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Asymptotes, Cubic Curves, 
and the Projective Plane 

J E F F R E Y  NUNEMACHER 
Ohio Wesleyan University 

Delaware, OH 43015 

1.  Introduction 

Among the most beautiful and naturally appealing mathematical objects are the 
various plane curves. It is a pity that our undergraduates encounter so few of them. 
One extensive class of curves, which played a role in the recent proof of Fermat's Last 
Theorem, is the class of cubic curves, i.e., curves defined by an equation P(x, y) = 0, 
where P is a polynomial in x and y of total degree three. Famous ancient examples, 
which can be explored using simple analytic techniques (see, for example, [8]), are the 
folium of Descartes x + y 3  - 3x9 = 0, the witch of Maria Agnesi y (1 +x = 1,the 
cissoid of Diocles y '(2 - x) =x2,  and the Ferinat curve x3 + y = 1.Using a classical 
formula to express the roots of a cubic equation in terms of its coefficients, it is 
possible to solve for y in terins of x. The resulting functions are usually not easy to 
slcetch by hand using standard methods of calculus, but software such as Derive or 
Mathenzatica inakes it possible to study cubic curves in a coinputer laboratoiy. Such a 
study requires knowledge and care, since the packages often use formulas that select 
complex branches; hence they can miss certain real branches of the curve. 

Newton studied the general cubic equation in two variables and classified irre- 
ducible cubic curves into 72 different species. Here irredzhcible means that the 
polynomial defining the curve does not factor as a product of lower degree polynomi- 
als. For example, the curve defined by x - x2y - xy + y = O is reducible, since its 
defining polynomial factors as (x2  - y )(x - y 1; this curve is the union of a parabola 
and a straight line. I11 fact, Newton missed G species-according to his classification 
scheme (which allows affine coordinate changes), there are a total of 78 species. It 
makes a good project in a calculus course to explore the diversity of cubic curves and 
to reconsider Newton's classification. For suggestions on how this might be done 
making use of both classical algebra and modern technology, see [6]. 

Newton's classification begins by studying the asyinptotic behavior of cubic curves. 
This approach is very natural, since the behavior "at infinity" is a dominant feature of 
the shape of any curve. But asymptotes can be far from obvious on a computer-gener- 
ated graph. The folium of Descartes x3 + y3- 3xy = 1together0 is shown in FIGURE 
with its asymptote x + y + 1= 0. If the line were not drawn, would you be confident 
that the foliuin has an asymptote, or of the asymptote's exact location? It is an 

FIGURE 1 
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interesting and somewhat nonstandard exercise in calculus to verify that this line is 
asyinptotic to the foliuin (see [a], p. 512). How does one find the asymptotes of a 
cubic curve or, more generally, of an algebraic curve of degree n? For such curves y 
is not given explicitly in terins of x so standard limiting techniques do not apply. 

There is a theorem involving only polynoinial algebra that almost answers this 
question. It provides a set of at most n lines that are the only possible asymptotes, 
and these lines will be asymptotic to the curve except in one rare situation. Special 
cases of this theorem used to be part of the standard repertoire of inatl~en~atical 
techniques that students learned when studying analytic geometry or the theory of 
equations. Fashions change, however, and this result is now encountered only in 
algebraic geometry, if at all. One reason for its disappearance is the unfortunate 
decline in interest and knowledge of geonletry in high school and college. Another lies 
in the fact that the natural domain for thinking about asymptotes is the projective 
plane, \vl~ich is often not studied at the undergraduate level. A third is that complica- 
tions result from looking only at the real portion of an algebraic curve, which is best 
viewed as an object in complex space. I11 this article we present this theorein with 
some background in projective geometry and apply it to study cubic curves. 

