ANALYSIS 1 - SOLUTION FOR EXERCISE 8

Throughout this solution E(K) will denote the set of extreme points of K, where
K is a subset of a vector space.

Question 1: The weak topology 7 is stronger than the weak* topology 7*. It
suffice to show that every neighbourhood of 0 in 7* contains a neighbourhood of 0
in 7. Let ® : X — X™** be the natural embedding. Given V € 7* with 0 € V there
exist x1,...,x, € X and € > 0 with U(z1,...,x,;€) C V, where

U(zy,...,xn;€) :={A € X* : |Azj| <efor 1 <j<n}.

Since
U(x1,...,zn;e) ={A € X* : |®z;(A)| <eforl<j<n}er

it follows that 7* C 7.
Question 2, part (a): Set S ={a € C : |a| =1}. We shall show that

EB*)={a-0; : x€ B, a € S}.

Let u € E(B*), let |u| be the total variation of p, and let K C B be the support
of |u|. If w =0 then p = ‘51;5“‘ for « € B which contradicts ¢ € E(B*), hence
p# 0. If |p|(B) < 1 then p = |p[(B) - gy + (1 — [ul(B)) - 0 which contradicts
u € E(B*), hence |u|(B) = 1. Assume by contradiction that there exist z,y € K
with « # y, then there exits a Borel set E C B with |u|(E), |u|(B\ E) > 0. Let
H1, 2 € B* be with py (F) = “‘ﬁ&? and po(F) = % for each Borel set
F C B. Since = |pu|(E) - p1 + |p|(B\ E) - u2 we get a contradiction to y € E(B*),

and so K = {z} for some x € B. From this and from |u|(B) = 1 it follows that

there exists a € S with u = o - 6,.

Let x € B and o € S be given, and set yp = «-d,. Let pu1,u2 € B* and 0 <t < 1 be
with i =t + (1 — )iz, Since oy (o}, [ {}] < 1 and @ =t {ar} + (1 — o},
it follows from Lemma 1 below that u1{z} = po{z} = a. Since |u1|(B), |pe2|(B) < 1
and |a| = 1 it follows that u = pu; = pe, and so u € E(B*). This completes the

proof.

Lemma 1. Set D = {x € R? : |z| < 1} and 9D = {x € R? : |z| = 1}, then
E(D) = aD.

Proof of Lemma 1: If x € D\JD it is easy to see that ¢ E(D), hence E(D) C 9D.
Let z € 9D be given, and let 2,y € D and 0 < t < 1 be with z = tz+ (1—t)y. Since

||, ]y| <1 it clearly holds that |z| = |y| = 1. We shall now show that z =y = =.
1



Assume first that « = (1,0). Assume by contradiction that y; < 1, then

L=z = |t + Q= tyr, (1= t)y2) [P = 2 +2¢(1 = t)yr + (1 = 1)°y7 + (1 = 1)y
=242l —ty + (1 -t <(t+(1-1)2=1.

This is clearly a contradiction, hence y; = 1, and so + = y = z. Now for the
general case, let U : R? — R? be an orthogonal map with Uz = (1,0). Since
Uz=tUx+ (1 —t)Uy and |Uz| = |Uy| = |Uz| = 1, it follows from what we have
just shown that Uz = Uy = Uz, and so © = y = z. This shows that z € E(D), and
so E(D) = 0D as we wanted.

Part (b): Let n € B* be given. From the Banach-Alauglu theorem it follows that
B* is weak* compact, and it is clear that B* is convex. From the Krein-Milman
theorem it follows that B* = co(E(B*)), where co(E(B*)) stands for the convex
hull of E(B*) and the closure is taken with respect to the weak* topology of M.
Since C(B) is separable it follows that B* is metrizable in the weak* topology. From
this and from B* = co(E(B*)) it follows that there exists {1}, C co(E(B*))
with g LA u in the weak* topology. From part (a) of this question it follows
that for each & > 1 there exist N > 1, t& .. tNk [0, 1], al,...,oz?vk € S, and
¥, ...,a:’ka € B, with t¥ + tlka =1and pp = ZN’“ thaks, - From this and from

J=17373
the definition of the weak* topology it follows that for every feC(B)

hmijt’c ke -)zli}gn/fdﬂk:/fdu,

which is what we wanted to show.

