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Preface

These are notes from an introductory course on dynamical systems and entropy
given at the Hebrew University of Jerusalem in the spring semester of 2014. The
course covers the basic theorems of ergodic theory and topological dynamics with
an emphasis on entropy theory. These notes are evolving...
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Chapter 1

Introduction

At its most basic level, dynamical systems theory is about understanding the
long-term behavior of a map T : X → X under iteration. X is called the phase
space and the points x ∈ X may be imagined to represent the possible states
of the “system”. The map T determines how the system evolves with time:
time is discrete, and from state x it transitions to state Tx in one unit of time.
Thus if at time 0 the system is in state x, then the state at all future times
t = 1, 2, 3, . . . are determined: at time t = 1 it will be in state Tx, at time t = 2
in state T (Tx) = T 2x, and so on; in general we define

Tnx = T ◦ T ◦ . . . ◦ T︸ ︷︷ ︸
n

(x)

so Tnx is the state of the system at time n, assuming that at time zero it is
in state x. The “future” trajectory of an initial point x is called the (forward)
orbit, denoted

OT (x) = {x, Tx, T 2x, . . .}

When T is invertible, y = T−1x satisfies Ty = x, so it represents the state of
the world at time t = −1, and we write T−n = (T−1)n = (Tn)−1. The one can
also consider the full or two-sided orbit

O±T (x) = {Tnx : n ∈ Z}

There are many questions one can ask. Does a point x ∈ X necessarily
return close to itself at some future time, and how often this happens? If we
fix another set A, how often does x visit A? If we cannot answer this for all
points, we would like to know the answer at least for typical points. What is the
behavior of pairs of points x, y ∈ X: do they come close to each other? given
another pair x′, y′, is there some future time when x is close to x′ and y is close
to y′? If f : X → R, how well does the value of f at time 0 predict its value at
future times? How does randomness arise from deterministic evolution of time?
And so on.
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CHAPTER 1. INTRODUCTION 5

The set-theoretic framework developed so far there is relatively little that
can be said besides trivialities, but things become more interesting when more
structure is given to X and T . For example, X may be a topological space, and
T continuous; or X may be a compact manifold and T a differentiable map (or
k-times differentiable for some k); or there may be a measure on X and T may
preserve it (we will come give a precise definition shortly). The first of these
settings is called topological dynamics, the second smooth dynamics, and the
last is ergodic theory. Our main focus in this course is ergodic theory, though
we will also touch on some subjects in topological dynamics.

One might ask why these various assumptions are natural ones to make.
First, in many cases, all these structures are present. In particular a theorem
of Liouville from celestial mechanics states that for Hamiltonian systems, e.g.
systems governed by Newton’s laws, all these assumptions are satisfied. Another
example comes from the algebraic setting of flows on homogeneous spaces. At
the same time, in some situations only some of these structures is available; an
example is can be found in the applications of ergodic theory to combinatorics,
where there is no smooth structure in sight. Thus the study of these assumptions
individually is motivated by more than mathematical curiosity.

In these notes we focus primarily on ergodic theory, which is in a sense
the most general of these theories. It is also the one with the most analytical
flavor, and a surprisingly rich theory emerges from fairly modest axioms. The
purpose of this course is to develop some of these fundamental results. We will
also touch upon some applications and connections with dynamics on compact
metric spaces.



Chapter 2

Measure preserving
transformations

2.1 Measure preserving transformations
Our main object of study is the following.

Definition 2.1.1. A measure preserving system is a quadruple X = (X,B, µ, T )
where (X,B, µ) is a probability space, and T : X → X is a measurable, measure-
preserving map: that is

T−1A ∈ B and µ(T−1A) = µ(A) for all A ∈ B

If T is invertible and T−1 is measurable then it satisfies the same conditions,
and the system is called invertible.

Example 2.1.2. Let X be a finite set with the σ-algebra of all subsets and
normalized counting measure µ, and T : X → X a bijection. This is a measure
preserving system, since measurability is trivial and

µ(T−1A) =
1

|X|
|T−1A| = 1

|X|
|A| = µ(A)

This example is very trivial but many of the phenomena we will encounter can
already be observed (and usually are easy to prove) for finite systems. It is
worth keeping this example in mind.

Example 2.1.3. The identity map on any measure space is measure preserving.

Example 2.1.4 (Circle rotation). Let X = S1 with the Borel sets B and
normalized length measure µ. Let α ∈ R and let Rα : S1 → S1 denote the
rotation by angle α, that is, z 7→ e2πiαz (if α /∈ 2πZ then this map is not the
identity). Then Rα preserves µ; indeed, it transforms intervals to intervals of
equal length. If we consider the algebra of half-open intervals with endpoints
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CHAPTER 2. MEASURE PRESERVING TRANSFORMATIONS 7

in Q[α], then T preserves this algebra and preserves the measure on it, hence it
preserves the extension of the measure to B, which is µ.

This example is sometimes described as X = R/Z, then the map is written
additively, x 7→ x+ α.

This example has the following generalization: let G be a compact group
with normalized Haar measure µ, fix g ∈ G, and consider Rg : G → G given
by x → gx. To see that µ(T−1A) = µ(A), let ν(A) = µ(g−1A), and note
that ν is a Borel probability measure that is right invariant: for any h ∈ H,
ν(Bh) = µ(g−1Bh) = µ(g−1B) = ν(B). This ν = µ.

Example 2.1.5 (Doubling map). Let X = [0, 1] with the Borel sets and
Lebesgue measure, and let Tx = 2x mod 1. This map is onto is ,not 1-1, in
fact every point has two pre-images which differ by 1

2 , except for 1, which
is not in the image. To see that T2 preserves µ, note that for any interval
I = [a, a+ r) ⊆ [0, 1),

T−1
2 [a, a+ r) = [

a

2
,
a+ r

2
) ∪ [

a

2
+

1

2
,
a+ r

2
+

1

2
)

which is the union of two intervals of length half the length; the total length is
unchanged.

Note that TI is generally of larger length than I; the property of measure
preservation is defined by µ(T−1A) = µ(A).

This example generalizes easily to Tax = ax mod 1 for any 1 < a ∈ N. For
non-integer a > 1 Lebesgue measure is not preserved.

If we identify [0, 1) with R/Z then the example above coincides with the
endomorphism x 7→ 2x of the compact group R/Z. More generally one can
consider a compact group G with Haar measure µ and an endomorphism T :
G → G. Then from uniqueness of Haar measure one again can show that T
preserves µ.

Example 2.1.6. (Symbolic spaces and product measures) Let A be a finite set,
|A| ≥ 2, which we think of as a discrete topological space. Let X+ = AN and
X = AZ with the product σ-algebras. In both cases there is a map which shifts
“to the right”,

(σx)n = xn+1

In the case of X this is an invertible map (the inverse is (σx)n = xn−1). In the
one-sided caseX+, the shift is not 1-1 since for every sequence x = x1x2 . . . ∈ AN

we have σ−1(x) = {x0x1x2 . . . : x0 ∈ A}.
Let p be a probability measure on A and µ = pZ, µ+ = pN the product

measures on X,X+, respectively. By considering the algebra of cylinder sets
[a] = {x : xi = ai}, where a is a finite sequence of symbols, one may verify that
σ preserves the measure.

Example 2.1.7. (Stationary processes) In probability theory, a sequence {ξn}∞n=1

of random variables is called stationary if the distribution of a consecutive n-
tuple (ξk, . . . , ξk+n−1) does not depend on where it behind; i.e. (ξ1, . . . , ξn) =
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(ξk, . . . , ξk+n−1) in distribution for every k and n. Intuitively this means that
if we observe a finite sample from the process, the values that we see give no
information about when the sample was taken.

From a probabilistic point of view it rarely matters what the sample space is
and one may as well choose it to be (X,B) = (Y N, CN), where (Y, C) is the range
of the variables. On this space there is again defined the shift map σ : X → X
given by σ((yn)∞n=1) = (yn+1)∞n=1. For any A1, . . . , An ∈ C and k let

Ai = Y × . . .× Y︸ ︷︷ ︸
k

×A1 × . . .×An × Y × Y × Y × . . .

Note that B is generated by the family of such sets. If P is the underlying
probability measure, then stationarity means that for any A1, . . . , An and k,

P (A0) = P (Ak)

Since Ak = σ−kA0 this shows that the family of sets B such that P (σ−1B) =
P (B) contains all the sets of the form above. Since this family is a σ-algebra
and the sets above generate B, we see that σ preserves P .

There is a converse to this: suppose that P is a σ-invariant measure on
X = Y N. Define ξn(y) = yn. Then (ξn) is a stationary process.

Example 2.1.8. (Hamiltonian systems) The notion of a measure-preserving
system emerged from the following class of examples. Let Ω = R2n; we denote
ω ∈ Ω by ω = (p, q) where p, q ∈ Rn. Classically, p describes the positions of
particles and q their momenta. Let H : Ω→ R be a smooth map and consider
the differential equation

d

dt
pi = −∂H

∂qi
d

dt
q̇i =

∂H

∂pi

Under suitable assumptions, for every initial state ω = (p0, q0) ∈ Ω and t ∈ R
there is determines a unique solution γω(t) = (p(t), q(t)), and ωt = γω(t) is the
state of the world after evolving for a period of t started from ω.

Thinking of t as fixed, we have defined a map Tt : Ω → Ω by Ttω = γω(t).
Clearly

T0(ω) = γω(0) = ω

We claim that this is an action of R. Indeed, notice that σ(s) = γω(t + s)
satisfies σ(0) = γω(t) = ωt and σ̇(s) = ˙γωt

(t + s), and so A(σ, σ̇) = A(γω(t +
s), γ̇ω(t+ s)) = 0. Thus by uniqueness of the solution, γωt

(s) = γω(t+ s). This
translates to

Tt+s(ω) = γω(t+ s) = γωt
(s) = Tsωt = Ts(Ttω)

and of course also Tt+s = Ts+t = TtTsω. Thus (Tt)t∈R is action of R on Ω.
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It often happens that Ω contains compact subsets which are invariant under
the action. For example there may be a notion of energy E : Ω → R that
is preserved, i.e. E(Ttω) = E(ω), and then the level sets M = E−1(e0) are
invariant under the action. E is nice enough, M will be a smooth and often
compact manifold. Furthermore, by a remarkable theorem of Liouville, if the
equation governing the evolution is a Hamiltonian equation (as is the case in
classical mechanics) then the flow preserves volume, i.e. vol(TtU) = vol(U) for
every t and open (or Borel) set U . The same is true for the volume form on M .

2.2 Recurrence
One of deep and basic properties of measure preserving systems is that they
display “recurrence”, meaning, roughly, that for typical x, anything that happens
along its orbit happens infinitely often. This phenomenon was first discovered
by Poincaré and bears his name.

Given a set A and x ∈ A it will be convenient to say that x returns to A if
Tnx ∈ A for some n > 0; this is the same as x ∈ A ∩ T−nA. We say that x
returns for A infinitely often if there are infinitely many such n.

The following proposition is, essentially, the pigeon-hole principle.

Proposition 2.2.1. Let A be a measurable set, µ(A) > 0. Then there is an n
such that µ(A ∩ T−nA) > 0.

Proof. Consider the sets A, T−1A, T−2A, . . . , T−kA. Since T is measure pre-
serving, all the sets T−iA have measure µ(A), so for k > 1/µ(A) they cannot
be pairwise disjoint mod µ (if they were then 1 ≥ µ(X) ≥

∑k
i=1 µ(T−iA) > 1,

which is impossible). Therefore there are indices 0 ≤ i < j ≤ k such that
µ(T−iA ∩ T−jA) > 0. Now,

T−iA ∩ T−jA = T−i(A ∩ T−(j−i)A)

so µ(A ∩ T−(j−i)A) > 0, as desired.

Theorem 2.2.2 (Poincare recurrence theorem). If µ(A) > 0 then µ-a.e. x ∈ A
returns to A.

Proof. Let

E = {x ∈ A : Tnx /∈ A for n > 0} = A \
∞⋃
n=1

T−nA

Thus E ⊆ A and T−nE ∩E ⊆ T−nE ∩A = ∅ for n ≥ 1 by definition. Therefore
by the previous corollary, µ(E) = 0.

Corollary 2.2.3. If µ(A) > 0 then µ-a.e. x ∈ A returns to A infinitely often.
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Proof. Let E be as in the previous proof. For any k-tuple n1 < n2 < . . . < nk,
the set of points x ∈ A which return to A only at times n1, . . . , nk satisfy
Tnkx ∈ E. Therefore,

{x ∈ A : x returns to A finitely often} =
⋃
k

⋃
n1<...<nk

T−nkE

Hence the set on the left is the countable union of set of measure 0.

In order to discuss of recurrence for individual points we suppose now assume
that X is a metric space.

Definition 2.2.4. Let X be a metric space and T : X → X. Then x ∈ X is
called forward recurrent if there is a sequence nk →∞ such that Tnkx→ x.

Proposition 2.2.5. Let (X,B, µ, T ) by a measure-preserving system where X
is a separable metric space and the open sets are measurable. Thenµ-a.e. x is
forward recurrent.

Proof. Let Ai = Bri(xi) be a countable sequence of balls that generate the
topology. By Theorem 2.2.2, there are sets A′i ⊆ Ai of full measure such that
every x ∈ A′i returns to Ai. Let X0 = X \

⋃
(Ai \A′i), which is of full µ-measure.

For x ∈ X0 if x ∈ Ai then x returns to Ai infinitely often, so it returns to within
|diamAn| of itself infinitely often. Since x belongs to sets An of arbitrarily
small diameter, x is recurrent.

When the phenomenon of recurrence was discovered it created quite a stir.
Indeed, by Liouville’s theorem it applies to Hamiltonian systems, such as plan-
etary systems and the motion of molecules in a gas. In these settings, Poincaré
recurrence seems to imply that the system is stable in the strong sense that it
nearly returns to the same configuration infinitely often. This question arose
original in the context of stability of the solar system in a weaker sense, i.e.,
will it persist indefinitely or will the planets eventually collide with the sun,
or fly off into deep space. Stability in the strong sense above contradicts our
experience. One thing to note, however, is the time frame for this recurrence
is enormous, and in the celestial-mechanical or thermodynamics context it does
not say anything about the short-term stability of the systems.



Chapter 3

Ergodicity

3.1 Ergodicity
In this section and the following ones we will study how it may be decomposed
into simpler systems.

Definition 3.1.1. Let (X,B, µ, T ) be a measure preserving system. A measur-
able set A ⊆ X is invariant if T−1A = A. The system is ergodic if there are no
non-trivial invariant sets; i.e. every invariant set has measure 0 or 1.

If A is invariant then so is X \A. Indeed,

T−1(X \A) = T−1X \ T−1A = X \A

Thus, ergodicity is an irreducibility condition: a non-ergodic system the dynam-
ics splits into two (nontrivial) parts which do not “interact”, in the sense that
an orbit in one of them never enters the other.

Example 3.1.2. Let X be a finite set with normalized counting measure, and
T : X → X a 1-1 map. If X consists of a single orbit then the system is ergodic,
since any invariant set that is not empty contains the whole orbit. In general,
X splits into the disjoint (finite) union of orbits, and each of these orbits is
invariant and of positive measure. Thus the system is ergodic if and only if it
consists of a single orbit.

Note that every (invertible) system splits into the disjoint union of orbits.
However, these typically have measure zero, so do not in themselves prevent
ergodicity.

Example 3.1.3. By taking disjoint unions of measure preserving systems with
the normalized sum of the measures, one gets many examples of non-ergodic
systems.

Definition 3.1.4. A function f : X → Y for some set Y is invariant if f(Tx) =
f(x) for all x ∈ X.

11



CHAPTER 3. ERGODICITY 12

The primary example is 1A when A is invariant.

Lemma 3.1.5. The following are equivalent:

1. (X,B, µ, T ) is ergodic.

2. If T−1A ⊆ A then µ(A) = 0 or 1.

3. If µ(A) ≥ 0 then B =
⋃∞
n=0 T

−nA has measure 0 or 1.

4. If µ(A) > 0 and µ(B) > 0 then there is an n with µ(A ∩ T−nB) > 0.

5. If T−1A = A mod µ then µ(A) = 0 or 1.

Proof. (1) implies (2): If T−1A ⊆ A let B =
⋂∞
n=0 T

−nA. Then

T−nB =

∞⋂
n=0

T−(n+1)A =

∞⋂
n=1

T−nA = B

where the last equality is because T−nA ⊆ A for all n. Thus by ergodicity,
µ(B) = 0 or 1.

(2) implies (3): One notes that T−1B ⊆ B.
(3) implies (4): by (3),

⋃∞
n=0 T

−nB has full measure, and so there must be
an n as desired.

(4) implies (5): If µ(A) > 0 then B =
⋃∞
n=0 T

−nA must have measure 1,
since otherwise its complement A′ = X \B and the set B contradicts (4). But
up to measure 0 all the sets T−nA are the same, so µ(A) = µ(B) = 1.

(5) implies (1): trivial, since every invariant set is invariant up to measure
0.

Example 3.1.6 (Irrational circle rotation). Let Rα(x) = e2πiαx be an irrational
circle rotation (α /∈ Q) on S1 with Lebesgue measure µ. We claim that this
system is ergodic.

Let µ(A) > 0. Let z ∈ A be a density point for Lebesgue measure, so
1
2rµ(Br(z))→ 1 as r → 0. Here Br(z) is the ball of radius r when the circle is
parameterized as R/2πZ, which is an arc of comparable length.

Choose r small enough that µ(Br(z)) > 0.99 · 2 · r.
Choose n so that d(R−nα z, z) < 0.01. This can be done because α /∈ Q and

hence all orbits are dense under R−1
α = R−α.

Now, Br(A ∩ R−nα (z)) and A ∩ Br(z) are subsets of B1.01r(z), each with
measure 0.99 ·2 ·r, while B1.01r(z) has measure 2.02r. Hence they must intersect
in a set of positive measure. In particular µ(R−nα A ∩A) > 0. By (4) of the the
previous lemma Rα is ergodic.
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3.2 Induced action on functions
Given a map T : X → Y there is an induced map T̂ on functions with domain
Y , given by

T̂ f(x) = f(Tx)

On the space f : Y → R or f : Y → C the operator T̂ has some obvious
properties: it is linear, positive (f ≥ 0 implies T̂ f ≥ 0), multiplicative (T̂ (fg) =

T̂ f · T̂ g). Also |T̂ f | = T̂ |f | and T̂ (f c) = (T̂ f)c.
When (X,B) and (Y, C) are measurable spaces and T is measurable, the

induced map T̂ acts on the space of measurable functions on Y .

Lemma 3.2.1. If (X,B, µ, T ) is a measure preserving system then for every
measurable function f ≥ 0 on X,

´
f dν =

´
T̂ f dµ. Furthermore for p ≥ 1 and

f ∈ Lp, Tf is well defined and ‖f‖p = ‖Tf‖p.

Proof. For A ∈ C note that T̂1A(x) = 1A(Tx) = 1T−1A(x), hence
ˆ
T̂1A dµ = µ(T−1A) = (T̂ µ)(A) =

ˆ
1A dT̂µ

This proves
´
f dν =

´
T̂ f dµ for indicator functions. Every non-negative func-

tion is the increasing pointwise limit of simple functions so the same follows for
them by monotone convergence. For L1 functions the same holds by writing f
as a difference of integrable non-negative functions.

Let f = g almost everywhere. Then

{x : Tf(x) 6= Tg(x)} = {x : f(Tx)) 6= g(Tx)}
= T−1{x : f(x) 6= g(x)}

µ({x : f(x) 6= g(x)}) = 0 and T preserves µ, also Tf = Tg a.e., so T is well
defined on equivalence class in Lp. By the first part,

ˆ
|Tf |pdµ =

ˆ
T (|f |p)dµ =

ˆ
|f |pdµ <∞

this shows that Tf ∈ Lp if f is and that in this case the norms are the same.
The case p =∞ is obtained by taking p→∞ (or directly).

Corollary 3.2.2. In a measure preserving system T̂ is a norm-preserving self-
map of Lp, and if T is invertible then T̂ is an isometry of Lp.

The operator T̂ on L2 is sometimes called the Koopman operator. When T
is invertible it is a unitary operator and opens up the door for using spectral
techniques to study the underlying system. We will return to this idea later.

We will follow the usual convention and write T instead of T̂ . This introduces
slight ambiguity but the meaning should usually be clear from he context.

A function f : X → Y is called invariant if Tf = f .
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Lemma 3.2.3. The following are equivalent in a measure preserving system
(X,B, µ, T ):

1. The system is ergodic.

2. Every measurable invariant function is constant a.e.

3. If f ∈ L1 and Tf = f a.e. then f is a.e. constant.

Proof. Observe that f is invariant (a.e. invariant) then {f < c} is invariant
(resp. a.e. invariant) for every constant c; and that f is constant (a.e. constant)
if and only if {f < c} is ∅ or X (respectively measure 0 or 1) for every c.

The lemma now follows from Lemma 3.1.5.

3.3 Mixing
Although a wide variety of ergodic systems can be constructed or shown ab-
stractly to exist, it is surprisingly difficult to verify ergodicity of naturally aris-
ing systems. In fact, in most cases where ergodicity can be proved because the
system satisfies a stronger “mixing” property.

Definition 3.3.1. (X,B, µ, T ) is called mixing if for every pair A,B of mea-
surable sets,

µ(A ∩ T−nB)→ µ(A)µ(B) as n→∞

It is immediate from the definition that mixing systems are ergodic. The
advantage of mixing over ergodicity is that it is enough to verify it for a “dense”
family of sets A,B. It is better to formulate this in a functional way.

Lemma 3.3.2. For fixed f ∈ L2 and n, the map (f, g) 7→
´
f · Tng dµ is

multilinear and
∥∥´ f · Tng dµ∥∥

2
≤ ‖f‖2 ‖g‖2.

Proof. Using Cauchy-Schwartz and the previous lemma,
ˆ
f · Tng dµ ≤ ‖f‖2 ‖T

ng‖2 = ‖f‖2 ‖g‖2

Proposition 3.3.3. (X,B, µ, T ) is mixing if and only if for every f, g ∈ L2,
ˆ
f · Tng dµ→

ˆ
f dµ ·

ˆ
g dµ as n→∞

Furthermore this limit holds for ail f, g ∈ L2 if and only if it holds for f, g in a
dense subset of L2.

Proof. We prove the second statement first. Suppose the limit holds for f, g ∈ V
with V ⊆ L2 dense. Now let f, g ∈ L2 and for ε > 0 let f ′, g′ ∈ V with
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‖f − f ′‖ < ε and ‖g − g′‖ < ε. Then∥∥∥∥ˆ f · Tng dµ
∥∥∥∥ ≤

∥∥∥∥ˆ (f − f ′ + f ′) · Tn(g − g′ + g′) dµ

∥∥∥∥
≤

∥∥∥∥ˆ (f − f ′) · Tng dµ
∥∥∥∥+

∥∥∥∥ˆ f · Tn(g − g′) dµ
∥∥∥∥+

+

∥∥∥∥ˆ (f − f ′) · Tn(g − g′) dµ
∥∥∥∥+

∥∥∥∥ˆ f ′ · Tng′ dµ
∥∥∥∥

≤ ε ‖g‖+ ‖f‖ ε+ ε2 +

∥∥∥∥ˆ f ′ · Tng′ dµ
∥∥∥∥

Since
∥∥´ f ′ · Tng′ dµ∥∥→ 0 and ε was arbitrary this shows that

∥∥´ f · Tng dµ∥∥→
0, as desired.

For the first part, using the identities
´

1A dµ = µ(A), Tn1A = 1T−nA

and 1A1B = 1A∩B , we see that mixing is equivalent to the limit above for
indicator functions, and since the integral is multilinear in f, g it holds for linear
combinations of indicator functions and these combinations are dense in L2, we
are done by what we proved above.

Example 3.3.4. Let X = AZ for a finite set A, take the product σ-algebra, and
µ a product measure with marginal given by a probability vector p = (pa)a∈A.
Let σ : X → X be the shift map (σx)n = xn+1. We claim that this map is
mixing and hence ergodic.

To prove this note that if f(x) = f̃(x1, . . . , xk) depends on the first k co-
ordinates of the input, then σnf(x) = f̃(xk+1, . . . , xk+n). If f, g are two such
functions then for n large enough, σng and f depend on different coordinates,
and hence, because µ is a product measure, they are independent in the sense
of probability theory:

ˆ
f · σng dµ =

ˆ
f dµ ·

ˆ
σng dµ =

ˆ
f dµ ·

ˆ
g dµ

so the same is true when taking n → ∞. Mixing follows from the previous
proposition.



Chapter 4

The ergodic theorem

4.1 Preliminaries
We have seen that in a measure preserving system, a.e. x ∈ A returns to A
infinitely often. Now we will see that more is true: these returns occur with a
definite frequency which, in the ergodic case, is just µ(A); in the non-ergodic
case the limit is µx(A), where µx is the ergodic component to which x belongs.

