
ANALYSIS 1 - SOLUTION FOR EXERCISE 8

Throughout this solution E(K) will denote the set of extreme points of K, where

K is a subset of a vector space.

Question 1: The weak topology τ is stronger than the weak* topology τ∗. It

su�ce to show that every neighbourhood of 0 in τ∗ contains a neighbourhood of 0

in τ . Let Φ : X → X∗∗ be the natural embedding. Given V ∈ τ∗ with 0 ∈ V there

exist x1, ..., xn ∈ X and ε > 0 with U(x1, ..., xn; ε) ⊂ V , where

U(x1, ..., xn; ε) := {Λ ∈ X∗ : |Λxj | < ε for 1 ≤ j ≤ n} .

Since

U(x1, ..., xn; ε) = {Λ ∈ X∗ : |Φxj(Λ)| < ε for 1 ≤ j ≤ n} ∈ τ

it follows that τ∗ ⊂ τ .

Question 2, part (a): Set S = {α ∈ C : |α| = 1}. We shall show that

E(B∗) = {α · δx : x ∈ B, α ∈ S} .

Let µ ∈ E(B∗), let |µ| be the total variation of µ, and let K ⊂ B be the support

of |µ|. If µ = 0 then µ = δx−δx
2 for x ∈ B which contradicts µ ∈ E(B∗), hence

µ 6= 0. If |µ|(B) < 1 then µ = |µ|(B) · µ
|µ|(B) + (1 − |µ|(B)) · 0 which contradicts

µ ∈ E(B∗), hence |µ|(B) = 1. Assume by contradiction that there exist x, y ∈ K
with x 6= y, then there exits a Borel set E ⊂ B with |µ|(E), |µ|(B \ E) > 0. Let

µ1, µ2 ∈ B∗ be with µ1(F ) = µ(E∩F )
|µ|(E) and µ2(F ) = µ((B\E)∩F )

|µ|(B\E) for each Borel set

F ⊂ B. Since µ = |µ|(E) ·µ1 + |µ|(B \E) ·µ2 we get a contradiction to µ ∈ E(B∗),

and so K = {x} for some x ∈ B. From this and from |µ|(B) = 1 it follows that

there exists α ∈ S with µ = α · δx.

Let x ∈ B and α ∈ S be given, and set µ = α ·δx. Let µ1, µ2 ∈ B∗ and 0 < t < 1 be

with µ = tµ1 +(1− t)µ2. Since |µ1{x}|, |µ2{x}| ≤ 1 and α = tµ1{x}+(1− t)µ2{x},
it follows from Lemma 1 below that µ1{x} = µ2{x} = α. Since |µ1|(B), |µ2|(B) ≤ 1

and |α| = 1 it follows that µ = µ1 = µ2, and so µ ∈ E(B∗). This completes the

proof.

Lemma 1. Set D = {x ∈ R2 : |x| ≤ 1} and ∂D = {x ∈ R2 : |x| = 1}, then

E(D) = ∂D.

Proof of Lemma 1: If x ∈ D\∂D it is easy to see that x /∈ E(D), hence E(D) ⊂ ∂D.

Let z ∈ ∂D be given, and let x, y ∈ D and 0 < t < 1 be with z = tx+(1−t)y. Since
|x|, |y| ≤ 1 it clearly holds that |x| = |y| = 1. We shall now show that x = y = z.
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Assume �rst that x = (1, 0). Assume by contradiction that y1 < 1, then

1 = |z|2 = |(t+ (1− t)y1, (1− t)y2)|2 = t2 + 2t(1− t)y1 + (1− t)2y21 + (1− t)2y22
= t2 + 2t(1− t)y1 + (1− t)2 < (t+ (1− t))2 = 1 .

This is clearly a contradiction, hence y1 = 1, and so x = y = z. Now for the

general case, let U : R2 → R2 be an orthogonal map with Ux = (1, 0). Since

Uz = tUx + (1 − t)Uy and |Ux| = |Uy| = |Uz| = 1, it follows from what we have

just shown that Ux = Uy = Uz, and so x = y = z. This shows that z ∈ E(D), and

so E(D) = ∂D as we wanted.

Part (b): Let µ ∈ B∗ be given. From the Banach-Alauglu theorem it follows that

B∗ is weak* compact, and it is clear that B∗ is convex. From the Krein-Milman

theorem it follows that B∗ = co(E(B∗)), where co(E(B∗)) stands for the convex

hull of E(B∗) and the closure is taken with respect to the weak* topology of M .