The theorein specifying the asymptotes of an algebraic curve is not easy to locate in 
current references, although at one tiine it must have been well known. A special case 
occurs explicitly in [7], pp. 8-10, but I have been unable to locate the general case in 
any reference. The nonsingular case of the theorem is treated nicely in [2]. An 
approach to finding asymptotes using only calculus can be found in [5], where it is 
applied to study various examples but not to find a theorem yielding all asymptotes. 
Classical methods and inany examples with beautiful hand-drawn graphs can be found 
in [3]. Good modern references for many concrete facts in elementary algebraic 
geoinetry (but not this one!) are [I] and [dl. 

2. Statement of the theorem and applications 

In this paper asymptote always refers to a line that is approached by points (x, y) on a 
branch of a curve as x or y beconles unbounded. This is the kind of asymptote 
encountered in a calculus course, but there it is alnlost always horizontal or vertical. A 
degenerate case, kvllich we shall exclude from now on, occurs when the curve contains -
a line as a component, i.e., when the asyinptote is actually part of the cuive. Thus, in 
what follows, we assume that the defining polynomial P(x, y) does not vanish 
identically on any line. The term asymptotic direction refers to a vector parallel to 
such a line so, in particular, the location of the line in the plane is not specified. 

The following theorem specifies at nlost n candidate lines to be real asymptotes to a 
curve defined by P(x, y) = 0, where P(x, y) is a polynoinial of total degree n in the 
variables x and y.  Such a cuive is called an (affine) algebraic curve of degree iz. Let 
us denote by Pn(x, y) the suin of all terms occurring in P(x, y) of total degree k.  
Then P(x, y) can be expressed as Cf=oP1,(x, y). The polynomials P1,(x, y) are 
homogeneous of degree k ;  this means that, for any scalar A, we have Pk(hx, hy)  = 

h " ~ ~ ( x ,y). Polynomials such as Pk(x, y), \vllich are honlogeneous of some degree k ,  
are sometimes called forms. 

Each vanishing form Pk(x, y) factors over the complex numbers into a product of k 
linear factors, kvllich are unique up to scalar multiple. The existence of such a 
factorization is a direct consequence of the Fundainental Theorem of Algebra. To see 
this, divide PL(x, y) by the tern1 ? c k ,  and replace the powers of y/x by powers of a 
new variable u. The resulting polynomial of one variable pL(u) has k coinplex roots 
and factors completely over the complex numbers. Suppose that bu + a is one of the 
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factors of p1,(u).When 11 is replaced by y / x ,  this terin gives rise to the factor ax + b y  
of Pl<(x, y ) .  If bu  + a occurs to exact multiplicity m as a factor of pk (u ) ,  then 
Pl,(x, y )  can be expressed as (ax  + by ) InQ(x ,  y ) ,  where Q ( x ,  y )  is a l~oinogeneous 
polynoinial of degree k -m with Q ( b ,  - a )  # 0. 

MAINTHEOREM.Suppose tlzat ax + b y  is a factor of the top degree f o n n  P,,(x, y )  of 
nzc~ltiplicity172 witlz a and b real. Let r I m denote tlze largest integer witlz the 
property tlzat there exist polynomials Q J ( x ,  y )  for n - r + 1 I j In satisjijing tlze 
conditions: 

P , , (x ,  y )  = y ) ,  P n 1 ( x ,  y )  ( a x  + b y ) " l Q  ,,-I  ( x ,  y ) ,  ( a x  + b y ) r ~ , , ( x ,  = ( A )  

. . . , andfinally Pn- ,+, (x ,  y )  = ( a x  + b y ) Q,,-,+ , ( x ,  y ) .  

Then associated tvith the factor ax + b y  is a set of at most r possible asy~nptotes 
ax + b y  = t o ,  cohere to is a real root of the equation 

t r Q l 1 ( b ,  - a )  + t r 1 Q n 1 ( b ,  - a )  + ... + t Q  + , ( b ,  - a )  + P ( b ,  - a )  = 0. ( B )  

All real asymptotes to tlze curve defined b y  P ( x ,  y )  = O arise in this tcny as ax + b y  
ranges over tlze real linear factors of P ( x ,  y ) .  I f  r > 1 it may  happen that some of 
these lines are spurious asymptotes. 

