction ratio). Write f* for the k-fold

composition of f with itself. We recall the contraction mapping theorem:
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Theorem 5.2 (Contraction mapping theorem). If (X, d) is complete metric space (X, d)
and f: X — X has contraction p < 1, then there is a unique fized point x = f(x), and
for every y € X we have d(z, f*(y)) < p*d(z,y) and in particular fFy — x.

Here we shall consider systems with more than one contractions:

Definition 5.3. An iterated function system (IFS) on (X,d) is a finite family ® =

{¢i}ien of strict contractions. We say that ® has contraction p if each ¢; has contraction
p-

We study I[FSs with two goals in mind. First, it is natural to ask about the dynamics
of repeatedly applying maps from ® to a point. When multiple maps are present such
a sequence of iterates need not converge, but we will see that there is an “invariant”
compact set, the attractor, on which all such sequences accumulate. Second, we will
study the structure fractal geometry of the attractor. Such sets are among the simplest

fractals but already exhibit nontrivial behavior.

Example 5.4. It will be instructive re-examine the middle-a Cantor sets C, from
Section 3.1, where one can find many of the features present in the general case. Write

p=(1—a)/2 and consider the IFS ® = {pq, ¢1} with contraction p given by

wo(r) = px
p1(z) = pr+(1-p)

Write I = [0, 1] and notice that ¢;I C I for i = 0, 1. Furthermore, the intervals Iy, I; at
the stage 1 of the construction of C,, are just gl and @11, respectively, and it follows

that the intervals I; ; at stage 2 is just y;p;I, and so on. For iy ...4, € {0,1}" write

(pllln = 907:1 0...0 907477,

(note the order of application: the first function ¢;, is the “outer” function). Then the
intervals I;, . ;, at stage n of the construction are just the images ¢;, . ;, 1. Writing C, ,
for the union of the stage-n intervals, it follows that Cy 11 = ©0Can U ¢1Cq n, and

since Co = (= Ca,n, we have
Ca = (Plca U (PQCoz

i.e. C, is “invariant” under ®.
We next describe C, in a more explicit way. Each = € C, may be identified by the
sequence " (x) of stage-n intervals to which it belongs. These intervals, which decrease

to z, are of the form I"(x) = I;;. 4, = ¥i,...i, [0, 1] for some infinite sequence 413z ... €
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{0,1}N depending on z. If we fix any y € [0,1] then o5, ;. (y) € ¢i,..4,[0,1] = I"(x), so
©iy..in (y) = T as n — co. Now,

Girin(y) = P Piyin(y) +ir(1 = p)
= p-(p Pis.in(y) +i2(1 = p)) +i1(1 = p)
= P*Qigin(y) + (piz +i1)(1 = p)

n
= py+(1-p)> ik
k=1

Since p"y — 0 it follows that = = (1 — p) Yoo, ixp* !, and we may thus identify C,

with the set of such sums:

Co = {(1 —p) Y irp ! g€ {0,1}N}
k=1

For example, for a = 0 we have p = %, and we have just described the fact that every
z € [0,1] has a binary representation; and if & = % then p = £ this is the well-known
fact that x € '3 if and only if 2 = Y a,37" for a,, € {0,2}, that is, C'; /3 is the set of
numbers in [0, 1] that can be represented in base 2 using only the digits 0 and 2.

Finally, the calculation above shows that the limit of ¢;,. 4, (y) does not change if
y € R is arbitrary (we did not need y € [0,1]). Thus, C, is the attractor of the IFS in

the sense that, starting from any y € R, repeated application of ¢q, ¢1 accumulates on

Co.

We return to the general setting. Let ® = {¢;}iea is an IFS with contraction p on
a complete metric space (X, d). We introduce the map @ : 2X — 2% given by

B(A) = U i A
ieA

Theorem 5.5. There exists a unique compact set K C X such that

K:U%K
S

Furthermore, I"E - K exponentially fast (in the metric dg ) for every compact E C X,
and if in addition E satisfies p;E C E for i € A, then K = ()2, I"E.

Proof. Let us first show that ® is a contraction. Indeed, if dg (A, B) < e then A C B()
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and B C A®), Let @; has contraction p;. Then

and similarly ¢;(B) C ¢;(A)*€). Hence, writing p = max p;,

®(A) = J pi(4) € (| i(B) ) = &(B)¥)
(IS (IS
and similarly ®(B) C ®(A)#9). Thus by definition, d(®(A), ®(B)) < pe. Since p < 1,
we have shown that ® has contraction p-
The first two statements now follows from the contraction mapping theorem using
the fact that @ : 2X — 2% is a contraction. For the last part note the by assumption £ D

PFE D ... D I"E D ... is a decreasing sequence, hence by the above and Proposition
5.1, N2, "E = lim®"E = K. O

Definition 5.6. The set K satisfying K = (J;c5 @i /K is called the attractor of the IFS
® = {pi}.

Next, we describe the points z € K by associating to them a (possibly non-unique)
“name” consisting of a sequence of symbols from A. For i = i1i9...4, € A™ it is

convenient to write

®Yi = $Pi; © ... 0 Y4,

Given i € AN, since for each n we have ¢; K C K, it follows that

Qpil---inK = @il---inﬂ(‘:@inK) - Spil---inflK

and so the sequence ;, ; K is decreasing. Since ¢;,. ;, has contraction p™ we also
have diam g;, ; K < p"diam K, so, using completeness of (X,d), the intersection
Moy @ir...in K is nonempty and consists of a single point, which we denote ®(7). It also
follows that for any = € K,

@) = lim ¢, (2)
and, in fact, this holds for any y € X since d(vi, i, T, i, i, y) < p"d(z,y). In particu-

lar, this shows:

Corollary 5.7. For anyy € X, for every ¢ > 0 if n is large enough then d(p;y, K) < &
for alli e A™.

This shows that K does indeed “attract” all points in X. One should note, however,
that the order in which we are applying the maps ¢;,, ¢i,,... is important for the

conclusion that limep;,  ;, (y) exists. If we were to define y, = ¢;, o...0 ¢; (x) instead,
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then in general y,, would not converge. For example, if there are y,, @, € ® with distinct
fixed points then y, can be made to fluctuate between them by choosing a sequence of
1142 . .. which alternates between increasingly long blocks of us and ws.

Having defined the map ® : AN — K we now study some of its properties. For
i,j € AN let

d(i,7) =27N where N € N is the largest integer with i ...ixy = ji...jn
It is well known that d induces the product topology on AN, with A viewed as a discrete

space. As A is finite and hence compact, the product topology is compact.

Lemma 5.8. Suppose that ® has contraction p. If i,5 € AN and i1 ...ixy = j1...jn,
then d(®(i), ®(5)) < pV - diam K. In particular ® : AN — K is (Hélder) continuous.

Proof. Fix x € K. For n > N,

d(SOiL..inxy ¢j1,---7jny) = d(90i1---iN (QOZ'NH,---inx)a Pir..in (‘ij+1,---jn$))
N
< p - d(SDiN+17---inm7 SOjN+1,---jnx)
< pV-diam K
since @;y_,..i,* € K and similarly for y. The last statement is immediate. ]

Given i = iy...i; € A, the cylinder set [i{] € AV is the set of infinite sequences

extending ¢, that is,
liv..in) ={G € AN« jio g =1 i)

This set is open and closed in AN, has diameter 27%, and is a ball in the metric on AN:
in fact [i1...ix] = By« (j) for every j € [i1...ix] (the metric is an ultrametric). The
family of cylinder sets forms a basis for the topology on AN,

Let ¢; : AN — AN denote the map (i1iz...) = (jirda...). It is clear that this map

is continuous (in fact it has contraction 1/2).
Lemma 5.9. ®(5;(i)) = ;(®(i)) for any j € A and i € AN.

Proof. Fix z € K. Since ®(7) = limp 00 ¢4, © ... 0 @5, , by continuity of ¢;,

pi(®(@) = ¢j(lim @y 0. 00 2)
= lim pjop;0...00,x
1—00

= ®(jiyigiz...)
as claimed. O
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The following observation may be of interest. Given IFSs ® = {p;}icn and ¥ =
{1 }ien on spaces (X, d) and (Y,d) and with attractors Kx, Ky, respectively, define a
morphism to be a continuous onto map f : Kx — Ky such that fop; = ¢; f. Then what
we have shown is that there is a unique morphism from the IFS ® = {i}iea on AN to

any other IFS.

Recall that the support of a Borel measure p on X is

supp p = X\U{U : U is open and u(U) = 0}

This is a closed set supporting the measure int he sense that p(X \ supp u) = 0, and is

the smallest closed set with this property (in the sense of inclusion).

Theorem 5.10. Let p = (p;)iea be a probability vector. Then there exists a unique

Borel probability measure p on K satisfying

M:sz"%ﬂ

€A

If p is positive then supp p = K.

Proof. Let [i denote the product measure on AN with marginal p. Note that

= pi-@ifi
1€EA

Let u = @i be the projection to K. Applying ® to the identity above and using the
relation ®p; = ;P gives the desired identity for p.

For uniqueness, suppose that u satisfies the desired relation on K. Then we can lift
@ to a measure fig on AN such that ®ip = p. Now Jip need not satisfy the analogous
relation, but we may define iy = ), 5 pi - Pifio, and note that ®j; = p. Continue to
define fiy = Y ;cp Pi - Pifi2, etc., and each of these measures satisfies ®ji,, = p. Each
of these measures is mapped by ® to u, but @, — @ in the weak sense, where p is the
product measure with marginal p. Since ® is continuous the relation ®p, = u passes
to the limit, so u = ®u. This establishes uniqueness.

Finally, note that for a compactly supported measure v we have supp fv = f supp v
for any continuous map f. Thus the relation u = > p; - p;u and positivity of p implies
that

sSupp i = U Supp @it = U ®i SUpp
€A iEA

and supp p = K follows by uniqueness of the attractor. O
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5.3 Self-similar sets

We specialize in this section to R? and to iterated function systems ® = {;};ca con-

sisting of linear maps. For a linear map ¢ we define

L llel@) — ()]
re) =S )

The supremum is achieved since by linearity it is enough to consider x,¥y in the unit
ball. Hence ¢ is a contraction if and only if r(¢) < 1, and we call () the contraction

ratio of .

Definition 5.11. If r; is the contraction ratio of ¢;, then the similarity dimension of

® = {p;}icn, denoted sdim P, is the unique solution of the equation

erzl

When K is the attractor of an IFS @, we shall often write sdim K instead of sdim .
This is ambiguous because there can be multiple IFSs with the same attractor, but this
should not cause ambiguity.

