ANALYSIS 1 - SOLUTION FOR EXERCISE 4

Question 1, part (a): It is not necessarily true that {k~1U}2, is a local base
at 0 for X. For example take X = R? and U = {(z,y) € R? : |z| < 1}.

Part (b): If U = B(0,r) it is also not necessarily true that {k~1U}%, is a local
base at 0 for X. Example: Let X = C(2) be as in question 2 below. There exist a
compact K C 2 and € > 0 with

{feX :pr(f) <e} CBO,r).

Let H C 2\ K be compact, let k > 1, and let g € X be with g=00on K and g > 1
on H. Since px (k- g) =0 we have g € k=1 - B(0,r), and so since py(g) > 1

kK=t B0,r) £ {f€X : pul(f) <1}.

This holds for all k > 1, hence {k~'B(0,7)}°, is not a local base at 0.

Question 2: Set X = C(Q). For a € Alet A, € X* be with Ao f = [ f(z)dz
for f € X. By assumption we have sup |A,f| < oo for all f € X. Since X is a

€A
Frechet space it follows from the Uniform Boundedness Theorem that there exist a
compact K C € and € > 0 with

(0.1) A{feX pr(f)<e C{zeC : |z|<1l}forallae A.

Assume by contradiction that K doesn’t contain U,ca K, then there exist oo € A,
xr €, and § > 0 with B(x,8) C U, and B(z,6) N K = (. Let f € X be with

f(y) > Leb(B(z,8))* 15(2.6)(y) for all y € Q

and f =0 on K, where Leb is the Lebesgue measure. Since f = 0 on K it follows
from (0.1) that |A,f| < 1. On the other hand we have

Aof = f(ac)da:Z/ fl@)dz > 1.
K, B(z,5)
This contradiction shows that U,ca K, C K as we wanted.

Question 3: Assume there exits f € X* with || f|| <~ and f(x) = ay for k > 1.
Let n > 1 and f4, ..., 8, € C be given, then

1> Biaul = 1O Biwi)| < v
i=1 =1

1

i




For the other direction, assume for each n > 1 and f4, ..., 3, € C

n
> Bix;
i=1

Set Y = span{x : k> 1}. Given y € Y there exist n > 1 and Sy, ..., 8, € C with
y =Y i, Biwi, define fo(y) = >, Bio;. We shall now show that fo : Y — Cis
well defined. Let y € Y, and let n,m > 1 and S, ..., Bn, M1, ---, M € C be with

n m
Zﬁﬂii =y= an‘wi ‘
i=1 i=1

(0.2) 1> Bl < v
=1

Since

=0

n m n m
1> Bioi =Y mieul <> Biwi — > mii
i=1 i=1 i=1 i=1

we have Y1 | Bia; = > 1" mi, and so fo is well defined. It is obvious that fo in
linear, and from (0.2) it follows that |fo(y)| < v ||ly|| for y € Y. From the Hahn-
Banach theorem it now follows that there exists f € X* with || f|| < and f(y) =
fo(y) for y € Y. For every k > 1 we have x, € Y, hence f(xx) = fo(xx) = ax, and

the proof is complete.

Question 4: Assume there exists a signed Radon measure p on [0, 1] with fol wFdu(z) =
ay for k> 1. Set vy := |p]([0, 1]), where || is the total variation measure of y. Given
B1,y .-, B € R we have

n n 1 1 n n
1> Bl =|Zﬁi/ ok du(z)| = |/ 3" Bk du()] < - %%§]|ka|.
i=1 i=1 0 0 =1 vl

For the other direction, assume there exists 0 < v < oo such that for all n > 1 and
51) (23} B’n eR

(0.3) 1> Bioi| <7 max 1> Bt
i=1 v G

Set X = C[0,1], let ||| be the supremum norm on X, and for k¥ > 1 let p;, € X be
with py(z) = 2% for x € [0, 1]. From (0.3) and question 3, which can also be carried
out when the scalar field is R, it follows that there exists A € X* with ||A|| <~ and
A(pr) = ay for k > 1. From the Riesz representation theorem it follows that there
exists a unique signed Radon measure p on [0,1] with A(f) = fol fdufor f e X.
In particular for each k > 1

1 1
ar = Mpy) = / pr dp = / 2" dp(),
0 0
which completes the proof.

Question 5, part (a): The completeness of ¢y, ¢, and [ was established in

exercise 2, let us show that ! is complete. Let {z"}>; C I' be a Cauchy sequence.



For each j,m,n > 1 we have |2} — 27| < [z" — 2™||;, where [|-||; is the norm of
I*. Tt follows that {21152, C Cis a Cauchy sequence for each j > 1, hence there

exists r; € C with 27 X x;. Set x = {z;}32,. Let € > 0, then there exists N > 1
with || —2™|; < efor n,m > N. Given n > N it holds for all M > 1 that

M M
Z |zj — 2% | = liqr%nz |z" — 2| <limsup [|z" — 2™, <,
j=1 j=1 m

and so Y777, |2; — 27| < e. This shows that

(o)
Do lal S ety < oo,
j=1
and so x € [*. It also follows that |z — 2"||; < e for n > N, so 2™ 5% x, and so [}

is complete.

part (b): Let ||-||, be the norm of [*°, ¢, and ¢g. Given x € I' we have for each

Y € co

(0.4) S eatl < [l ll2ll, < oo,

n=1
hence we can define ®x : ¢g — C by Dz(y) = Y .2 | Znyn for y € co. It is obvious
that ®z is linear. From (0.4) we get ||®z|| < ||z, < oo, where ||®z|| stands for the
operator norm of ®x. It follows that ®x € (cp)*, and so ® defines a map from [!
into (co)*. It is easy to check that ® is linear. Let = € I! be given, and let N > 1
and y € ¢y be with

ITRI ,ifn<Nandz, #0
(0.5) Yp = T foralln>1.