This phenomenon is better formulated at an analytic level in terms of av-
erages of functions along an orbit. To this end let us introduce some notation.
Let T : V → V be a linear operator of a normed space V , and suppose T is
a contraction, i.e. ‖Tf‖ ≤ ‖f‖. This is the case when T is induced from a
measure-preserving transformation (in fact we have equality). For v ∈ V define

SNv =
1

N

N−1∑
n=0

Tnv

Note that in the dynamical setting, the frequency of visits x to A up to time
N is SN1A(x) = 1

N

∑N−1
n=0 1A(Tnx). Clearly SN is linear, and since T is a

contraction ‖Tnv‖ ≤ ‖v‖ for n ≥ 1, so by the triangle inequality, ‖SNv‖ ≤
1
N

∑N−1
n=0 ‖Tnv‖ ≤ ‖v‖. Thus SN are also contractions. This has the following

useful consequence.

Lemma 4.1.1. Let T : V → V as above and let S : V → V be another bounded
linear operator. Suppose that V0 ⊆ V is a dense subset and that SNv → Sv as
N →∞ for all v ∈ V0. Then the same is true for all v ∈ V .

Proof. Let v ∈ V and w ∈ V0. Then

lim sup
N→∞

‖SNv − Sv‖ ≤ lim sup
N→∞

‖SNv − SNw‖+ lim sup
N→∞

‖SNw − Sv‖

Since ‖SNv − SNw‖ = ‖SN (v − w)‖ ≤ ‖v − w‖ and SNw → Sw (because w ∈
V0), we have

lim sup
N→∞

‖SNv − Sv‖ ≤ ‖v − w‖+ ‖Sw − Sv‖ ≤ (1 + ‖S‖) · ‖v − w‖

16
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Since ‖v − w‖ can be made arbitrarily small, the lemma follows.

4.2 Mean ergodic theorem
Historically, the first ergodic theorem is von-Neuman’s “mean” ergodic theorem,
which can be formulated in a purely Hilbert-space setting (and it is not hard
to adapt it to LP ). Recall that if T : V → V is a bounded linear operator
of a Hilbert space then T ∗ : V → V is the adjoint operator, characterized by
〈v, Tw〉 = 〈T ∗v, w〉 for v, w ∈ V , and satisfies ‖T ∗‖ = ‖T‖.

Lemma 4.2.1. Let T : V → V be a contracting linear operator of a Hilbert
space. Then v ∈ V is T -invariant if and only if it is T ∗-invariant.

Remark 4.2.2. When T is unitary (which is one of the main cases of interest to
us) this lemma is trivial. Note however that without the contraction assumption
this is false even in Rd.

Proof. Since (T ∗)∗ = T it suffices to prove that T ∗v = v implies Tv = v.

‖v − Tv‖2 = 〈v − Tv, v − Tv〉
= ‖v‖2 + ‖Tv‖2 − 〈Tv, v〉 − 〈v, Tv〉
= ‖v‖2 + ‖Tv‖2 − 〈v, T ∗v〉 − 〈T ∗v, v〉
= ‖v‖2 + ‖Tv‖2 − 〈v, v〉 − 〈v, v〉
= ‖Tv‖2 − ‖v‖2

≤ 0

where the last inequality is because T is a contraction.

Let use write U for the space of T -invariant vectors:

U = {v ∈ V : Tv = v}

This is a closed linear subspace of V .

Lemma 4.2.3. U⊥ = {w = Tw : w ∈ V }.

Proof. Write U ′ = {w = Tw : w ∈ V }. Then It is enough to show that (U ′)⊥ =
U . Now,

w ⊥ U ′ ⇐⇒ ∀v ∈ V 〈w, v − Tv〉 = 0

⇐⇒ ∀v ∈ V 〈w, v〉 − 〈w, Tv〉 = 0

⇐⇒ ∀v ∈ V 〈w, v〉 − 〈T ∗w, v〉 = 0

∀v ∈ V 〈w − T ∗w, v〉 = 0

⇐⇒ w = T ∗w

⇐⇒ w = Tw

where the last line was from the previous lemma. This proves the claim.
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Theorem 4.2.4 (Hilbert-space mean ergodic theorem). Let T be a linear con-
traction of a Hilbert space V , i.e. ‖Tv‖ ≤ ‖v‖. Let V0 ≤ V denote the closed
subspace of T -invariant vectors (i.e. V0 = ker(T − I)) and π the orthogonal
projection to V0. Then

1

N

N−1∑
n=0

Tnv → πv for all v ∈ V

Proof. If v ∈ V0 then SNv = v and so SNv → v = πv trivially. Since V =
V0 ⊕ V ⊥0 and SN is linear, it suffices for us to show that SNv → 0 for v ∈ V ⊥0 .
By the previous lemma,

V ⊥0 = {v − Tv : v ∈ V } (4.1)

Thus, by Lemma 4.1.1 we must only show that SN (v− Tv)→ 0 for v ∈ V , and
this follows from

SN (v − Tv) =
1

N

N−1∑
n=0

Tn(v − Tv)

=
1

N
(w − TN+1w)

→ 0

where in the last step we used
∥∥w − TN+1w

∥∥ ≤ ‖w‖+
∥∥TN+1w

∥∥ ≤ 2 ‖w‖.

Now let (X,B, µ, T ) be a measure preserving system and let T denote also
the Koopman operator induced on L2 by T . Then the space V0 of T -invariant
vectors is just L2(X, I, µ), where I ⊆ B is the σ-algebra of invariant sets, and
the orthogonal projection π to V0 is just the conditional expectation operator,
πf = E(f |I) (see the Appendix). We derive the following:

Corollary 4.2.5 (Dynamical mean ergodic theorem). Let (X,B, µ, T ) be a
measure-preserving system, let I denote the σ-algebra of invariant sets, and
let π denote the orthogonal projection from L(X,B, µ) to the closed subspace
L2(X, I, µ). Then for every f ∈ L2,

1

N

N−1∑
n=0

Tnf → E(f |I) in L2

In particular, if the system is ergodic then the limit is constant:

1

N

N−1∑
n=0

Tnf →
ˆ
f dµ in L2

Specializing to f = 1A, and noting that L2-convergence implies, for example,
convergence in probability, the last result says that on an arbitrarily large part
of the space, the frequency of visits of an orbit to A up to time N is arbitrarily
close to µ(A), if N is large enough.
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4.3 The pointwise ergodic theorem
Very shortly after von-Neuman’s mean ergodic theorem (and appearing in print
before it), Birkhoff proved a stronger version in which convergence takes place
a.e. and in L1.

Theorem 4.3.1 (Pointwise ergodic theorem). Let (X,B, µ, T ) be a measure-
preserving system, let I denote the σ-algebra of invariant sets. Then for any
f ∈ L1(µ),

1

N

N−1∑
n=0

Tnf → E(f |I) a.e. and in L1

In particular, if the system is ergodic then the limit is constant:

1

N

N−1∑
n=0

Tnf →
ˆ
f dµ a.e. and in L1

We shall see several proofs of this result. The first and most “standard” proof
follows the same scheme as the mean ergodic theorem: one first establishes the
statement for a dense subspace V ⊆ L1, and then uses some continuity property
to extend to all of L1. The first step is nearly identical to the proof of the mean
ergodic theorem.

Proposition 4.3.2. There is a dense subspace V ⊆ L1such that the conclusion
of the theorem holds for every f ∈ V .

Proof. We temporarily work in L2. Let V1 denote the set of invariant f ∈ L2,
for which the theorem holds trivially because SNf = f for all N . Let V2 ⊆ L2

denote the linear span of functions of the form f = g − Tg for g ∈ L∞. The
theorem also holds for these, since∥∥g + TN+1g

∥∥
∞ ≤ ‖g‖∞ +

∥∥TN+1g
∥∥
∞ = 2 ‖g‖∞

and therefore

1

N

N−1∑
n=0

Tn(g − Tg) =
1

N
(g − TN+1g)→ 0 a.e. and in L1

Set V = V1 + V2. By linearity of SN , the theorem holds for f ∈ V1 + V2. Now,
L∞ is dense in L2 and T is continuous on L2, so V 2 = {g − Tg : g ∈ L2}. In
the proof of the mean ergodic theorem we saw that L2 = V1⊕V 2, so V = V1⊕V2

is dense in L2, and hence in L1, as required.

By Lemma 4.1.1, this proves the ergodic theorem in the sense of L1-convergence
for all f ∈ L1. In order to similarly extend the pointwise version to all of L1

we need a little bit of “continuity”, which is provided by the following.
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Theorem 4.3.3 (Maximal inequality). Let f ∈ L1with f ≥ 0 and SNf =
1
N

∑N−1
n=0 T

nf . Then for every t,

µ

(
x : sup

N
SNf(x) > t

)
≤ 1

t

ˆ
f dµ

Before giving the proof let us show how this finishes the proof of the ergodic
theorem. Write S = E(·|I), which is a bounded linear operator on L1, let f ∈ L1

and g ∈ V . Then

|SNf − Sf | ≤ |SNf − SNg|+ |SNg − Sg|
≤ SN |f − g|+ |SNg − Sf |

Now, SNg → Sg a.e., hence |SNg − Sf | → |S(g − f)| ≤ S|f − g| a.e. Thus,

lim sup
N→∞

|SNf − Sf | ≤ lim sup
N→∞

SN |f − g|+ S|g − f |

If the left hand side is > ε then at least one of the terms on the right is > ε/2.
Therefore,

µ

(
lim sup
N→∞

|SNf − Sf | > ε

)
≤ µ

(
lim sup
N→∞

SN |f − g| > ε/2

)
+µ (S|g − f | > ε/2)

Now, by the maximal inequality, the first term on the right side is bounded by
1
ε/2 ‖f − g‖, and by Markov’s inequality and the identity

´
Shdµ =

´
h dµ, the

second term is bounded by 1
ε/2 ‖g − f‖ as well. Thus for any ε > 0 and g ∈ V

we have found that

µ

(
lim sup
N→∞

|SNf − Sf | > ε

)
≤ 4

ε
‖f − g‖

For each fixed ε > 0, the right hand side can be made arbitrarily close to 0,
hence lim sup |SNf−Sf | = 0 a.e. which is just SNf → Sf = E(f |I), as claimed.

We now return to the maximal inequality which will be proved by reducing
it to a purely combinatorial statement about functions on the integers. Given a
function f̂ : N→ [0,∞) and a set ∅ 6= I ⊆ N, the average of f̂ over I is denoted

SI f̂ =
1

|I|
∑
i∈I

f̂(i)

In the following discussion we write [i, j] also for integer segments, i.e. [i, j]∩Z.

Proposition 4.3.4 (Discrete maximal inequality). Let f̂ : N → [0,∞). Let
J ⊆ I ⊆ N be finite intervals, and for each j ∈ J let Ij ⊆ I be a sub-interval of
I whose left endpoint is j. Suppose that SIj f̂ > t for all j ∈ J . Then

SI f̂ > t · |J |
|I|
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Proof. Suppose first that the intervals {Ij} are disjoint. Then together with
U = I \

⋃
Ij they form a partition of I, and by splitting the average SI f̂

according to this partition, we have the identity

SI f̂ =
|U |
|I|

SU f̂ +
∑ |Ij |
|I|

SIj f̂

Since f̂ ≥ 0 also SU f̂ ≥ 0, and so

SI f̂ ≥
∑ |Ij |
|I|

SIj f̂ ≥
1

|I|
∑

t|Ij | ≥ t
|
⋃
Ij |
|I|

Now, {Ij}j∈J is not a disjoint family, but the above applies to every disjoint
sub-collection of it. Therefor we will be done if we can extract from {Ij}j∈J a
disjoint sub-collection whose union is of size at least |J |. This is the content of
the next lemma.

Lemma 4.3.5 (Covering lemma). Let I, J, {Ij}j∈J be intervals as above. Then
there is a subset J0 ⊆ J such that (a) J ⊆

⋃
i∈J0 Ij and (b) the collection of

intervals {Ji}i∈J0 is pairwise disjoint.

Proof. Let Ij = [j, j+N(j)−1]. We define J0 = {jk} by induction using a greedy
procedure. Let j1 = min J be the leftmost point. Assuming we have defined j1 <
. . . < jk such that Ij1 , . . . , Ijkare pairwise disjoint and cover J∩[0, jk+N(jk)−1].
As long as this is not all of J , define

jk+1 = min{I \ [0, jk +N(jk)− 1]}

It is clear that the extended collection satisfies the same conditions, so we can
continue until we have covered all of J .

We return now to the dynamical setting. Each x ∈ X defines a function
f̂ = f̂x : N→ [0,∞) by evaluating f along the orbit:

f̂(i) = f(T ix)

Let
A = {sup

N
SNf > t}

and note that if T jx ∈ A then there is an N = N(j) such that SNf(T jx) > t.
Writing

Ij = [j, j +N(j)− 1]

this is the same as
SIj f̂ > t

Fixing a large M (we eventually take M → ∞), consider the interval I =
[0,M − 1] and the collection {Ij}j∈J , where

J = Jx = {0 ≤ j ≤M − 1 : T jx ∈ A and Ij ⊆ [0,M − 1]}
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The proposition then gives

S[0,M−1]f̂ > t · |J |
M

In order to estimate the size of J we will restrict to intervals of some bounded
length R > 0 (which we eventually will send to infinity). Let

AR = { sup
0≤N≤R

SNf > t}

Then
J ⊇ {0 ≤ j ≤M −R− 1 : T jx ∈ AR}

and if we write h = 1AR
, then we have

|J | ≥
M−R−1∑
j=0

ĥ(j)

= (M −R− 1)S[0,M−R−1]ĥ

With this notation now in place,the above becomes

S[0,M−1]f̂x > t · M −R− 1

M
· S[0,M−R−1]ĥx (4.2)

and notice that the average on the right-hand side is just frequency of visits to
AR up to time M .

We now apply a general principle called the transference principle, which
relates the integral

´
g dµ of a function g : X → R its discrete averages SI ĝ

along orbits: using
´
g =
´
Tng, we have

ˆ
g dµ =

1

M

M−1∑
m=0

ˆ
Tmg dµ

=

ˆ (
1

M

M−1∑
m=0

Tmg

)
dµ

=

ˆ
S[0,M−1]ĝx dµ(x)

Applying this to f and using 4.2, we obtain
ˆ
f dµ = S[0,M−1]f̂x

> t · M −R− 1

M
·
ˆ
h dµ

= t · (1− R− 1

M
) ·
ˆ

1AR
dµ

= t · (1− R− 1

M
) · µ(AR)
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Letting M →∞, this is ˆ
f dµ > t · µ(AR)

Finally, letting R → ∞ and noting that µ(AR) → µ(A), we conclude that´
f dµ > t · µ(A), which is what was claimed.

Example 4.3.6. Let (ξn)∞n=1 be an independent identically distributed se-
quence of random variables represented by a product measure on (X,B, µ) =
(Ω,F , P )N, with ξn(ω) = ξ(ωn) for some ξ ∈ L1(Ω,F , P ). Let σ : X → X be
the shift, which preserves µ and is ergodic, and ξn = ξ0(σn). Since the shift
acts ergodically on product measures, the ergodic theorem implies

1

N

N−1∑
n=0

ξn =
1

N

N−1∑
n=0

σnξ0 → E(ξ0|I) = Eξ0 a.e.

Thus the ergodic theorem generalizes the law of large numbers. However it is a
very broad generalization: it holds for any stationary process (ξn)∞n=1 without
any independence assumption, as long as the process is ergodic.

When T is invertible it is also natural to consider the two-sided averages
SN = 1

2N+1

∑N
n=−N T

nf . Up to an extra term 1
2N+1f , this is just

1
2SN (T, f) +

1
2SNT

−1, f), where we write SN (T, f) to emphasize which map is being used.
Since both of these converge in L1 and a.e. to the same function E(f |I), the
same is true for SNf .

4.4 Interpretation in the non-ergodic case
Let (X,B, µ, T ) be a measure preserving system, andX = X1∪X2 whereX1, X2

are complementary invariant sets. Suppose that, up to measure 0, these are the
only nontrivial invariant sets, so that I = {∅, X1, X2, X} (up to measure 0).
Write

µi =
1

µ(Xi)
µ|Xi

for the conditional measures on Xi. It follows that

E(f |I)(x) =

ˆ
fdµ1 · 1X1

(x) +

ˆ
fdµ2 · 1X2

(x) =

{ ´
fdµ1 x ∈ X1´
fdµ2 x ∈ X2

(see Example in the appendix). Therefore, for µ-a.e. x ∈ X1 (i.e. µ1-a.e. x),

SNf(x)→
ˆ
fdµ1

and for µ-a.e. x ∈ X2 (i.e. µ2-a.e. x),

SNf(x)→
ˆ
fdµ2
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In particular, for f = 1A, note that the frequency of visits of the orbit of
a typical point x to A varies depending on whether x ∈ X1 or x ∈ X2. In
particular for x ∈ A, this shows that the rate of recurrence in the Poincaré
recurrence theorem may depend on the point (again, on whether x ∈ X1 or
X2).

4.5 Ergodic decomposition
Let (X,B, µi, T ) be a measure preserving system, X1 an invariant set with
0 < µ(X1) < 1, and X2 = X \ X1 also invariant. Let µi = 1

µ(Xi)
µ|Xi

are
invariant measures, and

µ = µ(X1)µ1 + µ(X2)µ2

presents µ as a convex combination of T -invariant measures. If, as in the ex-
ample in the last section, there are no other invariant sets besides X1, X2 (up
to µ-measure 0), then µ1, µ2 are ergodic, but if they are not ergodic one can
continue to decompose them and obtain a refined convex presentation of µ. This
process may or may not stop after a finite number of steps with a presentation
of µ as a convex combination of ergodic measures. However, even when it does
not terminate, such a presentation exists.

Let (Y, C) and (Z,D) be measurable spaces. A measure-values map from Y
to Z is a map ν : Y → P(Z), written as y 7→ νy. Such a map is a measurable
map if y 7→ νy(D) is measurable for all D ∈ D.

Given a measurable map ν : Y → P(Z) and a measure µ ∈ P(Y ), let

µ =

ˆ
νydµ(y)

denote the measure on (Z,D) given by D 7→
´
νy(D)dµ(y). This is well defined

by measurability and is easily checked to be a probability measure.

Definition 4.5.1. A standard probability space is a probability space (X,B, µ)
such that there is a complete separable metric d on X for which B is the Borel
σ-algebra.

Let (X,B, µ, T ) be a measure preserving system on a probability space. Let
I ⊆ B denote the family of T -invariant measurable sets. It is easy to check that
I is a σ-algebra.

The σ-algebra I in general is not countably generated. Consider for example
the case of an invertible ergodic transformation on a Borel space, such as an
irrational circle rotation or two-sided Bernoulli shift. Then I consists only of
sets of measure 0 and 1. If I were countably generated by {In}∞n=1, say, then
for each n either µ(In) = 1 or µ(X \ In) = 1. Set Fn = In or Fn = X \ In
according to these possibilities. Then F =

⋂
Fn is an invariant set of measure

1 and is an atom of I. But the atoms of I are the orbits, since each point in X
is measurable and hence every countable set is. But this would imply that µ is
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supported on a single countable orbit, contradicting the assumption that it is
non-atomic.

We shall work instead with a fixed countably generated µ-dense sub-σ-
algebra I0 of I. Then L1(X, I, µ) is a closed subspace of L1(X,B, µ), and
since the latter is separable (due to standardness of the probability space), so is
the former. Choose a dense countable sequence fn ∈ L1(X, I, µ), choosing rep-
resentatives of the functions that are genuinely I measurable, not just modulo a
B-measurable nullset. Now consider the countable family of sets An,p,q = {p <
fn < q}, where p, q ∈ Q, and let I0 be the σ-algebra that they generate. Clearly
I0 ⊆ I and all of the fn are I0-measurable, so L1(X, I0, µ) = L1(X, I, µ). In
particular, I is contained in the µ-completion of I0.

Let I0(y) denote the atom of I0 to which y belongs.

Theorem 4.5.2 (Ergodic decomposition theorem). Let (X,B, µ, T ) be a mea-
sure preserving system on a standard probability space, and let I, I0 be as above.
Then there is an I0-measurable map X → P(X), x 7→ µxP such that

1. µ =
´
µx dµ(x)

2. µy is T -invariant, ergodic, and supported on I0(y) for µ-a.e. y.

3. For every f ∈ L1(µ) we have E(f |I)(y) =
´
f dµy for µ-a.e. y.

Furthermore the representation is unique in the sense that if {µ′y} is any other
family with the same properties then µy = µ′y for µ-a.e. y.

We will not prove this theorem here.
The measure µy is called the “ergodic component” of y (it is defined only

µ-a.s.). Sometimes I0(y) is also called the ergodic component, although this
depends on the choice of I0.

Corollary 4.5.3. With the notation of the previous theorem, for any f ∈ L1(µ),

SNf →
ˆ
fdµy

for µ-a.e. y.
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Isomorphism

5.1 Isomorphism of probability spaces
Definition 5.1.1. Probability spaces (X,B, µ) and (Y, C, ν) are isomorphic if
there are measurable sets X0 ⊆ X and Y0 ⊆ Y of full measure, and a map
f : X0 → Y0 which is 1-1 and both f and f−1 are measurable and µ(f−1(C)) =
ν(C) for all C ∈ C, C ⊆ Y0. Such a map f is called an isomorphism between X
and Y .

Proposition 5.1.2. Let (X,B, µ) and (Y, C, ν) be standard probability spaces
and f : X → Y a 1-1 measurable and measure-preserving map. Then f is an
isomorphism between X and Y .

Proof. It suffices to show that for every A ∈ B with µ(A) > 0 there is a set A′ ⊆
A with µ(A′) > 1

2µ(A), f(A′) ∈ C, and (f |A′)−1 : f(A′) → A′ is measurable.
Indeed, given this we start with A1 = X and construct A′1, and define A2 =
X \A′1. Obtain A′2 and set A3 = X \ (A′1 ∪A′2). At the n-th step, µ(X \ (A′1 ∪
. . .∪A′n)) < 2−n so X0 =

⋃
A′n has full measure, and has the required property

(note that its image is measurable and since f is measure-preserving, also f(X0)
has full measure).

To prove the claim, let A ∈ B and µ(A) > 0. Let dX , dY be complete
separable metrics on X,Y respectively under which the σ-algebras are Borel.
By Egorov’s theorem, we can find A′′ ⊆ A with µ(A′′) > 1

2µ(A) and f |A′′ is
continuous in these metrics. Now recall that a Borel probability measure on a
separable complete metric space is inner regular (also outer regular), so we can
find A′ ⊆ A′′ with µ(A′) > 1

2µ(A) and A′ compact. Now f |A′ : A′ → f(A′) is a
continuous injection whose domain is a compact set so the image is a compact
set and the inverse is continuous, hence measurable.

Proposition 5.1.3. Any two standard probability spaces whose measures are
non-atomic are isomorphic.

We do not prove this here.

26
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5.2 Isomorphism of measure preserving systems
Proposition 5.2.1. Measure-preserving systems (X,B, µ, T ) and (Y, C, ν, S)
are isomorphic if there are sets of full measure X0 ⊆ X, Y0 ⊆ Y , invariant
in the sense that T−1X0 = X0, S

−1Y0 = Y0, and a bijection map f : X0 → Y0

such that f, f−1 are measurable and S ◦ f = f ◦ T , i.e. Sf(x) = f(Tx) for all
x ∈ X0. In this case f is called an isomorphism.

Clearly isomorphic systems have isomorphic underlying probability spaces.

Proposition 5.2.2. Let (X,B, µ, T ) and (Y, C, ν, S) be measure-preserving sys-
tems on standard Borel spaces, and let f : X → Y be an isomorphism satisfying
Sf = fT . Then the systems are isomorphic.

Proof. By the previous proposition there are X0 ⊆ X, Y0 ⊆ Y of full mea-
sure so that f(X0) = Y0 and f |X0

, (f |X0
)−1 are measurable. Replacing X0

by
⋃
N

⋂
n>N T

−nX0 and Y0 by
⋃
N

⋂
n>N S

−nY0 ensures that they are invari-
ant.

We shall generally not distinguish between isomorphic systems.

5.3 Spectral isomorphism
If π : X → Y is an isomorphism between measure-preserving systems (X,B, µ, T )
and (Y, C, ν, S), then there is an induced map π : Lp(ν)→ Lp(µ) for every p ≥ 1
given by πf(x) = f(πx). The fact that this map is well defined, preserves in-
tegrals and norms is proved in the same way as the caseY = X which we have
already seen.

In particular follows for p = 2 that π is a unitary equivalence between
the operators T : L2(µ) → L2(µ) and S : L2(ν) → L2(ν), that is, π is a
linear isometry satisfying πS = Tπ. This relationship means that the properties
of the operators S, T on L2 are the same: they have the same eigenvalues,
equal eigenvalues have eigenspaces of equal dimensions, and more generally for
v ∈ L2(ν) the spectral measures of v and πv under S, T , respectively, are the
same.