In order to study the dimension of a set one needs to construct efficient covers of
it. Since the attractor K of an IF'S can be written as unions of the sets ¢;, i, K , these

sets are natural candidates.

Definition 5.12. The sets ¢; K, for i € A™ are called the n-th generation cylinder sets
of K.

The name follows from the fact that a cylinder in K is the ®-image of the corre-

sponding cylinder in AN:

Cir i = @i @A)
= {pi.ix®() : j € A}
= {®(iy...ipj1j2...) : je AN}
= O([i1. .. ik])

Note that, while the level-n cylinder sets in AN are disjoint and are open and closed,
this is not generally true for cylinders of K, though they are of course compact and
hence closed.

Let A* = ;2 , A™ denote the set of finite sequences over A (including the empty
sequence (), whose associated cylinder set is [)] = AN). A section of A* is a subset

S C A* such that every i € AN has a unique prefix in S. It is clear that, if S is a
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section, then the family of cylinders {[s] : s € S} is a pairwise disjoint cover of AN, and

conversely any such cover corresponds to a section.

Theorem 5.13. Let K be the attractor for an IFS ® with contraction p on a complete
metric space (X,d). Then Mdim K < sdim K.

Proof. Let D = diam K. For r > 0 let S, C A* denote the set of the finite sequences
1 =141 ...1 such that

TP =TT, <r/D <y,

Clearly S, is a section of A*, so {[a] : a € S,.} is a cover of AN and hence {p, K : a € S,}

is a cover of K by cylinder sets. Furthermore, ¢, K has diameter
diam p, K < rpdiam K <r

In order to get an upper bound on N(K,r), we need to estimate |S,|. We do so
by associating to each a € S, a weight w(a) such that ) g w(a) = 1, giving the
trivial bound |S,| < (minges, w(a))~!. This combinatorial idea is best carried out by
introducing a probability measure on AN and defining w(a) = p([a]); then the condition
> acs, w(a) = 1 follows automatically from the fact that {[a] : a € S, } is a partition
of AN,

We want to choose the measure so that [a], a € S, are all of approximately equal
mass. The defining property of S, implies that r, = 74, - ... rq,, k = |a|, is nearly
independent of a € S,. This looks like the mass of [a] under a product measure but it
is not normalized. To normalize it let s be such that >, ¢ = 1, and let 1z be the

product measure on AN with marginal (rf)ien. Then for a =ay...ar € Sy,

a([a]) = o ..rék = (ra;..-Ta)’

so by definition of S, writing p = min;ep 7,
p®- (r/D)* < (la]) < (r/D)?

It follows that

N(E,7) < 15,] < (minfi(la])) " < ’j L
Thus
Mdim K = lim sup w
r—0  log(1/r)
as claimed. .
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The theorem gives an upper bound Mdim K < sdim K. In general the inequality is
strict even in the tame setting we are now considering, and to say more we will need
some further assumptions. Recall that a similarity of R? is a linear map of the form
f:x+— rUx + a, where r > 0, U is an orthogonal matrix, and a € R? Then r

is called the contraction ratio of f. Equivalently, a similarity is a map that satisfies

d(f(x), f(y)) =r-d(f(x), f(y)) for a constant r > 0.

Definition 5.14. A self-similar set on R? is is the attractor of an IFS ® = {;} where

@; are contracting similarities.

Examples of self-similar Cantor sets include the middle-ac Cantor set which we saw
above, and also the famous Sierpinski gasket and sponge and the Koch curve.
It is also necessary to impose some assumptions on the global properties of ®. We

mention two such conditions.
Definition 5.15. Let ® = {p;};ca be an IFS.
1. @ satisfies the strong separation condition if p;(K)Np;(K) = ( for distinct ¢, j € A.

2. ® satisfies the open set condition if there is a non-empty open set U such that
©;U CU and ¢;U N ;U = 0 for distinct 4, j € A.

Strong separation implies the open set condition, since one can take U to be any
sufficiently small neighborhood of the attractor. The IFS given above for the middle-«
Cantor satisfy strong separation when o > 0. The IFS & = {z — %:{:,m — % + %m}
satisfies the open set condition with U = (0, 1), but not strong separation, since the
attractor is [0,1] and its images intersect at the point % This example shows that
the open set condition is a property of the IFS rather than the attractor, since [0, 1] is
also the attractor of ' = {x — %w,x — % + %x}, which does not satisfy the open set

condition.

Theorem 5.16. If K is a self-similar measure generated by ® = {@;}ican and if ®
satisfies the open set condition, then dim K = Mdim K = sdim ®.

Proof. Let r; be the contraction ratio of ¢; and s = sdim ®. For r > 0 define the section
S, C A* and the measure & on AN as in the proof of Theorem 5.13. These were chosen

so that ula] < r* and |, K| < r® for a € S,. We shall prove the following claim:

Claim 5.17. For each r > 0 and x € R? the ball B,.(x) intersects at most O(1) cylinder
sets o K, a € S,.
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Once this is proved the theorem follows from the mass distribution principle for the

measure p = ®Ji, since then for any = € R?,

w(Br(z)) = [(®'Bu(x))

< > filal

a€Sr 1 oo KNBy(z)#£0
= O(1)-r®

To prove the claim, let U # () be the open set provided by the open set condition, and
note that o, U N U = 0 for a,b € S, (we leave the verification as an exercise). Fix

some non-empty ball D = B, (yo) € U and a point zo € K and write

6 = d(o,0)
D = diamK

We also write Dy = 0o D, Yo = @alo and z, = ©qT0.

Fix a ball B, (x) and consider the disjoint collection of balls
D={D :a€S, and D, N B,(z) # 0}

We must bound |D| from above. By definition of S, the radius r, of the ball D, =
waD € D satisfies

pror < rq < ToT
and in particular D, has volume O(1)r?. The center y, of D, is payo, SO
d(Ya, Ta) = d(Payo, Pato) < 7d(Yo, T0) = 10
Finally, diam ¢, K < rD. Since B,(z) and D, intersect, we conclude that
d(x,ys) <r+rD+rd

SO

Do = Br,(ya) C Br(1+D+6+ro)(x)

Both of these balls have volume O(1)r?, and the balls D, € D are pairwise disjoint;
thus |D| = O(1), as desired. O

To what extent does is the theorem true without the open set condition? We can
point to two cases where the inequality dim K < sdim K is strict. First, it may happen
that sdim K > d, whereas we always have Mdim K < d, since K C R? Such an
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example is, for instance, the system = +— 2x/3, x — 1+ 2x/3. The second trivial case

b

of a strong inequality is when there are “redundant” maps in the IFS. For example, let
o:x—x/2and ® = {p,¢*}. Then K = {0} is the common fixed point of » and ¢?,

so Mdim K = 0, whereas sdim K > 1. More generally,

Definition 5.18. An IFS ® = {¢;};ca has exact overlaps if there are distinct sequences
i,j € A* such that ¢; = ;.

If 7,5 are as in the definition, then by considering the contraction ratios of ¢;, ¢;
it is clear that neither of the sequences i, j is a prefix of the other. Therefore one can
choose a section S C A* which includes both i and j. It is not hard to verify that
U = {¢y}ues is an IFS with the same attractor and the same similarity dimension as
®. But then K is also the attractor of W' = {¢y },ecg\ (5}, which has smaller similarity
dimension. Therefore Mdim K < sdim ¥’ < sdim ®.

Conjecture 5.19. If an IFS on R does not have exact overlaps then its attractor K
satisfies dim K = min{1, sdim ®}.

This conjecture is far from being resolved. In dimensions d > 2 it is false as stated,

but an analogous conjecture is open.

5.4 Self-affine sets

Recall that an affine transformation of R? is a map = — Az + a, where A is a d x d

matrix and a € R?.

Definition 5.20. A self-affine set is the attractor of an IFS consisting of affine con-

tractions of R%.

Although this may look like a mild generalization of self-similar, self-affine sets turn
out sets turns out to be surprisingly difficult to analyze, and there are few examples
where the dimension can be explicitly determined. One such example is the following.
Let m > n, and consider the cover of [0, 1]? into mn closed congruent rectangles R; ;,
0<i<m-1,0<j <n-—1,each of width 1/m and height 1/n. Fixaset D C {0,...m—
1} x {0,...,n — 1} of indices, to which there corresponds the collection {R;;} ¢ j1ep
of sub-rectangles in [0, 1]2, and replace [0, 1]> with the union of these rectangles. Then
for each R € R repeat the procedure, partitioning R into mn congruent rectangles of
width 1/m? and height 1/n2, and replacing R by the sub-rectangles in the positions
determined by D. Repeating this for each rectangles infinitely often, we obtain the
desired set, which is the attractor of the IFS {gom}(l-’j)eD, where ¢; ; is the map

1 J
i j(x,y) = (Ea: + + =)

7 1
m’'n n
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that maps [0, 1)2 onto R; ;. See figure 77. Sets of this kind are called McMullen carpets.

For simplicity we consider the example K arising from the parameters m = 4,
n =2, and D = {(0,0),(1,1),(2,0)}. One important feature of this example is that
the projection of K to the y-axis is the entire unit interval. To see this, note that, if
® is corresponding IFS, then 6[0, 1]? projects to the unit interval on the y-axis. By
induction this is true of ®" [0, 1) for all n, hence it is true of the limit K = lim 5”[0, 1]
This property will be used in the calculation of the box dimension. Another feature of
the example is that the generation-k cylinders are rectangles of dimensions 4% x 27F.

This is convenient when working with dyadic covers but not necessary for the analysis.
Proposition 5.21. Mdim K = log6/log4 ~ 1.29248 .. ..

Proof. We estimate N (K, Dyer). Consider the 3% level-k cylinder sets of K. Each is
contained in a closed rectangle of dimensions 4% x 28 = 22¥ x 2% 50 each can be covered
by C-2¥ level-2k dyadic squares, hence N (K, Dy2r) < 3¥-C-2%. On the other hand, each
of these cylinder sets projects on the y-axis to an interval of length 2*, hence we cannot
use less that 2% level-2k dyadic squares to cover them. Also, since each generation-k
cylinder set can intersect at most two others (this can be easily checked by induction),
we conclude that N (K, Dyar) > €’ - 3% - 2k, Taking logarithms, dividing by log 22* and
taking £ — oo, the claim follows. O

Notice that all the maps in ® have contraction ratio 1/2. Thus the similarity di-
mension sdim K is the solution to 3 - (1/2)® = 1, which s = log3/log2. Thus we see
that even in this simple example, Mdim K # sdim K.

Proposition 5.22. dim K = log(1 + 2'/2)/log2 ~ 1.27155.. . ..