0 , else

Since ||y||,, < 1 it follows that

0o N
@2 > [@2(y)] = | > waynl = D |2 -
n=1 n=1

This holds for all N > 1, hence ||®z| > > |z,| = ||z|,. From this and from
|®z|| < ||z||, it follows that ||®z|| = ||z||,, and so ® is an isometry.

We shall now show that ® is surjective. Let f € (co)* be given. For n > 1 let
{enk}t2, = en € ¢y be such that e,,, = 1 and e, = 0 for £ # n, and set
xn = f(en). Let N > 1 and define y € cq as in (0.5), then since |ly| <1

N N N
Al = 1F = 1O ymen)| = 1D ynflen)l =D |aal -

n=1



Since this holds for all N > 1 we have ||f|| > Y>> | |z,|, and so {z,};2, =z € ..
For each z € ¢y we have lij{[n ZnN:1 Znén = z, hence from the continuity of f

This shows that &z = f, and so ® is surjective. We have thus shown that ® is an

isometry from ! onto (cp)*, and so these two spaces can be identified.

part (c): Let y € I}, then for x € ¢
oo [ee]
(@) < 1ol + Y lyrwr—a] < M2l Y lukl = Izl lyl;
k=2 k=1

and so || fyll < [lyll;. Let € > 0 and let N > 1 be with Y72 v [yx| <e. Let z € ¢
be with

Uil if e #£0and k< N

[yk+1]
0 , if =0and k< N
(0.6) e Ykt for all & > 1,
% ,ify; #0and k> N
0 ,ifyp =0and k> N
then
0o N 0o
@) = 1200 + Y gkznal =Dyl = D Iyl > llylly — 2¢.
k=2 k=1 k=N+1

This holds for all € > 0, so |f,(z)| > ||y||,. Since ||z||,, < 1 it follows that [|f,| >
lyll,, so || fyll = llyll;, and so the map y — f, is a linear isometry of I* into ¢*.
We shall now show this map is also onto. Let g € ¢* and for each k > 2 set
yr = g(eg—1). Let N > 1 and let x € ¢ be as defined in (0.6), then since |zg| <1
for k>1

N N N
S luel =1 unrroal = 1> glex—1)zr-|
k=2 ) k=2

N-1 N-1

=19(D_ wrer)l <llgll || > zwer| <l
k=1 k=1

and 80 > po, |yk| < oo. Set y1 = g(z) — Yoo yr Where z € ¢ is such that z; = 1

for all k > 1, then {y;}$2, =y € I'. Given w € c the limit lij{fn Z]kvzl(wk — Weo )€k

o}



exists in ¢, hence

g(w) = g(wooz + Z(wk — Woo)ek) = Weo + g(2) + Z(wk — Woo) - g(ek)

h=1 P
o0 o0 o0

= Woo Y1 +Woo Y Yk + D (Wh = Woo) - Yry1 = Woo Y1+ Y wh1 -y = fy(w).
k=2 k=1 k=2

It follows that g = f,, and so the map y — f, is onto.

Question 6, part (a): coo is not a closed subspace of c¢g. For each n > 1 let
{ap}7e, = a™ € cop be with z} = § for 1 <k <n and z} =0 for k > n. It is clear
that {z"}52, converges to {1}72; € co \ coo, which shows that cog is not a closed
subspace of c¢g.

part (b): Fix some = € cyo, then the map Q(z,-) : ¢go — C is clearly linear. Set

M =372 |#;| < oo, then for y € coo

i=1
and so the linear functional Q(z,-) is continuous. This shows that ) is continuous
in the second argument, in a similar manner it can be shown that @ is continuous
in the first argument.

We shall now show that @ is not continuous as a function on cyg X cgg. For every
nleetx”ecoobesuchthatxg:%forl§k§n2 andxﬁzOfork>n2.
Clearly {z™}52; C coo converges to 0 in c¢qg, hence {(x™, z™)}52, converges to (0,0)
in coo X cgo. Also, for each n > 1 we have Q(z™,2") = 1. Since Q(0,0) = 0 it

follows that @ is not continuous on cyg X cgo-

Question 7: There is no need to assume completeness of the space. Let X be
a normed space and let M be a closed subspace of X. It is enough to show that
span{M,z} is a closed subspace of X for each z € X \ M, then by induction on
N > 1it will follow that span{M, {zx}2_,} is closed for any finite set {x)}_, C X.
Let © € X \ M be given, and set

d=inf{llz -yl : ye M}.

Since M is closed we have d > 0. Let {z;}72; C span{M,z} and z € X be with
2k X 2. For k > 1 there exist y, € M and oy € C with zx = yx + agz. If a £ 0
then

2kl = llyr + cnll = law ey g + 2| > dlow],

and so |ay| < ”Z;”. It follows that {ay}32, is a bounded sequence, hence there

exists a € C with ay, % . From this we get

liin Yp = liin (2 — agx) = 2 — ax,



so z — ax € M since M is closed, and so
z=(z—ax)+ax € span{M,z} .

This shows that span{M,z} is closed and completes the proof.