Equation (B) has at most r roots, which inay be coinplex or have multiplicity 
greater than one. Since r Im, the multiplicity of ax + b y  as a factor of PI,(x,y 1, the 
total number of possible asymptotes cannot exceed n.  There is an actual asymptote 
associated with the factor ax + b y  for each distinct real root except in the case 
discussed below. 

The candidate asymptotes thus satisfy the equation 

( a x  + b y ) ' Q , , ( b ,  - a )  + ( a x  + b y ) ' - l ~ n p l ( b ,- a )  + ... 
+ ( a x  + b y ) Q n p , + l ( b ,  - a )  + P, , ,( b ,  - a )  = 0. (C) 

Condition ( A )  is a divisibility condition requiring that descending powers of ax + b y  
must be factors of the top r forins Pk(x ,  y ) .  Since r is the largest such integer, 
ax + b y  does not further divide P,, ( x ,  y )  or Q k ( x ,  y )  for some 1c between n - r + 1 
and n,  i.e., PI lp ,  ( b ,  - a )  or at least one of these Q k ( b ,  -a)'s is nonzero. The most 
cornillon situation is covered by the following sinlpler result in which the candidate 
line is guaranteed to be an asymptote. It is a special case of the Main Theorem. 

COROLLARY.If CLX + b y  is a sinzple factor of P,,(x, y ) ,  i .e.,  if P,,(x, y )  = 

(ax  + by)Q, , (x ,  y )  witlz Q,,(b, - a )  # 0,then associated wi th  this factor is tlze single 
asymptote to  P ( x ,  y )  = O defined by  the equation 

( a x  + b y ) Q , , ( b ,  - a )  + Pn- , (b ,  - a )  = 0. (Dl  
We give seine examples of the application of this theorem and its corollary. 

Example 1. For the foliuin of Descartes x3  + y - 3xy  = 0,which is displayed in 
FIGURE1, the sole real linear factor of P3(x,  y )  = x3  + y3  is x + y with Q 3 ( x ,  y )  = 

x L  xxy + y? Here we have r = tn = 1 with a = b = 1 and P,(x, y )  = -3 x y .  Thus 
the single asymptote is given by (Dl, namely, ( x  + xy )Q3(1, -1)+ P,(1, - 1)  = 0,i.e., 
3 x  + 3 y  + 3 =O. 

Example 2.  Consider the cullre xy - 2.45 y = x3  - 5x" 8 . 7 5 ~- 6.25; the 
coefficients have been chosen to present a "typicalx nontrivial cubic curve. Here 
P3(x ,  y ) = x y L x 3  which factors as x ( y  + x ) ( y  - x )  and P2(x ,  y ) = 5  x 2 .  Then the 
Corollary asserts that there are three asymptotes, namely, x = 0,y = x - 2.5, and 
y = -x  + 2.5. See FIGURE2 for a graph of this curve and its asymptotes. One 
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FIGURE 2 

limitation of computer graphics is illustrated well by this figure. While the rightil~ost 
branch of this curve appears to be asyinptotic to the line x + y = 2.5 froill above, a 
inore careful analysis shows that the cuive actually crosses the line at the point (2.5,0) 
and is then asymptotic froin below. This crossing becomes evident in the graph only 
with a tenfold increase in scale, so it would not be noticed unless it was deliberately 
sought. 

Example 3. The quartic curve defined by (x3  - x) y = 1 can be analyzed coin- 
pletely using techniques of calculus, since it is easy to solve for y in terms of x. But 
our theorem applies as well, with the following results. Here P,( x,y) =x y , so the 
factor x has inultiplicity three. Also x2 divides P3(x, y ) = 0 and x divides P2( x, y ) = 

-xy, so r = 3 with a = 1and b = 0. From (B) we obtain the equation t3( - 1) + t2(0)
+ t ( l )  + 0 = 0, i.e., - t  + t = 0. Solving this equation yields the three parallel 
candidate asymptotes x = 0, x + 1, and x - 1= 0, which can easily be verified to be 
true asyinptotes using limits. The other factor of P,( x, y ) =x y is y with inultiplicity 
nz = 1.Equation (D) now gives y = 0 as the only other asymptote. Thus this curve has 
three asyillptotes in the hrection ( 0 , l )  and one in the direction (1,O). 