We calculate the Hausdorff by applying Billingsley’s lemma to a self-similar measure
defined by an appropriate probability vector p = (p; ;)¢ jjep- To motivate the choice
of p let (z,y) € K and write x = .zjx2... in base 4 and y = 0.y1y2... in base 2.
Thus, as long as x, y are irrational, which holds a.s. for any fully supported self-similar
measure on K, the sequence of digits x1 ...z, and y; ...y, determine the cylinder set
O([(z1,y1) - .- (zk, yr)]) containing (z,y).

Now consider the p-mass of the level-2k dyadic square @ = Dy2r(z,y). In order to
estimate this we must know what other level-2k cylinder sets of K are contained in Q.
Evidently, Q is determined by @ ...z} and y; ... yok, but any other points z’, 3’ which
agree with z,y, respectively, on these digits, will also lie in Q. Thus @ contains any
cylinder set of the form ®[(x1,y1)... (Tr, yr) (@} 1 Ykt1) - - - (T, Yoy,)] where of course
(2%,9;) € D for j = k+1,...,2k. This imposes the restriction that 2, € {0,2} if y; = 0
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and 2 = 1 if y; = 1. Writing

N(v) =#{u : (u,v) € D}

N(y;) is the number of possible choices of z;. Then we have found that

#{generation-k cylinder sets C Doz (x,y)} H N(y;)
i=k+1

Since all these cylinders agree on the coordinates yj . .. yo their masses will all be equal
if we assume that the probability vector defining p is such that p; ; depends only on j.

Under this assumption,

p(Dyzr(w,y)) = (Dyzr (2, 7)) szz v H N(ys)
i=k+1

(we use again the easy fact that p gives zero mass to boundaries of dyadic squares).

In order to obtain the Hausdorff dimension from Billingsley’s lemma we need match-

ing upper and lower bounds for the lim inf of

_log p(Dyzk (x, y))
- X 1 N T
2% log 2 Z 08 Pasys 2k;zzk£1 og NV (y:) (5)

We require the lower bound to hold everywhere in K, and the upper bound to hold u-
a.e.. Now, by the law of large numbers, for p-a.e. (z,y), the frequency of the digit pair
(u,v) in the sequence (x1, y1)(x2,Y2) . .. IS Puv, and the same is true for their frequency

N (Tgt+1, Yk+1)s - - - (Tog, yor) as k — oo. Hence

klggo< Z 0g py; — 2k Z log N (y;) ) =

i=k+1

1
Z DPu,w log pu — 5 Z Pu,w log N(U) (6)

(u,v)eD (u,w)eD

p-a.e., and since this quantity is a lower bound on the dimension of K we must maximize

it. A standard calculation shows that the maximizing p is
Puw = Cil . N(U)fl/Q
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where ¢ = Z(u,v)e D Pu,y Dormalizes the vector. Evaluating (6) at this p, we have

2k 2k
. . 1(1 1
dim K > kli}n;o <logc + 3 (% ;1 log N (y;) — z AEkH log N(y,))) =logc

It remains to verify that this p gives a matching lower bound everywhere in K.

Substituting our choice of p into 5, we want to bound to show that for every (z,y) € K,

2k 2k

. 1 1

hkrglolgf <2k ; 1 log N (i) — 7 ' EkHlOgN(yi)) <0
= 1=

But this follows from the following easy fact, applied to the sequence above at times
k=2t

Claim 5.23. Let t1,ta,... be a bounded real-valued sequence. Then liminf; (11 —
t;) <0.

Proof. Let s; = tj+1—t;. Then s1+...4+ sy = tp11 — 11 is bounded for all ¢, which would
be impossible if there were an € > 0 with s; < —e for large enough ¢. This implies the

claim. =

The dimension of general McMullen carpets can be computed as well as their higher-
dimensional analogs. There are also some other mild generalizations. But for general
self-affine sets, even under a strong separation assumption, the situation is quite subtle
and not well understood. Let = Y p;-pip be a self affine measure, with g,z = A;z+a;.
Then the cylinder measure ¢;, ;¢ is, up to translation, the image of p under the
matrix product A; A;,...A;, , and this measure appears as a component of u with
weight p;, ...p;,. Now, the geometry of random matrix products of this kind is a well-
developed subject and there is at least a good theoretical understanding of how they
behave. In particular, typically ¢;,. ;¢ will, up to scale, be a very long thin copy of
w1 with the directions in which it is stretched or contracted being distributed according
to “boundary measures”. What is altogether lacking, however, is any control over how
these cylinder measures fit together geometrically. As we have seen, the dimension is
very much affected by the degree of concentration of parallel cylinders near each other.
One of the few results that are known is a theorem due to Falconer which, for given
matrices A;, gives an expression for the dimension of the attractor of {A; + a;} for

almost every choice of a;. See 7?7 for further details.
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6 Geometry of measures

We have seen that Radon measures play an important auxiliary role in computing the
dimension of sets. In this section measures will be the central object of our attention.
We first establish differentiation and density theorems for measures on R?. Roughly
speaking, these results show that the local structure of a measure on a set A is, locally,
independent of its structure on the complement R?\ A. For this we will first develop
some combinatorial machinery for working with covers by balls. Then in the last two

sections we will discuss the dimension of measures.

6.1 The Besicovitch covering theorem

Recall our convention that balls are closed and note that some of the results below are
not valid if we allow balls to be open. On the other hand one can define the metric
using any norm on R?, the norm only affects the values of the constants, which will not

matter to us.

A set A is r-separated if every x,y € A satisfy d(x,y) > r. By Zorn’s lemma,
every set in a metric space contains r-separated sets which are maximal with respect to

inclusion. In a separable metric space, r-separated sets are at most countable.

Lemma 6.1. If A C R? is r-separated then |Ba.(2) N A| < C for every z € R, where
C =C(d).

Here and below, the notation C' = C(d) indicates that C is a constant depending

only on d.

Proof. If this were false then for every n we could find a set F,, of size n of r,-separated
points in By, (x,). Then {r,'(z — z,) : © € E,} C By is a l-separated set of size n,

contradicting compactness of By (0). O

We say that a collection £ of sets is bounded if the diameters of its members is
bounded, i.e. supgce |E| < co. We say that € has multiplicity C if no point is contained

in more than C elements of £. If a cover £ of A has multiplicity C, then

la<) 15<C
Eeé&
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Restricting the right inequality to A gives 14 > % > mee 1Ena, so for any measure i,

n(A) = /1Adu
1
> C/ZlEﬂAdﬂ

Eeg

1
= Z HANE)
Ee€

Thus, a measure is “almost” super-additive on families of sets with bounded multiplicity.

Lemma 6.2. Let £ be a collection of balls in RY with multiplicity C' and such that each
B € £ has radius > R. Then any ball B,(x) of radius r < 2R intersects at most 3%C of
the balls.

Proof. Let Fy,..., E, € £ be balls intersecting B,.(z). We may replace each E; with a
ball E; C E; N B3g(x) of radius R. The collection {E1, ..., E}} still has multiplicity C,

so, writing ¢ = vol B1(0), by the discussion above
¢ (3R)* = vol(Bsn(x))

k
vol(|_J Ef)
=1

v

v

k
1
— Z vol(EY)
¢

_ k - R4

Q

Therefore k < 3%C, as claimed. [

Lemma 6.3. Let r,5 > 0, 2,y € RY, and suppose that y ¢ B.(x) and x ¢ B,(y). If
z € By(x) N Bs(y) then Z(x — z,y —z) > C > 0, where C = C(d).

Proof. Clearly z # x,y and the hypothesis remains unchanged if we replace the smaller
of the radii by the larger, so we can assume s = r. Since the metric is induced by
a norm, by translating and re-scaling we may assume z = 0 and » = 1. Thus the
problem is equivalent to the following: given x,y € B1(0) such that d(z,y) > 1, give a
positive lower bound Z(z,y). If no such lower bound existed, we would have sequences
Zn,Yn € B1(0) \ {0} such that each pair x,,y, satisfies the above and Z(z,y,) — 0.

Hence we can write x,, = oy, (yn + v,), where ay, > 0 and ||v||,, / [|[yn]| = 0. Then since
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[yn = 2nl > 1T and [ly.|| <1,

L < lyn — aall

= ||(1 - aﬂ)yn + O‘n”n”

[[onl
< (1= an) lyall + any— lynll
[yl
[[onl
< 1—ap(l- )
0 lyal
which is impossible, since the right hand side is eventually smaller than 1. O

A Besicovitch cover of A C R is a cover of A by closed balls such that every z € A

is the center of one of the balls.

Proposition 6.4 (Besicovitch covering lemma). There are constants C = C(d), C' =
C'(d), such that every bounded Besicovitch cover € of a set of A C R? has a sub-cover
F C & of A with multiplicity C. Furthermore, there are C' sub-collections Fi, ..., For C
& such that F = Ugl Fi and each F; is a disjoint collection of balls.

Proof. We may write £ = {B,(;)(¥)}zea, discarding redundant balls if necessary. Let
Ry = sup e 4 (), so by assumption Ry < oo, and let R,, = 27" Ry. Also write

Ap,={x € A: Rpy1 <r(z) <R,}

Note that Ag, Aq,... is a partition of A.

Define disjoint sets A’ |, A, ... € A inductively, writing S,, = (J,.,, A}, for the union
of what was defined before stage n. Begin with A’ ; = (), and at stage n > 0 let A/, be
a maximal R,,/2-separated subset of A, \ U,cg Br(z)(x). Now define A" = |J A7, and
F ={B@)(@)}sea

We first claim that F is a cover of A. Otherwise, let € A\ Jgcr £. There is a
unique n such that x € A,, i.e. such that R, < r(z) < R,. Since A} is a maximal
R, /2-separated subset of A,, we must have d(z,y) < R,/2 for some y € A]. But
Al € Ap so r(y) > Rnyy1 = Ry/2, and therefore x € B, (y) € Uper E, contrary to
assumption.

We next show that £ has bounded multiplicity. Fix z € R For each n the set A’
is R, /2 separated and r(z) < R, for z € A}, so by Lemma 6.1, z can belong to at most
C1 = C1(d) of the balls B,,)(x), z € A},. Thus it suffices for us to show that there are
at most Cy = C(d) distinct n such that z € B,(y)(z) for some x € Aj,, because we can
then take C' = (' - Cy. Suppose, then, that ny > no > ... > ng and z; € A’ni are such
that z € B,(y,)(2i). By construction, if i < j then x; ¢ B, (,,)(z:), and also r(z;) <

i 2

Rj < R;/2 <r(x;) so x; & By(y;)(z;). Thus, by Lemma 6.3, Z(2; — z,2; —2) > C3 >0
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for all 1 < i < j < k, with C3 = C3(d). Since the unit sphere in R? is compact and
the angle between vectors is proportional to the distance between them, this shows that
k < Cy = Cy(d), as required.