Part (c): As mentioned above B* is compact and metrizable in the weak* topo-

logy, which implies that it is sequentially compact.

Part (d): Give f, f1, f2,... € C(B) it holds that f LA f weakly if and only if
ffkdugffduforeverquM.

Part (e): Let f, 1, fo,... € C(B) be with f, % f weakly. Set H = co{f1, fo, ...},
let H be the closure of H is the strong topology of C(B), and let H,, be the closure
of H is the weak topology of C(B), then clearly f € H,. Since H is convex it
follows (from a theorem proven in class) that H = H,,, and so f € H. Since the
strong topology of C'(B) is metrizable it follows that there exists {gy}?2, C H with
Gk LA f strongly, hence
lim suplf(z) = gu(2)| = lim || f = gilloc = 0.
z€B k

Note that by the definition of H it follows that for every k > 1 there exist Ny > 1
and tf, ...tk € [0,1] with g, = Z;V:’H t% f;. This completes the proof.



Part (f): (i) Let {Pr}72, a sequence of partitions of [0,1]. As mentioned above
B* is compact and metrizable in the weak* topology. Since {up, }32, C B* it

follows that {up, }7° , has convergent subsequence in the weak* topology.

(ii) Let {Py}72, a sequence of partitions of [0, 1] with AP, % 0. We shall show
that pp, % Lebin the weak* topology, where Leb is the Lebesgue measure on [0, 1].
Let f € C[0,1] and € > 0 be given. There exists 6 > 0 with |f(z) — f(y)| < € for
x,y € [0,1] with |z — y| < . There exists N > 1 with AP, < § for k > N. Let
k> N and write P, = {0 =tg < ... < tpy = 1}, then

ML ot
[rae= [ranni < X [ 5@ - sl de <.
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This shows that up, K Leb in the wealc* topology, as we wanted.

Question 3, part (a): Set S = {a € C : |a|] =1} and let B be the closed unit
ball of I'. Given n > 1 let " € B be the n’th unit vector of ', we shall show that

EB)={ae" : n>1and a € S}.

Let € E(B), then it is easy to see that ||z||; = 1. Assume by contradiction that
there exist 1 <4 < j with ; # 0 and x; # 0. Set y = # then

lz—z;et|1?
i xiei
T = ||z —zie' 1y + |zil T,
|i]
which is a contradiction to € E(B). This shows that there exists a unique n > 1

with x,, # 0. Since ||z||; = 1 it follows that x = «e™ for some « € S.

Let n > 1 and « € S be given and set © = «ae™. Let y,z € Band 0 <t < 1 be
with z =ty + (1 — t)z. Since |yn|, |2n] < 1 and « = ty, + (1 — )z, it follows from
Lemma 1 above that y, = z, = a. Since ||ly||1, ||z|l1 <1 and |a| =1 it follows that

x =y = z. This shows that € F(B), which completes the proof.

Part (b): Let By be the closed unit ball of ¢o. Let f € (cp)* be with f(z) =
Sooo 4y for x € co. It is easy to see that sup |f(z)| = > o n~? and |f(z)] <
x€ By

n=1
o2 n~2 for x € By. Since f is continuous with respect to the weak topology of
co it follows that By is not weakly compact, otherwise there would exist z € By
with | f(z)] = sup [f(z)|.
€ By

