ANALYSIS 1 - SOLUTION FOR EXERCISE 5

Question 1, part (a): If p = co then r = ¢ and f is essentially bounded, and
so the claim is obvious. In a similar manner this is true if ¢ = oo, hence assume

p.q < oo. From 1 = % + % we get 1 = £ 47, so from Holder’s inequality
[ 19l < ([ Uy dny e [ ol duyrte = 161 Lol
which shows that fg € L' () and | fgll, < 7], ol
Part (b): Assume first that pq, ..., p, < co. We shall prove by induction on n that
/IkalduS H(/\fk
k=1 k=1

The base case n = 1 is trivial. Assume n > 1 and that the claim holds for n — 1.

Set ¢ = (22;11 pik)_l, then % + i =1, and so from Holder’s inequality

n n—1
o0 [ITLAlaus ([IT] Al dmte- ([ 15 aw.
k=1 k=1
Since p% + .+ pn% =1 it follows from the induction hypothesis that
n—1 n—1
J Tt d < TTCf 1 e
k=1 k=1
This together with (0.1) completes the induction. It now follows that

T :/mdug H(/\fk
k=1

and so f € L'(u). If 1 < k < n is such that py = oo then - = 0 and fj is

essentially bounded, and so the general case follows easily from what we have just

Pn du)l/pn )

n
Pn du)l/pn — H ”fk”pk, < o0,
k=1

proven.
Question 2: Assume first that r < co, then for p € [s, 7]
Jipdus [ ildus [ i da <A I < o
{If1<1} {If1>1}
and so f € LP(p). Assume r = oo, then for p € [s, 00)

/\fl”duﬁ/ \flsdwr/ P du < IS+ 112 - lf > 1) < oo,
{IfI<1} {IfI>1}
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and so f € LP(u). We shall now show ¥ is convex. Let s <p < g <randte€ (0,1)
be given, assume g < oo, and set u = tp 4+ (1 — t)q. Since t + (1 —t) = 1 it follows
from Holder’s inequality that

190 = [ 1811100 d < (1517 duyt ([ 1517 dt= = 11 100

From this we get

w(u) = log | £1I% < log (77 - I£15'~"7) = 1w (p) + (1 = )0 (q),
which shows that W is convex.

Question 3: First solution: From fg > 1 we get v/fg > 1, and so from Holder’s
inequality with p = ¢ = 2 we get

1:/1dug/mdus </fdu'/gdu)1/2,

which gives the desired conclusion.

Remark: when p = g = 2 the Holder’s inequality is the same as the Cauchy-Schwarz
inequality.

Second solution: From fg > 1 we get log f+log g > 0, hence [log fdu+ [log gdu >
0, and so from p(2) = 1 and Jensen’s inequality we get

1Sexp(/logfdu)-exp(/loggdu) S/fdu-/gdu-

Question 4, part (a): Let e > 0 and let 6 > 0 be with ||1 + ¢|? — 1] < € for all
le| < 4. Since

1 P—1
i IEE =1
le|—o0 |C‘p
we have ) o
1<C, = sup{|| +|clp_ | el > 6} < oo,
c
and so

[I1+¢ff =1 <e+Celc|’ forall ce R.

Given a,b € R with a # 0 we can put ¢ = g in the last inequality, and then multiply
both sides by |a|P. This gives

(0.2) lla + b — |a|?| < €|al? + C.|b]? for all a,b e R.
For n > 1 define

g = max{| |ful” = |fn = fI" = [fI| = €lfu = fI7, O} .
If we apply (0.2) with a = f,, — f and b = f we get

[

Il = 1fo = FIP = LFPL S Hal? = [ = FIPIHISP < elfn—=FIP+A+COIfIP,



hence g;, < (14 C¢)[f[P. From this, from | f[|, < oo, from lim g, = 0 pointwise,
n
and from the dominated convergence theorem, we get lim [|g ||, = 0. Given § > 0
n
there exists N > 1 with ||g5||; < d for n > N, which shows that

5> [gduz [11fa0 =10 = 7P = 1P) du=e [ 16~ 1P du.
Since this holds for all § > 0 we obtain
timsup [ 115,00 =15 = P = || dp < e timsup [ 1~ 71 do.
Since this holds for all € > 0 and since for each n > 1
J 100 1P =1 = 71 < ol + 171,07 < sup 15l + 171, < o
it follows that
0=t [ [1fal? = Ifo = 7 = FP] dp = tim [ 1£ally = 150 = 115~ 1712).

which completes the proof.

