
ANALYSIS 1 - SOLUTION FOR EXERCISE 5

Question 1, part (a): If p = ∞ then r = q and f is essentially bounded, and

so the claim is obvious. In a similar manner this is true if q = ∞, hence assume

p, q <∞. From 1
r = 1

p + 1
q we get 1 = r

p + r
q , so from Holder's inequality

ˆ
|fg|r dµ ≤ (

ˆ
(|f |r)p/r dµ)r/p · (

ˆ
(|g|r)q/r dµ)r/q = ‖f‖rp · ‖g‖

r
q ,

which shows that fg ∈ Lr(µ) and ‖fg‖r ≤ ‖f‖p · ‖g‖q.

Part (b): Assume �rst that p1, ..., pn <∞. We shall prove by induction on n that

ˆ
|
n∏
k=1

fk| dµ ≤
n∏
k=1

(

ˆ
|fk|pn dµ)1/pn .

The base case n = 1 is trivial. Assume n > 1 and that the claim holds for n − 1.

Set q = (
∑n−1
k=1

1
pk

)−1, then 1
q + 1

pn
= 1, and so from Holder's inequality

(0.1)

ˆ
|
n∏
k=1

fk| dµ ≤ (

ˆ
|
n−1∏
k=1

fk|q dµ)1/q · (
ˆ
|fn|pn dµ)1/pn .

Since q
p1

+ ...+ q
pn−1

= 1 it follows from the induction hypothesis that

ˆ n−1∏
k=1

|fk|q dµ ≤
n−1∏
k=1

(

ˆ
|fk|pk dµ)q/pk .

This together with (0.1) completes the induction. It now follows that

‖f‖1 =

ˆ
|f | dµ ≤

n∏
k=1

(

ˆ
|fk|pn dµ)1/pn =

n∏
k=1

‖fk‖pk <∞,

and so f ∈ L1(µ). If 1 ≤ k ≤ n is such that pk = ∞ then 1
pk

= 0 and fk is

essentially bounded, and so the general case follows easily from what we have just

proven.

Question 2: Assume �rst that r <∞, then for p ∈ [s, r]ˆ
|f |p dµ ≤

ˆ
{|f |≤1}

|f |s dµ+

ˆ
{|f |>1}

|f |r dµ ≤ ‖f‖ss + ‖f‖rr <∞,

and so f ∈ Lp(µ). Assume r =∞, then for p ∈ [s,∞)

ˆ
|f |p dµ ≤

ˆ
{|f |≤1}

|f |s dµ+

ˆ
{|f |>1}

|f |p dµ ≤ ‖f‖ss + ‖f‖p∞ ·µ{f > 1} <∞,
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and so f ∈ Lp(µ). We shall now show Ψ is convex. Let s ≤ p < q ≤ r and t ∈ (0, 1)

be given, assume q <∞, and set u = tp+ (1− t)q. Since t+ (1− t) = 1 it follows

from Holder's inequality that

‖f‖uu =

ˆ
|f |tp · |f |(1−t)q dµ ≤ (

ˆ
|f |p dµ)t · (

ˆ
|f |q dµ)1−t = ‖f‖tpp · ‖f‖

(1−t)q
q .

From this we get

Ψ(u) = log ‖f‖uu ≤ log
(
‖f‖tpp · ‖f‖

(1−t)q
q

)
= tΨ(p) + (1− t)Ψ(q),

which shows that Ψ is convex.

Question 3: First solution: From fg ≥ 1 we get
√
fg ≥ 1, and so from Holder's

inequality with p = q = 2 we get

1 =

ˆ
1 dµ ≤

ˆ √
fg dµ ≤

(ˆ
f dµ ·

ˆ
g dµ

)1/2

,

which gives the desired conclusion.

Remark: when p = q = 2 the Holder's inequality is the same as the Cauchy-Schwarz

inequality.

Second solution: From fg ≥ 1 we get log f+log g ≥ 0, hence
´

log fdµ+
´

log gdµ ≥
0, and so from µ(Ω) = 1 and Jensen's inequality we get

1 ≤ exp(

ˆ
log f dµ) · exp(

ˆ
log g dµ) ≤

ˆ
f dµ ·

ˆ
g dµ .