For the last part we define a function f : A" — {1,...,3%C + 1} such that B, (z)N
B, (y) # 0 implies f(x) # f(y), where C' is the constant found above. Then F; =
{By@z)(x) : x € A", f(x) =i} have the desired properties.

We define f using a double induction. We first induct on n and at each stage define
ien Ai. In order to define f

on A}, note that A,, is countable, since its points are R,,/2 separated, so we may write

it on A/,. Thus suppose we have already defined f on |J

Al ={ay,az,...} and define f inductively on the a;. Suppose we have already defined
fon a;, i <k, thus f is defined on a subset E, ; C |J,-,, A;. Consider the collection
of balls {B,(;)(7)}zeE, ,- By construction, each of these balls has radius > R, /2, and
we have already shown that the collection has multiplicity C. Since r(a;) < R,, by
Lemma 6.2, B,(q,)(ax) can intersect at most 340 of these balls, and so there is a value
u € {1,...,3%C + 1} which is not assigned by f to the any of the centers of these balls,
and we define f(ay) = u. This completes the proof. O

In the proof of Billingsley’s lemma (Proposition 4.7), we used the fact that any cover
of A by b-adic cubes contains a disjoint sub-cover of A (Lemma 4.6). Covers by balls do
not have this property, but the proposition above and the calculation before Lemma 6.2

often are a good substitute and can be used for example to prove Billingsley’s lemma
for balls.

Corollary 6.5. Let p be a finite measure on a Borel set A C R%, and let £ be a
Besicovitch cover of a A. Then there is a finite, disjoint sub-collection F C & with
p(UperF) > %,u(A), where C' = C(d).

Proof. By the previous proposition there are disjoint sub-collections &7, ..., &, C &€ such
that (JI_, & is a cover of A, and k < ¢ = C’(d). Thus

7

k

k
A <l U B> we =3l B

i=1 Eeg] i=1 Beg] =1 Eeg

so there is some i with p(Ugegr E) > 11(A) > & p(A). Since &/ is countable, we can
find a finite sub-collection F C & such that p(Upcr F) > %u(A). This proves the
claim with the constant C' = 2C". O

Theorem 6.6 (Besicovitch covering theorem). Let pu be a Radon measure on R?, let
A be a Borel set and let £ be a collection of balls such that each x € A belongs to balls
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E € & of arbitrarily small radius centered at x. Then there is a disjoint sub-collection
F C & that covers A up to p-measure 0, that is p(A\ Uper F) = 0.

Proof. We clearly may assume that & is bounded, that p is supported on A (i.e. pu(R?\
A) = 0), and that p(A) > 0. Assume also that p(A) < oo, we will remove this
assumption later.

We will define by induction an increasing sequence F; C Fo C ... of disjoint, finite

sub-collections of £ such that

p(A\ U F) < (1= 2p)fa(4)

FeFy

where C is the constant from the previous corollary. Clearly F = J,~, F) will have the
desired properties. The basic idea is to apply the previous corollary repeatedly, at each
step covering a constant fraction of the mass that was not covered int he previous steps.
This does not quite work because we must ensure that the collection constructed at
different steps do not overlap, and the corollary only ensures that each one individually
is disjoint. But disjointness can be achieved by being a little less greedy at each step.

To begin, let F; be the result of applying the previous corollary to £.

Assuming Fj, has been defined, write I}, = (Jpe 7 F Since p is Radon and Fy, is
finite, there exists an € > 0 such that

WANFD) > Zu(A\ Fy)

C,U

By assumption, the collection of balls in £ whose radius is < € and center is in A\ F k(f)

(e)

is a Besicovitch cover of A\ Fy
We obtain a finite, disjoint collection of balls F; C & such

. Apply the previous corollary to this collection and
the measure puy = p|
that

w Y P>

pANED) > oA\ )
FeF;,

Q\H

(€)

As the elements of Fj, are of radius < ¢ and have centers in A \ F,
from F},. It follows that Fj1 = Fj, U Fy, is finite and disjoint, and

, they are disjoint

pAN | F) < pA\NE) —u( | F)

FeFii FeF,
WA\ F) — O (AN Fy)
< (1- R

AN

where in the last inequality we used the induction hypothesis. This completes the
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construction.

Now suppose that j(A) = co. For each 2 € R%, there can be only finitely many radii
r such that p(0By(z)) > 0. Thus we can then find a cover of bounded multiplicity of
R by balls whose boundaries have no pu-mass (e.g. using Proposition 6.4, though this is
much more elementary). The complement of these boundaries is the union of countably
many open sets A, Ag, ... and u(R?\|J A;). Apply the previous argument to each p| 4,
and the collection & = {E € £ : E C A;}, which still satisfies the hypothesis. For
each i we obtain a disjoint collection F; C & with pu(A\ Upcz, F) = 0, and the union
F = ;2 Fi is disjoint and has the required property. O

Remark 6.7. To see that the Besicovitch theorem is not valid for families of open balls,
consider the measure on [0,1] given by pu = 80 + > oo, 277715, /n> and consider the
collection of open balls £ = {Bf/n(())}nzl u Uzo:l{Bf/k(l/n)}bn. Any sub-collection
F whose union has full g-measure must contain By /n(O) for some n, since it must cover
0, but it also must cover 1/n so it must contain By ,(1/n) for some k, and hence F is

not disjoint.

The results of this section should be compared to the Vitali covering lemma:

Lemma 6.8 (Vitali covering lemma). Let A be a subset of a metric space, and { B, () (%) }zea
a collection of balls with centers in A such that sup;c;r(i) < co. Then one can find a
subset A" C A such that {B,jy(x(j))}zear are pairwise disjoint and \J,c 4 Brz)(z) C
UmeA/ BST(I) (z).

This lemma is enough to derive an analog of Theorem 6.6 when the measure of a

ball varies fairly regularly with the radius. Specifically,

Theorem 6.9 (Vitali covering theorem). Let p be a measure such that p(Bs,(x)) <
cp(Br()) for some constant c. Let { B, () (7)}zea be as in the Vitali lemma, with A a
Borel set. Then there is a set of centers A’ C A such that {Br(z)()}oear is disjoint,

and N(UzeA’ Br(x)(x)) > C_llu(UxeA Br(ac) (2))-

Lebesgue measure on R has this “doubling” property, as do the Hausdorff measures,
which we will discuss later on. For general measures, even on R? there is no reason

this should hold.

6.2 Density and differentiation theorems

Let p be a measure and p(A) > 0. The local behavior of  at points € A does not
depend only on u|a, since small balls B,(z) may intersect the complement of A and
p may give positive mass to By (x) \ A. Indeed, it is entirely possible that supp pula =

supp ,u\Rd\ 4, in which case every ball of positive mass contains a contribution from both
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fla and pi|ga 4. For an example of this situation consider Lebesgue measure on R and
a measure supported on Q and giving positive mass to each rational number.

Nevertheless, for Lebesgue measure A there is a weaker form of separation between
A and R?\ A that holds at a.e. point. Let u = A4 and write ¢ for the volume of the
unit ball. Then the Lebesgue density theorem states that

lim wB:(x) = lim A(Br(z) N 4)

=1
r—0 C?"d r—0 CTd

for M-a.e. © € A, equivalently, for y-a.e. z. For such an 2 we have A\(B,(z)\ 4)/cr? — 0
as r — 0, so if we look at small balls around pu-typical points we see measures which
have an asymptotically negligible contribution from /\|Rd\ 4- Below we establish similar
results for general Radon measures in R?. Note that in the limits above, cr? = \(B,(z)),

so we can re-state the Lebesgue density theorem as

Lo AB(x) N A)

W =B () =1 lae r €A

This is the form that our results for general measures will take.

Let u be a finite measure on R? and f € L*(u1). Define

1
+ = lim —

I
G AN /B,»@f an

It will be convenient to write

fr(w)—/B()fdu

Note that, although our balls are closed, the value of f*,f~ does not change if
we define them using open balls. To see this we just need to note that, by dominated
convergence, fBSO(x) fdu— fBT(x) fdpas s\, r and fBS(x) fdu— fBg(x) fdpass 2r,
and similarly for the mass of balls (since these are integrals of the function f = 1). The
same considerations show that f™ and f~ may be defined taking the lim sup and lim inf

as 7 — oo along the rationals.
Lemma 6.10. f*, f~ are measurable.

Proof. First, for each r > 0 we claim that f, is measurable. It suffices to prove this for
f >0, since a general function can be decomposed into positive and negative parts.
We claim that, in fact, if f > 0 then f, is upper semi-continuous (i.e. f, '((—oc,t))

is open for all t), which implies measurability. To see this note that if x,, — z and
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s > r, then B,(zy,) C Bs(z) for large enough n, which implies f,(z,) < fs(z). Thus

limsup f,(z,) < fs(z)

n—oo

But by dominated convergence again, [ Bo(x) fdx — fr(x) as s\, so

limsup fr(zy) < fr(z)

n—o0

This holds whenever x,, — x, which is equivalent to upper semi-continuity.

Since fBr(x) fdu/pw(By(x)) = fr(x)/g-(x), where g = 1, we see that f* are upper
and lower limits of measurable functions f,./g, as 7 — oo along the rationals. Hence f*

are measurable. O

Theorem 6.11 (Differentiation theorems for measures). Let 1 be a Radon measure on
Re and f € L'(p). Then for py-a.e. x we have

o -
ﬁ%uwxmxémﬂ”“‘“”

Proof. We may again assume that f > 0. For a < b let
Ay ={z : f~ (@) <a<b< f(x)}

It is easy to verify that f~(z) = f(x) holds p-a.e. if and only if pu(A,p) = 0 for all
a < b. Suppose then that 11(A,p) > 0 for some a < b and let U an open set containing
Agp. By definition of A, 3, for every o € A, there are arbitrarily small radii » such
that B,(z) C U and f,.(x) < a. Applying the Besicovitch covering theorem to the
collection of these balls, we obtain a disjoint sequence of balls {By,(z;)}5°; such that
Ay € U2 Bry(xi) € U up to a p-null-set, and fBri(ﬁi) fdu = fr(x;) < a for each 1.