Emrnple  4.Consider the parabola x 2  - y = 0, \vhich we know has no asyinptotes 
from basic analytic geometiy. The factor x has multiplicity two in P,(x, y) =x" but 
x does not divide P,(x, y) = -y.  Thus r = 1wit11 a = 1 and b = 0. We obtain froin 
(C) the equation x(0) - 1= 0. This linear equation does not describe a line, so we 
confirm there are no (finite) asymptotes to the parabola. 

Emnzple  5. Finally, let us analyze the curve xZy2- y + 1= 0. It is easy to solve 
this equation for y in terms of x. We find that the curve is the union of the graphs of 

the two functions f +(x)  = 5 I/-. Thus, using limits, we see that there are 
exactly two asyinpto~s, vertical ones at x = 3 below.) Applying the 1. (See FIGURE 
theorem to this example, we see that the leading term P4(x, y) = x2y 2  has the tm7o 
factors x and y ,  each of which yields possible asyinptotes with r = 2 (since P3 = 0). 
The factor x gives rise to the two asymptotes already noticed. The factor y (with 
a = 0 and b = 1) produces an equation (B) of the form t' 1= 0. Thus we obtain the 
candidate line y = 0, which is clearly not an asymptote for the curve. This exaillple 
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FIGURE 3 

shows that the lines provided by the theorem may not be asymptotes if 110 real branch 
of the curve approaches them. We shall explore this situation in more detail below. 

The conclusions of the theorem becoille simpler and more pleasing if we move to a 
space larger thail R2. If we allow a and b to be complex numbers, equations (B) and 
(D) give a criterion for complex asymptotes, which are two-dimensional real planes in 
C2 (see [3],p. 44). For instance, the circle x" y 2  = 1has x + iy = 0 and x - iy = 0 
as complex asymptotes in the four-dimensional space C< but these planes intersect 
the real plane R2 only at the origin. A different exteilsion is relevant in the situatioil of 
Example 4. There the asymptotic equation does not describe a real line. A line is 
actually present, but it is the line at infinity in the projective plane RP2 (which 
contains R2). We shall return to this situatioil below when the necessary definitions 
have been made. A combination of these tm7o extensions is necessary to explain 
Example 5. In a suitable space there are always exactly n asymptotes, if we interpret 
"asymptote" correctly and assign multiplicities to asymptotes ax + by = to according 
to the number of times that to occurs as a root &en (B) is factored over C. 111 R2,  
however, n provides only an upper bound for the number of finite real asymptotes. 

For cubic curves, therefore, there can be no more than three asymptotes. In fact, 
cubic curves exist with 0, 1, 2, or 3 real asymptotes. The curve yx(x - 1)= 1 has 
three asymptotes; yx2 = 1has two; the folium of Descartes has one, as we saw above; 
and the polynomial y = x has no finite asyinptotes. 

Notice that for a curve P(x, y) = 0 of degree n the possible asymptotic directions 
(b ,  - a )  are defined by the factors ax + by of the top degree terin P,,(x, y). It is 
intuitively reasonable that the doininant terin should determine the behavior of the 
curve at infinity, i.e., the asymptotic directions. However, where the asymptotes are 
situated in the plane is dependent on some of the lower order terms. In the case of a 
siinple factor ax +by only the next term P,,pl(x, y) is relevant. This is the nonsingu- 
lar case (in a sense to be defined below). For a factor of higher multiplicity m > 1,the 
next r terms in the homogeneous expansion are relevant to the asymptotic behavior, 
where r is defined by the theorem but is always bounded above by m. 