This shows ergodicity is an isomorphism invariant, since it is equivalent
to the eigenvalue 1 having a 1-dimensional eigenspace. Similarly, mixing is an
isomorphism invariant, since it can be characterized by the property 〈f, Tng〉 →
〈f, 1〉 〈g, 1〉, where in L2 language (the function 1 is characterized by the property
that ‖1‖2 and T1 = 1; also −1 has this property by using −1 instead of 1 leads
to the same condition).

Example 5.3.1. Let B be the Borel σ-algebra of S1 and µ normalized length
measure. For θ ∈ S1 let Rθ : S1 → S1 be given by Rθz = θz. Fix α1, α2 ∈ R
and let θi = 22πiαi ∈ S1. Then (S1,B, µ,Rθ1) ∼= (X,B, µ,Rθ1) if and only if
either α1, α2 are roots of unity of the same order, or α1 = ±α2.
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Proof. Let χn(z) = zn. Then {χn)n∈Z form an orthonormal basis of L2(µ) (for
instance, they are uniformly dense in C(S1) by Stone-Weierstrass, and C(S1)
is dense in L2). Now

Rθχn(z) = χn(θz) = (θz)n = θnχn(z)

so χn is an eigenfunction of Rθ with eigenvalue θn. It follows that the eigenvalues
of Rθ are {θn}n∈Z (there are no other eigenvalues because, since Rθ : L2 → L2

is unitary, eigenvectors for different eigenvalues are orthogonal, but {χn}n∈Z
spans a dense subspace of L2, so its orthogonal complement is trivial).

Now, if the systems were isomorphic that θ1 = (θ2)n and θ2 = (θ1)m for some
m,n ∈ Z \ {0}, which means that α1 = nα2 mod 1 and α2 = mα1 mod 1, hence
α1 = mnα1 mod 1. For this to occur, either m = n = 1 or m = n = −1, or else
α1 = k/(mn − 1) for some k ∈ Z. In the latter case also α2 = mk/(mn − 1),
and evidently θ1, θ2 are roots of unity of the same order (since m is relatively
prime to mn− 1).

5.4 Spectral isomorphism of Bernoulli measures
A unitary operator T : H → H has countable Lebesgue spectrum if there are
unit vectors v0, v1, v2, . . . ∈ H that {v0}∪{Tnvi}n∈Z,i∈N is an orthonormal basis
of H. Any two such operators are unitarily equivalent, since if T ′ : H ′ → H ′

and {u′i} are another such system then we can define π(Tnui) = (T ′)nu′i and
this map extends to a unitary map H → H ′ with T ′π = πT .

Let (X0,B0, µ0) be a nontrivial separable probability space (µ0 is not a delta-
measure). Let X = XZ, B = BZ0 and µ = µZ

0 be the product space and σ denote
the shift. Let H = L2

0(µ), i.e. the space of functions with integral 0. Note that
σ : H → H is a unitary operator.

Claim 5.4.1. σ|H has countable Lebesgue spectrum.

Proof. Let {fi}∞i=0 be an orthonormal basis of L2(µ0) with f0 = 1 (if L2(µ0) is
finite dimensional there are finitely many functions).

Let I denote the set of maps i : Z → {1, 2, 3, . . .} such that i(n) = 1 for all
but finitely many n ∈ Z. For i ∈ I let

fi(x) =
∏
n∈Z

fi(n)(xn) =
∏
n∈Z

σnf̃i(n)

Note that the sum is only formally infinite, since all but finitely many of the
terms are 1.

The family {fi}i∈I is an orthogonal basis of L2
0(µ). Indeed, ‖fi‖ = 1, and
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given i, j ∈ I, |fi| ≡ 1 with i 6= j,

〈fi, fj〉 =

ˆ ∏
n∈Z

fi(n)(xn)fj(n)(xn)dµ(x)

=
∏
n∈Z

ˆ
fi(n)(xn)fj(n)(xn)dµ(x)

=
∏
n∈Z

ˆ
fi(n)(ξ)fj(n)(ξ)dµ0(ξ)

= 0

because i(n) 6= j(n) for some n and fi(n) ⊥ fj(n) in L2(µ0). To see that {fi}i∈I
span a dense subspace of L2 note that it is immediate that the span is dense
in the set of L1(µ) functions depending on coordinates −N, . . . , N , and the
increasing union of these subspaces is evidently dense in L2(µ).

Now, if we let σ denote the shift on NZ, clearly

σfi = fσi

Let 1 = (. . . 1, 1, 1, . . .) ∈ I, and I ′ = I \ {1}. Then σ acts on I ′ without finite
orbits, so we can find I ′′ ⊆ I ′ such that {σnfi}n∈Z,i∈I′′ = {fi}i∈I′ , and this
shows that σ has countable Lebesgue spectrum.

In particular, one the spectral level, all shift maps with a product measures
are isomorphic.

An early challenge in ergodic theory was:

Problem 5.4.2. Are the product measures { 1
2 ,

1
2}

Z and { 1
3 ,

1
3 ,

1
3}

Z with the
shift map isomorphic?

As probability spaces the two are isomorphic, and spectrally they are iso-
morphic. It turns out they are not isomorphic; the tool that distinguishes them
is entropy.



Chapter 6

Entropy

6.1 Shannon entropy
Let (X,B, µ) be a probability space. A partition of X is a countable collection A
of disjoint measurable sets whose union has full measure. We will focus almost
exclusively on finite partitions A = {A1, . . . , An}.

How can one quantify how “large” a partition is (relative to a measure)? A
crude measure is |A|, the number of elements in the partition. Only slightly
more refined would be to count the sets A ∈ A of positive mass. Both these
options ignore how mass is distributed. For example, a measure on two points
may give them both mass 1/2, or give one mass 0.9999 and mass 0.0001 to the
other; certainly the first is more uniform than the second.

Definition 6.1.1. The Shannon entropy of µ with respect to A is the non-
negative number

Hµ(A) = −
∑
A∈A

µ(A) logµ(A)

By convention the logarithm is taken in base 2 and 0 log 0 = 0. For infinite
partitions Hµ(A) may be infinite.

Observe that Hµ(A) depends only on the probability vector (µ(A))A∈A. For
a probability vector p = (pi) it is convenient to introduce the notation

H(p) = H(p1, p2, . . .) = −
∑
i

pi log pi

Example 6.1.2. For p = (p, 1−p) the entropyH(p) = −p log p−(1−p) log(1−p)
depends on the single variable p. It is an exercise in calculus to verify that h(·) is
strictly concave on [0, 1], increasing on [0, 1/2] and decreasing on [1/2, 1], with a
unique maximum value h(1/2) = 1 and minimal values h(0) = h(1) = 0. Thus,
the entropy is minimal when all the mass is on one atom of A, and maximal
when it is uniformly distributed.

Properties of entropy

30
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(E1) 0 ≤ H(µ,A) ≤ log |A|:
(a) H(µ,A) = 0 if and only if µ(A) = 1 for some A ∈ A.
(b) H(µ,A) = log |A| if and only if µ is uniform on A, that is,

µ(A) = 1/|A| for A ∈ A.
(E2) H(·,A) is concave: for probability measures µ, ν on and 0 < α < 1,

H(αµ+ (1− α)ν,A) ≥ αH(µ,A) + (1− α)H(ν,A)

with equality if and only if µ(A) = ν(A) for all A ∈ A.

Proof. We first prove (E2). Since f(t) = −t log t is strictly concave, by Jensen’s
inequality,

H(αµ+ (1− α)ν,A) =
∑
A∈A

f(αµ(A) + (1− α)ν(A))

≥
∑
A∈A

(αf(µ(A)) + (1− α)f(ν(A)))

= αH(µ,A) + (1− α)H(ν,A)

with equality if and only if µ(A) = ν(A) for all A ∈ A.
The left inequality of (E1) is trivial. For the right one consider the func-

tion F (p) = −
∑
A∈A pA log pA on the simplex ∆ of probability vectors p =

(pA)A∈A. It suffices to show that the unique maximum is attained at p∗ =
(1/|A|, . . . , 1/|A|), since F (p∗) = log |A|. The simplex ∆ is compact and convex
and by (E2), H(·) is strictly concave, so there is a unique maximizing point p∗.
Since F (·) is invariant under permutation of its variables, the maximizing point
p∗ must be similarly invariant, and hence all its coordinates are equal. Since it
is a probability vector they are are equal to 1/|A|.

For a set B of positive measure, let µB denote the conditional probability mea-
sure µB(C) = µ(B ∩C)/µ(B). Note that for a partition B we have the identity

µ =
∑
B∈B

µ(B) · µB (6.1)

The conditional entropy of µ and A given another partition B = {Bi} is defined
by

H(µ,A|B) =
∑
B∈B

µ(B)H(µB ,A)

This is just the average over B ∈ B of the entropy of A with respect to the
conditional measure on B.

Definition 6.1.3. Let A,B be partitions of the same space.

1. The join of A,B is the partition

A ∨ B = {A ∩B : A ∈ A , B ∈ B}
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2. A refines B (up to measure 0) if every A ∈ A is contained in some B ∈ B
(up to measure 0).

3. A,B are independent if µ(A ∩B) = µ(A)µ(B) for A ∈ A, B ∈ B.

Properties of entropy (continued)

(E2’) H(·,A|B) is concave:
(E3) H(µ,A ∨ B) = H(µ,A) +H(µ,B|A)

(E4) H(µ,A∨B) ≥ H(µ,A) with equality if and only if A refines B up to
µ-measure 0.

(E5) H(µ,A ∨ B) ≤ H(µ,A) + H(µ,B) with equality if and only if A,B
are independent. Equivalently, Hµ(B|A) ≤ H(B) with equality if and
only if A,B are independent.

Proof. For (E3), by algebraic manipulation,

H(µ,A ∨ B) =

= −
∑

A∈A,B∈B
µ(A ∩B) logµ(A ∩B)

=
∑
A∈A

µ(A)
∑
B∈B

µ(A ∩B)

µ(A)

(
− log

µ(A ∩B)

µ(A)
− logµ(A)

)
= −

∑
A∈A

µ(A) logµ(A)
∑
B∈B

µA(B)−
∑
A∈A

µ(A)
∑
B∈B

µA(B) logµA(B)

= H(µ,A) +H(µ,B|A)

The inequality in (E4) follows from (E3) since H(µ,B|A) ≥ 0; there is equality
if and only if H(µA,B) = 0 for all A ∈ A with µ(A) > 0. By (E1), this occurs
precisely when, on each A ∈ A with µ(A) 6= 0, the measure µA is supported on
a single atom of B, which means that A refines B up to measure 0.

For (E2’), let µ = αη + (1 − α)θ. For B ∈ B let βB = αη(B)
µ(B) . Then

(1− βB) = (1−α)θ(B)
µ(B) and

µB = βBηB + (1− βB)θB

hence

H(µ,A|B) =

=
∑
B∈B

µ(B)H(µB ,B) by definition

≥
∑
B∈B

µ(B) (βBH(ηB ,A) + (1− βB)H(θB ,A)) by concavity (E2)

=
∑
B∈B

(αη(B) ·H(ηB ,A) + (1− α)θ(B) ·H(θB ,A))

= αH(η,A|B) + (1− α)H(θ,A|B)
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Finally, (E5) follows from (E1) an (E2). First,

H(µ,B|A) =
∑
B∈B

µ(B)H(µB ,A) ≤ H(
∑
B∈B

µ(B)µB ,A) = H(µ,A)

It is clear that if A,B are independent there is equality. To see this is the only
way it occurs, one again uses strict convexity of H(p), which shows that the
independent case is the unique maximizer.

There are a few generalizations of these properties which are useful:

Properties of entropy (continued):

1. H(A,B|C) = H(B|C) +H(A|B ∨ C).
2. If C refines B then H(A|C) ≤ H(A|B), with equality if and only if
B = C.

Proof. For (1) expand both sides using (E3). For (2) use (1), noting that C =
C ∨ B since C refines B.

Corollary 6.1.4. If C refined B then

Remark. The definition of entropy may seem somewhat arbitrary. However, up
to normalization, it is essentially the only possible definition if we wish (E1)–
(E6) to hold. A proof of this can be found in Shannon’s original paper on
information theory and entropy, [?].

6.2 Entropy conditioned on a sigma-algebra
Let (X,F , µ) be a probability space and E ⊆ F a sub-σ-algebra. For a set
A ∈ F write

µx(A|E) = E(1A|E)(x)

This is well defined for µ-a.e.x and is called the conditional probability of A given
E (at x). Note that if E is generated by a finite partition E0 = {E1, . . . , EN} then,
as we have seen, E(1A|E)(x) = µ(A ∩ Ei)/µ(Ei) = µEi

(A) where Ei = E0(x) is
the element containing x, so µx(A|E) = µE0(x)(A).

Note that if A1, . . . , An ∈ F are disjoint then

µx(

n⋃
i=1

Ai) = E(1⋃Ai
|E)(x)

= E(

n∑
i=1

1Ai
|E)(x)

=

n∑
i=1

E(1Ai |E)(x)

=

n∑
i=1

µx(Ai|E)
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These equalities hold a.s. In particular if A is a finite sub-algebra of F then the
above holds a.s. for all sequences of disjoint sets in A (since there are finitely
many such sequences and for each it holds a.s.) and also a.s. µx(A|E) ≥ 0,
by positivity of the conditional expectation operator. Hence A 7→ µx(A|E) is a
probability measure on σ(A) for a.e. x.

Remark 6.2.1. It is possible to show that µx(·|E) extends to a probability mea-
sure on the full σ-algebra F in a way that satisfies many good properties, this
is the disintegration of µ over E . We will not use this.

Definition 6.2.2. Let A be a finite partition and and E ⊆ F a sub-σ-algebra,
Then the conditional entropy of A on E is

Hµ(A|E) =

ˆ
Hµx(·|E)(A) dµ(x)

Note that if E is generated by the partition {E1, . . . , EN} the formula above
reduces to

∑
µ(Ei)HµEi

(A) which is the usual definition of conditional entropy.

Lemma 6.2.3. Let A be a finite partition and E1 ⊆ E2 ⊆ F sub-σ-algebras.
Then Hµ(A|E1) ≥ Hµ(A|E2).

Proof. Since L2(E1) ⊆ L2(E2), The composition of projections L2(F)→ L2(E2)→
L2(E1) is just the projection L2(F)→ L2(E1). Since projection and conditional
expectation agree on L2, for A ∈ A we have

E(µx(A|E2)|E1) = E(E(1A|E2)|E1) = E(1A|E1) = µx(A|E1)

Let p(x) = (µx(A|E1))A∈A and q(x) = (µx(A|E2))A∈A, so that Hµ(A|E1) =´
H(p(x))dµ(x),Hµ(A|E2) =

´
H(q(x))dµ(x), and by the above p(x) = E(q(x)|E1).

Thus, by concavity of the entropy function,

Hµ(A|E1) =

ˆ
H
(
E(q(x)|E1)

)
dµ(x)

≥
ˆ

E
(
H(q(x))|E1

)
dµ(x)

=

ˆ
H(q(x)) dµ(x)

= Hµ(A, E2)

Lemma 6.2.4. Let E ⊆ F be a sub-σ-algebra and A a partition. Then H(µ,A|E) =
0 if and only if A is E-measurable up to measure 0.

Proof. The claim follows from the following chain of equivalent statements:

1. A is E-measurable up to measure 0.

2. E(1A|E) = 1A a.e. for all A ∈ A (e.g. because in L2 conditional expecta-
tion is the projection to L2(E) and its fixed-point set is its range).
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3. µx(·|E) is supported on a single A-atom for a.e. x (Since µx(A|E) =
E(1A|E)(x) , if E(1A|E)(x) = 1A a.e. for A ∈ A then a.s. µx takes only
values 0, 1. Conversely suppose it is atomic meaning E(1A|E) is 0, 1-valued
for each A ∈ A. Then E(1A|E)(x) = 1E for some set E ∈ E . We have

E(1X\E1A|E) = 1X\EE(1A|E) = 1X\E1E = 0

Since 1X\E1A ≥ 0 and conditional expectation is a positive integral-
preserving operator, this implies that 1X\E1A = 0 a.e., or A ⊆ E. If A 6= E
mod µ then µ(A) < µ(E) and we would have

´
1A <

´
1E =

´
E(1A|E)

which is impossible).

4. Hµx
(A|E) = 0 a.s.

5. Hµ(A|E) = 0 (because Hµ(A|E) =
´
Hµx

(A)dµ(x) and Hµx
(A) ≥ 0).

Recall that to families of sets A and E are independent if µ(A ∩ E) =
µ(A)µ(E) for A ∈ A and E ∈ E .

Lemma 6.2.5. Let E ⊆ F be a sub-σ-algebra and A a partition. Then Hµ(A|E) =
Hµ(A) if and only if A is independent of E.

Proof. If A is independent of E then 1A − µ(A) ⊥ 1E for all E ∈ E . By
approximation we find that 1A − µ(A) ⊥ L2(E). Since conditional expectation
is projection this shows that µx(A|E) = µ(A) a.s., so Hµx(·|E)(A) = Hµ(A) a.s.,
so Hµ(A|E) =

´
Hµx(·|E)(A)d(x) = Hµ(A).

Conversely suppose Hµ(A|E) = Hµ(A). Let E ∈ E and E0 = {E,X \ E}.
Then

Hµ(A) ≥ Hµ(A|E0) ≥ Hµ(A|E)

All are equalities, hence A is independent of E and x\E, since E ∈ E is arbitrary
A is independent of E .

Proposition 6.2.6. Let E1 ⊆ E2 ⊆ . . . ⊆ F be σ-algebras and E = σ(E1, E2, . . .).
Then for any finite partition A,

lim
n→∞

Hµ(A|En) = Hµ(A|E)

Proof. By the martingale convergence theorem, µx(A|En) = E(1A|En)→ E(1A|E) =
µx(A) a.e. for every A ∈ A, and hence a.e. simultaneously for A ∈ A. Thus
by continuity of p 7→ H(p), and identifying µx(·|E) with the probability vector
indexed by A, we have

Hµx(·|En)(A) = H(µx(·|En))→ H(µx(·|E)) = Hµx(·|E)(A)

a.e. as n→∞. Also by (E1) we have the uniform bound

Hµx(·|En)(A) ≤ log |A|
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Therefore by bounded convergence

Hµ(A|En) =

ˆ
Hµx(·|En)(A) dµ(x)→

ˆ
Hµx(·|E)(A) dµ(x) = Hµ(A|En)

as n→∞.

Remark 6.2.7. Mere generally one can show that

Hµ(A|E) = sup{Hµ(A|E0) : E0 ⊆ E a finite sub-σ-algebra}

When Bn are finite partitions,
∨n
k=1 Bk is a finite partition which we often

identify with the algebra it generates. However
∨∞
k=1 Bk is generally not a finite

partition and we define it instead to be the σ-algebra σ(B1,B2, . . .). With this
convention and the theorem above, we have

Hµ(A|
n∨
k=1

Bk)→ Hµ(A|
∞∨
k=1

Bk)

6.3 Entropy of discrete random variables
Every partition A = {Ai}i∈I of a probability space (X,F , µ) defines an I-valued
random variable x 7→ A(x), where A(x) = i if and only if x ∈ Ai.

Conversely, if ξ : X → I is a random variable and I is countable then the
sets Ai = ξ−1(i) form a partition A of X, and evidently A(x) = ξ(x).

If ξ : X → I and ζ : Y → J are random variables corresponding partitions
A,B respectively, then the pair (ξ, ζ) is an I × J-valued random variable corre-
sponding to the partition A ∨ B. The random variables are independent if and
only the corresponding partitions are.

Definition 6.3.1. Let A,B be the partitions corresponding to random variables
ξ, ζ defined on a common probability space. Then we denote

H(ξ) = H(A) , H(ξ, ζ) = H(A ∨ B) , H(ξ|ζ) = H(A|B)

etc.

One interprets H(ξ) as a measure of the randomness of ξ: If it takes on 1
value e.s. then H(ξ) = 0, if it takes on n values then H(ξ) ≤ log n with equality
if and only if ξ(a) = 1

n for each of these values; etc.

6.4 Entropy of a partition in a measure-preserving
system

For a map f : X → Y and a partition A of Y write f−1A = {f−1A : A ∈ A}.
This is a partition ofX. Assuming f is measurable, f−1A consists of measurable
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sets, and given measures µ on X and ν on Y and assuming that f preserves the
measure, the probability vector (µ(f−1A)A∈A) is equal to (ν(A))A∈A, hence

H(ν,B) = Hµ(f−1A)

Definition 6.4.1. Let (X,F , µ, T ) be a measure-preserving system and A a
partition of X. For n ≥ 0 we write

An =

n−1∨
k=0

T−kA

Note that if ξ is the random variable corresponding to A then An is the
random variable corresponding to the vector (ξ, T ξ, . . . , Tn−1ξ), which is the
initial n variables of the stationary process (ξn) where ξn = Tnξ.

The partition An is obtained by iteratively splitting each atom of An−1 into
at most |A| parts (according to T−nA). These parts may have unequal (relative)
masses. In particular the masses of the atoms of An may be unequal. Entropy
measures the average mass of these atoms in logarithmic scale.

Definition 6.4.2. The entropy hµ(T,A) of a partition A of a measure preserv-
ing system (X,F , µ, T ) is the limit

hµ(T,A) = lim
n→∞

1

n
Hµ(An)

= lim
n→∞

1

n
Hµ(

n−1∨
k=0

T−kA)

Lemma 6.4.3. The limit in the definition exists.

Proof. Let
an = Hµ(An)

Then the existence of the limit will follow if we show that an is sub-additive,
i.e. am+n ≤ am + an. Indeed,

am+n = Hµ(

m+n−1∨
k=0

T−kA)

= Hµ(

m−1∨
k=0

T−kA ∨
m+n−1∨
k=m

T−k)

≤ Hµ(

m−1∨
k=0

T−kA) +Hµ(

m+n−1∨
k=m

T−k) by (E3)

= am +Hµ(T−mAn)

= am +Hµ(An)

= am + an
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Example 6.4.4. Let A be a finite set, µ0 ∈ P(A), let X = AZ and µ = µZ
0

the product measure. Let σ denote the shift map. Let A be the partition of X
according tot he 0-th coordinate, i.e. for a ∈ A let

[a] = {x ∈ AZ : a0 = a}

andA = {[a]}a∈A. Then

T−k[a] = {x ∈ AZ : xk = a}

and because µ is a product measure, it follows that the partitions T−kA, k =
0, 1, . . ., form an independent family. Therefore by an iterated application of
(E5),

Hµ(An) = nHµ(A) = nH(µ0)

where we identify µ0 with the probability vector (µ0(a))a∈A. Thus

hµ(T,A) = nH(µ0)

Example 6.4.5. Let X = S1, µ length measure and Rθ a rotation. Let A
denote the partition of X into northern and southern hemispheres (with some
convention for the endpoints). Then R−nρ A is also a partition into two intervals.
The partition An is then also a partition into intervals, and these are determined
by the endpoints of the intervals T−kA, k = 0, . . . , n− 1. There are at most 2n
such endpoints (exactly 2n if θ is irrational) and so An consists of at most 2n
intervals. Hence Hµ(An) ≤ log 2n by (E1) and

0 ≤ hµ(T,A) ≤ lim
n→∞

log 2n

n
= 0

so hµ(An) = 0.

Lemma 6.4.6 (Elemntary properties). 1. 0 ≤ hµ(T,A) ≤ log |A|

2. hµ(T,A) ≤ hµ(T,A ∨ B) ≤ hµ(T,A) + hµ(T,B)

3. hµ(T,A) = hµ(T,Ak) for all k ≥ 1.

4. hµ(Tm,Am) = mhµ(T,A) for all k ∈ N.