Question 4, part (a): Let ε > 0 and let δ > 0 be with ||1 + c|p − 1| ≤ ε for all

|c| ≤ δ. Since

lim
|c|→∞

||1 + c|p − 1|
|c|p

= 1

we have

1 ≤ Cε := sup{ ||1 + c|p − 1|
|c|p

: |c| ≥ δ} <∞,

and so

||1 + c|p − 1| ≤ ε+ Cε|c|p for all c ∈ R .

Given a, b ∈ R with a 6= 0 we can put c = b
a in the last inequality, and then multiply

both sides by |a|p. This gives

(0.2) ||a+ b|p − |a|p| ≤ ε|a|p + Cε|b|p for all a, b ∈ R .

For n ≥ 1 de�ne

gεn := max{| |fn|p − |fn − f |p − |f |p| − ε|fn − f |p, 0} .

If we apply (0.2) with a = fn − f and b = f we get

| |fn|p − |fn − f |p − |f |p| ≤ | |fn|p − |fn − f |p|+|f |p ≤ ε|fn−f |p+(1+Cε)|f |p,



hence gεn ≤ (1 + Cε)|f |p. From this, from ‖f‖p < ∞, from lim
n
gεn = 0 pointwise,

and from the dominated convergence theorem, we get lim
n
‖gεn‖1 = 0. Given δ > 0

there exists N ≥ 1 with ‖gεn‖1 < δ for n ≥ N , which shows that

δ >

ˆ
gεn dµ ≥

ˆ
| |fn|p − |fn − f |p − |f |p| dµ− ε

ˆ
|fn − f |p dµ .

Since this holds for all δ > 0 we obtain

lim sup
n

ˆ
| |fn|p − |fn − f |p − |f |p| dµ ≤ ε · lim sup

n

ˆ
|fn − f |p dµ .

Since this holds for all ε > 0 and since for each n ≥ 1ˆ
|fn − f |p dµ = ‖fn − f‖pp ≤ (‖fn‖p + ‖f‖p)

p ≤ (sup
k
‖fk‖p + ‖f‖p)

p <∞,

it follows that

0 = lim
n

ˆ
| |fn|p − |fn − f |p − |f |p| dµ ≥ lim

n

∣∣∣ ‖fn‖pp − ‖fn − f‖pp − ‖f‖pp∣∣∣ ,
which completes the proof.

Part (b): Assume also that lim
n
‖fn‖p = ‖f‖p, then from part (a)

0 = lim
n

(
‖fn‖pp − ‖fn − f‖

p
p − ‖f‖

p
p

)
= lim

n
‖fn − f‖pp ,

which shows that fn
n→ f in Lp(µ).

Question 5: For 1 ≤ p ≤ ∞ set Lp = Lp(0, 1), and for n ≥ 1 set

En = {f ∈ L2 : ‖f‖22 ≤ n} .

First we show that En is closed in L1. Let f1, f2, ... ∈ En and f ∈ L1 be with

fn
n→ f in L1, then there exists a subsequence with {fnk

}∞k=1 with fnk
(x)

k→ f(x)

for Leb-a.e. x ∈ (0, 1). It now follows from Fatou's lemma that
ˆ 1

0

|f(x)|2 dx =

ˆ 1

0

lim
k
|fnk

(x)|2 dx ≤ lim inf
k

ˆ 1

0

|fnk
(x)|2 dx ≤ n,

so f ∈ En, and so En is closed in L1. We shall now show that En is nowhere

dense in L1, since En is closed it su�ce to show that L1 \ L2 is dense in L1. Let

f ∈ L1 and ε > 0 be given, then since L∞ is dense in L1 there exists g ∈ L∞ with

‖f − g‖1 < ε. Let δ > 0 be with
´ δ
0
x−1/2 dx < ε, and let h ∈ L1 be such that

h(x) = x−1/2 · 1(0,δ)(x) for x ∈ (0, 1). From the Minkowski inequality we get

∞ = ‖h‖2 ≤ ‖h+ g‖2 + ‖g‖2 ,

so ‖h+ g‖2 =∞ (since ‖g‖2 <∞), and so h+ g ∈ L1 \ L2. Since

‖f − h− g‖1 ≤ ‖f − g‖1 + ‖h‖1 < 2ε



we get that L1 \ L2 is dense in L1, and so En is nowhere dense in L1. Since

L2 = ∪∞n=1En it follows that L2 is of the �rst category in L1, which is what we

wanted to prove.