Now,
beudas) < [ fan
Aa,,b
> / fdp
i=1 By, (2:)

< > a-ul(Br ()
=1

< a-pu(U)

IN

Since p is regular, we can find open neighborhoods U of A, with p(U) arbitrarily close

47



to p(Agp). Hence, the inequality above shows that b- p(A.p) < a- p(Aqyp), which is
impossible. Therefore ;1(A, ) = 0, and we have proved that f~ = f p-a.e.
Similarly for a < b define

g7b:{x€Rd D fm) <a<b< fT(z)}

Then f*(z) = f(z) p-a.e. unless 1(Ay ) > 0 for some a < b. Suppose such a, b exist
and let U and {By,(z;)}72; be defined analogously for A ;. Then

[ rau = S, s
> 3 b (B, ()
=1
> b-u(Ayy)

On the other hand, by regularity and the dominated convergence theorem, we can find

U as above such that fU f du is arbitrarily close to an,b fdu<a- u(Afl’b), and we again
obtain a contradiction.

Thus we have shown that f~(x) = f(x) = fT(z) p-a.e., which implies the theorem.

O

The formulation of the theorem makes sense in any metric space but it does not
holds in such generality. The main cases in which it holds are Euclidean spaces and
ultrametric spaces, in which balls of a fixed radius form a partition of the space, for

which the Besicovitch theorem holds trivially.

Corollary 6.12 (Besicovitch density theorem). If i is a probability measure on R% and
w(A) >0, then for p-a.e. x € A,

i MBr(@) N A4)

N .

and for p-a.e. x ¢ A the limits are 0.

Proof. Apply the differentiation theorem to f = 14. O

Applying the corollary to A° = R?\ A we see that the limit is p-a.s. 0 if z ¢ A.
Thus, at small scales, most balls are almost completely contained in A or in A°. So
although the sets may be topologically intertwined, from the point of view if u they
are quite well separated. This is especially useful when studying local properties of the
measure, since often these do not change if we restrict the measure to a subset. We will

see examples of this later.
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Corollary 6.13. Let v < u. Then for p-a.e. x,

. v(By(x)) dv

lim ———& = —(z

r—0 p(By(z)) du( )
Proof. Let f = dv/du. Then v(B,(x)) = f.(z) and the conclusion is just Theorem
6.11. O

Another useful consequence is the following:

Proposition 6.14. Let i be a Radon measure on R? and A Lebesque measure. Then

w~ X if and only if lim,_q % erists and is positive and finite p-a.e. and A-a.e.

Proof. If pi ~ X this is the previous corollary, since 7% = cA(B,(z)).

Now suppose that p o A, and that there is a set A with A\(A) = 0 and pu(A) > 0.
Since u(BNA) = (A + p)(B N A) for every set B, by the density theorem we have, for
A+ prae. x € A, equivalently p-a.e. x € A,

i ABr@) 0 A) (A p)(Br(z) 0 A)

OB @) A+ wB@)

Also B 4
(BN
=0 M(Br(m))

for u-a.e. x € A, so for such z,

This implies that A(B,(z))/u(B,(z)) — 0 and hence u(B,(x))/r¢ — oo, for p-a.e.
x € A

In the same way one shows that if there is a set A’ such that A(A’) > 0 and u(A) =0
then pu(B,(z))/r? — 0 M-a.e. O

Finally, turning now to b-adic cubes, we have the analogous results.

Theorem 6.15. Let p be a Radon measure on R? and f € L'(u). Let b > 2 be an

integer base. Then for p-a.e. x we have

1

A2 (D () /D o W@

In particular if u(A) > 0 then for p-a.e. z € A,

L (D)1 A)

By D)
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Similarly the other corollary and proposition above hold along b-adic cubes. The
proofs are identical to the one above, using Lemma 4.6 instead of the Besicovitch cover-

ing lemma. Alternatively, this is a consequence of the Martingale convergence theorem.

6.3 Dimension of a measure at a point

The definition of Hausdorff dimension was motivated by an imaginary “volume” which
decays r® for balls of radius «. Although there is no canonical measure with this prop-
erty if a < d, we shall see below that there is a precise connection between dimension
of a set and the decay of mass of measures supported on the set.

We restrict the discussion to sets and measures on Euclidean space. As usual let

Br(z) ={y : [z =yl <7}
although one could use any other norm with no change to the results.
Definition 6.16. The (lower) pointwise dimension of a measure p at & € supp p is

. . logu(Br(x))
dim(p, x) = 1lgélf ~logr

(7)

 is exact dimensional at x if the limit (not just liminf) exists.

Thus dim(u,x) = o means that the decay of py-mass of balls around z scales no
slower than 7%, i.e. for every € > 0, we have p(B;(x)) < r*~¢ for all small enough r;
but that this fails for every € < 0.

Remark 6.17. .

1. One can also define the upper pointwise dimension using limsup, but we shall not

have use for it,

2. In many of the cases we consider the limit 7 exists, and there is no need for lim sup

or liminf.
Example 6.18. .
1. If 4 = 4, is the point mass at u, then pu(B,(u)) = 1 for all r, hence dim(p, u) = 0.
2. If 11 is Lebesgue measure on R? then for any x, u(B,(z)) = cr?, so dim(u, z) = d.

3. Let u = A+6§p where X is the Lebesgue measure on the unit ball. Then if z # 0 is in
the unit ball, u(B,(x)) = A(By(z)) for small enough r, so dim(u, z) = dim(\, z) =
d. On the other hand p(B,(0)) = A(B;(0)) + 1, so again dim(u,0) = 0.
This example shows that in general the pointwise dimension can depend on the

point.
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The dimension at a point is truly a local property:

Lemma 6.19. If v < p then dim(v,z) = dim(u,z) for v-a.e. x. In particular, if
w(A) >0 and v = pla, then dim(p, x) = dim(v, z) p-a.e..

Proof. Let dv = f -dp where 0 < f € L*(p), so that v(B,(z)) = fBr(m) fdu. Taking

logarithms in the differentiation theorem we have

}i_r)r(l) (logv(By(z)) — log u(By(x))) = log f(z) v-a.e. T

Since 0 < f(z) < oo for v-a.e. z, upon dividing the expression in the limit by logr the

difference tends to 0, so the pointwise dimensions of u, v at x coincide. ]

We saw that Hausdorff dimension of sets may be defined using b-adic cells rather
than arbitrary sets. We now show that pointwise dimension can similarly be defined

using decay of mass along b-adic cells rather than balls.

Definition 6.20. The b-adic pointwise dimension of y at x is

dimy (p, ) = lim inf — log (D (7))
n—00 nlogb

In general dim(p, x) = dimy(p, ). For instance, in the middle-1/3 Cantor set C /3
and x = 1/2 we clearly have dim(y,z) = 0 for any non-atomic measure y onC 3, while
we say that there are measures such that dim(u,z) = log2/log3 for any z € Cy/3 and

in particular z = 1/3. Nevertheless, at most points the notions agree:
Proposition 6.21. For p-a.e. x we have dim(u, z) = dimp(u, x).

Proof. We have Dyn () C By—n(z), s0 u(Dyn(x)) < p(Bp-n(z)) and hence dimy(u, z) >
dim(u, x) for every x € supp p.

We want to prove that equality holds a.e., hence suppose it does not. Then it
is not hard to see that we can find an « and ¢ > 0, and a set A with pu(A4) > 0,
such that dimp(u, ) > a + 3¢ and dim(p,x) < o+ ¢ for x € A. Applying Egorov’s
theorem to the limits in the definition of dimy, and replacing A by a set of slightly
smaller but still positive measure, we may assume that there is an g > 0 such that
1(Dyn () < b~™F29) for every x € A and b™" < 7.

Let v = p|a. By Lemma 6.19, dim(v, z) = dim(u, z) < a + ¢ for v-a.e. z € A. Fix

such an z. Then there are arbitrarily large k for which
V(B (x)) > bt
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On the other hand,
v(By-r(x)) <> {D : D € Dy and v(D N B,(x)) > 0}

and the sum contains at most 2¢ terms, each with mass < b=5+29) a5 s00n as b=* < ry.
Hence for arbitrarily large k we have b=F(@+e) < 2d. p=k(a+2e) which is a contradiction.
O

As a consequence, the analog of Lemma 6.19 holds for dimy,.

6.4 Upper and lower dimension of measures

Having defined dimension at a point, we now turn to global notions of dimension for
measures. These are defined as the largest and smallest pointwise dimension, after

ignoring a measure-zero sets of points.

Definition 6.22. The upper and lower Hausdorff dimension of a measure p are defined

by

dimp = esssupdim(u,z)
Top

dimp = essinf dim(u, )
T

If dim p = dim 1, then their common value is called the pointwise dimension of y and
is denoted dim p.

To see that these two quantities need not agree, take y = A+ dg, where X is Lebesgue
measure. Then dimp = 0 (because dim(u,0) = 0 and u({0}) > 0), and dimu = d
because for any z € R?\ {0}, dim(u, z) = d.

We note the following, whose proof is immediate from the definitions:

Lemma 6.23. If p is a-regular, then dim(p,z) > « for every x and in particular

dim p > a.

The next proposition establishes a basic connection between between the dimension

of sets and measures.
Proposition 6.24. For any Borel set A C R,

dimA = sup{dimpy : u supported on A}
= sup{dim p : p supported on A}
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and for any p € P(RY),

dimp = inf{dim A : A Borel, u(R%\ A) = 0}
dimpy = inf{dim A : A Borel, u(A) > 0}

Proof. For the first part, note that trivially we have dim p < dim pu, so
sup{dim p : supported on A} < sup{dimpu : supported on A}

Now 4 is supported on A. Then by definition of dim u, for every € > 0 there is a subset
A. C A with dim(u, ) > dim p — ¢ all for x € A.. By Billingsley’s lemma, this implies
that dim A, > ﬁ,u — ¢, and since A; C A also dim A > ﬁu — ¢, and since € was

arbitrary, dim A > dim p. This proves
sup{dim ¢ : supported on A} < dim A

On the other hand, y Frostman’s lemma, for every € > 0 there is a (dim A — ¢)-regular
measure p supported on A (we only proved this for closed A, but it is true for Borel

sets as well). Thus dim p > dim A — €. Since € was arbitrary, we have shown that
dim A < sup{dim p : supported on A}

Combining these three inequality gives the first part of the proposition.

For the second part write o = dim p. We begin with the first identity. Let
Ag={z e A : dim(u,z) < o}

By the definition of dim we have u(R?\ Ag) = 0. Therefore the upper bound in

Billingsley’s lemma applies to Ag and measure p, giving dim 4y < a. Hence
a > inf{dim A : p(R%\ A) =0}

On the other hand for every ¢ > 0 there is a subset A. C A of positive measure such
that dim(u,z) > o — e for x € A, so by the lower bound in Billingsley’s lemma,
dim A; > o — e. Since dim A > dim A,, we have dim A > a — . Since € was arbitrary,
this shows that

a < inf{dim A : p(R%\ A) =0}

proving the first identity.