5. If T is invertible then hµ(T,A) = hµ(T−1,A).

Proof. These are all easy consequences of the properties of Shannon entropy.
For example,. to prove (3) note that

(Am)n =

n−1∨
k=0

T−kAm

=

n−1∨
k=0

T−k(

m−1∨
j=0

T−jA)

=

n+m−1∨
k=0

T−kA

= An+m−1
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so

lim
n→∞

1

n
Hµ((Am)n) = lim

n→∞

n+m− 1

n
· 1

n+m− 1
Hµ(An+m−1) = hµ(T,A)

Proposition 6.4.7. Let (X,F , µ, T ) be a measure-preserving system and A a
finite partition. Then

hµ(T,A) = Hµ(A|
∞∨
k=1

T−kA)

Proof. Using (E3) we have

Hµ(

n−1∨
k=0

T−kA) = Hµ((

n−2∨
k=0

T−kA) ∨ T−(n−1)A)

= Hµ(T−(n−1)A) +Hµ(

n−2∨
k=0

T−kA|T−(n−1)A)

Iterating this and using the previous lemma, we have

Hµ(

n−1∨
k=0

T−kA) =

n−1∑
k=0

Hµ(T−kA|
n−1∨

m=k+1

T−mA)

Now by the measure preserving property, Hµ(T−iB|T−iC) = Hµ(B|C). There-
fore the above is

Hµ(

n−1∨
k=0

T−kA) =

n−1∑
k=0

Hµ(A|
n−k−1∨
m=1

T−mA)

=

Since Hµ(A|
∨k
m=1 T

−mA) → Hµ(A|
∨∞
m=1 T

−mA) as m → ∞, by (E5), hence
by Cesaro’s theorem,

hµ(T,A) = lim
n→∞

1

n
Hµ(

n−1∨
k=0

T−kA)

= lim
n→∞

1

n

n−1∑
k=0

Hµ(A|
k∨

m=1

T−mA)

= Hµ(A|
∞∨
m=1

T−mA)

as claimed.

Remark 6.4.8. From the proof and the fact that the sequenceHµ(A|
∨k
m=1 T

−mA)

is non-increasing in k we find that in fact 1
nHµ(

∨n−1
k=0 T

−kA) is decreasing as
well.
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Example 6.4.9. Here is a surprising application to stochastic processes. Let
(ξn)∞n=−∞ be an ergodic stationary finite-valued process and write Aξn for the
partition associated to ξn. Assuming as we may that the process arises from a
m.p.s. then ξn = Tnξ0 and Aξn = T−nAξ0 .

The process is said to be deterministic if ξ0 is determined a.s. by (ξn)n<0, or
in other words, Aξ0 is measurable (mod µ) with respect to

∨−1
n=−∞Aξn =

∨−1
n=−∞ T−nAξ0 .

This is the same as hµ(T,Aξ0) = H(Aξ|
∨−1
n=−∞ T−nAξ0) = 0. But this is also

the same as H(Aξ|
∨∞
n=1 T

−nAξ0) = 0, so ξ0 is measurable with respect to
ξ1, ξ2, . . ..

Thus if the past determines the future, the future determines the past! There
is no known proof of this fact that does not use entropy.

6.5 Entropy of a measure preserving system
We have defined the entropy of a partition in a m.p.s. However, different par-
titions can give different entropies. For example, in any system the trivial
partition into one set has entropy zero. To obtain a number associated to the
system alone we have the following.

Definition 6.5.1. The Alamogordo-Sinai entropy (or just entropy) of a measure
preserving system (X,F , µ, T ) is

hµ(T ) = sup{hµ(T,A) : A a finite patition of X}

It is possible to have hµ(T ) =∞. Indeed the entropy hµ(T,A) is finite when
A is finite but the upper bound log |A| tends to infinity when the size of the
partition does.

Proposition 6.5.2. Entropy is an isomophism invariant, i.e. isomorphic sys-
tems have the same entropy.

Proof. Suppose (Xi,Fi, µi, Ti), i = 1, 2, are m.p.s.s and f an isomorphism be-
tween them. For any sets B0, . . . , Bk ∈ F2 and B =

⋂k
i=0 T

−1Bk, we have

f−1(B) =

k⋂
i=0

T−i(f−1Ai)

It follows that for any partition B of F2 and A = f−1B, there is a measure-
preserving identification between Bk and Ak given by f−1, hence Hµ(Ak) =
Hµ(Bk) and so hµ(T1,A) = hµ(T2,B). Thus

hµ(T!) = sup{hµ(T1,A) : A a finite patition of X1}
≥ sup{hµ(T1, f

−1(B)) : B a finite patition of X2}
= sup{hµ(T2,B) : B a finite patition of X2}
= hµ(T2)

The reverse inequality follows by symmetry, proving the claim.
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Lemma 6.5.3. hµ(T k) = |k|hµ(T ).

Proof. Let k ∈ N+. For any finite partitionA we saw that hµ(T,A) = khµ(T k,Ak),
hence hµ(T ) ≤ khµ(T k). On the other hand since

∨k−1−j
j=0 A refines A,

hµ(T k,A) ≤ hµ(T k,

k−1∨
j=0

T−jA)

= lim
n→∞

1

n
H(

n−1∨
i=0

k−1∨
j=0

(T−ki−jA))

= lim
n→∞

1

n
H(

kn−1∨
i=0

T−iA)

= khµ(T,A)

For k = −1, we already saw that hµ(T,A) = hµ(T−1,A) for all A and the claim
follows. For general k < 0 it follows by applying the first part to T−1.

Calculating entropy is potentially difficult, since one must take into account
all partitions. In practice, it is enough to consider a dense family of partitions,
and sometimes even a single one.

Definition 6.5.4. A partition A in an invertible measure preserving system
(X,F , µ, T ) is a generating partition if

∨∞
n=−∞ T−nA = F up to µ-measure 0

(that is F = σ(An : n ∈ Z)). If
∨∞
n=0 T

−nA = F we say that A is a one-sided
generator (this definition makes sense also when T is not invertible).

Proposition 6.5.5. Let A,B be partitions in an invertible measure preserving
system (X,F , µ, T ). Then

hµ(T,A ∨ B) = hµ(B) +Hµ(A|
∞∨
n=1

T−nA ∨
∞∨

n=−∞
T−nB)

and in any system (even not invertible),

hµ(T,A ∨ B) ≤ hµ(B) +Hµ(A|
∞∨
n=1

T−nA ∨
∞∨
n=0

T−nB)

Proof. For each n, using (E3) once and then again inductively as in Proposition
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??,

Hµ(

n−1∨
k=0

T−k(A ∨ B)) = Hµ((

n−1∨
k=0

T−kA) ∨ (

n−1∨
k=0

T−kB))

= Hµ(

n−1∨
k=0

T−kB) +Hµ(

n−1∨
k=0

T−kA|
n−1∨
k=0

T−kB)

= Hµ(

n−1∨
k=0

T−kB) +

n−1∑
m=0

Hµ(T−mA|
n−1∨

k=m+1

T−kA ∨
n−1∨
k=0

T−kB)

= Hµ(

n−1∨
k=0

T−kB) +

n−1∑
m=0

Hµ(A|
n−m−1∨
k=1

T−kA ∨
n−m−1∨
k=−m

T−kB)

Dividing by n and taking n → ∞ the left hand side and the first term on the
right tend to hµ(T,A ∨ B) and hµ(T,B) respectively. To evaluate the limit

lim
n→∞

1

n

n−1∑
m=0

Hµ(A|
n−m−1∨
k=1

T−kA ∨
n−m−1∨
k=−m

T−kB)

note that for every m we have

Hµ(A|
n−m−1∨
k=1

T−kA ∨
n−m−1∨
k=−m

T−kB) ≥ Hµ(A|
∞∨
k=1

T−kA ∨
∞∨

k=−∞

T−kB)

hence the right hand side is a lower bound for the limit. On the other hand,
for m >

√
n we have

Hµ(A|
n−m−1∨
k=1

T−kA ∨
n−m−1∨
k=−m

T−kB) ≤ Hµ(A|

√
n∨

k=1

T−kA ∨

√
n∨

k=−
√
n

T−kB)

and for every m the terms are bounded by log |A|, hence

n−1∑
m=0

Hµ(A|
n−m−1∨
k=1

T−kA∨
n−m−1∨
k=−m

T−kB) ≤
√
n

n
·|A|+n−

√
n

n
·Hµ(A|

√
n∨

k=1

T−kA∨

√
n∨

k=−
√
n

T−kB)

The left hand side tends to Hµ(A|
∨∞
k=1 T

−kA∨
∨∞
k=−∞ T−kB), completing the

proof.
In the non-invertible case we start with the same identity and note that

conditioning only on T−kB for non-negative k only can only increase the entropy.
The rest is the same.

Theorem 6.5.6. Let B be a generating (or one-sided generating) partition in
a measure preserving system (X,F , µ, T ). Then hµ(T ) = hµ(T,B).
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Proof. We prove the case of an invertible system, the other is similar. We must
show that hµ(T,A) ≤ hµ(T,B) for any finite partition A. Indeed, fixing A,

hµ(T,A) ≤ hµ(T,A ∨ B)

= hµ(T,B) + hµ(T,A|
∞∨
k=1

T−kA ∨
∞∨

k=−∞

T−kB)

≤ hµ(T,B) + hµ(T,A|
∞∨

k=−∞

T−kB)

= hµ(T,B)

by Lemma ??.

Corollary 6.5.7. Let µ0 be a measure on a finite set A. Then the entropy of the
product system µZ

0 with the shift is H(µ0). In particular the product measures
{ 1

2 ,
1
2}

Z and { 1
3 ,

,1
3 ,

1
3}

Z with the shift maps are not isomorphic.

Proof. For a finite set A, the partition according to the 0-coordinate generates
in the system (AZ,σ), so the entropy is the entropies of this partition, which is
just H(µ0).

In the absence of a generating partition, entropy can also be computed as
follows.

Theorem 6.5.8. Let E be an algebra of sets which generate together the σ-
algebra F of a measure preserving system (X,F , µ, T ). Then hµ(T ) = suphµ(T,B),
where the supremum is over E-measurable partitions B.

Proof. Write α = supHµ(T,B) for B as above. Evidently Hµ(T ) ≥ α so we only
need to prove the opposite inequality. For any finite partition A, it is possible
to find a refining sequence Cn, n = 1, 2, . . . , of E-measurable partitions such
that A ∈

∨∞
n=1 Cn. Then the argument in the proof of the previous theorem

shows that Hµ(T,A) ≤ limHµ(T, Cn) ≤ α.



Chapter 7

The
Shannon-McMillan-Breiman
Theorem

7.1 Example: Bernoulli measures

The partition An =
∨n−1
i=0 T

−iA is obtained by iteratively splitting each atom
of An−1 into at most |A| parts (the atoms of T−nA). These parts may have
unequal (relative) masses, and thus the masses of the atoms of An may be
unequal. The entropy hµ(T,A) measures the average mass of these atoms in
logarithmic scale. It turns out that the typical atoms does not get very far from
the mean (and even more is true).

Example 7.1.1. Let (ξn)∞n=0 be a {0, 1}-valued n i.i.d. process with P(ξn =
0) = p and P(ξn = 1) = 1 − p for some 0 < p ≤ 1

2 . If p = 1
2 then for every

sequence a ∈ {0, 1}n, P(ξ1 . . . ξn = a1 . . . an) = 2−n, independent of choice
of a. But if p < 1

2 then different sequences may yield different probabilities,
the minimal one being a = 00 . . . 0 with probability pn and the largest being
a = 11 . . . 1 with probability (1−p)n. In general, writing p0 = p and p1 = 1−p,
we have

P(ξ1 . . . ξn = a1 . . . a2) =

n∏
i=1

pai

= p#{1≤i≤n : ai=0} · p#{1≤i≤n : ai=1}

Now, for an infinite realization a ∈ {0, 1}∞ of the process, by the ergodic theo-
rem (or law of large numbers),

#{1 ≤ i ≤ n : ai = 0} = n(p+ o(1))

44
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and
#{1 ≤ i ≤ n : ai = 1} = n(1− p+ o(1))

Therefore with probability one over the choice of a,

P(ξ1 . . . ξn = a1 . . . a2) = pn(p+o(1))(1− p)n(1−p+o(1))

= 2n(−p log p−(1−p) log(1−p)+o(1))

= 2nH(p)+o(n)

In other words, with probability one over the choice of a,

lim
n→∞

1

n
logP(ξ1 . . . ξn = a1 . . . a2) = H(p)

So, although different realizations have initial segments with different probabil-
ities, asymptotically the probabilities are a.s. the same (when measured in this
way).

In particular, for any ε > 0, the set of sequences

Σn = {a ∈ {0, 1}n : 2−(H(p)+ε)n ≤ P(ξ1 . . . ξn = a1 . . . an) ≤ 2−(H(p)−ε)n}

satisfies that a.s., x1 . . . xn ∈ Σn for all large enough n; hence P (ξ1 . . . ξn ∈
Σn)→ 1 as n→∞. This tells us that most realizations of the first n variables
occur with “comparable” probabilities.

We will see shortly that this phenomenon is very general indeed.

7.2 Maker’s theorem
Theorem 7.2.1. Let (X,B, µ, T ) be a measure-preserving system. Let fn ∈ L1

and fn → f a.e. Suppose that supn |fn| ∈ L1. Then

1

N

N−1∑
n=0

TnfN−n → E(f |I)

a.e. and in L1, where I ⊆ F is the σ-algebra of T -invariant sets. Also,

1

N

N−1∑
n=0

Tnfn → E(f |I)

Proof. We prove the first statement, and begin under the assumption that T is
ergodic, so I is trivial.

We first claim that we may assume that f ≡ 0. By the ergodic theorem
1
N

∑N−1
n=0 T

nf → E(f |I) a.e. and in L1, so in order to prove the theorem it
is enough to show that 1

N

∑N−1
n=0 T

n(fN−n − f) → 0 a.e. and in L1. Since
supn |fn − f | ∈ L1, we have reduced to the case f ≡ 0.
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Assume now f ≡ 0. Let ε > 0 and let

g = sup
n
|fn|

By assumption g ∈ L1, so we can fix δ > 0 such that for any set E with µ(E) < δ
we have

´
E
gdµ < ε.

Since fn → 0 a.e., there is an n0 and a set A with µ(A) > 1 − δ such that
|fn(x)| < ε for x ∈ X and all for n > n0.

Now consider f ′n = 1Afn and f ′′n = 1X\Afn, so fn = f ′n + f ′′n . Since |f ′n| < ε
for n > n0 and |f ′n| ≤ g, we have

1

N

N−1∑
n=0

|Tnf ′N−n| <
1

N

N−n0−1∑
n=0

ε+
1

N

N−1∑
n=N−n0−1

Tng

< ε+
1

N

(
N−1∑
n=0

Tng −
N−n0−1∑
n=0

Tng

)
(7.1)

The last term on the right tends to 0 a.e. and in L1 as N →∞. On the other
hand

1

N

N−1∑
n=0

Tn|f ′′N−n| ≤
1

N

N−1∑
n=0

Tn|1X\Ag|

→
ˆ
X\A

g dµ

< ε (7.2)

a.e. and in L1, because µ(X \ A) < δ. Combining the two inequalities we
conclude that

lim sup
N→∞

1

N

N−1∑
n=0

Tn|fN−n| ≤ lim sup
N→∞

1

N

N−1∑
n=0

Tn|f ′N−n|+ lim sup
N→∞

1

N

N−1∑
n=0

Tn|f ′′N−n|

≤ 2ε

so 1
N

∑N−1
n=0 T

n|fN−n| → 0 a.e., and similarly, taking the L1-norm, in L1.
In the case that I is non-trivial we proceed in the same manner, but in (7.2)

the conclusion becomes

1

N

N−1∑
n=0

Tn|f ′′N−n| → E(1X\Ag|I)

Now,
´
E(1X\Ag|I)dµ =

´
1X\Agdµ < ε, and since 1X\Ag ≥ 0 and conditional

expectation is a positive operator, E(1X\Ag|I) ≥ 0 a.s. Thus by Markov’s
inequality

µ(E(1X\Ag|I) ≥
√
ε) ≤

´
E(1X\Ag|I)dµ

√
ε

<
√
ε
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We find that

µ

(
x : lim sup

N→∞

1

N

N−1∑
n=0

Tn|f ′′N−n|(x) >
√
ε

)
<
√
ε

and so as before, combining the above with (7.1),

µ

(
x : lim sup

N→∞

1

N

N−1∑
n=0

Tn|fN−n|(x) > ε+
√
ε

)
<
√
ε

Taking εk = 2−k, we have
∑√

εk < ∞. Applying Borel-Cantelli, we find that
a.e. x is in finitely many of the events above and hence a.s. 1

N

∑N−1
n=0 T

n|fN−n|(x)→
0 as desired.

7.3 The Shannon-McMillan-Breiman theorem
Theorem 7.3.1. Let (ξn)∞n=0 be an ergodic stationary process with values in a
finite set I. Let p(a1 . . . an) = P(ξ1 . . . ξn = a1 . . . an). Then

lim
n→∞

1

n
log p(ξ1 . . . ξn)

exists a.s. and is a.s. constant.
Equivalently, let (X,F , µ, T ) be an ergodic measure preserving system and

A a finite partition. Then for a.e. x,

lim
n→∞

1

n
logµ(An(x)) = hµ(T,A)

Proof. The two versions are related by passing to the dynamical realization
of the random variables, and setting A = {ξ−1

0 (i)}i∈I ; conversely, by defining
ξn(x) = A(Tnx). We prove the second version. We give the proof first for the
case that T is invertible.

Fix x. Defining A0 = {X} to be the trivial partition, we have

µ(An(x)) = µ(

n−1⋂
k=1

Ak(x))

=

n−1∏
k=0

µ(Ak(x))

µ(Ak−1(x))

Hence

logµ(An(x)) =

n∑
k=1

log
µ(Ak(x))

µ(Ak−1(x))
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Observe that(
n+k∨

i=m+k

T−iA

)
(x) =

(
T−k

n∨
i=m

T−iA

)
(x) =

(
n∨

i=m

T−iA

)
(T kx)

Therefore, if we define

fk = − log
µ((
∨0
i=−k T

−iA)(x))

µ((
∨−1
i=−k T

−iA)(x))

Hence

− log
µ(Ak+1(x))

µ(Ak(x))
= fk(T kx)

Combining all of the above,

− 1

n
logµ(An(x)) =

1

n

n−1∑
k=0

fk(T kx)

We shall complete the proof by showing that the fk satisfy the hypothesis of
maker’s theorem, and then identify the limit. Let

f(x) = − logµx(A(x)|
−1∨

i=−∞
T−iA)

Claim 7.3.2. fk → f a.e.

Proof. By the martingale theorem,

µ(A(x)|
−1∨
i=−k

T−iA) = E(1A(x)|
−1∨
i=−k

T−iA)(x)

−−−−→
n→∞

E(1A(x)|
−1∨

i=−∞
T−iA)(x)

= f(x)

Claim 7.3.3. supk |fk| ∈ L1

Proof. Let
Et = {x : sup

k
fk(x) > t}

It suffices for us to show that µ(Et) < C ·2−t where C is independent of t, since
then

0 ≤ sup
k
|fk| ≤

∞∑
n=0

1En



CHAPTER 7. THE SHANNON-MCMILLAN-BREIMAN THEOREM 49

and the right hand side is integrable.
For each A ∈ A consider the family UA of sequences (Ai)

k
i=1 of any length

for which Ai ∈ T−iA, and such that

− log
µ(A ∩

⋂k
i=1Ai)

µ(
⋂k
i=1Ai)

> t

but (Ai)
`
i=1 does not satisfy this for any 1 ≤ ` < k. Evidently the sets

⋂k
i=1Ai

are pairwise disjoint as (Ai) ranges over UA, and every x ∈ A ∩ Et belongs to
such an intersection. Therefore it suffices for us to show that

µ(A ∩
⋃

(Ai)∈UA

⋂
Ai) < 2−t

since then, summing over A ∈ A, we have µ(Et) < |A| · 2−t. To show the
inequality above, observe that for each (Ai) ∈ UA we have

µ(

k⋂
i=1

Ai ∩A) = µ(

k⋂
i=1

Ai) ·
µ(A ∩

⋂k
i=1Ai)

µ(
⋂k
i=1Ai)

< 2−t · µ(

k⋂
i=1

Ai)

Therefore, using the fact that the sets
⋂k
i=1Ai are pairwise disjoint for (Ai) ∈

UA,

µ(A ∩
⋃

(Ai)∈UA

⋂
Ai) =

∑
(Ai)∈UA

µ(A ∩
⋂
Ai)

< 2−t
∑

(Ai)∈UA

µ(
⋂
Ai)

≤ 2−tµ(
⋃

(Ai)∈UA

⋂
Ai)

≤ 2−t

as desired.

We can now apply Makers theorem and deduce that − 1
n logµ(An(x)) →

E(f |I) a.s. as n → ∞, where I is the σ-algebra of T -invariant sets. Since our
system is ergodic this is simply

´
fdµ, and we have already seen that this is the

entropy of the system.

Remark 7.3.4. The proof shows that convergence holds also in the non-ergodic
case, and the limit is E(f |I). If µ =

´
νxdµ(x) is the ergodic decomposition

of µ, then E(f |I)(x) =
´
f dνx. It is also not too hard to show that

´
fdνx =

hνx(T,A) a.s. Therefore 1
n logµ(An(x))→ hνx(T ) a.s.
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7.4 Entropy-typical sequences
Let (X,F , µ, T ) be an ergodic measure preserving system and A = {A1, . . . , Ar}
a finite partition. This gives a map ξ : X → {1, . . . , r} given by ξ(x) = i if and
only if x ∈ Ai. For every n, we obtain a map ξA,n : X → {1, . . . , r}n given by

ξA,n(x) = (ξ(x), ξ(Tx), . . . , ξ(Tnx))

The vector above is called the (A, n)-itinerary of x with respect to A. We also
have ξA,∞ : X → {1, . . . , r}N given by

ξA,∞ = (ξ(x), ξ(Tx), ξ(T 2x), . . .)

This is the full itinerary of x with respect to A.
For every n this gives us a measure µA,n ∈ P({1, . . . , r}n), given by the

push-forward of µ by ξA,n:

µA,n(E) = µ(x : ξA,n(x) ∈ E)

and similarly µA,∞ ∈ P({1, . . . , r}N).
Let h = hµ(T,A). Given ε > 0 define

Σn,ε = {a ∈ {1, . . . , r}n : 2−n(h+ε) ≤ µA,n(a) ≤ 2−n(h−ε)}

Proposition 7.4.1. For every ε > 0, for µ-a.e. x, we have ξA,n(x) ∈ Σn,ε for
all large enough n.

Proof. By the Shannon-McMillan-Breiman theorem, for µ-a.e. x,

1

n
logµ(An(x))→ h as n→∞

Since µ(An(x)) = µA,n(ξA,n(x)) the claim follows.

Corollary 7.4.2 (Shannon-McMillan theorem). For every ε > 0,

µ(ξ−1
A,n(Σn,ε))→ 1

Furthermore, for every set A ⊆ X of positive measure, for all large enough n,

µ(A ∩ ξ−1
A,n(Σn,ε))→ µ(A)

Proof. By SMB, ξA,n(x) ∈ (Σn,ε) for all large enough n, for a.e. x. Thus
a.s., 1ξ−1

A,n(Σn,ε) → 1 a.e. as n → ∞, so a.s. 1A∩ξ−1
A,n(Σn,ε) → 1A as n → ∞.

Integrating this gives the claim.

Corollary 7.4.3. |Σn,ε| ≤ 2(h+ε)n, and for every large enough n, |Σn,ε| ≥
1
22n(h−ε).
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Proof. The first inequality follows from

1 ≥ µA,n(Σn,ε) =
∑

a∈Σn,ε

µA,n(a) ≥ |Σn,ε|2−n(h+ε)

The measure µA,n gives every a ∈ Σn,ε mas at least 2−n(h−ε), and these masses
must sum to at most 1, giving the first bound. For the second, note that for
large enough n, µA,n(Σn,ε) >

1
2 (since it → 1), so

1

2
< µA,n(Σn,ε) =

∑
a∈Σn,ε

µA,n(a) ≤ |Σn,ε|2−n(h−ε)

this is the second inequality.

Combining the last two corollaries gives the so-called Asymptotic Equiparti-
tion Property, which is a central tool in information theory:

If (ξn) is a stationary ergodic finite-valued process with entropy
h, then for large n, the random word w = ξ1, . . . , ξn is essentially
chosen uniformly from a set of 2hn words. More precisely, with
probability 1−o(1), the word w is drawn from a set of size 2n(h+o(1))

and has probability 2−n(h+o(1)).

We will see applications of this in a later section.



Chapter 8

A combinatorial approach to
entropy

Our definition of entropy was based on the entropy of partitions. We now start
over and discuss a purely combinatorial definition for ergodic systems.

8.1 Two combinatorial lemmas
Let

(
n
t

)
denote the number of subsets of {1, . . . , n} of size ≤ t (allowing non-

integer t).

Lemma 8.1.1. For every 0 ≤ α ≤ 1
2 , the number of subsets of {1, . . . , n} of

size < αn is at most 2H(α)n.

Proof. Since H(·) in increasing for 0 ≤ α < 1
2 there is no loss of generality in

assuming m = αn is an integer. By the binomial theorem,

1 =

n∑
k=0

(
n

k

)
αk(1− α)n−k

≥
∑
k≤m

(
n

k

)
αk(1− α)n−k

Since α ≤ 1
2 , the quantity δk(1− δ)k decreases as k increases, so for 0 ≤ k ≤ m

it is minimal when k = m, giving

1 ≥
∑
k≤m

(
n

k

)
αm(1− α)n−m

=
∑
k≤m

(
n

k

)
2n(m

n logα+(1−m
n ) log(1−α))

=
∑
k≤m

(
n

k

)
2−nH(α)
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since m/n = α. Dividing by 2−nH(α) proves the lemma.

