ANALYSIS 1 - SOLUTION FOR EXERCISE 5

Question 1, part (a): If $p = \infty$ then r = q and f is essentially bounded, and so the claim is obvious. In a similar manner this is true if $q = \infty$, hence assume $p, q < \infty$. From $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ we get $1 = \frac{r}{p} + \frac{r}{q}$, so from Holder's inequality

$$\int |fg|^r \, d\mu \le (\int (|f|^r)^{p/r} \, d\mu)^{r/p} \cdot (\int (|g|^r)^{q/r} \, d\mu)^{r/q} = \|f\|_p^r \cdot \|g\|_q^r,$$

which shows that $fg \in L^r(\mu)$ and $||fg||_r \le ||f||_p \cdot ||g||_q$.

Part (b): Assume first that $p_1, ..., p_n < \infty$. We shall prove by induction on n that

$$\int |\prod_{k=1}^n f_k| \, d\mu \le \prod_{k=1}^n (\int |f_k|^{p_n} \, d\mu)^{1/p_n} \, .$$

The base case n = 1 is trivial. Assume n > 1 and that the claim holds for n - 1. Set $q = (\sum_{k=1}^{n-1} \frac{1}{p_k})^{-1}$, then $\frac{1}{q} + \frac{1}{p_n} = 1$, and so from Holder's inequality

(0.1)
$$\int |\prod_{k=1}^{n} f_k| \, d\mu \le \left(\int |\prod_{k=1}^{n-1} f_k|^q \, d\mu\right)^{1/q} \cdot \left(\int |f_n|^{p_n} \, d\mu\right)^{1/p_n}$$

Since $\frac{q}{p_1} + \ldots + \frac{q}{p_{n-1}} = 1$ it follows from the induction hypothesis that

$$\int \prod_{k=1}^{n-1} |f_k|^q \, d\mu \le \prod_{k=1}^{n-1} (\int |f_k|^{p_k} \, d\mu)^{q/p_k} \, d\mu$$

This together with (0.1) completes the induction. It now follows that

$$\|f\|_{1} = \int |f| \, d\mu \le \prod_{k=1}^{n} (\int |f_{k}|^{p_{n}} \, d\mu)^{1/p_{n}} = \prod_{k=1}^{n} \|f_{k}\|_{p_{k}} < \infty$$

and so $f \in L^1(\mu)$. If $1 \leq k \leq n$ is such that $p_k = \infty$ then $\frac{1}{p_k} = 0$ and f_k is essentially bounded, and so the general case follows easily from what we have just proven.

Question 2: Assume first that $r < \infty$, then for $p \in [s, r]$

$$\int |f|^p \, d\mu \le \int_{\{|f|\le 1\}} |f|^s \, d\mu + \int_{\{|f|>1\}} |f|^r \, d\mu \le \|f\|_s^s + \|f\|_r^r < \infty,$$

and so $f \in L^p(\mu)$. Assume $r = \infty$, then for $p \in [s, \infty)$

$$\int |f|^p \, d\mu \le \int_{\{|f|\le 1\}} |f|^s \, d\mu + \int_{\{|f|>1\}} |f|^p \, d\mu \le \|f\|_s^s + \|f\|_\infty^p \cdot \mu\{f>1\} < \infty,$$

and so $f \in L^p(\mu)$. We shall now show Ψ is convex. Let $s \leq p < q \leq r$ and $t \in (0, 1)$ be given, assume $q < \infty$, and set u = tp + (1 - t)q. Since t + (1 - t) = 1 it follows from Holder's inequality that

$$\|f\|_{u}^{u} = \int |f|^{tp} \cdot |f|^{(1-t)q} \, d\mu \le (\int |f|^{p} \, d\mu)^{t} \cdot (\int |f|^{q} \, d\mu)^{1-t} = \|f\|_{p}^{tp} \cdot \|f\|_{q}^{(1-t)q} \, .$$

From this we get

$$\Psi(u) = \log \|f\|_u^u \le \log \left(\|f\|_p^{tp} \cdot \|f\|_q^{(1-t)q} \right) = t\Psi(p) + (1-t)\Psi(q),$$

which shows that Ψ is convex.

Question 3: First solution: From $fg \ge 1$ we get $\sqrt{fg} \ge 1$, and so from Holder's inequality with p = q = 2 we get

$$1 = \int 1 \, d\mu \le \int \sqrt{fg} \, d\mu \le \left(\int f \, d\mu \cdot \int g \, d\mu \right)^{1/2},$$

which gives the desired conclusion.

Remark: when p = q = 2 the Holder's inequality is the same as the Cauchy-Schwarz inequality.