3. Curves and asymptotes in the projective plane 

It is natural to regard an asymptote to a curve as a line to which the curve is tangent 
"at infinity." This idea worlts very well for curves that are defined by the vanishing 
of a polynomial, since such curves extend in a siinple fashion to a larger space 
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including points at infinity. In addition to siillplifying the hunt for asyrilptotes, the 
addition of points at infinity to R2 to forin the projective plane RP2  has various other 
benefits. Newton's original classification of irreducible cubic curves into 72 species 
was criticized by later authors as being too coinplicated to be useful. By regarding the 
cuive as lying in the projective plane and enlarging the group of allowable coordinate 
changes to include all projective transformations, it can be simplified into a classifica- 
tion containing just 5 different species. The points at infinity, which are soinetiines 
called ideal points, are rather intuitive-we siinply introduce one additional point at 
which all parallel lines in a given direction meet. Thus railroad tracks meet at the 
horizon, but perhaps less intuitively, they meet at the same point in both directions. 
This point is specified by any nonzero vector (m,  r z )  parallel to the line. Notice that 
for points satisfying ax +by + c = O with x or y large, only the ratio of a to b is 
important, rather than a ,  b, or c. This ratio is the information that a direction vector 
( m ,n )  contains. 

There is a clean algebraic way to add points at infinity to R! We consider the set of 
all 3-tuples (X, Y,Z) wit11 real coordinates not all zero, and define an equivalence 
relation: (X,, Y,, Z,) - (X,, Y,, 2,) if each triple is a scalar inultiple of the other. 
These equivalence classes are defined to be the points in the real projective plane 
RP? If the Z-coordinate of the 3-tuple (X, Y ,  Z) is nonzero, we inay divide by it and 
obtain the equivalent 3-tuple (X/Z, Y/Z, I), which we identify wit11 the Euclidean 
point (x,  tj), where x =X/Z and y = Y/Z. Only when Z = O is this not possible, and 
it is these points which are the points at infinity. Notice that on the line ax + by + c = O 
the points escape to infinity as Z approaches 0, so the condition Z = O for the line at 
infinity is quite natural. Any nonzero vector (x ,  tj) has exactly one point (x,y,O) 
associated with it, which we regard as the point at infinity in this direction. An 
ordinary point (x, y) in R2 is identified with the point given by the class containing 
the 3-tuple (x, y ,  1)in RP2.  

This algebraic construction of RP2  has a simple geometric realization. Consider the 
closed upper unit hemisphere H in R3 and a plane T tangent to it at the north pole. 
(See FIGURE Y, Z) in RP2  when Z + O has a 4.)Each equivalence class of 3-tuples (X, 

FIGURE 4 

uniq~le representative in H, obtained by dicirling all corrlponents by dx2+ )T + 2" 
and lllultiplying by -1 (if necessary) to make the third coinponent positive. \%'hen 
Z = 0 there are tsvo representatives for (X,Y, Z) on the boundary circle B of H, 
which differ by a factor of -1.If we identify these antipodal points on the boundary 
unit circle, we have a model for RP2  that we can visualize easily, although we need 
to be careful to regard pairs of antipodal points as single entities. The correspondence 
with real points in R2 is obtained by regarding T as a copy of R%nd then projecting 
from T to H along rays from the origin of R3. Notice that this projection is 
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compatible wit11 the equivalence relation - , i.e., each point P of T projects to a 
unique point P' on the open upper heinisphere contained in H. 