Our next goal gives bounds on the number of words w that can be obtained
by concatenating words from given sets of given sizes, while allowing for some
extra “errors”.

Let A be a finite set and α > 0. For each n let Σn ⊆ An be a set with |Σn| ≤
|A|αn. For n = n1 + . . . + nk 0bserve that Σn1Σn2 . . .Σnk

⊆ An1+...+nk = A is
a collection of words of size

|Σn1Σn2 . . .Σnk
| = |Σn1 | · |Σn2 | · . . . · |Σnk

| ≤ |A|αn1 · . . . · |A|αnk = |A|αn

so concatenation of sets Σn of this type results in a set with a similar cardinality
bound. We want to generalize this to allow more freedom in concatenating
elements of Σi, both in terms of the lengths and also allowing a small fraction
of “errors”.

Definition 8.1.2. We say that a word w ∈ An is ε-covered by the sets Σi if
one can write

w = u1w1u2w2 . . . ukwkuk+1 (8.1)

where wi ∈ Σ|wi| and |wi| > 1/ε, and the ui are (possibly empty) words satis-
fying

∑
|ui| < εn (thus

∑
|wj | ≥ (1− ε)n).

Note that the assumption |wi| > 1/ε implies that the number k of words wj
satisfies k < εn.

Lemma 8.1.3 (Covering lemma). Let 2 ≤ |A| < ∞, Σn ⊆ An and |Σn| <
|A|αn. Then for each n, the number of words w ∈ An that can be ε-covered by
the Σi is at most |A|n(α+ε+H(2ε)).

Proof. Let w = u1w1u2w2 . . . ukwkuk+1 be a word of length n with wi ∈ Σ|wi|,
ui ∈ A∗ and

∑
|ui| < εn. Every such word can be constructed by the following

three-step procedure:

1. Choose the positions of the first and last letter of the wi. This amounts
to choosing a set I = {a1 ≤ b1 < a2 ≤ b2 <} ⊆ {1, . . . , n} of size < 2εn.

2. For each index in the set U = {1, . . . , n} \
⋃

[ai, bi], choose a symbol from
A (this specifies the words ui).

3. For each interval Ji = [ai, bi] specify a word from Σ|Ji| (these are the wj).

By the previous lemma, the number of ways to choose I as in (1) is ≤ 2nH(2ε).
Since by assumption U in (2) satisfies |U | < εn, the number of choices of the
symbols in (2) is |A||U | < |A|εn. Finally, for each Ji as in (3) the number of
choices is ≤ |Σ||Ji| ≤ |A|α|Ji|, so, numbering J1, . . . , Jk the intervals in (3), the
total number of choices is

≤
∏
|A|α|Ji| ≤ |A|α

∑
|Ji| = |A|αn
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Altogether the number of words w is bounded by

(choices at step (1))·(choices at step (2))·(choices at step (3)) ≤ 2nH(2ε)|A|εn|A|αn

as claimed.

The proof gives the following version as well, which is in “base 2”:

Lemma 8.1.4. Let 2 ≤ |A| < ∞, Σn ⊆ An and |Σn| < 2αn. Then for each
n, the number of words w ∈ An that can be ε-covered by the Σi is at most
2n(α+ε log |A|+H(2ε)).

8.2 Alternative definition of entropy
Let (X,B, µ, T ) be an ergodic process and A a finite partition. Define ξA,n and
µA,n as before. For every ε > 0 let

Nn(T,A, ε) = min{|Σ| : Σ ⊆ An and µA,n(Σ) > 1− ε}

Definition 8.2.1. Let

s(T,A) = lim
ε→0

lim inf
n→∞

1

n
logNn(T,A, ε)

The outer limit exists because clearly ε1 < ε2 impliesNn(T,A, ε1) ≥ Nn(T,A, ε2),
hence the inner limit is increasing as a function of ε.

Lemma 8.2.2. For every ε > 0, for all sufficiently small δ > 0 the following
holds: For k > 1/ε and 1

k logNk(T,A, δ) < s, then for all large enough n,

1

n
logNn(T,A, ε) < s+ ε

Proof. Let δ be small enough that 2δ log |A|+H(4δ) < ε. Assume that k > 1/ε
and 1

k logNk(T,A, δ) < s. Then we can choose Σ ⊆ Ak such that |Σ| ≤ 2sk =
and µ(Σ) > 1− δ. Let

E = {x ∈ X : ξA,k(x) ∈ Σ}

so µ(E) > 1− δ. By the ergodic theorem, for all large enough n, there is a set
Xn ⊆ X with µ(Xn) > 1− δ and such that, for x ∈ Xn,

1

n

n∑
i=0

1E(T ix) > 1− δ

For x ∈ Xn let
I = I(x) = {0 ≤ i ≤ n− k : T ix ∈ E}

and note that, assuming n > k/δ = 1/εδ,

|I| > (1− δ)n− k > (1− 2δ)n
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Consider the collection of intervals [i, i + k − 1] for i ∈ I. By Lemma 4.3.5 we
can choose a sub-collection I ′ ⊆ I such that the intervals [i, i + k − 1], i ∈ I ′,
are pairwise disjoint, and their total length is at least |I| > (1− 2δ)n.

Now, for i ∈ I ′ we have T ix ∈ E, hence

ξA,n(x)|[i,i+k−1] = ξA,k(T ix) ∈ Σ

It follows that ξA,n(x) is (1− 2δ)-covered by words from Σ. By Lemma ??, the
collection Λn of words with this property has size at most 2sn+2δ log |A|+H(4δ) <
2(s+ε)n, and ξA,n(x) ∈ Λn for all x ∈ Xn, and µ(Xn) > 1− δ > 1− ε. Thus

1

n
Nn(T,A, ε) ≤ s+ ε

as claimed.

Corollary 8.2.3. s(T,A) = lim(ε,n)→(0,∞)
1
nNn(T,A, ε).

8.3 An alternative proof of the Shannon-McMillan-
Breiman theorem

Lemma 8.3.1. Let (X,B, µ, T ) be a measure-preserving system and f : X → R
measurable satisfying f(Tx) ≥ f(x) a.e. Then f is a.e. invariant (Tf = f a.e.)
and if T is ergodic it is a.e. constant. The holds assuming f(Tx) ≤ f(x) a.e.

Proof. First suppose that f is bounded. Suppose that f(Tx) > f(x) on a set
of positive measure. Since f(Tx) ≥ f(x) everywhere else,

´
f(Tx)dµ(x) >´

f(x)dµ(x), and this contradicts measure-preservation.
In general, for M > 0 define

fM (x) =

 −M f(x) ≤ −M
f(x) −M < f(x) < M
M f(x) > M

Then FM is bounded and satisfies the same hypothesis, so by the first case fM is
a.e. invariant for eachM , and since f = limM→∞ fM also f is a.e. invariant.

Theorem 8.3.2. For an ergodic measure preserving system (X < B, µ, T ) and
finite partition A, limn→∞− 1

n logµ(An(x)) exists a.e.

Proof. Let

s+ = lim sup
n→∞

− 1

n
logµ(An(x))

s− = lim inf
n→∞

− 1

n
logµ(An(x))

so s− ≤ s+. We first claim that both functions are invariant. Indeed, An−1(Tx) ⊇
An(x) so

logµ(An−1(Tx)) ≥ logµ(An(x))
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Hence

s+(x) = lim sup
n→∞

− 1

n
logµ(An(x))

≥ lim sup
n→∞

− 1

n
logµ(An−1(Tx))

= lim sup
n→∞

− 1

n− 1
logµ(An−1(Tx))

= s+(Tx)

By the previous lemma, s+ is a.s. constant. The same works for s−.
We denote the a.s. values of s−, s+ by α ≤ β respectively.
Suppose for the sake of contradiction that α < β. Fix ε > 0 and α < α′ <

β′ < β. Write
Σ−n = {w ∈ An : µA,n(w) > 2−α

′n}
By assumption s− = α a.e., which implies that for a.e. x there are infinitely
many n such that ξA,n(x) ∈ Σ−n , and we can choose one such n = n(x) satisfying
n > 1/ε .

Choose a set E ⊆ X of measure µ(E) > 1− ε and an n0 such that for x ∈ E
we have 1/ε < n(x) < n0.

By the pointwise ergodic theorem, there is a set X0 ⊆ X with µ(X0) > 0,
and an N0, such that for every x ∈ X0 and N > N0,

1

N

N−1∑
k=0

1E(x) > 1− ε

Whenever x ∈ X0, N > N0, i < N−k and T ix ∈ E we have ξA,N0
(x)|[i,i+n(T ix)−1] =

ξA,n(T i(x))(T
ix) ∈ Σn(T ix). It follows as is the proof of the previous proposition

that for N > N0 the collection of words

ΛN = {ξA,N (x) : x ∈ X}

can be ε-covered by the Σ−j , hence satisfies

|ΛN | ≤ |A|N(α′+2ε+H(2ε)

and taking ε small we may assume that α′ + 2ε+H(2ε) < β′.
Now observe that the set

µ
(
x ∈ X0 : µ(AN (x)) < 2−Nβ

′
) and ξA,N (x) ∈ Λn

)
≤ |Λn| · 2−Nβ

′

< Λδnn

where δ = β′−α′− 2ε−H(2ε) > 0. Therefore by Borel-Cantelli, a.e. x belongs
to only finitely many of the sets above. But by definition of s+, a.e. x ∈ X0

satisfies s+(x) = β > β′, which means that µ(AN (x)) < 2−Nβ
′
infinitely many

N . These last two statements together contradict µ(X0) > 0, completing the
proof.
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Applications of entropy

9.1 Shannon coding
Let A be a finite set and

A∗ =

∞⋃
n=0

An

the set of finite sequences over A. We call such sequences words or blocks. For
a = a1 . . . an ∈ An we write |a| = n for its length.

A code is a function c : A∗ → B∗, where B is another finite set. Throughout
this section we will take B = {0, 1}.

Given a probability measure µ on A∗ and a code c, the average coding length
of c (with respect to µ) is

|c|µ =

ˆ
|c(a)| dµ(a)

This is the average number of bits needed to represent a word a (chosen accord-
ing to µ) in the coding c.

Given a measure µ ∈ P(A∗) one would like to find a code with minimal
average coding length. Of course, we would also like the coding to be µ-a.s.
faithful, meaning that µ-a.s. c(a) determines a. In other words c should be an
injection on U = suppµ. In fact, we will restrict to codes satisfying a stronger
property: that the map c(w1, . . . , wn) = c(w1) . . . c(wn), wi ∈ A∗, obtained by
applying c to each wi ∈ U and concatenating, is injective as a map Un → {0, 1}n
for all n. If this holds we say that c is uniquely decodable.

Lemma 9.1.1. If c is uniquely decodable then
∑
u∈U 2−|c(u)| ≤ 1.

Proof. Suppose c is uniquely decodable. Let U = dom c and assume first that
|c(w)| ≤ L for all w ∈ U . For each m,

(
∑
u∈U

2−|c(u)|)m =
∑

(u1...um)∈Um

2−
∑m

j=1 |c(uj)| =
∑

(u1...um)∈Um

2−|c(u1,...,um)|
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Divide the codewords according to length:

=

Lm∑
`=1

∑
u∈U≤m : c(u)=`

2−` ≤
Lm∑
`=1

2−`2` = Lm

taking m-th roots and m → ∞, this gives
∑
u∈U 2−|c(u)| ≤ 1 as desired. In

the general case, apply the bounded-length result to restrictions c|UM
where

UL = {w ∈ U : |c(w)| ≤ L} and take L→∞.

Proposition 9.1.2 (Essentially Shannon). If c is a uniquely decodable then
|c|µ ≥ H(µ) = −

∑
w∈A∗ µ(w) logµ(w).

Proof. Again let U = dom c. It suffices to show that if ` : U → N satisfies∑
w∈L 2−`(w) ≤ 1, then

∑
w∈U µ(w)`(w) ≥ H(µ). Consider

∆ = H(p)−
∑
w∈U

µ(w)`(w)

= −
∑

µ(w) (logµ(w) + `(w))

We want to show that ∆ ≤ 0. Let ν(w) = 2−`(w)/
∑
w∈U 2−`(w), so ν is a prob-

ability measure on U and `(w) ≥ − log ν(w) (because
∑

2−`(w) ≤ 1). Therefore

∆ ≤ −
∑

µ(w) (logµ(w)− log ν(w))

= −
∑

µ(w)

(
log

µ(w)

ν(w)

)
=

∑
µ(w)

(
log

ν(w)

µ(w)

)
≤ log

∑
(µ(w) · ν(w)

µ(w)
)

= log 1

= 0

where in the second inequality we used concavity of the logarithm function.

Corollary 9.1.3. Let (ξn) be a stationary ergodic process with values in a finite
set A and h is its entropy. Write µn for the distribution of (ξ1, . . . , ξn). Then
for any decodable code c : An → {0, 1}∗, 1

n |c|µn
≥ h.

Proof. h = infk
1
kH(ξ1 . . . ξk) ≤ 1

nH(ξ1 . . . ξn) ≤ |c|µn
by the last proposition.

The remarkable fact is the this theoretical lower bound on decodable coding
can be achieved:

Proposition 9.1.4. Let (ξn) be a stationary ergodic process with values in a
finite set A and h is its entropy. Then for every n there is a code cn : An →
{0, 1}∗ such that limn→∞

1
n |c|µn

= h.
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Proof. By the Shannon-McMillan theorem, for every ε > 0, for n large enough,

P(ξ1 . . . ξn ∈ Σn,ε) > 1− ε

Therefore we can choose ε(n)→ 0 such that

P(ξ1 . . . ξn ∈ Σn,ε(n))→ 1

Enumerate
Σn,ε(n) = {wn,1, . . . , wn,N(n)}

and recall that |N(n)| ≤ 2n(h+ε(n)). Therefore for each wn,j the binary represen-
tation [j] of j contains at most dlogN(n)e ≤ dn(h+ ε)e bits. Also, enumerate
as An = (un,k)

|A|n−1
k=0 .

cn(w) =

{
0[j] if w = wn,j ∈ Σn,ε(n)

1[k] if w /∈ Σn,ε(n) and w = un,k

Then
|cn(w)| =

{
1 + dn(h+ ε)e w ∈ Σn,ε(n)

1 + dn log |A|e otherwise
so

|cn|µn
= (1 + dn(h+ ε)e)µn(Σn,ε(n)) + (1 + dn log |A|e)(1− µn(Σn,ε(n)))

Dividing by n and using µn(Σn,ε(n))→ 1,

1

n
|cn|µn

→ h

as claimed.

9.2 Return times
Let (ξn)∞n=0 be an ergodic stationary process with values in a finite alphabet A.
Assume without loss of generality that ξn = Tnξ0 for T an ergodic transforma-
tion of the probability space (X,B, µ). Let h = hµ(T ).

For n ∈ N let rn denote the first index at which the initial n symbols repeat,
that is,

rn = min{k ≥ 1 : ξ0, . . . , ξn−1 = ξk . . . ξk+n−1}
so rn is an integer-valued random variable. Note that by Poincaré recurrence,
rn <∞ a.e.

Theorem 9.2.1 (Wyner-Ziv , Ornstein-Weiss). 1
n log rn → h a.s.

We prove this in two stages, first the upper bound, then the lower bound.
For w ∈ An write

[w] = {ξ0 . . . ξn−1 = w}
and for ∆ < An write

[∆] =
⋃
w∈∆

[w] = {ξ0 . . . ξn−1 ∈ ∆n}
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Proof that lim sup 1
nrn ≤ h a.s. Let ε > 0, it suffices to show that a.s. rn ≤

2(h+ε)n for all but finitely many n, i.e. that a.e. x ∈ X belongs to

En = {rn > 2(h+ε)n}

finitely often.
Let Σn,ε/2 ⊆ An denote the sets of “good” words defined in the Section ??,

so |Σn,ε/3| ≤ 2(h+ε/2)n and almost surely ξ1 . . . ξn ∈ Σn,ε/23 for all large enough
n. In other words, a.e. x ∈ X belongs to

Fn = {ξ01 . . . ξn−1 ∈ Σn,ε/2}

for all but finitely many Fns.
Thus, it is enough for us to show that a.e. every x belongs to Fn ∩En only

finitely many times. This will follow from Borel-Cantelly once we show that∑
µ(En ∩ Fn) <∞.
Suppose that w ∈ Σn,ε/2. If x ∈ [w]∩En then rn(x) > 2(h+ε)n, so T ix /∈ [w]

for 1 ≤ i ≤ 2(h+ε)n. Thus the sets

T−i([w] ∩ En]) 1 ≤ i ≤ 2(h+ε)n

are disjoint and of eq1ual measure, so

µ([w] ∩ En) < 2−(h+ε)n

Since Fn =
⋃
w∈Σn,ε/2

[w],

µ(Fn∩En) =
∑

w∈Σn,ε/2

µ([w]∩Wn) <
∑

w∈Σn,ε/2

2−(h+ε)n ≤ 2(h+ε/2)n·2−(h+ε)n = 2−
1
2 εn

and the claim follows.

Lemma 9.2.2. Let ε > 0 and let ∆n ⊆ An be sets such that |∆n| < 2(h−ε)n.
Then a.s. ξ0 . . . ξn−1 ∈ ∆n only x finitely often (i.e. µ(lim sup[∆n]) = 0).

Proof. Let Σn,ε/2 be as usual. Then a.e. x is in [Σn,ε/2] for all but finitely
many n, so it suffices to show that a.s. ξ0 . . . ξn−1 ∈ Σn,ε/2∆∆n only finitely
often. This follows from Borel Cantelli, since every w ∈ Σn,ε/2 satisfies µ([w]) <

2−(h−ε/2)n and so

µ([∆n] ∩ [Σn,ε/2]) ≤
∑
w∈∆n

µ([w]) <
∑
w∈∆n

2−(h−ε/2)n ≤ |∆n|2−(h−ε/2)n < 2−εn/2

so
∑
µ([∆n] ∩ [Σn,ε/2]) <∞.

Lemma 9.2.3. Let t, ρ > 0 and N ∈ N. Let W ⊆ AN denote the set of words
w ∈ AN can be written as u0w1u1w2u2 . . . wkuk, where

1. 1/ρ < |wi|.
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2.
∑
|wi| > (1− ρ)Nn

3. If wi begins at index m(i) then it repeats in w at an index m(i) < m′(i) <
m(i) + 2t|wi|.

Then |W | ≤ |A|(ρ+H(2ρ)+t(1−ρ))n.

Proof. We claim that a word w = u1w1 . . . wk−1wk as above is specified com-
pletely by the following information:

a the set of intervals [m(i),m(i)+ |wi|−1] that describe the positions of the
wi.

1. The words uk.

2. The distances m′(i)−m(i) at which wi repeats.

Indeed, given this we can reconstruct w as follows: the positions of the wi, ui
and the symbols of the ui are given explicitly. Now reconstruct the symbols of
wi from right to left: if we have constructed the symbols at positions j+1 . . . N ,
and j is in wi, then the symbol at j is the same as the one at j +m′(i)−m(i),
which is already known.

Finally we count how many choices we have: Since |wi| > 1/ρ we have
k < ρN , so the set of indices m(i),m(i) + |wi| − 1 has size ≤ 2ρN . Thus there
are ≤ 2H(2ρ) choices for these indices. Since

∑
|ui| < ρN , the number of choices

of symbols is < 2ρN . And finally, m′(i)−m(i) < 2t|wi|, so the number of choices
of these distances is ≤

∏
2t|wi| = 2t

∑
|wi| = 2t(1−ρ)N . Thus the total number

of choices satisfies the stated bound.

Proof that lim sup 1
nrn ≥ h a.s. We may assume h > 0. Let 0 < ε < h, we must

show that a.s. rn ≥ 2(h−ε)n for all but finitely many n. In other words, writing

r− = lim inf
n→∞

1

n
log rn

we must show that r− ≥ h− ε a.s.
Note that if rn(x) = k then ξ0 . . . ξn−1 = ξk . . . ξk+n−1, hence ξ1 . . . ξn =

ξk+1 . . . ξk+1+(n−1)−1, so
rn−1(Tx) ≤ rn(x)

It follows that r−(Tx) ≤ r−(x), so by ergodicity r− is a.s. constant.
Thus in order to show r− ≥ h − ε a.s. it suffices to show that r− < h − ε

a.s. is impossible.
Thus, suppose that r− < h− ε a.s. Fix another parameter δ > 0. Thus a.e.

x satisfies rn < 2(h−ε)n for arbitrarily large n and in particular for n > 1/δ so
there is an L such that the set

E =

{
x : rn(x) < 2(h−ε)n for some

1

ε
< n < L

}
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satisfies
µ(E) > 1− δ

For large N , let

FN =

{
x :

1

N

N−1∑
n=0

1E(Tnx) > 1− δ

}
and let

∆N = (ξ0(x) . . . ξN−1(x) : x ∈ FN}

By the ergodic theorem a.e. x belongs to FN for all but finitely many N . We
will arrive at a contradiction by showing that |∆n| < 2(h−ε/2)n.

Indeed, for x ∈ FN and w = ξ0(x) . . . ξN−1(x) let

I = {0 ≤ i ≤ N − L− 2(h−ε)L : T ix ∈ E}

and note that assuming N is large enough,

1

N
|I| ≥ 1− δ − L+ 2(h−ε)L

N
< 1− 2δ

For each i ∈ I there is a 1 ≤ n = n(i) ≤ L such that rn(i)(T
ix) < 2(h−ε)n.

Let j(i) = i+ n(i)− 1. This means that the subword of length n(i) starting at
i in w repeats in w at an index i + 1 ≤ i′ < i + 2(h−ε)n. Apply the covering
Lemma 4.3.5 to the collection {[i, i + n(i) = 1]}i∈I and obtain a sub-collection
I0 ⊆ I such that {[i, i+n(i) = 1]}i∈I0 are pairwise disjoint and their union is of
size at least |I| > (1− 2δ)N . Now w satisfies the hypothesis of Lemma ?? with
t = h− ε and ρ = 2δ, so

|∆n| ≤ 2(2δ+H(4δ)+(h−ε)(1−2δ))N < 2(h−ε/2)n

assuming δ is small enough.

9.3 The Lempel-Ziv algorithm
In this section we sketch without proofs the Lempel-Ziv compression algorithm,
which as input accepts a sequence x = x1, x2, . . . , xn from a given finite alphabet
A, and outputs a sequence c(x) = y1, y2, . . . , yn of bits 0, 1 such that the map
x → c(x) is 1-1 and constitutes a faithful code (when restricted to An). The
important property of c is that it compresses optimally universally: for any
ergodic process (ξn) of entropy h, we have E( 1

n |cn(ξ1 . . . ξn)|) → h; and in fact
a.s. 1

n |cn(ξ1 . . . ξn)| → h.
The algorithm is as follows: on input x1, . . . , xn,

1. Let i = 1.

2. Let j ∈ (i, n] be the largest index such that the word xi . . . xj−1 appears
at an index i′ < i.
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3. Output j − 1− i, i− i′.

4. Output xj+1.

5. If j = n halt, otherwise set i = j + 1 and go to 2.

From the output one easily reconstructs x inductively: if we have reconstructed
x1, . . . , xk and i = k + 1 and we read (m1,m2, a) ∈ ×N× AN from the input,
then we know that the next word has length m1, we can find the first m1 − 1
symbols by going back m2 steps in the word we have already constructed, and
the last symbol is a.

The main idea is that the distance m2 is of order 2h(m1−1). This is similar
to the return times theorem. Thus m2 can be coded using h(m1 − 1) bits. In
addition we must record the length m1, which requites logm1 = o(m1) bits,
and the symbol a which requires O(1) = o(m1) bits if m1 → ∞. Note that
the sequence of i’s chosen by the algorithm parses x into distinct blocks, so for
each L, the difference j − i can be less than L only a bounded number of times
(independent of n).



Chapter 10

The Pinsker algebra and
CPE-systems

10.1 Factors and relative entropy
Definition 10.1.1. Factor

Remark 10.1.2. Identification of factors with sub-σ-algebras

Example 10.1.3. Trivial factors, factor generated by a partition/family of sets,
product systems and marginal projections.

Definition 10.1.4. Entropy of a partition and system relative to a factor.

Proposition 10.1.5. hµ(T,A|B) = H(A|
∨∞
i=1 T

iA ∨ B).

Remark 10.1.6. The usual definition is relative to the trivial factor.
Recall that

hµ(T,A ∨ B) = H(A|
∞∨
i=1

T iA ∨
∞∨

i=−∞
T iB) + hµ(T,B)

Proposition 10.1.7. hµ(T |E) = hµ(T )−hµ(T |E), assuming that hµ(T |E) <∞.