Since C(B) is separable it follows that B∗ is metrizable in the weak* topology. From

this and from B∗ = co(E(B∗)) it follows that there exists {µk}∞k=1 ⊂ co(E(B∗))

with µk
k→ µ in the weak* topology. From part (a) of this question it follows

that for each k ≥ 1 there exist Nk ≥ 1, tk1 , ..., t
k
Nk
∈ [0, 1], αk1 , ..., α

k
Nk
∈ S, and

xk1 , ..., x
k
Nk
∈ B, with tk1 + ...tkNk

= 1 and µk =
∑Nk

j=1 t
k
jα

k
j δxk

j
. From this and from

the de�nition of the weak* topology it follows that for every f ∈ C(B)

lim
k

Nk∑
j=1

tkjα
k
j f(xkj ) = lim

k

ˆ
f dµk =

ˆ
f dµ,

which is what we wanted to show.

Part (c): As mentioned above B∗ is compact and metrizable in the weak* topo-

logy, which implies that it is sequentially compact.

Part (d): Give f, f1, f2, ... ∈ C(B) it holds that fk
k→ f weakly if and only if´

fk dµ
k→
´
f dµ for every µ ∈M .

Part (e): Let f, f1, f2, ... ∈ C(B) be with fk
k→ f weakly. Set H = co{f1, f2, ...},

let H be the closure of H is the strong topology of C(B), and let Hw be the closure

of H is the weak topology of C(B), then clearly f ∈ Hw. Since H is convex it

follows (from a theorem proven in class) that H = Hw, and so f ∈ H. Since the

strong topology of C(B) is metrizable it follows that there exists {gk}∞k=1 ⊂ H with

gk
k→ f strongly, hence

lim
k

sup
x∈B
|f(x)− gk(x)| = lim

k
‖f − gk‖∞ = 0 .

Note that by the de�nition of H it follows that for every k ≥ 1 there exist Nk ≥ 1

and tk1 , ..., t
k
Nk
∈ [0, 1] with gk =

∑Nk

j=1 t
k
j fj . This completes the proof.



Part (f): (i) Let {Pk}∞k=1 a sequence of partitions of [0, 1]. As mentioned above

B∗ is compact and metrizable in the weak* topology. Since {µPk
}∞k=1 ⊂ B∗ it

follows that {µPk
}∞k=1 has convergent subsequence in the weak* topology.

(ii) Let {Pk}∞k=1 a sequence of partitions of [0, 1] with ∆Pk
k→ 0. We shall show

that µPk

k→ Leb in the weak* topology, where Leb is the Lebesgue measure on [0, 1].

Let f ∈ C[0, 1] and ε > 0 be given. There exists δ > 0 with |f(x) − f(y)| < ε for

x, y ∈ [0, 1] with |x − y| < δ. There exists N ≥ 1 with ∆Pk < δ for k ≥ N . Let

k ≥ N and write Pk = {0 = t0 < ... < tM = 1}, then

|
ˆ
f dx−

ˆ
f dµPk

| ≤
M−1∑
j=0

ˆ tj+1

tj

|f(x)− f(tj)| dx < ε .

This shows that µPk

k→ Leb in the weak* topology, as we wanted.

Question 3, part (a): Set S = {α ∈ C : |α| = 1} and let B be the closed unit

ball of l1. Given n ≥ 1 let en ∈ B be the n'th unit vector of l1, we shall show that

E(B) = {αen : n ≥ 1 and α ∈ S} .

Let x ∈ E(B), then it is easy to see that ‖x‖1 = 1. Assume by contradiction that

there exist 1 ≤ i < j with xi 6= 0 and xj 6= 0. Set y = x−xie
i

‖x−xiei‖1 , then

x = ‖x− xiei‖1y + |xi|
xie

i

|xi|
,

which is a contradiction to x ∈ E(B). This shows that there exists a unique n ≥ 1

with xn 6= 0. Since ‖x‖1 = 1 it follows that x = αen for some α ∈ S.

Let n ≥ 1 and α ∈ S be given and set x = αen. Let y, z ∈ B and 0 < t < 1 be

with x = ty + (1− t)z. Since |yn|, |zn| ≤ 1 and α = tyn + (1− t)zn it follows from

Lemma 1 above that yn = zn = α. Since ‖y‖1, ‖z‖1 ≤ 1 and |α| = 1 it follows that

x = y = z. This shows that x ∈ E(B), which completes the proof.

Part (b): Let B0 be the closed unit ball of c0. Let f ∈ (c0)∗ be with f(x) =∑∞
n=1

xn

n2 for x ∈ c0. It is easy to see that sup
x∈B0

|f(x)| =
∑∞
n=1 n

−2 and |f(x)| <∑∞
n=1 n

−2 for x ∈ B0. Since f is continuous with respect to the weak topology of

c0 it follows that B0 is not weakly compact, otherwise there would exist x ∈ B0

with |f(x)| = sup
x∈B0

|f(x)|.