Question 6: Set

l2 = {{xk}∞k=1 ⊂ C :

∞∑
k=1

|xk|2 <∞},

then l2 is a Banach space (even a Hilbert space) with the norm ‖x‖2 =
∑∞
k=1 |xk|2

for x ∈ l2. For every x ∈ l2 set f(x) =
∑∞
k=1 xkak, and for each n ≥ 1 let fn ∈ (l2)∗

be with fn(x) =
∑n
k=1 xkak for x ∈ l2. For each x ∈ l2 we have f(x) = lim

n
fn(x),

hence from a corollary of the uniform boundedness theorem (proven in class) we

get f ∈ (l2)∗. Let µ be the counting measure on N, then l2 = L2(µ). Since the

dual space of L2(µ) is isomorphic to L2(µ) (proven in class), it follows that there

exists y ∈ l2 with f(x) =
∑∞
k=1 ykxk for x ∈ l2. Given k ≥ 1 let ek ∈ l2 be the

standard k'th unit vector, then ak = f(ek) = yk. This holds for all k ≥ 1, hence

{ak}∞k=1 = y ∈ l2, and so
∑∞
k=1 |ak|2 <∞, which is what we wanted to prove.

Question 7, part (a): Let f ∈ X be given, then for x ∈ [0, 1]

|Gf(x)| ≤
ˆ x

0

|g(t)f(t)| dt ≤
ˆ 1

0

|g(t)| dt · ‖f‖∞ = ‖g‖1 ‖f‖∞ .

This shows that ‖Gf‖∞ ≤ ‖g‖1 ‖f‖∞, and so G is bounded with ‖G‖ ≤ ‖g‖1.
Given ε > 0 let fε ∈ X be with fε(x) = g(x)

|g(x)|+ε for x ∈ [0, 1]. Since ‖fε‖∞ ≤ 1 we

have

‖G‖ ≥ ‖Gfε‖∞ ≥ |
ˆ 1

0

g(t)fε(t) dt| =
ˆ 1

0

|g(t)|2

|g(t)|+ ε
dt .

This holds for all ε > 0, hence from the dominated convergence theorem

‖G‖ ≥ lim
ε↓0

ˆ 1

0

|g(t)|2

|g(t)|+ ε
dt =

ˆ 1

0

lim
ε↓0

|g(t)|2

|g(t)|+ ε
dt = ‖g‖1 ,

and so ‖G‖ = ‖g‖1.

Part (b): Set K = supp(g), we shall show that kerG = {f ∈ X : f = 0 on K}.
It is obvious that if f ∈ X satis�es f = 0 on K then f ∈ kerG. Let f ∈ kerG be

given, then Gf(x) = 0 for all x ∈ [0, 1], and so for all 0 ≤ a ≤ b ≤ 1

0 = Gf(b)−Gf(a) =

ˆ b

a

g(t)f(t) dt .

Since g · f is continuous it follows that we must have g · f = 0 on [0, 1], so f(x) = 0

for all x ∈ [0, 1] with g(x) 6= 0, and so f = 0 on K which is what we wanted.

Part (c): We shall show that range(G) = D, where

D := {f ∈ C1([0, 1]) : f(0) = 0} .



Let f ∈ G, then Gf(0) = 0 and (Gf)′(x) = g(x)f(x) for x ∈ [0, 1], so Gf ∈ D, and

so range(G) ⊂ D. Let h ∈ D and let f ∈ X be with f(x) = h′(x)
g(x) for x ∈ [0, 1],

then for all x ∈ [0, 1]

Gf(x) =

ˆ x

0

g(t)f(t) dt =

ˆ x

0

h′(t) dt = h(x)− h(0) = h(x) .

This shows that Gf = h, so h ∈ range(G), so D ⊂ range(G), and so D = range(G)

as we wanted.