Proof. For any partitions A ⊆ F and B ⊆ E we have

hµ(T ) ≥ hµ(A ∨ B)

= H(A|
∞∨
i=1

T iA ∨
∞∨

i=−∞
T iB) + hµ(T,B)

≥ H(A|
∞∨
i=1

T iA ∨ E) + hµ(T,B)

= hµ(T,A|E) + hµ(T,B)

64
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This shows that hµ(T ) ≥ hµ(T |E) + hµ(T |E). On the other hand, by choos-
ing A fine enough we can ensure that |hµ(T ) − hµ(A ∨ B)| is arbitrarily small
and likewise |hµ(T,A|E) − hµ(T |E)|. Also choosing B fine enough we can en-
sure that |hµ(T,B)− hµ(T |E)| is arbitrarily small. Finally, we can choose B so
that |H(A|

∨∞
i=1 T

iA∨E)−H(A|
∨∞
i=1 T

iA∨
∨∞
i=−∞ T iB)| is arbitrarily small.

This controls all the inequalities above and allows us to reverse them with an
arbitrarily small error. This proves the claim.

Corollary 10.1.8. If A generates the system and B generates a factor then the
relative entropy is H(A|

∨∞
i=1 T

iA ∨
∨∞
i=−∞ T iB).

Example 10.1.9. Continuity of entropy in the space of k-partitions.

10.2 The Pinsker algebra
Let PA = {A,X \A}

Definition 10.2.1. The Pinsker algebra is Π = {A ∈ F : hµ(T,PA) = 0}.

Clearly Π is T -invariant.

Proposition 10.2.2. Π is countably generated (mod µ) .

Proof. Immediate from separability of the space of 2-partitions in L1 and con-
tinuity of entropy.

Proposition 10.2.3. Π is a σ-algebra.

Proof. Let A ∈ σ(Π). Thus there are An ∈ Π with A ∈ σ(A1, A2, . . .) up to
measure 0. Letting Bn =

∨n
i=1 PAi

, we have

hµ(T,Bn) ≤
n∑
i=1

hµ(T,PAi
) = 0

so hµ(T,Bn) = 0. Also

hµ(T,A|Bn)→ hµ(T,A|
∞∨
i=1

PAi
) = hµ(T,A|Π) = 0

Hence

0 ≤ hµ(T,PA) ≤ hµ(T,PA ∨ Bn) = hµ(T,Bn) + hµ(T,A|Bn)→ 0

so A ∈ Π.
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10.3 The tail algebra and Pinsker’s theorem
Definition 10.3.1. T ±of a process.

Definition 10.3.2. Let A be a partition. Then T −(A) =
⋂
n∈N

∨−n
i=−∞ T−iA

and T +(A) =
⋂
n∈N

∨∞
i=n T

−iA.

Theorem 10.3.3. If A generates then Π = T ±(A).

Proof. Let B ∈ T −(A). Since A generates we have

hµ(T ) = hµ(T,A) ≤ hµ(T,A ∨ B) ≤ hµ(T )

and so

hµ(T ) = hµ(T,A ∨ B)

= hµ(T,B) + hµ(T,A|B)

= hµ(T,B) +Hµ(A|
−1∨

i=−∞
T−iA ∨

∞∨
i=−∞

T−iB)

= hµ(T,B) +Hµ(A|
−1∨

i=−∞
T−iA)

= hµ(T,B) + hµ(A)

where in the last transition we used that T −(A) ⊆
∨−1
i=−∞ T−iA and T jB ∈

T −(A) for all j, hence
∨∞
i=−∞ T−iB ⊆ T −(A). Subtracting hµ(T,A) from both

sides gives hµ(T,B) = 0.
Now suppose that B ∈ Π. Then we again have, for every k,

Hµ(A|
−1∨

i=−∞
T−iA) = hµ(T )

= hµ(T,B) +Hµ(A|
−1∨

i=−∞
T−iA ∨

∞∨
i=−∞

T−iB)

= Hµ(A|
−1∨

i=−∞
T−iA ∨

∞∨
i=−∞

T−iB)

≤ Hµ(A|
−1∨

i=−∞
T−iA ∨ T−kB)

≤ Hµ(A|
−1∨

i=−∞
T−iA)

so we have for all k,

Hµ(A|
−1∨

i=−∞
T−iA) = Hµ(A|

−1∨
i=−∞

T−iA ∨ T−kB)
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An elementary calculation using the conditional entropy formula shows that this
implies for all k that

Hµ(T−kB|
−1∨

i=−∞
T−iA) = Hµ(T−kB|

0∨
i=−∞

T−iA)

or equivalently, for all k,

Hµ(B|
k∨

i=−∞
T−iA) = Hµ(B|

k+1∨
i=−∞

T−iA)

Now, since A generates, we know that

lim
n→∞

H(B|
n∨

i=−∞
T−iA) = H(B|

∞∨
i=−∞

T−iA) = 0

but since

H(B|
n∨

i=−∞
T−iA) = H(B|

n−1∨
i=−∞

T−iA) = . . . = H(B|
−1∨

i=−∞
T−iA)

we find that

lim
n→∞

H(B|
−1∨

i=−∞
T−iA) = 0

so B ∈
∨−1
i=−∞ T−iA. The same argument shows that B ∈

∨−k
i=−∞ T−iA for all

k, so B ∈ T −(A).

Corollary 10.3.4. T + = T −.

10.4 Systems with completely positive entropy
Definition 10.4.1. CPE (K) systems

Definition 10.4.2. A system has uniform mixing if for every partition P,
hµ(Tn,P)→ Hµ(P) as n→∞. In other words,

sup
N

(
1

N
Hµ(

N∨
i=1

T−nNP)−Hµ(P)

)
= o(1) as n→∞

Theorem 10.4.3. A system is CPE if and only if it has uniform mixing.

Proof. If hµ(T,Q) = 0 then hµ(Tn, Q) = 0 for all n so there is no uniform
mixing.
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In the other direction if the system is CPE, then T −(P) ⊆ Π is trivial, so
from the martingale theorem,

Hµ(P|
−n∨

i=−∞
T−iP)→ Hµ(P ) as n→∞

since
∨−1
i=−∞ T−niP ⊆

∨−n
i=−∞ T−iP we have

Hµ(P|
−n∨

i=−∞
T−iP) ≤ Hµ(P|

−1∨
i=−∞

T−niP) ≤ Hµ(P )

hence

hµ(Tn,P) = H(P|
−1∨

i=−∞
T−niP)→ Hµ(P ) as n→∞

Proposition 10.4.4. If T is uniformly mixing (equivalently CPE) then for any
partition P and any k,

H(

k−1∨
i=0

T−inP)→ kH(P)

In particular, for any functions f0, . . . , fk−1 ∈ L∞(µ),
ˆ
f0(x) · f1(Tnx) · f3(T−2nx) · . . . · fk−1(T (k−1)nx)dµ(x)→

∏ˆ
fidµ

and in particular T is strongly mixing.

Proof sketch. First one shows that it is enough to prove this for simple functions,
hence for indicator functions. Let fi = 1Ai

and let P the partition determines
by A1, . . . , Ak−1. Now,
ˆ
f0(x) · . . . · fk−1(T (k−1)nx)dµ(x) = Eµ(f0|Tnf1, . . . , T

(k−1)nfk−1)Eµ(Tnf1 · . . . · T (k−1)nfk−1)

= Eµ(f0|Tnf1, . . . , T
(k−1)nfk−1)Eµ(f1 · Tnf2 · . . . · T (k−2)nfk−1)

For n large we can make Hµ(P|
∨k−1
i=1 T

−inP) as close to Hµ(P) as we like. This
implies that Eµ(f0|Tnf1, . . . , T

(k−1)nfk−1) will be arbitrarily close to
´
f0dµ

when n is large. This takes care of the first term on the right-hand side, for the
second we induct.
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Topological dynamics

11.1 Topological dynamical systems
Definition 11.1.1. A topological dynamical system is a pair (X,T ) where X
is a compact metric space and T : X → X a continuous map.

One can drop the assumption of metrizability with few changes to the result-
ing theory. The assumption of compactness is more essential. Some authors also
assume that T is onto, and/or invertible, but we do not make these assumptions.

We define the orbit (forward and two-sided) of a point in the same manner
as in the measurable case.

Definition 11.1.2. Two topological systems (X,T ) and (Y, S) are isomorphic
if there is a homeomorphism π : X → Y such that πT = Sπ.

Note that homeomorphism of the phase space is a pre-requisite for isomor-
phism. such an obstruction rarely exists in the measurable category since most
“natural” measure spaces are isomorphic as measure spaces.

Definition 11.1.3. A topological system (Y, S) is a factor of a topological
system (X,T ) if there is an onto continuous map π : X → Y such that πT = Sπ.

Again, there may be topological obstructions to the existence of a factor
map.

Example 11.1.4. Full shift: for a finite alphabet A let X = AN or X = AZ

with the product topology (A is discrete). The shift map is then continuous.

Example 11.1.5. Circle rotation

Definition 11.1.6. A subsystem of a topological system (X,T ) is a subset
Y ⊆ X which is closed, non-empty, and invariant (TY ⊆ Y ).

Example 11.1.7. The orbit closure of a point is a subsystem.
Symbolic example: X ⊆ {0, 1}Z, x ∈ X if and only if no two consecutive 1s.

69
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11.2 Transitivity
Definition 11.2.1. x ∈ X is (forward) transitive if the forward orbit {Tnx}n≥0

is dense in X. It is a bi-transitive point if the two-sided orbit {Tnx}n∈Z is dense.
A system is transitive if it contains a transitive point.

Example 11.2.2. In {0, 1}Z take the point 0000 . . . 0abcd . . . where a, b, c, d, . . .
is an enumeration of {0, 1}∗.

Proposition 11.2.3. If (X,T ) supports an invariant ergodic Borel probability
measure µ and µ(U) > 0 for every open set U 6= ∅ then µ-a.e point is transitive.

Proof. Fix a countable basis {Ui} for the topology on X. By the ergodic theo-
rem, for each i, a.e. x satisfies 1

N

∑N−1
n=0 1Ui

(Tnx) →
´

1Ui
dµ = µ(Ui) > 0. In

particular there is an n such that 1Ui
(Tnx) = 1, that is, Tnx ∈ Ui. Since there

are countably many sets Ui, a.e. x satisfies this for all i simultaneously. Such
an x has a dense forward orbit in X.

Proposition 11.2.4. Suppose T is invertible. Then the following are equiva-
lent:

1. (X,T ) is bi-transitive.

2. For every pair of open sets U, V 6= ∅ there is an n ∈ Z with T−nU ∩V 6= ∅.

3. The set of bi-transitive points in X is a dense Gδ subset of X.

Proof. (1) implies (2): given U, V , let x be a transitive point. Then there is an
n such that Tnx ∈ U and an m such that Tmx ∈ V . Thus x ∈ T−nU ∩ T−mV ,
so T−(n−m)U ∩ V 6= ∅.

(2) implies (3): let Ui be a basis for the topology if X. By (2), for each
i the set

⋃
n∈Z T

−nUi is dense in X and of course it is open. Thus X0 =⋂
i

⋃
n∈Z T

−nUi is a dense Gδ set. If x ∈ X0 then for each i there is an n such
that x ∈ T−nUi. This implies that {Tnx} intersects every open set, so x is
bi-transitive.

(3) implies (1) trivially.

For non-invertible systems we have the following:

Proposition 11.2.5. Assume X has no isolated points. Then the following are
equivalent:

1. (X,T ) is transitive.

2. For every pair of open sets U, V 6= ∅ there is an n ∈ N with T−nU∩V 6= ∅.

3. The set of transitive points in X is a dense Gδ subset of X.
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Proof. (2) implies (3) is proved as in the previous proposition, using the sets⋃
n∈N T

−nUi instead of
⋃
n∈Z T

−nUi. Again, (3) implies (1) trivially, so we only
need to prove that (1) implies (2). For this let ∅ 6= U, V be open and suppose
Tnx ∈ U and Tmx ∈ V . As before we have T−(n−m)U ∩ V 6= ∅ but we would
like n −m ∈ N and this might fail. To correct this, note first that U contains
infinitely many points (since it is non-empty and X has no isolated points).
Therefore there is a y ∈ U with y 6= T ix for all 0 ≤ i ≤ m. Let U ′ ⊆ U be an
open neighborhood of y′ disjoint from x, Tx, . . . , Tmx. Then there is an n ∈ N
with Tnx ∈ U ′ ⊆ U . Clearly Tnx 6= x, Tx, . . . , Tmx so n > m. Now proceed as
before.

Remark 11.2.6. In a transitive system satisfying one of the assumptions above
the cases (T invertible or X without isolated points), for every open sets U, V 6=
∅, the set {n ∈ N : T−nU ∩ V 6= ∅} is infinite.

Example 11.2.7. Consider the orbit closure X of x = (0, 1, 1, 1, 1, . . .) ∈
{0, 1}N. X = {x, y} where y = (1, 1, 1 . . .). Then x is transitive but y is not,
and {y} is open in X.

Remark 11.2.8. The propositions above can be viewed as a topological version
of the ergodic theorem: in a transitive system a “typical” point (in the Baire
category sense) is transitive. Compare: In an ergodic system a typical point
visits every set in a dense countable algebra of sets).

However, there is no analog of the ergodic decomposition theorem: a non-
transitive system does not decompose into disjoint transitive systems. For exam-
ple, the orbit closure X of (. . . 000111 . . .) and Y of (. . . 000222 . . .) in {0, 1, 2}Z
both contain 0, so their union Z = X ∪ Y cannot be partitioned into two tran-
sitive (closed)) systems.

Definition 11.2.9. (X,T ) is topologically mixing if for every pair of open sets
U, V 6= ∅, {n : T−nU ∩ V 6= ∅} is co-finite in N.

Lemma 11.2.10. (obvious) Topological mixing implies transitivity.

Example 11.2.11. AN and AZ are mixing, hence transitive, for every compact
A.

Indeed, it is enough to check that the condition is satisfied for U, V in a basis
of the topology. The basis consisting of cylinder sets clearly satisfies it.

11.3 Minimality
Definition 11.3.1. (X,T ) is minimal if it has no non-trivial subsystems, i.e.
if Y ⊆ X is a subsystem then Y = X or Y = ∅.

Remark 11.3.2. If (X,T ) us minimal then T is surjective, since T (X) is a sub-
system.

Lemma 11.3.3. A system is minimal if and only if every point is transitive.



CHAPTER 11. TOPOLOGICAL DYNAMICS 72

Proof. If x is a non-transitive point, then its orbit closure is a non-trivial sub-
system. Conversely, if Y ⊆ X is a non-trivial subsystem and x ∈ Y then the
orbit of x is contained in Y and hence not dense.

Example 11.3.4. Circle rotation.

Proposition 11.3.5. Every topological dynamical system has a minimal sub-
system.

Proof. Let S be the class of subsystems of X ordered by inclusion. Since the
intersection of a decreasing family of subsystems is a subsystem (non-empty
because X is compact), by Zorn’s lemma there is a minimal element for this
order. By definition this is a subsystem which does not have proper subsystems,
so it is minimal.

We next develop a more usable characterization of minimality in terms of
the visit times of points to sets.

Definition 11.3.6. A set I ⊆ N (or I ⊆ Z) is syndetic if there is a constant
L (the syndeticity constant) such that every interval [a, a + L] ⊆ N (resp. Z)
contains a point from I. In other words, the gaps in I are of length at most L.

Proposition 11.3.7. The following are equivalent:

1. (X,T ) is minimal.

2. For every open set U 6= ∅ there is an N such that X =
⋃N−1
n=0 T

−n.

3. For every x ∈ X and open set U 6= ∅, the set {n ∈ N : Tnx ∈ U} is
syndetic.

Proof. Assume (1). The given U 6= ∅ and x ∈ X, the point x is transitive so
Tnx ∈ U for some n ∈ N, hence x ∈ T−nU . Therefore X =

⋃∞
n=0 T

−nU . All
the sets int he union are open so by compactness there is a finite sub-cover,
giving (2).

Assume (2). fix x and U and let N be as in (2) for U . Since X =⋃N−1
n=0 T

−nU , for every k we have

X = T−kNX =

N−1⋃
n=0

T−kN−nU =

(k+1)N−1⋃
n=kN

T−nU

so for each k there is an kN ≤ nk < (k + 1)N with x ∈ T−nkU , equivalently
Tnkx ∈ U . Since nk+1 − nk ≤ 2N , the sequence {nk} is syndetic and so is
{n : Tnx ∈ U}.

Finally (3) implies that every x is transitive, so (X,T ) is minimal.

Corollary 11.3.8. If A is finite and X ⊆ AZ is minimal for the shift σ, then
for every word a ∈ A∗ such that a appears in some point of X, there is a
constant L = L(a) such that for every x ∈ X the set {i : xi . . . xi+|a|−1 = a} of
appearances of a in x is syndetic with constant L.
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Example 11.3.9. Morse minimal system.

Remark 11.3.10. Minimality is a “indecomposability” condition and also implies
that every point has a “well distributed” orbit. However this analog of ergodicity
still fails to have an “ergodic decomposition”: most systems are not unions of
their minimal subsystems. For example, in {0, 1}Z there are many points in
which some word appears non-syndetically, and hence the point does not belong
to a minimal system. For example, x = . . . 0001111 . . ..

Definition 11.3.11. A point x ∈ X is recurrent is if there is a sequence nk →∞
such that Tnkx→ x.

Lemma 11.3.12. In a minimal system every point is recurrent.

Proof. Let x ∈ X. If Tx = x then the conclusion is obvious. Otherwise, there
is some y ∈ T−1x with y 6= x. Since x is transitive, there is a sequence nk →∞
such that Tnkx→ y. Then Tnk+1x→ Ty = x.

Remark 11.3.13. The converse is false, e.g. in the disjoint union of two minimal
systems every point is recurrent, but the system is not minimal.

Corollary 11.3.14. Every system has a recurrent point.

Proof. Choose a minimal subsystem and take any point in it.

Remark 11.3.15. This proof of the existence of recurrent points is due to Birkhoff.
It is purely topological. An alternative proof can be used by introducing invari-
ant measures, and using Poincaré’s theorem.

11.4 Invariant measures and unique ergodicity
Definition 11.4.1. Let P(X) denote the space of Borel probability measures
on X and PT (X) the subset of invariant ones

PT (X) = {µ ∈ P(X) : µ(T−1A) = µ(A) for all Borel sets A ⊆ X}

Lemma 11.4.2. µ ∈ P(X) is invariant if and only if
´
fdµ =

´
f ◦ Tdµ for

all f ∈ C(X).

Proof. Exercise.

Definition 11.4.3. The weak-* topology on C(X) is the weakest topology such
that µ 7→

´
fdµ is continuous for each f ∈ C(X).

Lemma 11.4.4. PT (X) is closed (compact) in the weak-* topology.

For more on the weak-* topology see the Appendix.

Proposition 11.4.5. Every topological dynamical system has invariant (and
ergodic) Borel probability measures.
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Proof. Let x ∈ X be any point and let

µN =
1

N

N−1∑
n=0

δTnx

Thus ˆ
fdµN =

1

N

N−1∑
n=0

f(Tnx)

By compactness there is a subsequence Nk → ∞ and µ ∈ P(X) such that
µNk

→ µ. We claim that µ is invariant. Indeed,∣∣∣∣ˆ fdµ−
ˆ
f ◦ Tdµ

∣∣∣∣ = lim
k→∞

∣∣∣∣ˆ fdµNk
−
ˆ
f ◦ TdµNk

∣∣∣∣
= lim

k→∞

∣∣∣∣∣ 1

Nk

Nk−1∑
n=0

f(Tnx)− 1

Nk

Nk−1∑
n=0

f(Tn+1x)

∣∣∣∣∣
= lim

k→∞

1

Nk
|f(x)− f(TNk+1x)|

= lim
k→∞

2 ‖f‖∞
Nk

= 0

Thus µ is invariant.

Remark 11.4.6. The set of invariant measures is weak-* closed. In fact the
ergodic measures are precisely the extreme points.

(If µ is not ergodic then there is a non-trivial invariant set A. Then µ =
µ(A)µA + (1 − µ(A))µX\A presents µ as a non-trivial convex combination of
invariant measures, so µ is not an extreme point. Conversely, in the case that T
is invertible, if µ = t+ (1− t)η then ν � µ and the Radon-Nykodim derivative
dν/dµ can be shown to be invariant and is non-trivial if ν 6= η. Thus µ is not
ergodic. In the non-invertible case invariance of dν/dµ is not as trivial to show,
but can be done, see Walters or my notes from last year).
Remark 11.4.7. The full shift has many ergodic measures, in fact they are dense
in the set of invariant measures.

Definition 11.4.8. x ∈ X is generic for a measure µ if 1
N

∑N−1
n=0 δTnx → µ, i.e.

1

N

N−1∑
n=0

f(Tnx)→
ˆ
fdµ for all f ∈ C(X) (11.1)

The argument in the previous proposition shows that if x is generic for µ
then µ is invariant.

Proposition 11.4.9. The generic points of an ergodic measure have full mea-
sure.
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Proof. Let µ be an ergodic measure. It is enough to show that (11.1) holds for
f in a countable dense algebra F ⊆ C(X). Such an algebra exists by stone-
Weierstrass. Now, for every f ∈ X the ergodic theorem implies that (11.1) holds
for a.e. x, hence it a.s. holds for all f ∈ F , as desired.

Corollary 11.4.10. If µ, ν are distinct ergodic measures then they are mutually
singular.

Proof. Let Xµ denote the set of generic points for µ and Xν the set of generic
points for ν. It is clear that these are Borel sets. Since µ 6= ν no point can be
generic for both so Xµ ∩Xν = ∅. But µ(Xµ) = ν(Xν) = 0 by the proposition,
so µ ⊥ ν.

Example 11.4.11. A point may be generic for a non-singular measure. For
example let x = 011203140516 . . . where an = aaa . . . a n-times. We leave it as
an exercise to show that x ∈ {0, 1}N is generic for 1

2δ0∞ + 1
2δ1∞ , which is non

ergodic since e.g. 0∞ and 1∞ are invariant sets of positive measure for it.

Definition 11.4.12. (X,T ) is uniquely ergodic if it has a unique invariant
probability measure.

Remark 11.4.13. If the measure is unique, it must be ergodic (otherwise its er-
godic components would give additional ergodic measures, contradicting unique-
ness).

Remark 11.4.14. A uniquely ergodic system with a fully supported invariant
measure is minimal.

Proof. Similar to the proof that for a fully supported ergodic measure a.e. point
is transitive; here we use the fact that every point is generic for µ to deduce
that every point is transitive. The details are left as an exercise.

Lemma 11.4.15. The following are equivalent:

1. (X,T ) is uniquely ergodic.

2. There is a measure µ ∈ P(X) such that every point in X is generic for µ.

3. For every f ∈ C(X), 1
N

∑N−1
n=0 T

nf → c(f) converges uniformly to a
constant c(f).

Proof. (3) implies (2) since f 7→ c(f) defines a positive linear functional, hence
by Riesz’s theorem c(f) =

´
fdµ for some µ ∈ P(X), and then by definition

every x is generic for µ.
(2) implies (1) because if there were two distinct invariant measures there

would be distinct ergodic ones, and each would have generic points, contradict-
ing (2).

(1) implies (3): Let µ be the unique invariant measure, so 1
N

∑N−1
n=0 T

nf →´
fdµ pointwise for every f ∈ C(X). If convergence is not uniform then we can

find a sequence of points xi andNi →∞ such that limi→∞
1
Ni

∑Ni−1
n=0 f(Tnxi) 6=
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´
fdµ. Passing to a further subsequence we find an accumulation point µ′ of

1
Ni

∑Ni−1
n=0 δTnxi such that

´
fdµ′ 6=

´
fdµ, so µ′ 6= µ. But µ′ is invariant (the

same calculation as in Lemma ?? holds). This contradicts unique ergodicity.

Exercise 11.4.16. The Morse minimal system is uniquely ergodic.

11.5 Isometries (we skip this in class)
Proposition 11.5.1. Let (Y, d) be a compact metric space and S : Y → Y an
isometry with a dense orbit. Then there is a compact metric group G and g ∈ G
and a homeomorphism π : Y → G such that Lgπ = πS. Furthermore if ν is an
invariant measure on Y then it is ergodic and πν is Haar measure on G.

Proof. Consider the group Γ of isometries of Y with the sup metric,

d(γ, γ′) = sup
y∈Y

d(γ(y), γ′(y))

Then (Γ, d) is a complete metric space, and note that it is right invariant:
d(γ ◦ δ, γ ◦ δ) = d(γ, γ′).

Let y0 ∈ Y have dense orbit and set Y0 = {Sny0}n∈Z. If the orbit is finite,
Y = Y0 is a finite set permuted cyclically by S, so the statement is trivial.
Otherwise y ∈ Y0 uniquely determines n such that Sny0 = y and we can define
π : Y0 → Γ by y 7→ Sn ∈ Γ for this n.