For the second identity write § = dim p. If p(A) > 0 then after removing a set of
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measure 0 from A, we have dim(u,z) > dimu for x € A, so by Billingsley’s lemma,
dim A > dim p. This shows that

B <inf{dim A : u(A) > 0}

Given € > 0 we can find a A, of positive measure such that dim(u,z) < f+-¢ for x € A,
and then by Billingsley’s lemma dim A; < 8+ e. Since € was arbitrary this shows that

g > inf{dim A : pu(A) > 0}

and gives the second identity. O

Corollary 6.25. If i = vy + vy then

dimp = max{dimvy,dimv;}

dimp = min{dimvy,dim v}
and similarly if p =3 ;o v;. If p= [, dP(w) is Radon, then

dimy > esssupdimuy,
w~P

dimp > ef,SNi}I%f dim vy,
Proof. We can find pairwise disjoint sets A, Ay, A1 such that u|a ~ vg|la ~ vi|a, and
pla, L vo and pla, L p1. By the previous corollaries, for p-a.e. z € A we have
dim(p,z) = dim(vy,z) = dim(ve,x), while for p-a.e. x € Ay we have dim(p,z) =
dim(vp, z) and for p-a.e. x € A; we have dim(u, ) == dim(v1,z). The claim follows
from the definitions. The proof for countable sums is similar.
If u = [ v, dP(w), we use Proposition 6.24. If ;(A) > 0 then v, (A) > 0 for a set of

w with positive P-measure. For each such w, we have dim A > dim y,,and it that

u(A) >0 = dim A > essigf@yw

and dim p > essinf,, p dim v, follows follows from Proposition 6.24. The other inequal-

ity is proved similarly by considering sets A with pu(R?\ A) = 0. O

The inequality in the corollary is not generally an equality: Every measure p can
be written as p = [ 0, du(z), but essinf,., dimd, = 0 which may be strictly less than
dim p.
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6.5 Hausdorfl measures and their densities

The definition of HS, was closely modeled after the definition of Lebesgue measure,
and a slight modification yields a true measure on R% which is often viewed as the

a-dimensional analog of Lebesgue measure. For § > 0 let

HS(A) = inf{z |E|“ : £ is a cover of A by sets of diameter < §}
Eeg

One can show that this is an outer measure in the sense of Caratheodory and that the
Borel sets are measurable (see 77).
Decreasing  means that the infimum in the definition of H§ is taken over a smaller

family of covers, so H§ is non-decreasing as 6 \, 0. Thus

H(4) = lim 75 (4)

is well defined and is also equal to supg.q H§(A). It is easy to show that H* is an outer
measure on R?, and with some more work that the Borel sets in R? are H®-measurable
(for a proof see ?7). Thus by Caratheodory’s theorem, H® is a o-additive measure on
the Borel sets.

Definition 6.26. The measure H* on the Borel o-algebra is called the a-dimensional

Hausdorff measure.
Before discussing the properties of H*, let us see their relation to dimension.
Lemma 6.27. If a < 8 then HY(A) > HP(A), and furthermore

HP(A) >0 — HYA)
HY(A) <o = HP(A) =0

oo

In particular,

dimA = inf{a>0: H*(A) =0} (8)
= sup{a>0: HYA) = oo}

Proof. A calculation like the one in Lemma 3.11 shows that for § <1,
Hy(A) < 877 MG (4)

The first inequality and the two implications follow from this, since 62~ — 0 as § — 0.
The second part follows from the first and the trivial inequalities H*(A) > HL (A),
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HE(A) > HE(A). 0

The proposition implies that H® is a-dimensional in the sense that every set of
dimension < « has H*measure 0. We will discuss its dimension more below. We note

a slight sharpening of (8):
Lemma 6.28. A is an a-null-set if and only if H*(A) = 0.
We leave the easy proof to the reader.

Proposition 6.29. H° is the counting measure, H® is equivalent to Lebesque measure,

and H* is non-atomic and non o-finite for or 0 < a < d.

Proof. The first statement is immediate since since HJ(A) = N(A, ). Now, it is clear
from the definition that H< is translation invariant, and it is well known that up to
normalization, Lebesgue measure is the only o-finite invariant Borel measure on R%. It
is easily shown that H%(B,(0)) < oo for every r > 0, so H? is o-finite and hence equal to
a multiple of Lebesgue measure. Finally, Lemma 6.27 implies that H® is not equivalent
to H¢ for a < d, so it cannot be o-finite, and one may verify directly that H*({z}) =0
for a > 0. O

We turn to the local properties of H®. More precisely, since H* is not Radon, we
consider its restriction to sets of finite measure. We will see that, in some respects, the
Hausdorff measures have are closer to Lebesgue measure than to arbitrary measures.
Given a > 0, a measure y and x € supp u, the upper and lower a-dimensional densities

of u at x are

o n(B)
D;_(M,CL') - 1r—>0p (27’)a
p(By(x))

D (u,z) = h{ﬂn_jglfw

Note that (2r)® = |B,(z)|. This normalization differs by a factor of 2% from the one in

the Lebesgue density theorem.

Lemma 6.30. If DI (u,x) < oo thendim(u, x) > a and if D} (1, ) > 0 then dim(p, z) <

.

Proof. If D} (u,x) < t < oo then for small enough r we have u(B,(z)) < t(2r)®. Taking
logarithms and dividing by log r we have

1 B log 2%t
og p(By(x)) _ log2%t
log r log r

for all small enough r, so dim(u,x) > a. The other inequality follows similarly. O

56



The quantity D, is similarly related to the upper pointwise dimension. Of the two

quantities, DI is more meaningful, as demonstrated in the next two theorems, which

essentially characterize measures for which D is positive and finite a.e..

Theorem 6.31. Let i be a finite measure on R? and A C R®. If

Df(p,z) > s forallz € A = H*A) < ¢ w(A)
s

where C' = C(d), and

DY (u,x) <t forallz e A = H*(A)> % - u(A)

In particular, if

0 < inf D (v,2) < sup DY (v,2) < oo forallz € A
z€A zEA

then p~ H| 4.

Proof. The proof is similar to that of Billingsley’s lemma, combined with an appropriate

covering lemma.

For the first statement fix an open neighborhood U of A, and for § > 0 let
Es={B(zr) CU :z2€A,0<r<d, uB(z)) > s|B;|“}

By hypothesis & is a Besicovitch cover of A. Apply the Besicovitch covering lemma to
obtain a sub-cover By, B, ... A with multiplicity C' = C(d). Hence

p() = wUB) = 5By > SY B = ZHsA)

This holds for all 6 > 0 so H*(A) < %M(U). Since U is any open neighborhood of A

and p is Radon, we obtain the desired inequality.

For the second implication, for € > 0 write
A.={zx e A: pu(By(x)) <t-|Bp(z)|* for all r < €}

and note that A = (J;2, Ay, hence it suffices to show that H*(A;,,) > 27t~ A).
Fix n and § < 1/2n and consider any cover £ of A;/, by sets of diameter < §. Replace
each set £/ € & that intersects A;,, with a ball centered in A/, of radius |E|, and
hence of diameter 2|E| < 20 < 1/n. The resulting collection F of balls covers A, , and
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p(F) < t|F|* for F € F, by definition of A;/,,. Thus

1 1 1
Z |E|* > 2 Z [Pl > oy Z uw(F) > T%M(Al/n)
Bet FeF FeF

Taking the infimum over such covers £ we have Hg(A;,) > 2_°‘t_1,u(A1/n). Since this
holds for all § < 1/2n we have H*(Ay/,) > 27t ju(A;,). Letting n — oo gives the
conclusion.

For the last statement, note that the previous parts apply to any Borel subset of
A’ C A. Thus u(A’) = 0 if and only if H¥(A") = 0, that is, u ~ H%|4. O

We will use the theorem later to prove absolute continuity of certain measures with

respect to Lebesgue measure.

Theorem 6.32. Let A C RY, o = dim A and suppose that 0 < H*(A) < oco. Let
w=H*a. Then
27* < Dy (pa) <C

for p-a.e. x, and C = C(d).

Proof. Let
Ay ={x€A: DI (ux)>t}

Then by the previous theorem there is a constant C' = C(d) such that

p(A) < S04 = Su(an

Since p < oo, for t > C this is possible only if u(A;) = 0. Thus

pla : D (p,x) 2 C) = lim @(Acyyym) =0
The proof of the other inequality is analogous. O

We remark that the constant C' in Theorem 6.32 can be taken to be 1, but this
requires a more careful analysis, see 7?7. Any lower bound must be strictly less than 1

by Theorem 6.34 below. The optimal lower bound is not known.
Corollary 6.33. If 0 < HY(A) < oo then dimH*¥| 4 = a.

Since H? is just Lebesgue measure, when o = d the Lebesgue density theorem
tells us that a stronger form of Theorem 6.32 is true. Namely, for u = H?| 4 we have
DI (u,z) = Dy (u,z) = ¢ 1a(x) H%a.e. (the constant arises because of the way we

normalized the denominator in the definition of Déc). It is natural to ask whether the
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same is true for Hausdorff measures, or perhaps even for more general measures. The

following remarkable and deep theorem provides a negative answer.

Theorem 6.34 (Preiss). If i is a measure on R and lim, o p(B,(x))/r® exists p-a.e.

then « is an integer and p is Hausdorff measure on the graph of a Lipschitz function.

We will discuss a special case of this theorem later on.

We already saw that H® is not o-finite, and this makes it awkward to work with.
Nevertheless it is often considered the most “natural” fractal measure and much effort
has gone into analyzing it in various examples. The simplest of these are, as usual,
self-similar sets satisfying the open set condition. For these the appropriate Hausdorff
measure is positive and finite. There is a remarkable converse: if a self-similar set has
finite and positive Hausdorff measure in its dimension then it is the attractor of an IFS
satisfying the open set condition; see 77. There are also simple examples with infinite
Hausdorff measure; this is the case for the self-affine sets discussed in Section 5.4, see
77.

Another interesting result is that any Borel set of positive H* measure contains a
Borel subset of positive finite H* measure; see 7?7. Thus the measure in the conclusion
of Frostman’s lemma can always be taken to be the restriction of H* to a finite measure
set. This lends some further support to the idea that 7 is the canonical a-dimensional
measure on RY,

We end the discussion Hausdorff measures with an interesting fact that is purely
measure-theoretic and has no geometric implications. Recall that measure spaces (€2, F, )
and (Q, F, ') are isomorphic if there is a bijection f : Q — € such that f, f~! are
measurable, f induces a bijection of F — F', and fu = pu/'.

Theorem 6.35. Let B denote the Borel o-algebra of R and B* its completion with
respect to H*. If o # B then (R,B,H®) 2 (R,B,H"), but (R, B, H*) = (R, B, HP)
are isomorphic for all 0 < o, < 1.