Second solution: From $fg \ge 1$ we get $\log f + \log g \ge 0$, hence $\int \log f d\mu + \int \log g d\mu \ge 0$, and so from $\mu(\Omega) = 1$ and Jensen's inequality we get

$$1 \le \exp(\int \log f \, d\mu) \cdot \exp(\int \log g \, d\mu) \le \int f \, d\mu \cdot \int g \, d\mu \, .$$

Question 4, part (a): Let $\epsilon > 0$ and let $\delta > 0$ be with $||1 + c|^p - 1| \le \epsilon$ for all $|c| \le \delta$. Since

$$\lim_{|c| \to \infty} \frac{||1 + c|^p - 1|}{|c|^p} = 1$$

we have

$$1 \le C_{\epsilon} := \sup\{\frac{||1+c|^p - 1|}{|c|^p} : |c| \ge \delta\} < \infty,$$

and so

$$||1+c|^p-1| \le \epsilon + C_{\epsilon}|c|^p$$
 for all $c \in \mathbb{R}$.

Given $a, b \in \mathbb{R}$ with $a \neq 0$ we can put $c = \frac{b}{a}$ in the last inequality, and then multiply both sides by $|a|^p$. This gives

(0.2)
$$||a+b|^p - |a|^p| \le \epsilon |a|^p + C_{\epsilon} |b|^p \text{ for all } a, b \in \mathbb{R}.$$

For $n \ge 1$ define

$$g_n^{\epsilon} := \max\{ ||f_n|^p - |f_n - f|^p - |f|^p| - \epsilon |f_n - f|^p, 0 \}.$$

If we apply (0.2) with $a = f_n - f$ and b = f we get

$$||f_n|^p - |f_n - f|^p - |f|^p| \le ||f_n|^p - |f_n - f|^p| + |f|^p \le \epsilon |f_n - f|^p + (1 + C_{\epsilon})|f|^p,$$

hence $g_n^{\epsilon} \leq (1+C_{\epsilon})|f|^p$. From this, from $||f||_p < \infty$, from $\lim_n g_n^{\epsilon} = 0$ pointwise, and from the dominated convergence theorem, we get $\lim_n ||g_n^{\epsilon}||_1 = 0$. Given $\delta > 0$ there exists $N \geq 1$ with $||g_n^{\epsilon}||_1 < \delta$ for $n \geq N$, which shows that

$$\delta > \int g_n^{\epsilon} \, d\mu \ge \int ||f_n|^p - |f_n - f|^p - |f|^p| \, d\mu - \epsilon \int |f_n - f|^p \, d\mu \, .$$

Since this holds for all $\delta > 0$ we obtain

$$\limsup_{n} \int ||f_n|^p - |f_n - f|^p - |f|^p| \ d\mu \le \epsilon \cdot \limsup_{n} \int |f_n - f|^p \ d\mu \,.$$

Since this holds for all $\epsilon>0$ and since for each $n\geq 1$

$$\int |f_n - f|^p \, d\mu = \|f_n - f\|_p^p \le (\|f_n\|_p + \|f\|_p)^p \le (\sup_k \|f_k\|_p + \|f\|_p)^p < \infty,$$

it follows that

$$0 = \lim_{n} \int ||f_{n}|^{p} - |f_{n} - f|^{p} - |f|^{p}| d\mu \ge \lim_{n} \left| ||f_{n}||_{p}^{p} - ||f_{n} - f||_{p}^{p} - ||f||_{p}^{p} \right|,$$

which completes the proof.

Part (b): Assume also that $\lim_{n} ||f_n||_p = ||f||_p$, then from part (a)

$$0 = \lim_{n} \left(\|f_n\|_p^p - \|f_n - f\|_p^p - \|f\|_p^p \right) = \lim_{n} \|f_n - f\|_p^p,$$

which shows that $f_n \xrightarrow{n} f$ in $L^p(\mu)$.

Question 5: For $1 \le p \le \infty$ set $L^p = L^p(0,1)$, and for $n \ge 1$ set

$$E_n = \{ f \in L^2 : \|f\|_2^2 \le n \}$$

First we show that E_n is closed in L^1 . Let $f_1, f_2, \ldots \in E_n$ and $f \in L^1$ be with $f_n \xrightarrow{n} f$ in L^1 , then there exists a subsequence with $\{f_{n_k}\}_{k=1}^{\infty}$ with $f_{n_k}(x) \xrightarrow{k} f(x)$ for $\mathcal{L}eb$ -a.e. $x \in (0, 1)$. It now follows from Fatou's lemma that

$$\int_0^1 |f(x)|^2 \, dx = \int_0^1 \lim_k |f_{n_k}(x)|^2 \, dx \le \liminf_k \int_0^1 |f_{n_k}(x)|^2 \, dx \le n,$$

so $f \in E_n$, and so E_n is closed in L^1 . We shall now show that E_n is nowhere dense in L^1 , since E_n is closed it suffice to show that $L^1 \setminus L^2$ is dense in L^1 . Let $f \in L^1$ and $\epsilon > 0$ be given, then since L^{∞} is dense in L^1 there exists $g \in L^{\infty}$ with $\|f - g\|_1 < \epsilon$. Let $\delta > 0$ be with $\int_0^{\delta} x^{-1/2} dx < \epsilon$, and let $h \in L^1$ be such that $h(x) = x^{-1/2} \cdot 1_{(0,\delta)}(x)$ for $x \in (0,1)$. From the Minkowski inequality we get

$$\infty = \|h\|_2 \le \|h + g\|_2 + \|g\|_2,$$

so $||h + g||_2 = \infty$ (since $||g||_2 < \infty$), and so $h + g \in L^1 \setminus L^2$. Since

$$\|f - h - g\|_1 \le \|f - g\|_1 + \|h\|_1 < 2\epsilon$$

we get that $L^1 \setminus L^2$ is dense in L^1 , and so E_n is nowhere dense in L^1 . Since $L^2 = \bigcup_{n=1}^{\infty} E_n$ it follows that L^2 is of the first category in L^1 , which is what we wanted to prove.