Each line L in T projects to a great semi-circle in H which ineets B in two 
antipodal points, which are identified as a single point in RP2.  \Ve regard this single 
point as the point at infinity on L. Lines parallel to L project to great semi-circles 
which meet at the same antipodal points on B;  thus any two parallel lines ineet at a 
single ideal point in RP! C~lrves in T that are asymptotic to a line L approach the 
curve at infinity, i.e., they are tangent to the corresponding great semi-circle in H at 
the point at infinity which lies on it. There is an exceptional case that occurs when 
the tangent circle is the boundary circle B, which is not the image of any finite line 
in T. B consists of all points at infinity, so a curve in T whose projection is tangent to 
B at a point of B has no real asymptote. This happens, for instance, for the parabola 
y =s2,as we shall see below. Thus we have a nice geometric criterion to detect 
asymptotes to curves: a curve has a real asymptote if and only if its iinage in H is 
tangent at a point of B to a great semicircle different from B. 

The extended space RP%s in many ways superior to the Euclidean plane R! It 
has a natural topology, which is obtained by forming the quotient of R3 under the 
equivalence relation defined above. \Ye obtain this same topology if we forin the 
quotient space of H under the identification of the antipodal points of the boundary 
circle B. This second approach makes it clear that RPQs compact, since it is the 
continuous iinage of the coinpact hemisphere H under the identification map. Each 
point in R P q l a s  a two-dimensional Euclidean neighborhood. This is obvious for all 
points that are images of the open upper hemisphere in H and is true for the points 
on B as well, either by noticing that the identification glues together two half discs to 
create a full Euclidean disc surrounding each such point, or by noticing that in the R3 
construction of RP2  all points are created equal, so those points that are images of 
points on B cannot be topologically different from the other points. 

The nonsingular linear transformations of R3 respect the defining equivalence 
relation, so they define a group of hoineomorphisins of RP2.  This group is transitive, 
since there is such a transformation mapping any nonzero point of R3 onto any other 
nonzero point. This transitivity make RP' into a hoinogeneous space. For later work 
observe that these linear transforinations are differentiable with nonvanishing Jaco- 
bian, since they are nonsingular. Thus they preserve the tangency of curves (even 
though they may change the angles at which nontangent curves ineet). To establish 
the theorem specifying asymptotes, we shall use such a linear transformation to map a 
point at infinity to the origin, where calculations are more familiar. Finally, as noted 
above, the Euclidean plane R"its naturally in RP2  as those classes of 3-tuples 
containing a representative with Z coordinate equal to 1. In summary, RP2  is a 
homogeneous compact inanifold in which R%s naturally embedded. 

Any curve in R2 defined by a polynomial equation P(x, y) = 0 of degree n extends 
naturally to a curve in RP2  as follows. Replace s by X/Z and y by Y/Z and inultiply 
the entire equation by Z" to clear the fractions. This procedure produces a homoge- 
neous polynoinial in the three variables X, Y, and Z. The resulting equation defines a 
curve in RP2,  since a hoinogeneous polynomial has the same zero value at all scalar 
multiples of any 3-tuple at which it vanishes. For points with Z i.0 it restricts to the 
original curve in R" thus it defines an extension of the curve P( r ,  y) = 0 into the 
projective plane. Such cuives are called projective algebraic curves. They can be 
studied using a variety of classical and modern techniques, and form the basic objects 
of interest in algebraic geometry. The linear equation ax +by + c = 0 in R2,  for 
example, extends to the l~oinogeneous equation nX +bY + cZ = 0 in RP2.  AS long as 
not all of a, b , and c are zero, the original line extends to a line in the projective plane 
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by the addition of the single point (6, -a, 0) at infinity. If n =b = O the line consists 
entirely of points at infinity and is called the line at infinity. 

Our basic problem is to determine all the asyinptotes to a general algebraic curve. 
As noted above, these are the finite lines that are tangent to the curve at a point of 
infinity in RP! For algebraic curves there is an algebraic way to identify such tangent 
lines. It is based on the idea that a line is tangent to an algebraic curve at a finite point 
if it has higher "order of contact" at the point than do "generic" lines through the 
point. \%'hen the point is the origin and the curve is defined by a polynomial 
P( x, y) = O with P(x, y ) = Cf ,,P,(x, y) as in Section 2 (here we inay start the 
summation at lc = 1 since P(O, 0) = O), the order of contact wit11 a line is the least 1c 
for which Pk(x, y) does not vanish identically on the line. Let 1 denote this order of 
contact. Since P,(x, y) is a form of degree I, at inost I distinct lines will have order of 
contact greater than 1, and all others will have order of contact I with the curve. The 
former set we declare to be the (algebraic) tangent lines to the curve at the origin. 
This approach is siinple algebraically and allows us also to cope with curves that are 
singular at the origin. 