Part (b): Assume also that lim || f,[, = [ f],, then from part (a)
n

0 =tim (ILfally = 1fu = £ = IFI2) = tim 10— fI2,

which shows that f,, = f in LP(p).

Question 5: For 1 < p < oo set LP = LP(0,1), and for n > 1 set
E,={f €L’ : ||fll; <n}.

First we show that E, is closed in L'. Let fi, fa,... € E, and f € L' be with
fn = fin L', then there exists a subsequence with {f,, }?, with f,, () LA f(x)
for Leb-a.e. x € (0,1). It now follows from Fatou’s lemma that

1 1 1
/ (@) do = / lim [ £y, (2)[? dz < lim in / o (@) do <,
0 o Fk k 0

so f € E,, and so E, is closed in L'. We shall now show that E,, is nowhere
dense in L', since E, is closed it suffice to show that L'\ L? is dense in L!. Let
f € L' and € > 0 be given, then since L™ is dense in L' there exists g € L™ with
If —gll, <e Letd > 0 be with f(f z~Y2dx < €, and let h € L' be such that
h(z) = 272 1(9 5 (z) for z € (0,1). From the Minkowski inequality we get

oo = [|hlly < 2 +glly +llgll2
$0 ||h + gl|, = oo (since ||g|, < ), and so h + g € L\ L?. Since

If=h=glly <IF = glly +[hll, < 2€



we get that L'\ L? is dense in L!, and so E, is nowhere dense in L!. Since
L? = U, E, it follows that L? is of the first category in L', which is what we

wanted to prove.

Question 6: Set
2= {{zp}32, CcC: Z lzi|? < oo},
k=1

then [? is a Banach space (even a Hilbert space) with the norm ||z, = > 7o | |2x|?
for z € I%. For every z € I? set f(z) = Y7, Txak, and for each n > 1let f, € (I*)*
be with f,(z) = >"}_, zxay, for x € 2. For each z € [? we have f(z) = lim f,(z),
hence from a corollary of the uniform boundedness theorem (proven in glass) we
get f € (1?)*. Let u be the counting measure on N, then {?> = L?(u). Since the
dual space of L?(y) is isomorphic to L?(u) (proven in class), it follows that there
exists y € 12 with f(z) = Y ;= yrxy for © € I2. Given k > 1 let e, € [% be the
standard k’th unit vector, then ap = f(ex) = yr. This holds for all k¥ > 1, hence

{ap}e, =y €1? and so Y ;- |ax|? < oo, which is what we wanted to prove.

Question 7, part (a): Let f € X be given, then for z € [0, 1]

x 1
IGF ()] < / () F(t)] dt < / 9Ol dt -1l = gl 1l -

This shows that [|Gf[l, < [lgll; [|fll and so G is bounded with [|G[| < [g]|;-

Given € > 0 let f. € X be with f.(z) = ‘gféi)_‘_e for € [0,1]. Since ||fel|., <1 we

have
1612 1651 =1 [ attste = [ JEO

This holds for all € > 0, hence from the dominated convergence theorem

1 2 1 2

t t

||G\|2hm/ g®I" dt:/ lim 9O dt = gl .
elo Jo |g(t)] +€ o €0lg(t)] +e

and so |G| = |lg]l,-

Part (b): Set K = supp(g), we shall show that kerG={f € X : f=0o0n K}.
It is obvious that if f € X satisfies f =0 on K then f € kerG. Let f € ker G be
given, then Gf(z) =0 for all z € [0,1], and so forall 0 < a < b <1

b
0=Gf(b) ~ Gf(a) = / o) f(t) dt

Since g - f is continuous it follows that we must have g- f =0 on [0,1], so f(z) =0
for all z € [0,1] with g(x) # 0, and so f = 0 on K which is what we wanted.

Part (c): We shall show that range(G) = D, where

D:={feC'([0,1]) : f(0)=0}.



Let f € G, then Gf(0) =0 and (Gf)'(x) = g(z) f(x) for z € [0,1], so Gf € D, and
so range(G) C D. Let h € D and let f € X be with f(z) = ’Z/((;c)) for z € [0,1],
then for all z € [0, 1]

Gf(z) = / " g0 f (1) di = / "W () di = h(z) — h(0) = ().

This shows that Gf = h, so h € range(G), so D C range(G), and so D = range(G)

as we wanted.