7 Projections

Up until now we have viewed R¢ primarily as a metric space with special combionatorial
properties (e.g. Besicovitch lemma). We now turn to questions which involve, directly or
indirectly, the group or vector structure of R?. In this section we examine the behavior
of sets and measures under linear maps.

For simplicity we consider the case of linear maps R? — R, although many of the
results extend to general linear maps R — R* and we shall sometimes state them this
way. The basic heuristic is that when one projects a set or measure via a linear map,

the image should be “as large as possible”. We will see a number of such statements.
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We parametrize linear maps in various ways as is convenient, but note that in all
the parameterizations that we use the induced measures on the set of linear maps are
equivalent, and so statements that hold for a.e. linear maps will be independent of the

parametrization.

7.1 Marstrand’s projection theorem

For a unit vector u € R? let 7, (r) = 2 - u € R. Up to linear change of coordinates this
is the orthogonal projection of x to the line Ru. We denote the set of unit vectors in
R? by S*.

Lemma 7.1. Let f: X — Y be a Lipschitz map between compact metric spaces. Then
dim fX < dim{1,dim X}, and if p € P(X) then dim7p < min{dimY,dim u} and the

same for dim instead of dim.

Proof. The bound dim fX < dim X was proved in Lemma 3.13, and since fX C R we
obviously have dim X < 1, hence dim fX < min{1,dim X}.

For measures, if 4 € P(X) and v = fpu, then the relation fB,(z) C Bey(fz) implies
that u(B,(x)) < v(Ber(fx)). It follows that dim(u, x) > dim(v, fz), so dim fu < dim u
and similarly for dim. Finally v is supported on Y so dimv < dim Y, and the same for

dim. This proves the claim. ]

Thus if we take the linear image of a set A or measure p under a linear map, the
image will not be larger than the original object. The content of the following theorem
is that, typically, there is no other constraint.

Identify the set of unit vectors S with angles [0,27), and the corresponding length

measure by A.
Theorem 7.2 (Marstrand). If u € P(R?), then
dim 7y, 0 = min{1, dim} for a.e. u e St
and similarly for dim. In particular for any Borel set X C R?,
dim 7, X = min{1,dim X'} for a.e. u € S

Remark 7.3. An analogous result holds for = : R% — R? and sets and measures in R,
but we will not prove it.
The result for sets follows from the measure result using Frostman’s lemma. There-

fore we show only the measure result.
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Definition 7.4. For a compact metric space X and pu € P(X), the t-energy of y is

14) Z//d(;’y)tdu(x)u(y)

Clearly the property that I;(x) is finite or infinite depends only on {(z,y) : d(z,y) <
1}. Note that if I;(u) < oo then Is(u) < oo for all s < t.
Although dim p is not quite characterized by the behavior of ¢ — I;(u), it nearly is:

Lemma 7.5. For a probability measure p,
1. If Ii(n) < oo then dim p > t.
2. If (B, (x)) < c-rt for every x (with c independent of x) then Is(u) < oo for s < t.

Proof. (1) Suppose dimp < s < t for some s. Fix a p-typical . For any sequence
l=rg>q>r1>q >...1y > ¢, — 0 we have

/d(:ry )"'dp(y) Zr 1(Br, () \ By, (x))

Since dim(yu, ) < s, we can choose such a sequence 7, ¢, such that p(By, (x)\By, (z)) >
%Brn(w) > cry, where ¢ = ¢(x). Thus

o0 o0

/ da,y) () > S raters = 3 st =

n=0 n=0

Since I;(p) is the integral of this expression du(z), we have I;(p) = oo.
(2) Essentially the same calculation. Let ¢, ¢ be given. Let r, = 27" and s < ¢.
Then

/ d(e,y)*duly) < ZrnHu o (2)\ By ()

[ee)

< S rsn(B, (@)

n=0

0o
< c- Z 25(n+1) .9—tn
n=1

oo
< . Z 27(1‘/73)71
n=1
< C//
for appropriate constants ¢’. Hence I, = [ [ d(z,y) *du(y) < ¢’ < . O
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Proof of the projeciton theorem. Let pn € P(R?) and dimp > t for some ¢t < 1. We
claim first that we can assume that I; (1) < oo. Indeed, let A, C R? be pairwise disjoint
sets with p(A,) — 1, chosen so that u(B,(z)) < c,rt for x € A,. Each p|a, satisfies
I;(11]a,) < oo by the previous lemma, and it suffices to bound dim 7, (|4, ) for a.e. u

and every n, since mupu = > mu(p]a,,)-
Therefore we assume u(B,(z)) < ¢-rt. Write p, = m,u. Note that

w) = [ [t o o) ()
= //\mm—ﬂuy\td#(x)du(y)
- [/ Wdu(w)du(y)

Integrating this with respect to uniform measure on S', we have

Jrtwanis = [ (] [ Gyygp i o

g
- [t |x =)du(y)
I ~L(p

Using Fubini,

< o0

Here we used ¢t < 1 to conclude that [ |u-v|™"du = ¢ < co. By Fubini I;(p,) < oo for
A-a.e. u, and by the previous lemma, dim pu, > ¢.

We have shown that dimp > t, t < 1, implies dim p,, > t for A-a.e. u. The claim
follows. O

We have already mentioned the conjecture that self-similar sets A on R without
exact overlaps should satisfy dim A = min{1,sdim A}. We verified this in the case of
sets satisfying strong separation or the OSC. In many cases Marstrand’s theorem allows
us to show that this holds also in the presence of overlaps. Let us give an example. Let
0<A<1/2 and for t € (0,00) let & = &; = {pi1}icqo,1,2) be the TFS

wot(x) = Az p1(x) = x+1 por(x) =Ax +t
and denote its attractor by A;. Note that in a large range of parameters, there are be
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overlaps.
Now let A be the attractor of the IFS & = {®itiefo,1,2y on R? given by ,

950(:E7y) '_>)‘(:Evy) 61(1'33/) :)‘(l‘7y)+(1’0) &2(1'334) :)\(:L‘,y)—l—(O,l)

Observe that A; is the image of the fixed set A under the parametrized linear map
m(x,y) = x + ty. By Marstrand’s theorem, for a.e. ¢ the dimension of the image ﬂtg
satisfies

dim 4; = dimm A = min{1, dim Z}

For 0 < A < 1 the IFS & satisfies strong separation (or the OSC for A = 1), so in this
case
dim A = sdim A = sdim A

Combining these two facts we see that dim A; = sdim A; for a.e. ¢, and this includes
many cases of IFSs with overlaps.
Naturally, it is conjectured that the equality above holds for all A; except when

there are exact overlaps, which occurs only for certain rational values of ¢.

7.2 Absolute continuity of projections

Let A C R? and 7 : R?2 — R linear. Besides the dimension of mA, one may also
be interested in its topology (does it contain intervals?) or Lebesgue measure. When
dim A < 1 we have dim7A < 1 and implies Leb(A) = 0 and of course mA cannot contain

an interval. What happens when dim A > 17 It turns out that there are two cases.

Theorem 7.6 (Besicovitch). If A C R? and dim A = 1, then Leb(m,A) = 0 for a.c.
u e St

Theorem 7.7 (Marstrand). If A C R? and dim A > 1 then Leb(m,A) > 0 for a.e.
ue St

We will prove the second statement below. The first statement is more subtle and
we will not discuss the general case, but later we will examine a special instance of it.

Before proving Marstand’s theorem, we recall a variant of Proposition 6.14:

Proposition 7.8. A probability measure i on R is absolutely continuous with respect

to Lebesgue measure if and only if

lim inf pe(@ =z )
r—0 2r

< o0 u—ae x

The proof is identical tot he first half of the proof of Proposition 6.14.
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Proof. Proof (Of Theorem 7.7). Let pu be an a-regular measure on A with « > 1. In
order to show that p,, = m,u is absolutely continuous for a fixed u € S' it suffices, by
Proposition 7?7, to prove that

r—r,x+r)

lim inf pa < 00 W —a.e. z
r—0 2r

so absolute continuity of p; follows from the (stronger) condition

/liminf pe(me(x) — rym () +7) du(z) < oo
r—0 2r

Since
(o) = romi(a) + 1) = / L o) (e (72 (9)) ()

and applying Fatou’s lemma, it is enough to prove that

llmlnf//l[ﬂt )—r,me(x) +r}(7rt( )) dﬂ( )dﬂ( ) < 0

r—0
or:

hmmf//l{m (@)—me(y)|<r} DY) dp(z)

r—0

This analysis gives a condition for absolute continuity of y, for fixed u € S'. Now

let @ < b. In order to prove absolute continuity for a.e. it is enough to prove

/ (11H351f//1{|m V()| <y A(y) dp(z )> du < o

Applying Fatou again, followed by Fubini, we must show that

.. 1
h{}l_)lglf//% (/51 1{|7rt(:1c)7rt(y)|<r}du> du(y) du(z) < oo

But the inner integral is now easy to compute, since

r

1 du=c—
/Sl {|me(z)—me(y)|<r} EU C||1‘—y||
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and hence

o 1 o c
llggélf//w (/Sl 1{|7rt(m)—7rt(y)§r}du> du(y) du(z) = llggglf//nfn_l/”du(y) dp(z)
= c-Ni(p)

< o0

by the assumption that p is a-regular for o« > 1. This completes the proof.

7.3 Bernoulli convolutions

Let 0 < A < 1 and let vy denote the distribution of the random number
o0
X =) &\
n=0

where the signs are chosen IID with probabilities %, % There are a number of alternative
ways to describe this measure. First, it is the infinite convolution of the measure
Uan = %5_>\n + %5,\71. These are just the distributions of the n-th term £\" and so
Va0 *Ux1 % ... % V) N is just the distribution of the N-th partial sum; and

U =UN0*VUN\1 XV 2%...= lim VUXOXVU)1*... %k VUAN
n—00

Alternatively, let o, € {£1} denote the random sequence of signs used in defining

X. Then, conditioned on the event o0p = —1 (whose probability is %), we have X =

14+ A> > jon41 X", and conditioned on the event o = +1 (whose probability is %)
we have X =1+ XY opp1 A" Since D, 0nt1A™ has the same distribution as X,
we conclude that

1 1
vy = 590—V>\ + §<P+V,\

Thus vy is a self-similar measure for the IFS ® = {p,}. Finally, we can describe vy
in the usual way as the image of a symbolic measure: Let 1 = [[(1/2,1/2) denote the
product measure on {£1}%>0 and 7y (igi1...) = > inA" . Then vy = T/

The problem of the geometric properties of vy go back to the early 20th century.
For A < 1/2 the IFS &) satisfies strong separation and so v is supported on a Cantor
set of dimension sdim ®) = log2/log(1/A), and this is also the similarity dimension of
vy. For A = % it is not hard to see that v, is proportional to Lebesgue measure on
[—2,2]. For A > 1/2, the attractor of @ is the interval [— 125, 125, but the IFS does
not satisfy the OSC (it cannot, since the similarity dimension is > 1), and it is natural
to ask what the dimension of vy is and whether if it absolutely continuous with respect

to Lebesgue measure. Notice that the similarity dimension increases monotonically (as
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does the dimension in the range A € [0, 1/2] and so one might expect this monotonicity to
continue (namely, that dim vy =1 for all A € [1/2,1]). One also may expect that v, are
absolutely continuous for 1/2 < X\ < 1, with the Radon-Nikodym derivative becoming
smoother as A increases (e.g. belonging to LP for p that increases with \). We note
that soft arguments show that vy is either purely singular or absolutely continuous with

respect to Lebesgue (this was first shown by (Jessen and Wintner in the 1930s).