Question 4: Let F be R or C, and let BF be the closed unit ball of the space of

continuous f : [0, 1] → F equipped with the supremum norm. We shall �rst show

that E(BR) = {±1[0,1]}. It is easy to see that E(BR) ⊃ {±1[0,1]}. Let f ∈ BR be

with f /∈ {±1[0,1]}, then there exists x ∈ [0, 1] with |f(x)| < 1. Let f1, f2 ∈ BR be

with f1(x) = f(x) + f(x)2−1
4 and f2(x) = f(x)− f(x)2−1

4 for x ∈ [0, 1]. Since f 6= f1

and f = f1+f2
2 it follows that f /∈ E(BR), which shows E(BR) = {±1[0,1]}.



Set H = {f ∈ BC : |f | = 1}. We shall next show that E(BC) = H. Let f ∈ BC \H
and let f1, f2 ∈ BC be with f1(x) = f(x) + |f(x)|2−1

4 and f2(x) = f(x) − |f(x)|
2−1

4

for x ∈ [0, 1]. From f 6= f1 and f = f1+f2
2 it follows that f /∈ E(BC), and so

E(BC) ⊂ H. Let f ∈ H be given, and let f1, f2 ∈ BC and 0 < t < 1 be with

f = tf1 + (1− t)f2. For every x ∈ [0, 1] we have |f1(x)|, |f2(x)| ≤ 1, |f(x)| = 1, and

f(x) = tf1(x) + (1− t)f2(x), hence from Lemma 1 we obtain f(x) = f1(x) = f2(x).

Since this holds for every x ∈ [0, 1] we get f = f1 = f2, hence f ∈ E(BC), and so

E(BC) = H.

Question 5: We shall prove the claim by induction on n. For n = 1 the claim

is obvious. Let n > 1 and assume the claim holds for n − 1. If K is contained

in a hyperplane of Rn then the claim follows from the induction hypothesis, hence

assume that K is not contained in any hyperplane. From Lemma 2 below it follows

that int K 6= ∅. Fix some x ∈ K, then we need to show that x is the convex

combinations of at most n+ 1 points in E(K). From the Krein-Milman theorem it

follows that there exists y ∈ E(K). If x = y then there is nothing to show, hence

assume x 6= y. Set

s0 = max{s ≥ 0 : y + s(x− y) ∈ K}

and z = y+ s0(x− y), then s0 ≥ 1 and z ∈ ∂K. From intK 6= ∅ and from question

5 in exercise 1 it follows that there exist 0 6= f ∈ (Rn)∗ and c ∈ R with f(z) = c

and f(w) ≤ c for all w ∈ K . Set

H = {w ∈ Rn : f(w) = c},

then H ∩K is convex and compact. Since H is a hyperplane of Rn and z ∈ H ∩K
it follows from the induction hypothesis that there exist z1, ..., zn ∈ E(H ∩K) and

t1, ..., tn ∈ [0, 1] with z =
∑n
j=1 tjzj and

∑n
j=1 tj = 1. Since

x =
1

s0
z + (1− 1

s0
)y =

n∑
j=1

tj
s0
zj + (1− 1

s0
)y,

1 =
∑n
j=1

tj
s0

+ (1 − 1
s0

), and y ∈ E(K), the claim will be proven once we show

z1, ..., zn ∈ E(K). Let w ∈ H ∩ K, w1, w2 ∈ K, and 0 < t < 1, be with w =

tw1 + (1 − t)w2. Since f(w) = tf(w1) + (1 − t)f(w2) and f(wi) ≤ c = f(w)

for i = 1, 2, it follows that f(wi) = c for i = 1, 2. Hence w1, w2 ∈ H ∩ K,

which shows that H ∩ K is an extreme subset of K. It was proven in class that

extreme points of an extreme subset are extreme points of the original subset, hence

z1, ..., zn ∈ E(H ∩K) ⊂ E(K). This completes the proof of the claim.

Lemma 2. Let K ⊂ Rn be a convex set which is not contained in any hyperplane

of Rn, then intK 6= ∅.



Proof of the Lemma: The proof is by induction on n. For n = 1 the claim is obvious.

Let n > 1 and assume the claim holds for n− 1. Without loss of generality assume

0 ∈ K. From our assumption on K it follows that span{x1, ..., xn} = Rn for

some x1, ..., xn ∈ K. Set V = span{x1, ..., xn−1} and H = V ∩ K, then since

0, x1, ..., xn−1 ∈ H it follows that H is not contained in a hyperplane of V . From

this, since H is convex, and from the induction hypothesis, it now follows that there

exists an open ball B ⊂ Rn with B ∩ V ⊂ H. Since the set

{txn + (1− t)y : 0 < t < 1 and y ∈ B ∩ V }

is open in Rn and contained in K the lemma follows.