Question 4: Let F be R or C, and let By be the closed unit ball of the space of
continuous f : [0,1] — F equipped with the supremum norm. We shall first show
that E(Br) = {£1j9,1)}. It is easy to see that E(Bgr) D {£1j9,1)}. Let f € Bg be
with f & {£1}0,1)}, then there exists x € [0,1] with |f(z)| < 1. Let fi, fo € Bg be
with f1(z) = f(z)+ %2_1 and fa(z) = f(z) — %2_1 for z € [0,1]. Since f # f1
and f = L1422 it follows that f ¢ E(Bg), which shows E(Bg) = {£1(91}-



Set H={f € B¢ : |f| = 1}. We shall next show that E(Bc) = H. Let f € Bc\ H
and let f1, f» € Bc be with fi(z) = f(z) + Y@L and fy(2) = f(a) — L2
for z € [0,1]. From f # f; and f = % it follows that f ¢ F(Bc), and so
E(Bc) C H. Let f € H be given, and let fi,fo € B¢ and 0 < ¢t < 1 be with
f=tfi+ (1 —t)fs. Forevery x € [0,1] we have |fi(x)|,|f2(z)] <1, |f(x)] =1, and
f(z) =tfi(x)+ (1 —1t)f2(x), hence from Lemma 1 we obtain f(x) = fi(x) = fao(x).
Since this holds for every = € [0,1] we get f = fi = fa2, hence f € E(Bc¢), and so
E(Be) = H.

Question 5: We shall prove the claim by induction on n. For n = 1 the claim
is obvious. Let n > 1 and assume the claim holds for n — 1. If K is contained
in a hyperplane of R™ then the claim follows from the induction hypothesis, hence
assume that K is not contained in any hyperplane. From Lemma 2 below it follows
that int K # . Fix some z € K, then we need to show that x is the convex
combinations of at most n+ 1 points in F(K). From the Krein-Milman theorem it
follows that there exists y € F(K). If = y then there is nothing to show, hence

assume x # y. Set
so=max{s >0 :y+s(x—y) €K}

and z = y + so(x —y), then s > 1 and z € K. From int K # () and from question
5 in exercise 1 it follows that there exist 0 # f € (R")* and ¢ € R with f(z2) = ¢
and f(w) <cforall we K . Set

H={weR": f(w)=c},

then H N K is convex and compact. Since H is a hyperplane of R” and z €¢ HN K
it follows from the induction hypothesis that there exist z1,...,2, € E(H N K) and
t1,...,ty € [O, 1] with z = Z?:l tjz; and E?:l t; =1 Since

P= (1= =)y =

1 1 " 1
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1=37", z—f) +(1- é), and y € E(K), the claim will be proven once we show
21y.2n € E(K). Let w € HNK, wy,we € K, and 0 < ¢t < 1, be with w =
twy + (1 — hws. Since f(w) = tf(wr) + (1 — £)f(ws) and f(w;) < ¢ = f(w)
for i« = 1,2, it follows that f(w;) = ¢ for ¢ = 1,2. Hence wi,ws € HN K,
which shows that H N K is an extreme subset of K. It was proven in class that
extreme points of an extreme subset are extreme points of the original subset, hence

21,y 2n € E(HN K) C E(K). This completes the proof of the claim.

Lemma 2. Let K C R" be a convex set which is not contained in any hyperplane
of R™, then int K # ().



Proof of the Lemma: The proof is by induction on n. For n = 1 the claim is obvious.
Let n > 1 and assume the claim holds for n — 1. Without loss of generality assume
0 € K. From our assumption on K it follows that span{z,...,x,} = R™ for
some z1,....,&, € K. Set V = span{z1,...,xn—1} and H = V N K, then since
0,z1,...,xp—1 € H it follows that H is not contained in a hyperplane of V. From
this, since H is convex, and from the induction hypothesis, it now follows that there
exists an open ball B C R™ with BNV C H. Since the set

{tz, +(1—-t)y : 0<t<landye BNV}

is open in R™ and contained in K the lemma follows.



