ANALYSIS 1 - SOLUTION FOR EXERCISE 7

Question 1: Denote by \overline{S}_w the weak closure of S. Since B is convex and strongly closed it is weakly closed. Since $S \subset B$ it follows that $\overline{S}_w \subset B$. Let $x \in B$ and let $V \subset X$ be a weak neighbourhood of x. There exist $\epsilon > 0$ and $f_1, ..., f_n \in X^*$ with

$$\{y \in X : |f_i(y-x)| \le \epsilon \text{ for } 1 \le i \le n\} \subset V$$

Since dim $X = \infty$ there exists $0 \neq y \in X$ with $f_i(y) = 0$ for $1 \leq i \leq n$. Let $F : [0, \infty) \to [0, \infty)$ be with F(t) = ||x + ty|| for $t \geq 0$. Since $F(0) \leq 1$, $\lim_{t \to \infty} F(t) = \infty$, and F is continuous, it follows from the intermediate value theorem that there exists $t_0 \geq 0$ with $F(t_0) = 1$, and then $x + t_0 y \in S$. Since $f_i(x + t_0 y) = f_i(x)$ for every $1 \leq i \leq n$, it follows that $x + t_0 y \in V$. This shows that $x \in \overline{S}_w$, and so $\overline{S}_w = B$ as we wanted to prove.

Question 2: Let $G_T \subset X \times Y$ be the graph of T. Let $\{(x_n, Tx_n)\}_{n=1}^{\infty} \subset G_T$ and $(x, y) \in X \times Y$ be with $(x_n, Tx_n) \xrightarrow{n} (x, y)$. Given $f \in Y^*$

$$|f(T(x_n - x))| \le C_f ||x_n - x|| \stackrel{n}{\to} 0,$$

hence $f(Tx) = \lim_{n} f(Tx_n) = f(y)$. Since Y^* separates points on Y it follows that y = Tx, so $(x, y) \in G_T$, and so G_T is closed. It now follows from the closed graph theorem that T is continuous, which is what we wanted to show.

Question 3, part (a): Let $\varphi \in C[0,1]^*$ be with $\varphi(f) = \int_0^1 f \, dx$. From $M = \ker \varphi$ it follows that M is closed.

Part (b): Set d = dist(h, M). From a claim proven in the lecture it follows that there exists $\psi \in C[0, 1]^*$ with $\|\psi\| = 1$, $\psi = 0$ on M, and $\psi(h) = d$. From $\ker \varphi \subset \ker \psi$ it follows that there exists $\alpha \in \mathbb{C}$ with $\psi = \alpha \varphi$. It is easy to see that $\|\varphi\| = 1 = \|\psi\|$, hence $|\alpha| = 1$. Since $\varphi(h) > 0$ and $\psi(h) > 0$ it follows that $\psi = \varphi$, and so $d = \varphi(h) = \frac{1}{3}$.

Question 4: Given $g \in L^1(\mathbb{R}^n)$ set $\tilde{g} = g \frac{\overline{gf}}{|gf|} 1_{\{gf \neq 0\}}$, then since $\tilde{g} \in L^1(\mathbb{R}^n)$

(0.1)
$$\infty > \sup_{k \ge 1} \int_{|x| \le k} f(x) \widetilde{g}(x) \, dx = \int_{\mathbb{R}^n} |f(x)g(x)| \, dx \, .$$

For $k \geq 1$ and $g \in L^1(\mathbb{R}^n)$ set $\varphi_k(g) = \int_{\{|f| \leq k\}} fg \, dx$ and $\varphi(g) = \int fg \, dx$, then $\varphi_k \in L^1(\mathbb{R}^n)^*$. For every $g \in L^1(\mathbb{R}^n)$ it follows from the dominated convergence theorem and (0.1) that $\lim_k \varphi_k(g) = \varphi(g)$. Hence from a corollary of the uniform boundedness theorem (proven in class) we get $\varphi \in L^1(\mathbb{R}^n)^*$. From Riesz theorem

it now follows that there exists $h \in L^{\infty}(\mathbb{R}^n)$ such that for every $g \in L^1(\mathbb{R}^n)$

$$\int hg \, dx = \varphi(h) = \int fg \, dx$$

This clearly shows that f(x) = h(x) for $\mathcal{L}eb$ -a.e. $x \in \mathbb{R}^n$, hence $f \in L^{\infty}(\mathbb{R}^n)$ which is what we wanted to show.

Question 5, part (a): A proof can be found in page 59 of Rudin's book.

Part (b): (i) Let $\lambda \in \mathbb{C}$, then it is clear that E_{λ} is convex. Let $f \in X$ and $\epsilon > 0$, then since C[-1,1] is dense in X there exists $g \in C[-1,1]$ with $||f - g||_2 < \epsilon$. For $0 < \delta < 1$ let $g_{\delta} \in C[-1,1]$ be with

$$g_{\delta}(x) = \begin{cases} \frac{x}{\delta}g(\delta) + \frac{\delta - x}{\delta}\lambda & , \text{ if } x \in [0, \delta] \\ \frac{-x}{\delta}g(-\delta) + \frac{\delta + x}{\delta}\lambda & , \text{ if } x \in [-\delta, 0] \\ g(x) & , \text{ if } x \in [-1, 1] \setminus [-\delta, \delta] \end{cases}$$

,

then it is easy to see that $g_{\delta} \in E_{\lambda}$ and $||g - g_{\delta}||_2 < \epsilon$ if δ is small enough. It follows that $||f - g_{\delta}||_2 < 2\epsilon$, which shows that E_{λ} is dense in X.

(ii) Let $\lambda, \mu \in \mathbb{C}$ be with $\lambda \neq \mu$. Assume by contradiction that there exists $\Lambda \in X^*$ and $\gamma \in \mathbb{R}$ with

(0.2)
$$\sup_{f \in E_{\lambda}} \operatorname{Re}\Lambda(f) < \gamma < \inf_{f \in E_{\mu}} \operatorname{Re}\Lambda(f) .$$

The set $\{g \in X : \operatorname{Re}\Lambda(g) > \gamma\}$ is a nonempty open subset of X which is disjoint from E_{λ} . Since E_{λ} is dense in X this gives a contradiction, and so there is no $\Lambda \in X^*$ which satisfies (0.2).