To see the connectioil with the more familiar approach to tangent lines in calculus, 
notice that Pl(x, y) is the It11 degree Taylor expansion of P(x, y) at (0,O). \%'hen 
I = 1the curve is said to be nonsingular at (O,O); otherwise it is singular there. In the 
nonsingular case let us compute y '  at (O,O) using implicit differentiation. Let 
P,(x, y) = ax + by. Then we obtain O = P, + Pyy '  = n + by' + terms that evaluate to 
O at (O,O) because of the presence of x or y in the term. Thus y '  = -n/b, so there 
is a unique tangent line at (0, 0) given by y = -nx/b, i.e., by Pl(x, y) = 0. This 
argument justifies this method of finding tangent lines in the nonsingular case. For a 
discussion of the singular case see [3], pp. 22-24. In this situation the algebraic 
concept of tangent line does not always agree with our geometric one (because of the 
artificial restriction that we are looking only at the real portion of our cun~es). For 
example, the cuive x"' =x% +' algebraically has the x-axis (y 2  = 0) as a tangent 
line at the origin, but the curve has the origin as an isolated point on the real graph, 
since x2 tj 2 tj  implies that x2 2 1unless y = 0 and the only point on the curve with 
y = O is the origin. 

As asymptotes for real algebraic curves, we are interested in lines that are real, 
i.e., we work in RP2  and not in the corresponding coinplex projective space @P2,and 
in lines that are finite, i.e., not the line at infinity, Z = 0. The latter restriction explains 
the phenomenon that occurred in Exainple 4 above. It may happen in (B) that all the 
coefficients Qk(b, -a) = O while P,,-, (b,  -a) # 0. In this situation there is no finite 
asyinptote in the direction (6 ,  -a).  If we projectivize the picture, this situation gives 
rise to the equation P,-,(b, -n)Zr = 0, which does define a line in RP2,  namely, the 
line at infinity. So there is an asymptote in this case, just not a finite asymptote. This 
is the situation for all curves defined by y =p(x), where p(x) is a polynomial in x of 
degree greater than one. All such curves have the line at infinity as their only (ideal) 
asymptote. 

We are now in a position to understand what happens in Exainple 5 above. As 
noted above, the curve x' y' = x% y 2  has the origin as an isolated point, which gives 
rise to the spurious tangent y = 0, obtained by setting its lowest degree form y" 
equal to zero. The curve x2y2- t j2 + 1= O of Exainple 5 was obtained froin this 
curve by the trailsforination [X, Y,  Z]  -+[Z,Y, XI, which has the effect of mapping 
the origin [O, O,1] to the point at infinity [I,  O,O]. Thus this curve has a point at infinity 
as an isolated singular point and it has the x-axis as a spurious asymptote (as we saw in 
Example 5). Singularities of algebraic curves can be very complicated. But only in this 
rare situation of an isolated point at infinity in RP" wlliclch is not isolated if one looks 
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at the entire curve in CP', is there no portion of the real curve abutting onto the line 
that our method has identified. The fact that such candidate lines are not asyinptotic 
will be evident from a machine-drawn graph. 

4. Proof of the theorem 

Consider now an algebraic curve P(x, y) = O of degree n, where the polynomial 
P ( r ,  y) is expressed as a sun1 of forms P(x, y) = Pk(r ,  y). Putting this equation 
into homogeneous coordinates, we obtain the equation 

which extends the affine curve to a projective curve in RP! The extended curve, 
which we shall denote by A, contains points at infinity (X,Y,O) precisely when 
F(X, Y, 0) = 0, i.e., when P,,(X, Y) = 0. This occurs in those at most n directions 
(6 ,  -a )  for which ax + by is a real linear factor of P,,(x, y). We inust now determine 
which of these directions yield lines in R2 that are possibly tangent to the curve at a 
point of infinity. 