We claim that π is an isometry. Fix y, y′ ∈ Y0, so y = Sny0 and y′ = Sn
′
y0,

so
d(πy, πy′) = sup

z∈Y
d(Snz, Sn

′
z)

Given z ∈ Y there is a sequence nk →∞ such that Snky0 → z. But then

d(Snz, Sn
′
z) = d(Sn(limSnky0), Sn

′
(limSnky0))

= lim d(SnSnky0, S
n′Snky0)

= lim d(Snk(Sny0), Snk(Sn
′
y0))

= lim d(Sny0, S
n′y0)

= d(Sny0, S
n′y0)

= d(y, y′)

Thus d(πy, πy′) = d(y, y′) and π is an isometry Y0 ↪→ Γ. Furthermore, for
y = Sny0 ∈ Y0,

π(Sy) == π(SSny) = Sn+1 = LSS
n = LSπ(y)

It follows that π extends uniquely to an isometry with Y ↪→ Γ also satisfying
π(Sy) = S(πy). The image π(Y0) is compact, being the continuous image of the
compact set Y . Since π(Y0) = {Sn}n∈Z and this is a group its closure is also a
group G.
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Finally, suppose ν is an invariant measure on Y . Then m = πν is LS
invariant on G. Since it is invariant under LS it is invariant under {LnS}n∈Z,
and this is a dense set of elements in G. Thus m it is invariant under every
translation in G, and there is only one such measure up to normalization: Haar
measure. The same argument applies to every ergodic components of m (w.r.t.
LS) and shows that the ergodic components are also Haar measure. Thus m is
LS-ergodic and since π is an isomorphism, (Y, ν, S) is ergodic.

Corollary 11.5.2. Irrational circle rotations are minimal and uniquely ergodic.



Chapter 12

Topological Entropy via
Covers

12.1 Definition
Let (X,T ) be a topological dynamical system.

Definition 12.1.1. .

1. An open cover of X is a collection of open sets whose union is X.

2. If U ,V are open covers of X their join is U∨V = {U∩V : U ∈ U , V ∈ V},
it is also an open cover of X.

3. An open cover U refines an open cover V if every U ∈ U is a subset of
some V ∈ V

4. If T : X → X is a continuous map then T−1U = {T−1U : U ∈ U} is an
open cover.

Lemma 12.1.2. .

1. T−1(U ∨ V) = T−1(U) ∨ T−1(V).

2. If U refines V then T−1(U) refines T−1(V).

Definition 12.1.3. For an open cover U we denote

N(U) = min{|V| : V ⊆ U is an open cover}

and
H(U) = logN(U)

Remark 12.1.4. By compactness every open cover has a finite sub-cover, so
N(U) ∈ N.
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Lemma 12.1.5. .

1. N(U) ≥ 1 and H(U) ≥ 0, with equality if and only if X ∈ U

2. U refines V implies N(U) ≥ N(V) and H(U) ≥ H(V).

3. H(U ∨ V) ≤ H(U) +H(V).

4. H(T−1U) ≤ H(U) and if T is onto then equality.

Theorem 12.1.6. limn→∞
1
nH(

∨n−1
i=0 T

−iU) exists for every open cover U of
X.

Proof. Write an = H(
∨n−1
i=0 T

−iU). Then

am+n = H(

(m+n)−1∨
i=0

T−iU)

= H(

m−1∨
i=0

T−iU ∨
(m+n)−1∨
i=m

T−iU))

≤ H(

m−1∨
i=0

T−iU) +H(

(m+n)−1∨
i=m

T−iU))

≤ H(

m−1∨
i=0

T−iU) +H(

n−1∨
i=0

T−iU))

= am + an

and the claim follows from sub-additivity.

Definition 12.1.7. The topological entropy of (X,T ) and an open cover U is

htop(T,U) = lim
n→∞

1

n
H(

n−1∨
i=−0

T−iU)

Proposition 12.1.8. .

1. 0 ≤ htop(T,U) ≤ H(U).

2. If U refines V then htop(T,U) ≥ htop(T,V).

Definition 12.1.9. The topological entropy of (X,T ) is

htop(T ) = sup
U
htop(T,U)

where the supremum is over open covers U of X.

Remark 12.1.10. We can take the sup over finite sub-covers.

Proposition 12.1.11. .
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1. htop(T ) ≥ 0.

2. If Y ⊆ X is a subsystem then htop(T ) ≥ htop(T |Y ).

3. If T is invertible then htop(T ) = htop(T
−1).

Definition 12.1.12. A topological system (Y, S) is a factor of (X,T ) if there
is a continuous onto map π : X → Y such that π ◦ T = S ◦ π.

Theorem 12.1.13. If (Y, S) is a factor of (X,T ) then htop(T ) ≥ htop(S).

Proof. Let π : X → Y be a factor map. If U is an open cover of U then
π−1U = {π−1U : U ∈ U} is an open cover of X and N(π−1U) = N(U). Also
π−1(

∨n−1
i=0 S

−iU) =
∨n−1
i=0 T

−iπ−1U . Combining these two facts we find that
htop(T, π

−1U) = htop(S,U). This shows that

htop(T ) = sup
V
htop(T,V) ≥ sup

U
htop(S,U) = htop(S)

12.2 Expansive systems
Definition 12.2.1. (X,T ) is (forward) expansive if there is an ε > 0 such that
for every x, y ∈ X with X 6= y there is an n ∈ N such that d(Tnx, Tny) > ε. It
is two-sided expansive if T is invertible and the same holds but allowing n ∈ Z.
The constant ε is called the expansiveness constant.

Remark 12.2.2. Although the definition uses the metric, the property of expan-
siveness is independent of the metric: if d′ is another metric on X giving the
same topology, then, since X is compact, for every ε > 0 there is an ε′ such
that if d′(u, v) < ε′ then d(u, v) < ε. It follows that if (X,T ) is expansive and
ε is the constant in the definition then ε′ satisfies the same property for d′.

Lemma 12.2.3. If ε is as in the definition of expansiveness, then for every
δ > 0 there is an N = N(δ) such that if x, y ∈ X and d(x, y) ≥ δ then there is
an n ∈ {0, 1, . . . , N − 1} with d(Tnx, Tny) > ε.

Proof. If not then there is some δ > 0 such that for every N there is a pair
xN , yN ∈ X with d(xN , yN ) ≥ δ and d(Tnxk, T

nyk) ≤ ε for all 0 ≤ n < N .
Passing to subsequence we can assume that xNk

→ x and yNk
→ y. Evidently

d(x, y) ≥ δ, so x 6= y, but for every n we have n < Nk for all large k and
by continuity of T , d(Tnx, Tny) = lim d(TnxNk

, TnyNk
) ≤ ε. This contradicts

expansiveness.

Lemma 12.2.4. For any cover U and any N , htop(T,U) = htop(T,
∨N−1
i=0 T−iU).

Proof. Since
∨N−1
i=0 T−iU refines U we certainly have ≤. For the other direction

write V =
∨N−1
i=0 T−iU and notice that

M−1∨
i=0

T−iV =

(N+M)−1∨
i=0

T−iU
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hence

htop(T,V) = lim sup
1

n
logN(

n−1∨
i=0

T−iV)

= lim sup
1

n
logN(

n+N−1∨
i=0

T−iU)

= htop(T,U)

Proposition 12.2.5. If (X,T ) is expansive with expansive constant ε, and U
is a cover of X by sets of diameter ≤ ε, then htop(T ) = htop(T,U).

Proof. It suffices to show that for every open cover V we have htop(T,U) ≥
htop(T,V).

Let δ be a Lebesgue covering number of V, so for every x ∈ X we have
Bδ(x) ⊆ V for some V ∈ V. Let N = N(δ) be as in the lemma and U ′ =

N(
∨N−1
i=0 T−iU). We claim that every element of U ′ has diameter < δ. Indeed,

if d(x, y) ≥ δ then there is some 0 ≤ n < N with d(Tnx, Tny) > ε, and hence
Tnx, Tny cannot both belong to the same element of U , hence x, y do not belong
to the same element of T−nU . This shows that every x, y which belong to the
same element of U ′ satisfy d(x, y) < δ as claimed.

It follows that U ′ refines V, hence htop(U ′) ≥ htop(V). But htop(U) =
htop(U ′) be the previous lemma and the proposition follows.

Corollary 12.2.6. An expansive map has finite topological entropy.

Example 12.2.7. Let X = AN for a finite set A and T the shift. Then
htop(T ) = log |A|.

Indeed, define the metric by

d(x, y) = 2−n where n = min{i ∈ N : xi 6= yi}

Note that if x1 6= y1 then d(x, y) ≥ 1
2 . Since x 6= y implies that xn 6= yn for

some n, and (Tnx)1 = xn 6= yn = (Tny)1, we have d(Tnx, Tny) ≥ 1
2 , so T is

expansive with constant 1
2 . Also note that if x1 = y1 then d(x, y) ≤ 1

2 , so the
cylinder sets

[a] = {x ∈ X : x1 = a}

are open (and closed) sets of diameter 1
2 . By the proposition, htop(T ) =

htop(T,U) for the partition U = {[a] : a ∈ A}. Finally,
∨n
i=1 T

−iU is the parti-
tion of X according tot he initial n-segments of sequences x ∈ X and consists of
|A|n pairwise disjoint sets, so it has no proper subcovers and N(

∨n−1
i=0 T

−iU) =
|A|n. Thus htop(T,U) = log |A|, as claimed.

Corollary 12.2.8. Let A,B be finite sets. If |B| > |A| then there is no factor
map from AZ → BZ. In particular AZ, BZ are isomorphic if and only if |A| =
|B|.
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Example 12.2.9. Let A be finite and X ⊆ AZa sybsystem. Let

Ln(X) = #{w ∈ An : w appears in X}

Then htop(T |X) = limn→∞
1
n logLn(X).

Indeed, T is expansive with the same constant as before so for the partition U
into cylinders [a]∩X, a ∈ A, we have again htop(T |X) = lim 1

m logN(
∨n−1
i=0 T

−iU).
But N(

∨n−1
i=0 T

−iU) = Ln(X) and the claim follows.



Chapter 13

Topological Entropy via
Separated Sets

13.1 Spanning and separating sets
Definition 13.1.1. Let (X, d) be a compact metric space and ε > 0.

1. The ε-covering number cov(X, d, ε) is the minimal number of points in an
ε-dense set, i.e.

cov(X, d, ε) = min{n : ∃x1, . . . , xn ∈ X s.t. X =

n⋃
i=1

Bε(xi})

2. The ε-separation number, sep(X, d, ε), is the maximal number of ε-separated
points, i.e.

sep(X, d, ε) = max{n : ∃y1, . . . , yn ∈ X s.t. d(yi, yj) > ε for all i 6= j}

Remark 13.1.2. By compactness, both numbers are finite.
If ε′ < ε then cov(X, d, ε′) ≥ cov(X, d, ε) and sep(X, d, ε′) ≥ sep(X, d, ε).

Lemma 13.1.3. cov(X, d, ε/2) ≥ sep(X, d, ε) ≥ cov(X, d, ε)

Proof. Suppose that x1, . . . , xn is a maximal ε-separated set, so n = sep(X, d, ε).
If X 6⊆

⋃
Bε(xi) there is an x ∈ X such that d(x, xi) ≥> ε for all i and

then x1, . . . , xn, x would also be ε-separated, contradicting maximality. Hence
X =

⋃
Bε(xi) and cov(X, d, ε) ≤ n = sep(X, d, ε).

On the other hand ifX =
⋃m
i=1Bε/2(yi) then for any ε-separated set x1, . . . , xn,

no two of the points xi are in the same ball Bε(yj), but each xi is in at least
one such ball, hence n ≤ m. It follows that cov(X, d, ε/2) ≥ sep(X, d, ε).
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13.2 Bowen’s definition of entropy
Definition 13.2.1. If (X,T ) is a topological dynamical system, d a metric on
X, then

dn(x, y) = max
0≤i≤n−1

d(Tnx, Tny)

Observe that the ε-ball around x in dn is
⋂n−1
i=0 Bε(T

nx).

Definition 13.2.2. For ε > 0,

hsep(T, d, ε) = lim sup
n→∞

1

n
log sep(X, dn, ε)

hcov(T, d, ε) = lim sup
n→∞

1

n
log cov(X, dn, ε)

and

hsep(T, d) = lim
ε→0

hsep(T, ε)

= sup
ε→0

hsep(T, ε)

and

hcov(T, d) = lim
ε→0

hcov(T, ε)

= sup
ε→0

hcov(T, ε)

Remark 13.2.3. Since cov(X, d, ε/2) ≥ sep(X, d, ε) ≥ cov(X, d, ε) we have

hcov(T, d, ε) ≤ hsep(T, d, ε) ≤ hcov(T, d, ε/2)

so
hsep(T, d) = hcov(T, d)

Lemma 13.2.4. hsep(T ), hcov(T ) are independent of the metric (depend only
on the topology).

Proof. Let d, d′ be two metrics compatible with the topology on X. For ev-
ery ε > 0 there is an ε′ > 0 such that if d′(x, y) < ε′ then d(x, y) < ε.
Thus B′ε′(x) ⊆ Nε(x), where B′ denotes the ball with respect to d′. It fol-
lows that cov(X, d′, ε′) ≥ cov(X, d, ε) and cov(X, d′n, ε

′) ≥ cov(X, dn, ε). Hence
hcov(T, d

′, ε′) ≥ hcov(T, d, ε). Hence

hcov(T, d
′) = sup

ε′
hcov(T, d, ε

′) ≥ sup
ε
hcov(T, d, ε) = hcov(T, d)

The other inequality is symmetric. The claim about hsep follows from the fact
that it is the same as hcov.

In view of the last lemma, from now on we drop the metric from the notation
and write hcov(T ), hsep(T ).

Example 13.2.5. If T is an isometry, then dn = d. Hence cov(X, dn, ε) =
cov(X, d, ε) is independent of n and 1

ncov(X, dn, ε)→ 0. Taking ε also, we have
hcov(T ) = 0.
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13.3 Equivalence of the definitions
For an open cover U write diamU = max{diamU : U ∈ U}.
Proposition 13.3.1. Let Un be open covers with diamUn → 0. Then

htop(T ) = lim
n→∞

htop(T,Un)

Proof. First, for any open cover V, let δ be a Lebesgue number for V. Then
for large enough n we have that diamUn < δ so Un refines V and htop(T,Un) ≥
htop(V). In particular, taking V = Un0

, this shows that limhtop(T,Un) exists,
and that the limit is at least as large as supV htop(T,V). Since it also does not
exceed this supremum and the supremum is equal by definition to htop(T ), we
are done.

Proposition 13.3.2. If U is an open cover with Lebesgue number δ then

N(

n−1∨
i=1

T−iU) ≤ cov(X, dn, δ/2) ≤ sep(X, dn, ε/2)

Proof. We have already seen the right inequality. For the left one, notice that in
the metric dn the open cover

∨n−1
i=0 T

−iU has Lebesgue number δ. Therefore if Un
is an optimal cover of (X, dn) by δ/2 balls, then its elements have diameter δ and
it refines

∨n−1
i=0 T

−iU . Thus N(
∨n−1
i=1 T

−iU) ≤ N(Un) = cov(X, dn, δ/2).

Proposition 13.3.3. If U is an open cover with diamU ≤ ε, then

cov(X, dn, ε) ≤ sep(X, dn, ε) ≤ N(

n−1∨
i=0

T−iU)

Proof. The left inequality was already proved. For the right one, note that if
x1, . . . , xm is ε-separated in dn then for each xi, xj there is some 0 ≤ k ≤ n− 1
such that d(T kxi, T

kxj) > ε. This means that T kxi, T kxj do not lie in a com-
mon element of U , equivalently xi, xj do not lie in a common element of T−kU ,
so they do not lie in a common element of

∨n−1
i=0 T

−iU . This means that a sub-
cover of

∨n−1
i=0 T

−iU must contain at least m sets. Taking a maximal separated
set, with m = sep(X, dn, ε), we find that N(

∨n−1
i=0 T

−iU) ≥ sep(X, dn, ε).

Theorem 13.3.4. htop(T ) = hsep(T ) = hcov(T ).

Proof. Let Un be open covers with diamUn < 1/n , so

htop(T ) = lim
n→∞

htop(T,Un)

Now for each n, by the previous proposition with ε = 1/n,

htop(T,Un) = lim sup
N→∞

1

N
logN(

N−1∨
i=0

T−iUn)

≥ lim sup
N→∞

1

N
log cov(X, dn, 1/n)

= hcov(T, d, 1/n)
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so taking n→∞ we conclude

htop(T ) ≥ hcov(T )

On the other hand let δn be the Lebesgue covering number of Un and note that
δn ≤ diamUn → 0. Then by the other proposition,

htop(T,Un) = lim sup
N→∞

1

N
logN(

N−1∨
i=0

T−iUn)

≤ lim sup
N→∞

1

N
log cov(X, dn, δn/2)

= hcov(T, d, δn/2)

again taking n→∞ we obtain

htop(T ) ≤ hcov(T )

as claimed.



Chapter 14

Interplay Between
Measurable and Topological
Entropy

14.1 The Variational Principle
Theorem 14.1.1. Let (X,T ) be a topological dynamical system. Then

htop(T ) = sup{hµ(T ) : µ ∈ PT (X)}

The proof has two directions which we prove separately. First we have a
lemma about the size of the “hamming ball” around a word. Let A be a finite
set, and for n ∈ N define a metric on An by

un(a, b) =
1

n
#{0 ≤ i ≤ n− 1 : ai 6= bi}

This is called the Hamming distance.

Lemma 14.1.2. For any a ∈ An and ε > 0,

|{b ∈ An : un(a, b) < ε}| ≤ 2n(H(ε)+ε log |A|)

Proof. In order to obtain a point b in the set above, one first chooses a set
I ⊆ {0, . . . , n− 1} of size |I| ≤ εn, and then changes the values of ai for i ∈ I.
The number of choices for I is

(
n
εn

)
≤ 2H(ε), and the number of ways to modify

a at the indices in I is (|A| − 1)|I| ≤ 2εn log |A|. Thus the number of b’s in the
set above is bounded by the product of these two bounds.

Corollary 14.1.3. Let t > 0 and let U ⊆ An be a set with |U | > 2tn log |A|.
Then for every ε > 0 there is a subset U ′ ⊆ U with |U ′| > 2n((t−ε) log |A|−H(ε))

such that un(a, b) ≥ ε for all distinct a, b ∈ U ′.
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Proof. Choose U ′ by induction, greedily: start with an arbitrary a ∈ U and
replace U by U \ {b ∈ An : un(b, a) < ε}. We have thus removed at most
2n(H(ε)+ε log |A|) points from U . Choose another point in U and iterate. This
can go on for k steps provided that k · 2n(H(ε)+ε log |A|) < |U | so certainly it can
go on for 2nt log |A|/2n(H(ε)+ε log |A|) steps, so the set U ′ we end up with has the
desired size and clearly also the second property.

Proposition 14.1.4. htop(T ) ≥ hµ(T ) for every µ ∈ PT (X).

Proof. Let µ ∈ PT (X) and let P be a finite measurable partition of X, we must
show that htop(T ) ≥ hµ(T,P).

Fix ε > 0 and for each Ai ∈ P let A′ ⊆ A be a compact set such that
µ(A′) > (1− ε

2 )µ(A). Let A′′ = A \A′ and let Q = {A′, A′′}A∈P . This is again
a measurable partition of X and it refines P so hµ(T,Q) ≥ hµ(T,P). Denote

h = hµ(T,Q)

Let E =
⋃
A∈P A

′′ and note that µ(E) < ε
2 . Denote

δ = min
A 6=B∈P

d(A′, B′) > 0

(using compactness), and observe that if x, y ∈ X and for some i < n we have
Q(T ix) 6= Q(T iy) and T ix, T iy /∈ E, then d(T ix, T iy) ≥ δ, hence dn(x, y) ≥ δ.
Our goal is to produce a large set of points for which each pair satisfies the
above.

By the SMB theorem and the ergodic theorem, for µ-a.e. x for all large n
there is a set Fn ⊆ X such that for x ∈ Fn,

2−n(h+ε) < µ(

n−1∨
i=0

T−iP(x)) < 2−n(h−ε)

and
1

n

n−1∑
i=0

1E(T ix) <
ε

2

Let Un be the set of words a = (Q(T ix))n−1
i=0 for x ∈ Fn. Then |Un| >

2n(h+ε), so by the corollary above, there is a subset U ′n ⊆ Un with |U ′n| >
2n(h+ε−ε log |A|−H(ε)) and un(a, b) ≥ ε for distinct a, b ∈ U ′n. For each a ∈
U ′n there is an x = x(a) ∈ Fn such that ai = Q(T ix). Now, for distinct
a, b ∈ U ′n, for x = x(a) and y = y(b) we know that 1

n

∑n−1
i=0 1E(T ix) < ε

2 and
1
n

∑n−1
i=0 1E(T iy) < ε

2 , and un(a, b) ≥ ε. This implies that there must be some
0 ≤ i ≤ n − 1 such that Q(T ix) 6= Q(T iy) and T ix, T iy /∈ E. As discussed
above, this implies that dn(x, y) > δ. Thus, the collection {x(a) : a ∈ U ′n} is
δ-separated in dn so for all large enough n

sep(X, dn, δ) ≥ 2n(h+ε−ε log |A|−H(ε))
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This implies that
htop(T ) ≥ h− (log |A| − 1)ε+H(ε)

Since ε was arbitrary this shows that htop(T ) ≥ h as desired.

For the other direction we need two easy facts topologically nice partitions.

Lemma 14.1.5. Let µ be Borel a measure on a metric space (X, d). Then for
every ε > 0 there exists a Borel partition P of X such that diamA < ε and
µ(∂A) = 0 for A ∈ P.

Proof. Fix ε > 0. For x ∈ X the sets ∂Br(x) are pairwise disjoint Borel sets,
and there are continuum many of them for r < ε/2, so they cannot all have
positive measure. Thus there is some r = r(x) such that µ(∂Br(x)) = 0. By
compactness we can choose a finite sequence x1, . . . , xn such that Br(xi)(x) cover
X. The partition generated by these balls has the desired properties.

Lemma 14.1.6. Let P be a partition of a metric space X. Let µn, µ ∈ P(X)
and suppose that µn → µ weak-* and that µ(∂A) = 0 for every A ∈ P. Then
H(µn,P)→ H(µ,P).

Proof. If suffices to note that under the assumptions, µn(∂A)→ µ(∂A) for every
A ∈ P.

Lemma 14.1.7. Let µ be a T -invariant measure on X and P a partition. Then
for every k < n,

1

n
Hµ(

n−1∨
i=0

T−iP) ≤ 1

n

n−1∑
i=0

1

k
Hµ(

i+k−1∨
j=i

T−jP) +O(
k log |P|

n
)

=
1

n

n−1∑
i=0

1

k
HT iµ(

k−1∨
j=0

T−jP) +O(
k log |P|

n
)

In particular, writing ν = 1
n

∑n−1
i=0 T

iµ, we have

1

n
Hµ(

n−1∨
i=0

T−iP) ≤ 1

k
Hν(

k−1∨
j=0

T−jP) +O(
k log |P|

n
)

Proof. The first two statements are identical by measure preservation, which
gives the identityHµ(

∨i+k−1
j=i T−jP) = HT iµ(

∨k−1
j=0 T

−jP). To derive the second
statement from the first, use concavity of entropy in the measure argument and
the definition of ν to deduce that

Hν(

k−1∨
j=0

T−jP) ≥ 1

n

n−1∑
i=0

HT iµ(

k−1∨
j=0

T−jP)

and apply the first part. Thus we must prove the first equality.
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For this, note that for any 0 ≤ m < k there is a maximal integer nm such
that k · nm + m ≤ n. We decompose the partition

∨n−1
i=0 T

−iP into “blocks” of
length k starting at integers j ≡ m mod k. Using the inequality Hµ(U ∨ V) ≤
Hµ(U) +Hµ(V),

Hµ(

n−1∨
i=0

T−iP) ≤ Hµ

k(nm+1)+m−1∨
i=0

T−iP


= Hµ

(m−1∨
i=0

T−iP

)
∨

k(nm+1)+m−1∨
i=m

T−iP


= Hµ

(m−1∨
i=0

T−iP

)
∨

nm∨
j=0

k−1∨
i=0

T−(jk+m+i)P


≤ Hµ

(
m−1∨
i=0

T−iP

)
+

nm∑
j=0

Hµ

(
k−1∨
i=0

T−(jk+m+i)P

)

=

nm∑
j=0

Hµ

(
k−1∨
i=0

T−(jk+m+i)P

)
+O(k log |P|)

where in the last line we used that
∨m−1
i=0 T−iP has at most |P|m ≤ |P|k atoms

and hence entropy at most k log |P|. Now average over m = 0, . . . , k − 1 and
divide by n. Noticing that every expression of the form

∨i+k−1
j=i T−jP occurs

once for 0 ≤ j < n, we obtain the stated inequality.