Initially this problem was considered a problem in harmonic analysis. Recall that
the Fourier transform i of a probability measure g on R is the function g : R — R
defined by

ﬁ@w:/é&dmw

The map p — 1 is 1-1. Note that if du = fdx then g = fand in particular, if u is
absolutely continuous with respect to Lebesgue, the Riemann-Lebesgue lemma tells us

that |f(£)| — 0 as & — oo; the converse is false however.

Now, there is a very convenient representation of the Fourier transform of vy: from
the basic identity (o * 7)(&) = 5(£)7(€), and fact that for y = 35_, + 36, we have

MF/ﬁW@=M@)

we find (using weak-* continuity of the map u — 1) that
oo
7(©) = [ dua) = [ costine)
R n=0

The first surprise about Bernoulli convolutions was discovered by Erdds in 1939. A
number « € R is called a Pisot number if it is a real algebraic integer (i.e. a root of
a monic integer polynomial) with o > 1 but all the algebraic conjugates of a are of
modulus < 1. These numbers have the remarkable property that the distance of o
to the nearest integer tends exponentially to 0 as k — oo, i.e. d(aF,Z) < 6% for some
0 < 0 < 1. Indeed, note that if «ay,...,q,, are the algebraic conjugates of «, then

of +ab +... +akF €7Z, and since |o;| < 1 we can take 6 = min |a;].

Theorem 7.9 (Erdds 1939). If A\™! is a Pisot number, then limg oo UA(€) # 0 and in

particular then vy is singular.

Proof. Let a = A™' > 1. We will show that inf}, Uy (7a®) > 0. Since o* — oo this will

prove the theorem.
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Notice that for each k,

y(mak) = Hcos((l/a)”ﬂak)
n=0

= H cos(maF™™)
n=0
k 00
= (H cos(ma')) - (H cos(ma™ "))
n=0 n=1

n

Now since =™ — 0 exponentially, cos(ma™™) — 1 exponentially, and so the second

product is equal to some C' # 0. Thus
k
[Oa(wa®)| = |C] - T] | cos(ma™)
n=0
On the other hand, since d(a*,Z) — 0 exponentially, the product above is also bounded
away from 0 by C’ = Hﬁ:o | cos(ma’™)| > 0, and so
a(ma®) > |- ¢ >0
for all k, as claimed. O

It is also known that dim vy < 1 when A is Pisot (this implies singularity of course).

There is also a remarkable converse to Erdos’s theorem:
Theorem 7.10. [Salem 1944] If A\=! is not Pisot, then U5 (€) — 0 as |¢| — oco.

This does not imply that vy is absolutely continuous when v} is not Pisot, but some

believe this is the case. Essentially the best result on this problem is the following:

Theorem 7.11 (Solomyak 1995). For Lebesgue-a.e. X € [1/2,1) the measure vy is
absolutely continuous, with dvy/dLeb € L?(Leb).

We will give an almost complete proof. Begin in the same way as the proof of
Marstrand’s theorem on absolute continuity of linear images of measures with dimension
> 1, except now we think of it as a non-linear projection of i € P(Q), Q = {&1}%>0,
by the map 7y (w) = > wpA". As in Marstrand’s theorem we want to prove that

((x—=r,x+7))

.. v
lim inf A < 00
r—0 2r

for vy-a.e. x, i.e. that the above holds for z = m)(w) for p-a.e. w. Integrating over
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and applying Fatou, we it is enough to show that

liminf%r / (@) = 1 ma(@) + 1)) dfi(w) < 00

r—0

Since

@) = @) +1) = [ L)oo (72 0) i)
= /1|ﬂ>\(w)ﬂA(7l)<T d/j(n)

we can substitute this into the previous expression and apply Fatou again, and conclude

that it suffices to show

hmlnf//lhr)\(w)—Tr)\ \<rdﬂ( )d:u( )

r—0

Let I = [a,b] C [1/2,1) be an interval. Then absolute continuity of vy for a.e. A € I

would follow from

/ (tmipt 5 [ [ tescormacoter 40 di) ) < o0

or (using Fatou and Fubini again) from

11£Il_>151f// </ 1\7r/\ )—ma(n)|<r d)\> dﬁ(n) dﬁ(w) <0

Thus, if we can show that fab Ly (@)=mr(m)|<r dA = O(7), then we are done.

Now, fixing w,n € Q. Inserting the definition of m(-), we obtain the expression
f(/\) - 77/\(w) - 7[')\(77) - Z(wn - Un))\" =2 Z ep A" = 2/\‘“]/\77' Z C;z)‘n (9)
n=1

where |w An| = min{n : w, # M|, cn € {0,£1} and ¢;, = ¢4 |way- This is a real-
analytic function, and we want to bound the Lebesgue measure of f~(—r,r)N 1. If, for
example, there were ¢ > 0 such that f’ > ¢ on I, we could conclude that the preimage
in question is an interval and that |f~!(—r,7) N I| < 2r/c. However it is not generally
true that there is such a c. Instead, one introduces the following condition.

Let

F={1+) ent" : cn € {-1,0,1}}
n=1

Definition 7.12. F satisfies transversality on an interval I C [0, 1] if there is a § > 0
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such that, for every f € F, for every z € I, if f(z) < § then f/(z) < —0.
Suppose that I is an interval of transversality for F. Then
Lemma 7.13. For g€ F and p >0, [INg~(—p, p)| < 2p/6.

Proof. We may suppose p < §, otherwise the claim is trivial since |I| < 2. Now,
J =TINg '(—p,p) is a-priori a union of intervals, but since g’ < & on this set it must in
fact be a single interval (this is just a consequence of the intermediate value theorem).
Now J is an interval, ¢’ < § on J, and |g| < p on J, so |g(z) — g(y)|M < 2p for all
z,y € J; this implies |J| < 2p/J. O

Now consider w,n € Q and f()\) = mx(w) — ma(n). hence f(A) = 2\« lg(\) for
g € F. Recall that I = [a,b] so for A\ € I we have A\ > a. thus

Leb(I N f~1(=r,7)) Leb(A eI : |f(N)] <)
Leb(A € I : |g(\)| < rA~ Il
Leb(A € I : |g(\)| < ra~l“Ml

m—lwﬂn\/(g

IAN Il

IN

Thus

h{glglf//</ Lim () —m(n)|<rd)\) dp(n) di(w) < h{_rggf//d ~lennl qi(n) dii(w)

= %Za X ((wm) ¢ lwnn| =n)

and this is < oo as long as a > 1/2. Thus, we have shown that if I is a closed interval

of transversality in (1/2,1) then v is absolutely continuous for a.e. A € I.

Definition 7.14. h € F is a *-function if it has the form

_1—290 + apz® + Z z"

n=k+1
and ay, € [—1,1].

Thus, a excluding the constant term, the coefficients of a * -function change sign

only once.
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Lemma 7.15. If h is a *-function and h(xo) > 0, h'(xg) < & then F is transverse on
[0,1‘0].

Proof. Notice that h” is a power series with a single change of sign in the coefficient
sequence, and hence it has at most one zero in (0,1). Now, we have h'(0) < —=§ if & > 1
and h/(0) = aq if k = 1, in which case from a; < h/(zg) < —d we also have h/(0) < —0.
We also have h/(1 —¢) — oo as € 1. Since h/(zg) < —0 this mean that the zero of
R occurs in (zg,1). Thus h'(0) < —d and h'(zg) < —0d, and fact that h”(x) # 0 for
z € (0,xz0), imply that h'(x) < —d on (0, zp). Thus h decreases on (0, zg) and h(zg) > 6,
so h(x) > ¢ for all x € (0, zp).
Let g € F and consider f = g — h. Then

l 00
f(z) = Z cpx’t — Z cpx”
n=0 n=~(+1

where ¢, > 0 and £ = k or k+ 1. Now for any x € [0, x¢], the claim above gives the
implications

glx)<é = f(x)<0

and
flz)<0 = J@@)<-0

Transversality will now follow if we show that
flz)<0 = f'(z)<0

but this follows because

0 [e%S)
fl) <0 = ch:v" < Z cnx”
n=0 n=~0+1
l 0o
— chn:c" < Z nepx"”
n=0 n=~¢+1

= f'(z) <0

where we used ¢, > 0. This completes the proof. O

Now, using some black magic (=computer search) one can find the following * -

function:

1 o0
_ 2_ .3 4 n
h(z)=1—x—2°—=z +§x + 5_53:
for which h(272/3) > 0.07 and h/(27%/3) < —0.09, so transversality holds on [0,27%/3).
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This proves that vy is absolutely continuous for a.e. A € [1/2,(1/2)2/3].

One cannot do much better than this, since in fact transversality fails in the interval
[0, 2~ 1/ 2]. There are tricks, however, to “amplify” the result to get absolute continuity
for a.e. A € [0,27%/2]. We refer to Peres-Solomyak (1996) for the details. Once it is
known in this range, we can “amplify” the result to [1/2, 1] using the following trick.

Note that vy = vy2 * 7 for some 7 (this is just the observation that

PIECUED SETIDLEE SRR IPOk

where signs in the two series are independent of each other; the left hand side is the
random variable corresponding to vy, and the first term on the right is the variable corre-
sponding to vy2). Thus if vy2 is absolutely continuous, then vy is. Thus absolute continu-
ity for a.e. X € [(1/2)'/2,(1/2)'/4] follows from the same result for [1/2, (1/2)'/?], and in
general knowing it for [(1/2)’1/2“1, [(1/2)’1/2k+2] implies it for [(1/2)1/2k, (1/2)1/2k+1].

These intervals cover [1/2,1) and we get the full result.

7.4 Besicovitch projection theorem and Kenyon’s theorem
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