Let us fix a particular factor ax +by  of P,,(x, y) to analyze. Without loss of 
generality we may assume that b is nonzero (since either a or b is nonzero). We 
shall use a linear transformation to map the point at infinity [b, -a, 0] to [O, 0,1]. 
This will enable us to do our calculations at the origin. Consider the transformation 
T:  RP" RP2 defined by T[X, Y, Z] = [bZ, -nZ + Y,  XI. This transformation is 
invertible, with inverse T-'[X, Y, Z] = [bZ, bY + nX,X], and takes the origin [O,O, 11 
of the affine plane to the point at infinity [b, -a, 01. This formula for the inverse was 
obtained by inverting the corresponding matrix and using homogeneity to siinplify 
the expression. It is easy to check that T 1  0 T[X, Y, Z]  = [bX, by,  bZ] - [X,Y, Z]. 
The curve A defined by F[X, Y, Z]  = O then "pulls back" under T to an associated 
curve A' defined by F(T[X, Y, Z]) = F[bZ, -nZ + Y, XI = 0. In terins of the homo- 
geneous components of P(X,Y, Z), the curve A' is defined by the equation 
PI,-,(bZ, -nZ + Y )XI = 0. \T'ith r defined as in the statement of the theorem, we 
have 

PI,-,(bZ, - n Z + Y )  = ( ~ Y ) " - ' Q,,-, (bZ, - n Z + Y )  for j = O , l ,  . . . ,  r ,  

(where for siinplicity we have set Q,, -,equal to PI, -,. ). Our equation for A' now takes 
the form 

To study the tangents at the origin [O, 0,1] of A',  we set Z = 1, X = r, and Y = y to 
obtain the restriction of the curve to the affine plane R? This yields the equation 

This equation is a polynomial equation in r and y, and the tangent lines to the curve 
at the origin are given by those lines that satisfy the equation L ( r ,  y) = 0, 
where L ( r ,  y) is the lowest order nonvanishing forin in this polynomial. It is clear 
froin this equation that the degree of L(x, y) is r since at least one of the terins 
Q,-, (b, -a + y) has nonzero constant term Q,,_, (b, -a) (by the definition of r in 
the statement of the theorem). Thus the lowest order nonvanishing form in the above 
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equation is given by 

The tangent lines to A' at the origin are the solutions to the equation L(x,y )  = 0. 
To find the tangent lines to our original cuive A at the point at infinity [ b ,  -a ,  01, 

we extend this equation to RP2and pull back using T - l .  Notice that we are using the 
fact that T and T-' preserve tangency of curves. Since L is homogeneous, the 
extension to RP2 is given by 

Under T P 1 this equation pulls back to the equation 

Since b is nonzero, this is equivalent to the equation 

Setting Z = 1, X = r, and Y = y,  we obtain C;=o(ax+ by)'-- 'Q,,- i(b,  - a )  = 0,  which 
specifies the lines in the direction ( b ,  - a )  possibly asyinptotic to the curve A. This 
equation is identical to (C) in the statement of the theorem. 

Refnarks. The ideas in [5]can be developed to yield a proof of the Main Theorein 
which is based entirely on limits and avoids the projective plane. But this route is 
solnewhat circuitous, and does not empllasize the geometric interpretation of an 
asymptote as a line that is tangent to a curve at infinity-. It is also possible to establish 
the Main Theorem by using an appropriate version of Taylor's theorein at the point at 
infinity-[ b ,  -a ,  01. This avoids the transformation T but introduces its own coinplica- 
tions. The argument using T is essentially just linear algebra, and was suggested by 
one of the referees. 
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