Proposition 14.1.8. For ε > 0 there exists µ ∈ PT (X) such that hµ(T ) ≥
htop(T )− ε.

Proof. By Bowen’s definition of topological entropy, there is a δ > 0 such that
htop(T, d, δ) > htop(T ) − ε and for every large enough n there is a set Xn ⊆ X
with |Xn| > 2n(htop(T )−ε) such that dn(x, y) ≥ δ for distinct x, y ∈ Xn. Let

ξn =
1

|Xn|
∑
x∈Xn

δxn

and set

µn =
1

n

n−1∑
i=0

T iξn

=
1

|Xn|
∑
x∈Xn

(
1

n

n−1∑
i=0

δT ix

)

Let µ be any accumulation point of µn. It is easily checked that µ is invariant.
We claim that hµ(T ) ≥ htop(T )− ε.
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Choose a partition P such that diamA < ε and µ(∂A) = 0 for A ∈ P, as can
be done by Lemma ??. Since ∂(T−1A) = T−1(∂A), by measure preservation,
µ(T−i∂A) = 0 for every A ∈ P, hence the same is true for A ∈

∨n−1
i=0 T

−iP
(since the boundary of such A is a finite union of boundaries of atoms of T−iP ).
Therefore, using the previous lemma and the definition of µn, for each k we
have

1

k
Hµ(

k−1∨
i=0

T−iP) = lim
n→∞

1

k
Hµn

(

k−1∨
i=0

T−iP)

≥ lim
n→∞

1

n
Hξn(

n−1∨
i=0

T−iP)

Now, ξn consists of |Xn| equally weighted atoms, and for any two of these
atoms x, y there is an 0 ≤ i ≤ n− 1 such that d(T ix, T iy) ≥ δ, so T ix, T iy are
in different atoms of P (since the atoms of P have diameter < δ). Thus, each
atom of µn lies in a different atom of

∨n−1
i=0 T

−iP, so for all large enough n,

Hξn(

n−1∨
i=0

T−iP) = log |Xn| > n(htop(T )− ε)

We have concluded that for each k we have 1
kHµ(

∨k−1
i=0 T

−iP) ≥ htop(T ) − ε.
Taking k →∞ we conclude that hµ(T,P) ≥ htop(T )− ε, as desired.

14.2 The entropy function
Let T be a measurable transformation of a standard Borel space X. For µ ∈
PT (X) we denote h(µ) = hµ(T ). This defines a function

h : PT (X)→ [0,∞)

This is a measurable function since for any P clearly µ 7→ hµ(T,P) is measur-
able, and h is the supremum of such maps over a dense set of partitions.

The point of the following lemma is that not only is Shannon entropy Hµ(P)
is concave in the µ argument, but it is nearly convex: the defect is bounded
independently of the partition.

Lemma 14.2.1. Let µ, ν ∈ P(X) and P a partition of X. Then for any
0 < t < 1,

Htµ+(1−t)ν(P) ≤ tHµ(P) + (1− t)Hν(P) +H(t)

Proof. Let Xµ, Xν be two disjoint copies of the underlying probability space X
and consider µ′ onXµ a copy of µ and ν′ onXν a copy of ν. Let θ = tµ′+(1−t)ν′
a probability measure on Y = Xµ ∪Xν . Let Q = {Xµ, Xν}. For each A ∈ P let
Aµ, Aν denote the corresponding set inXµ, Xν respectively, and let Ã = Aµ∪Aν .



CHAPTER 14. INTERPLAY BETWEEN MEASURABLE AND TOPOLOGICAL ENTROPY92

Set P̃ = {Ã : A ∈ P}. Now observe that θ(Ã) = tµ(A)+(1− t)ν(A) for Ã ∈ P̃,
hence

Hθ(P̃) = Htµ+(1−t)ν(P)

On the other hand

Hθ(P̃) ≤ Hθ(P̃ ∨ Q)

= Hθ(Q) +Hθ(P̃|Q)

= H(t) +
∑
Q∈Q

θ(Q)HθQ(P̃)

= H(t) + tHµ(P) + (1− t)Hν(P)

Proposition 14.2.2. Let (X,F) be a measurable space and T : X → X a
measurable map. Let PT (X) denote the set of T -invariant probability measures
and for a partition P of X let hP : PT (X)→ R the entropy map, µ 7→ hµ(T,P).
Then hP is affine: hP(tµ + (1 − t)ν) = thP(µ) + (1 − t)hP(ν). Consequently
also h is affine.

Proof. Let θ = tµ+ (1− t)µ, we must show that hP(θ) = thP(µ) + (1− t)hP(ν).
By concavity of entropy,

hθ(T,P) = lim
n→∞

1

n
Hθ(

n−1∨
i=0

T−iP)

≥ lim
n→∞

1

n

(
tHµ(

n−1∨
i=0

T−iP) + (1− t)Hν(

n−1∨
i=0

T−iP)

)
= thµ(T,P) + (1− t)hν(T,P)

On the other hand by the previous lemma

hθ(T,P) = lim
n→∞

1

n
Hθ(

n−1∨
i=0

T−iP)

≤ lim
n→∞

1

n

(
tHµ(

n−1∨
i=0

T−iP) + (1− t)Hν(

n−1∨
i=0

T−iP) +H(t)

)
= thµ(T,P) + (1− t)hν(T,P)

This proves that hP is affine. For the last statement take the supremum over
finite partitions P in the identity hP(θ) = thP(µ) + (1− t)hP(ν). the left hand
side is h(θ). It remains to show that

sup
P

(thP(µ) + (1− t)hP(ν)) = sup
P
thP(µ) + sup

P
(1− t)hP(ν)

Indeed, ≤ is automatic, whereas for any partitions P ′,P ′′ we have

thP′(µ) + (1− t)hP′′(ν) ≤ thP′∨P′′(µ) + (1− t)hP′∨P′′(ν)

which gives the reverse inequality.
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Proposition 14.2.3. Let (X,F) be a standard Borel space and T : X → X
measurable. For any T -invariant measure θ with ergodic decomposition θ =´
νdτ(ν), and any partition P, we have

hT (θ,P) =

ˆ
hν(T,P) dτ(ν)

and
hT (θ) =

ˆ
hν(T ) dτ(ν)

Proof. X is a standard Borel space so it is isomorphic as a measurable space
to a compact metric space, hence P(X) and also PT (X) can be given the weak
topology in which they are compact.

Fix a partition P of X. Since τ is a probability measure on PT (X), the
measurable function hP : µ 7→ hµ(T,P) is continuous on compact subsets of
PT (X) of arbitrarily large τ measure. Fix ε ≥ 0 and letWε ⊆ PT (X) be such a
set with τ(Wε) = 1− δ where δ ≤ ε. For simplicity we assume that δ = ε which
can be achieved if τ is non-atomic, otherwise we might have δ < ε, the proof
then continues in the same way but with slightly more complicated notation.

Write τε = 1
1−ετ |Wε

and τ ′ε = 1
ετ |Wc

ε
, so these are probability measures

and τ = (1 − ε)τε + ετ ′ε. Let µε =
´
νdτε(ν) and µ′ε =

´
νdτ ′ε(ν) so that

µ = (1− ε)µε + εµ′ε. Then by the previous proposition

hµ(T,P) = (1− ε)hµε
(T,P) + εhµ′ε(T,P)

Since hµ′ε(T,P) ≤ log |P|, this gives

|hµ(T,P)− hµε
(T,P)| = O(ε log |P|)

Now choose τε,n ∈ P(Wn) a sequence of measures supported in finite subsets of
Wε which converge weak-* to τε (this is always possible). Since hP is continuous
on Wε, this implies, using the previous proposition for the measures τε,n,ˆ

hP(ν)dτε(ν) = lim
n→∞

ˆ
hP(ν)dτε,n(ν)

= lim
n→∞

hP(

ˆ
νdτε,n(ν)

= hP(

ˆ
νdτε)

= hP(µε)

= hµε(T,P)

where in the middle equality we again used continuity of hP on Wε and the
fact that τε,n → τε implies

´
νdτε,n(ν) →

´
νdτε(ν) (which can be seen by

integrating against continuous functions).
Finally, using again the bound on the integrand,∣∣∣∣ˆ hν(T,P)dτε(ν)−

ˆ
hν(T,P)dτ(ν)

∣∣∣∣ = O(ε log |P|)
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Putting the last three equations together we have found that∣∣∣∣hµ(T,P)−
ˆ
hP(ν)dτ(ν)

∣∣∣∣ = O(ε logP)

and since ε was arbitrary this implies

hµ(T,P) =

ˆ
hν(T,P)dτ(ν)

For the last statement take a refining sequence of partitions which together
generate the Borel σ-algebra, and take a limit of the equation above, using
monotone convergence on the right hand side.

Corollary 14.2.4. Let (X,T ) be a topological dynamical system. Then

htop(T ) = sup{hµ(T ) : µ ∈ PT (X) is ergodic}

Proof. We certainly have ≥. If < held then there is a u < htop(T ) such that
hµ(T ) < u for ergodic µ. Then for any invariant measure µ, writing its ergodic
decomposition as µ =

´
νωdτ(ω), we have

hµ(T ) =

ˆ
hνω (T )dτ(ω) <

ˆ
udτ(ω) < u < htop(T )

contradicting the variational principle.

Now consider a topological system (X,T ). How continuous is the entropy
function h : PT (X)→ R? In general, it is not continuous.

Example 14.2.5. Let X = {0, 1}Z. Then every µ ∈ PT (X) is the weak-* limit
of periodic orbits. Let us prove this in the ergodic case. Choose a generic point
x for µ (µ-a.e. x will d). Then for every k there is an N = Nk such that∣∣∣∣∣ 1

N

N−1∑
n=0

f(Tnx)−
ˆ
fdµ

∣∣∣∣∣ < 1

k

for all f that depend on the coordinates −k, . . . , k. Let xk denote the periodic
point obtained by repeating the firstNk symbols of x. Let µk = 1

Nk

∑Nk−1
n=0 δTnxk

denote the uniform measure on the orbit. Then it is clear that µk → µ.

This example shows that every measure of positive entropy on {0, 1}Z is
the weak-* limit of zero-entropy measures and so the entropy function is not
continuous. In general not much more can be said, but for expansive systems
(e.g. shift spaces on finite alphabets) there is some continuity nonetheless.

Proposition 14.2.6. Let (X,T ) be expansive. Then h : PT (X) → R is upper
semi-continuous, i.e. if µn → µ then h(µ) ≥ lim suph(µn).
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Proof. Let µn → µ. Let ε be the expansiveness constant and choose a finite
partition P of X into sets of diameter < ε such that µ(∂A) = 0 for A ∈ P.
Then for any k,

1

k
Hµ(

k−1∨
i=0

T−iP) = lim
n→∞

1

k
Hµn

(

k−1∨
i=0

T−iP)

≥ lim sup
n→∞

hµn
(P)

because 1
kHµn

(
∨k−1
i=0 T

−iP) ↘ hµn
(T ). as k → ∞. Taking k → ∞ in the last

inequality proves the claim.

Corollary 14.2.7. If (X,T ) is expansive then there is an ergodic µ ∈ PT (X)
with hµ(T ) = htop(T ).

Proof. Let µn ∈ PT (X) be such that hµn
(T ) → htop(T ), as guaranteed by

the variational principle. Let µ be a weak-* accumulation point of µn. Then
hµ(T ) ≥ limhµn

(T ) = htop(T ). Thus µ must have an ergodic component satis-
fying the same inequality, and the reverse inequality is automatic.

Example 14.2.8. Let Xn ⊆ {0, 1}Z be subsystems (with respect to the shift σ)
such that htop(Xn)↗ 1. Define X∞ = {.} with the identity map, also denoted
σ. Formally take Xn to be disjoint, fix a metric d0 on {0, 1}Z, and define a
metric d on X =

⋃
Xn ∪X∞ by

d(x, y) =

{
1
nd0(x, y) x, y ∈ Xn for some n

1
n −

1
m x,∈ Xn , y ∈ Xm m 6= n

This makes X compact. Define σ : X → X by σ|Xn
= σn. This is a continuous

map. Note that the Xn are invariant sets so every ergodic measure on X is
an ergodic measure on one of the Xn, hence by the variational principle, all
invariant measures on X have entropy < 1 (since this is true for the Xn’s). On
the other hand by the variational principle

htop(X,σ) = sup
µ∈PT (X)

hµ(σ) = sup
n
htop(Xn, σ) = 1

Thus there is no measure on (X,σ) whose entropy realizes the topological en-
tropy.

(We observe that σ is not expansive: Xn is an invariant set of diameter
1
n diam d0).
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Appendix

15.1 The weak-* topology
Proposition 15.1.1. Let X be a compact metric space. Then P(X) is metriz-
able and compact in the weak-* topology.

Proof. Let {fi}∞i=1 be a countable dense subset of the unit ball in C(X). Define
a metric on P(X) by

d(µ, ν) =

∞∑
i=1

2−i|
ˆ
fidµ−

ˆ
fidν|

It is easy to check that this is a metric. We must show that the topology induced
by this metric is the weak-* topology.

If µn → µ weak-* then
´
fidµn−

´
fidµ→ 0 as n→∞, hence d(µn, µ)→ 0.

Conversely, if d(µn, µ)→ 0, then
´
fidµn →

´
fidµ for every i and therefore

for every linear combination of the fis. Given f ∈ C(X) and ε > 0 there is a
linear combination g of the fi such that ‖f − g‖∞ < ε. Then

|
ˆ
fdµn −

ˆ
fdµ| < |

ˆ
fdµn −

ˆ
gdµn|+ |

ˆ
gdµn −

ˆ
gdµ|+ |

ˆ
gdµ−

ˆ
fdµ|

< ε+ |
ˆ
gdµn −

ˆ
gdµ|+ ε

and the right hand side is < 3ε when n is large enough. Hence µn → µ weak-*.
Since the space is metrizable, to prove compactness it is enough to prove

sequential compactness, i.e. that every sequence µn ∈ P(X) has a convergent
subsequence. Let V = spanQ{fi}, which is a countable dense Q-linear subspace
of C(X). The range of each g ∈ V is a compact subset of R (since X is compact
and g continuous) so for each g ∈ V we can choose a convergent subsequence
of
´
gdµn. Using a diagonal argument we may select a single subsequence µn(j)

such that
´
gµn(j) → Λ(g) as j → ∞ for every g ∈ V . Now, Λ is a Q-linear

96
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functional because

Λ(afi + bfj) = k lim

ˆ
(afi + bfj) dµn(k)

= lim
k→∞

a

ˆ
fidµn(k) + b

ˆ
fjdµn(k)

= aΛ(fi) + bΛ(fj)

Λ is also uniformly continuous because, if ‖fi − fj‖∞ < ε then

|Λ(fi − fj)| =

∣∣∣∣ lim
k→∞

ˆ
(fi − fj) dµn(k)

∣∣∣∣
≤ lim

k→∞

ˆ
|fi − fj |dµn(k)

≤ ε

Thus Λ extends to a continuous linear functional on C(X). Since Λ is positive
(i.e. non-negative on non-negative functions), sos is its extension, so by the
Riesz representation theorem there exists µ ∈ P(X) with Λ(f) =

´
fdµ. By

definition
´
gdµ−

´
gdµn(k) → 0 as k →∞ for g ∈ V , hence this is true for the

fi, so d(µn(k), µ)→ 0 Hence µn(k) → µ weak-* .

15.2 Conditional expectation
When (X,B, µ) is a probability space, f ∈ L1, and A a set of positive measure,
then the conditional expectation of f on A is usually defined as 1

µ(A)

´
A
f dµ.

When A has measure 0 this formula is meaningless, and it is not clear how
to give an alternative definition. But if A = {Ai}i∈I is a partition of X into
measurable sets (possibly of measure 0), one can sometimes give a meaningful
definition of the conditional expectation of f on A(x) for a.e. x, where A(x) is
the element Ai containing x. Thus the conditional expectation off on A is a
function that assigns to a.e. x the conditional expectation of f on the set A(x).
Rather than partitions, we will work with σ-algebras; the connection is made
by observing that if E is a countably-generated σ-algebra then the partition of
X into the atoms of E is a measurable partition.

Theorem 15.2.1. Let (X,B, µ) be a probability space and E ⊆ B a sub-σ alge-
bra. Then there is a linear operator L1(X,B, µ)→ L1(X, E , µ) satisfying

1. Chain rule:
´
E(f |E) dµ =

´
f dµ.

2. Product rule: E(gf |E) = g · E(f |E) for all g ∈ L∞(X, E , µ).

Proof. We begin with existence. Let f ∈ L1(X,B, µ) and let µf be the finite
signed measure dµf = fdµ. Then µf � µ in the measure space (X,B, µ) and
this remains true in (X, E , µ). Let E(f |E) = dµf/dµ ∈ L1(X, E , µ), the Radon-
Nykodim derivative of µf with respect to µ in (X, E , µ).
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The domain of this map is L1(X,B, µ) and its range is in L1(X, E , µ) by the
properties of dµf/dµ.

Linearity follows from uniqueness of the Radon-Nykodim derivative and the
definitions. The chain rule is also immediate:ˆ

E(f |E) dµ =

ˆ
dµf
dµ

dµ =

ˆ
f dµ

For the product rule, let g ∈ L∞(X, E , µ). We must show that g · dµf

dµ =
dµgf

dµ

in (X, E , µ). Equivalently we must show that
ˆ
E

g
dµf
dµ

dµ =

ˆ
E

dµgf
dµ

dµ for all E ∈ E

Now, for A ∈ E and g = 1A we have
ˆ
E

1A
dµf
dµ

dµ =

ˆ
A∩E

dµf
dµ

dµ

= µf (A ∩ E)

=

ˆ
A∩E

f dµ

=

ˆ
E

1Af dµ

=

ˆ
E

dµ1Af

dµ
dµ

so the identity holds. By linearity of these integrals in the g argument it holds
linear combinations of indicator functions. For arbitrary g ∈ L∞ we can take
a uniformly bounded sequence of such functions converging pointwise to g, and
pass to the limit using dominated convergence. This proves the product rule.

To prove uniqueness, let T : L1(X,B, µ)→ L1(X, E , µ) be an operator with
these properties. Then for f ∈ L1(X,B, µ) and E ∈ E ,

ˆ
E

Tf dµ =

ˆ
1ETf dµ

=

ˆ
T (1Ef) dµ

=

ˆ
1Ef dµ

=

ˆ
E

f dµ

where the second equality uses the product rule and the third uses the chain
rule. Since this holds for all E ∈ E we must have Tf = dµf/dµ.

Proposition 15.2.2. The conditional expectation operator satisfies the follow-
ing properties:
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1. Positivity: f ≥ 0 a.e. implies E(f |E) ≥ 0 a.e.

2. Triangle inequality: |E(f |I)| ≤ E(|f | |I).

3. Contraction: ‖E(f |E)‖1 ≤ ‖f‖1; in particular, E(·|E) is L1-continuous.

4. Sup/inf property: E(sup fi|E) ≥ supE(fi|E) and E(inf fi|E) ≤ inf E(fi|E)
for any countable family {fi}.

5. Jensen’s inequality: if g is convex then g(E(f |E)) ≤ E(g ◦ f |E).

6. Fatou’s lemma: E(lim inf fn|E) ≤ lim inf E(fn|E).

Remark 15.2.3. Properties (2)–(6) are consequences of positivity only.

Proof. (1) Suppose f ≥ 0 and E(f |E) 6> 0, so E(f |E) < 0 on a set A ∈ E of
positive measure. Applying the product rule with g = 1A, we have

E(1Af |E) = 1AE(f |E)

hence, replacing f by 1A, we can assume that f ≥ 0 and E(f |E) < 0. But this
contradicts the chain rule since

´
f dµ ≥ 0 and

´
E(f |E) dµ < 0.

(2) Decompose f into positive and negative parts, f = f+ − f−, so that
|f | = f+ + f−. By positivity,

|E(f |E)| = |E(f+|E)− E(f−|E)|
≤ |E(f+|E)|+ |E(f−|E)|
= E(f+|E) + E(f−|E)

= E(f+ + f−|E)

= E(|f | |E)

(3) We compute:

‖E(f |E)‖1 =

ˆ
|E(f |E)| dµ

≤
ˆ

E(|f | |E)| dµ

=

ˆ
|f | dµ

= ‖f‖1

where we have used the triangle inequality and the chain rule.
(4) We prove the sup version. By monotonicity and continuity it suffices

to prove this for finite families and hence for two functions. The claim now
follows from the identity max{f1, f2} = 1

2 (f1 + f2 + |f1 − f2|), linearity, and
the triangle inequality.

(5) For an affine function g(t) = at+ b,

E(g ◦ f |E) = E(af + b|E) = aE(f |E) + b = g ◦ E(f |E)
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If g is convex then g = sup gi where {gi}i∈I is a countable family of affine
functions. Thus

E(g ◦ f |E) = E(sup
i
gi ◦ f |E)

≥ sup
i

E(gi ◦ f |E)

= sup
i
gi ◦ E(f |E)

= g ◦ E(f |E)

(6) Since infk>n fk ↗ lim inf fk as n→∞ the convergence is also in L1, so
by continuity and positivity the same holds after taking the conditional expec-
tation. Thus, using the inf property,

lim inf
n→∞

E(fn|E) = lim
n→∞

inf
k>n

E(fk|E)

≥ lim
n→∞

E( inf
k>n

fk|E)

= E(lim inf
n→∞

fn|E)

Corollary 15.2.4. The restriction of the conditional expectation operator to
L2(X,B, µ) coincides with the orthogonal projection π : L2(X,B, µ)→ L2(X, E , µ).

Proof. Write π = E(·|E). If f ∈ L2 then by by convexity of t→ t2 and Jensen’s
inequality (which is immediate for simple functions and hence holds for f ∈ L1

by approximation),

‖πf‖2 =

ˆ
|E(f |E)|2 dµ

≤
ˆ

E(|f |2|E) dµ

=

ˆ
|f |2 dµ by the chain rule

= ‖f‖2

Thus π maps L2 into the subspace of E-measurable L2 functions, hence π :
L2(X,B,m)→ L2(X, E , µ). We will now show that π is the identity on L2(X, E , µ)
and is π. Indeed, if g ∈ L2(X,E, µ) then for every A ∈ E

πg = E(g · 1|E)

= g · E(1|E)

Since
´
E(1|E) =

´
1 = 1, this shows that π is the identity on L2(X, E , ). Next
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if f, g ∈ L2 then fg ∈ L1, and

〈f, πg〉 =

ˆ
f · E(g|E) dµ

=

ˆ
E (f · E(g|E)) dµ by the chain rule

=

ˆ
E (f |E)E(g|E) dµ by the product rule

=

ˆ
E (E(f |E) · g) dµ by the product rule

=

ˆ
E(f |E) · g dµ by the chain rule

= 〈πf, g〉

so π is self-adjoint.

Example 15.2.5. Let (X,B, µ) be a probability space, X1, X2 a partition of
X, and I = {∅, X1, X2, X}, a σ-algebra. Then for any f ∈ L1(µ, I),

E(f |I)(x) =

´
X1
fdµ

µ(X1)
· 1X1

(x) +

´
X2
fdµ

µ(X2)
· 1X2

(x)

=


´
X1

fdµ

µ(X1) x ∈ X1´
X2

fdµ

µ(X2) x ∈ X2

To see this, note that since E(f |I) is I-measurable, it has the form a1X1
+b1X2

.
Thus

a1X1
= 1X1

(a1X1
+ b1X2

)

= 1X1
E(f |I)

= E(1X1
f |I)

Integrating we have

aµ(X1) =

ˆ
E(1X1

f |I)dµ =

ˆ
1X1

fdµ =

ˆ
X1

fdµ

this shows that a =
´
fdµ/µ(X1), and b is computed similarly.

15.3 Regularity
I’m not sure we use this anywhere, but for the record:

Lemma 15.3.1. A Borel probability measure on a complete (separable) metric
space is regular.
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Proof. It is easy to see that the family of sets A with the property that

µ(A) = inf{µ(U) : U ⊇ A is open}
= sup{µ(C) : C ⊆ A is closed}

contains all open and closed sets, and is a σ-algebra. Therefore every Borel set
A has this property. We need to verify that in the second condition we can
replace closed by compact. Clearly it is enough to show that for every closed
set C and every ε > 0 there is a compact K ⊆ C with µ(K >> µ(C)− ε.

Fix C and ε > 0. For every n we can find a finite family Bn,1, . . . , Bn,k(n) of
δ-balls whose union Bn =

⋃
Bn,i intersects A in a set of measure > µ(A)−ε/2n.

Let K0 = C ∩
⋂
Bn, so that µ(K0) > µ(C) − ε. By construction K0 is pre-

compact, and K = K0 ⊆ C, so K has the desired property.