Question 6: Set

$$l^{2} = \{\{x_{k}\}_{k=1}^{\infty} \subset \mathbb{C} : \sum_{k=1}^{\infty} |x_{k}|^{2} < \infty\},\$$

then l^2 is a Banach space (even a Hilbert space) with the norm $||x||_2 = \sum_{k=1}^{\infty} |x_k|^2$ for $x \in l^2$. For every $x \in l^2$ set $f(x) = \sum_{k=1}^{\infty} x_k a_k$, and for each $n \ge 1$ let $f_n \in (l^2)^*$ be with $f_n(x) = \sum_{k=1}^n x_k a_k$ for $x \in l^2$. For each $x \in l^2$ we have $f(x) = \lim_n f_n(x)$, hence from a corollary of the uniform boundedness theorem (proven in class) we get $f \in (l^2)^*$. Let μ be the counting measure on \mathbb{N} , then $l^2 = L^2(\mu)$. Since the dual space of $L^2(\mu)$ is isomorphic to $L^2(\mu)$ (proven in class), it follows that there exists $y \in l^2$ with $f(x) = \sum_{k=1}^{\infty} y_k x_k$ for $x \in l^2$. Given $k \ge 1$ let $e_k \in l^2$ be the standard k'th unit vector, then $a_k = f(e_k) = y_k$. This holds for all $k \ge 1$, hence $\{a_k\}_{k=1}^{\infty} = y \in l^2$, and so $\sum_{k=1}^{\infty} |a_k|^2 < \infty$, which is what we wanted to prove.

Question 7, part (a): Let $f \in X$ be given, then for $x \in [0,1]$

$$|Gf(x)| \le \int_0^x |g(t)f(t)| \, dt \le \int_0^1 |g(t)| \, dt \cdot \|f\|_{\infty} = \|g\|_1 \, \|f\|_{\infty} \, .$$

This shows that $||Gf||_{\infty} \leq ||g||_1 ||f||_{\infty}$, and so G is bounded with $||G|| \leq ||g||_1$. Given $\epsilon > 0$ let $f_{\epsilon} \in X$ be with $f_{\epsilon}(x) = \frac{\overline{g(x)}}{|g(x)|+\epsilon}$ for $x \in [0,1]$. Since $||f_{\epsilon}||_{\infty} \leq 1$ we have

$$||G|| \ge ||Gf_{\epsilon}||_{\infty} \ge |\int_{0}^{1} g(t)f_{\epsilon}(t) dt| = \int_{0}^{1} \frac{|g(t)|^{2}}{|g(t)| + \epsilon} dt$$

This holds for all $\epsilon > 0$, hence from the dominated convergence theorem

$$||G|| \ge \lim_{\epsilon \downarrow 0} \int_0^1 \frac{|g(t)|^2}{|g(t)| + \epsilon} \, dt = \int_0^1 \lim_{\epsilon \downarrow 0} \frac{|g(t)|^2}{|g(t)| + \epsilon} \, dt = ||g||_1$$

and so $||G|| = ||g||_1$.

Part (b): Set K = supp(g), we shall show that ker $G = \{f \in X : f = 0 \text{ on } K\}$. It is obvious that if $f \in X$ satisfies f = 0 on K then $f \in \ker G$. Let $f \in \ker G$ be given, then Gf(x) = 0 for all $x \in [0, 1]$, and so for all $0 \le a \le b \le 1$

$$0 = Gf(b) - Gf(a) = \int_a^b g(t)f(t) dt$$

Since $g \cdot f$ is continuous it follows that we must have $g \cdot f = 0$ on [0, 1], so f(x) = 0 for all $x \in [0, 1]$ with $g(x) \neq 0$, and so f = 0 on K which is what we wanted.

Part (c): We shall show that range(G) = D, where

$$D := \{ f \in C^1([0,1]) : f(0) = 0 \}.$$

Let $f \in G$, then Gf(0) = 0 and (Gf)'(x) = g(x)f(x) for $x \in [0, 1]$, so $Gf \in D$, and so $range(G) \subset D$. Let $h \in D$ and let $f \in X$ be with $f(x) = \frac{h'(x)}{g(x)}$ for $x \in [0, 1]$, then for all $x \in [0, 1]$

$$Gf(x) = \int_0^x g(t)f(t) \, dt = \int_0^x h'(t) \, dt = h(x) - h(0) = h(x) \, .$$

This shows that Gf = h, so $h \in range(G)$, so $D \subset range(G)$, and so D = range(G) as we wanted.