
ANALYSIS 1 - SOLUTION FOR EXERCISE 7

Question 1: Denote by Sw the weak closure of S. Since B is convex and strongly

closed it is weakly closed. Since S ⊂ B it follows that Sw ⊂ B. Let x ∈ B and let

V ⊂ X be a weak neighbourhood of x. There exist ε > 0 and f1, ..., fn ∈ X∗ with

{y ∈ X : |fi(y − x)| ≤ ε for 1 ≤ i ≤ n} ⊂ V .

Since dimX = ∞ there exists 0 6= y ∈ X with fi(y) = 0 for 1 ≤ i ≤ n. Let

F : [0,∞)→ [0,∞) be with F (t) = ‖x+ ty‖ for t ≥ 0. Since F (0) ≤ 1, lim
t→∞

F (t) =

∞, and F is continuous, it follows from the intermediate value theorem that there

exists t0 ≥ 0 with F (t0) = 1, and then x + t0y ∈ S. Since fi(x + t0y) = fi(x) for

every 1 ≤ i ≤ n, it follows that x + t0y ∈ V . This shows that x ∈ Sw, and so

Sw = B as we wanted to prove.

Question 2: Let GT ⊂ X × Y be the graph of T . Let {(xn, Txn)}∞n=1 ⊂ GT and

(x, y) ∈ X × Y be with (xn, Txn)
n→ (x, y). Given f ∈ Y ∗

|f(T (xn − x))| ≤ Cf‖xn − x‖
n→ 0,

hence f(Tx) = lim
n
f(Txn) = f(y). Since Y ∗ separates points on Y it follows that

y = Tx, so (x, y) ∈ GT , and so GT is closed. It now follows from the closed graph

theorem that T is continuous, which is what we wanted to show.

Question 3, part (a): Let ϕ ∈ C[0, 1]∗ be with ϕ(f) =
´ 1
0
f dx. From M = kerϕ

it follows that M is closed.

Part (b): Set d = dist(h,M). From a claim proven in the lecture it follows

that there exists ψ ∈ C[0, 1]∗ with ‖ψ‖ = 1, ψ = 0 on M , and ψ(h) = d. From

kerϕ ⊂ kerψ it follows that there exists α ∈ C with ψ = αϕ. It is easy to see that

‖ϕ‖ = 1 = ‖ψ‖, hence |α| = 1. Since ϕ(h) > 0 and ψ(h) > 0 it follows that ψ = ϕ,

and so d = ϕ(h) = 1
3 .

Question 4: Given g ∈ L1(Rn) set g̃ = g gf
|gf |1{gf 6=0}, then since g̃ ∈ L1(Rn)

(0.1) ∞ > sup
k≥1

ˆ
|x|≤k

f(x)g̃(x) dx =

ˆ
Rn
|f(x)g(x)| dx .

For k ≥ 1 and g ∈ L1(Rn) set ϕk(g) =
´
{|f |≤k} fg dx and ϕ(g) =

´
fg dx, then

ϕk ∈ L1(Rn)∗. For every g ∈ L1(Rn) it follows from the dominated convergence

theorem and (0.1) that lim
k
ϕk(g) = ϕ(g). Hence from a corollary of the uniform

boundedness theorem (proven in class) we get ϕ ∈ L1(Rn)∗. From Riesz theorem
1



it now follows that there exists h ∈ L∞(Rn) such that for every g ∈ L1(Rn)ˆ
hg dx = ϕ(h) =

ˆ
fg dx .

This clearly shows that f(x) = h(x) for Leb-a.e. x ∈ Rn, hence f ∈ L∞(Rn) which

is what we wanted to show.

Question 5, part (a): A proof can be found in page 59 of Rudin's book.

Part (b): (i) Let λ ∈ C, then it is clear that Eλ is convex. Let f ∈ X and ε > 0,

then since C[−1, 1] is dense in X there exists g ∈ C[−1, 1] with ‖f − g‖2 < ε. For

0 < δ < 1 let gδ ∈ C[−1, 1] be with

gδ(x) =


x
δ g(δ) + δ−x

δ λ , if x ∈ [0, δ]

−x
δ g(−δ) + δ+x

δ λ , if x ∈ [−δ, 0]

g(x) , if x ∈ [−1, 1] \ [−δ, δ]

,

then it is easy to see that gδ ∈ Eλ and ‖g− gδ‖2 < ε if δ is small enough. It follows

that ‖f − gδ‖2 < 2ε, which shows that Eλ is dense in X.

(ii) Let λ, µ ∈ C be with λ 6= µ. Assume by contradiction that there exists Λ ∈ X∗

and γ ∈ R with

(0.2) sup
f∈Eλ

ReΛ(f) < γ < inf
f∈Eµ

ReΛ(f) .

The set {g ∈ X : ReΛ(g) > γ} is a nonempty open subset of X which is disjoint

from Eλ. Since Eλ is dense in X this gives a contradiction, and so there is no

Λ ∈ X∗ which satis�es (0.2).


