
ANALYSIS 1 - SOLUTION FOR EXERCISE 4

Question 1, part (a): It is not necessarily true that {k−1U}∞k=1 is a local base

at 0 for X. For example take X = R2 and U = {(x, y) ∈ R2 : |x| < 1}.

Part (b): If U = B(0, r) it is also not necessarily true that {k−1U}∞k=1 is a local

base at 0 for X. Example: Let X = C(Ω) be as in question 2 below. There exist a

compact K ⊂ Ω and ε > 0 with

{f ∈ X : pK(f) < ε} ⊂ B(0, r) .

Let H ⊂ Ω \K be compact, let k ≥ 1, and let g ∈ X be with g = 0 on K and g ≥ 1

on H. Since pK(k · g) = 0 we have g ∈ k−1 ·B(0, r), and so since pH(g) ≥ 1

k−1 ·B(0, r) * {f ∈ X : pH(f) < 1} .

This holds for all k ≥ 1, hence {k−1B(0, r)}∞k=1 is not a local base at 0.

Question 2: Set X = C(Ω). For α ∈ A let Λα ∈ X∗ be with Λαf =
´
Kα

f(x) dx

for f ∈ X. By assumption we have sup
α∈A
|Λαf | < ∞ for all f ∈ X. Since X is a

Frechet space it follows from the Uniform Boundedness Theorem that there exist a

compact K ⊂ Ω and ε > 0 with

(0.1) Λα{f ∈ X : pK(f) < ε} ⊂ {z ∈ C : |z| < 1} for all α ∈ A .

Assume by contradiction that K doesn't contain ∪α∈AKα, then there exist α ∈ A,
x ∈ Ω, and δ > 0 with B(x, δ) ⊂ Uα and B(x, δ) ∩K = ∅. Let f ∈ X be with

f(y) ≥ Leb(B(x, δ))−1 · 1B(x,δ)(y) for all y ∈ Ω

and f = 0 on K, where Leb is the Lebesgue measure. Since f = 0 on K it follows

from (0.1) that |Λαf | < 1. On the other hand we have

Λαf =

ˆ
Kα

f(x) dx ≥
ˆ
B(x,δ)

f(x) dx ≥ 1 .

This contradiction shows that ∪α∈AKα ⊂ K as we wanted.

Question 3: Assume there exits f ∈ X∗ with ‖f‖ ≤ γ and f(xk) = αk for k ≥ 1.

Let n ≥ 1 and β1, ..., βn ∈ C be given, then

|
n∑
i=1

βiαi| = |f(

n∑
i=1

βixi)| ≤ γ

∥∥∥∥∥
n∑
i=1

βixi

∥∥∥∥∥ .
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For the other direction, assume for each n ≥ 1 and β1, ..., βn ∈ C

(0.2) |
n∑
i=1

βiαi| ≤ γ

∥∥∥∥∥
n∑
i=1

βixi

∥∥∥∥∥ .
Set Y = span{xk : k ≥ 1}. Given y ∈ Y there exist n ≥ 1 and β1, ..., βn ∈ C with

y =
∑n
i=1 βixi, de�ne f0(y) =

∑n
i=1 βiαi. We shall now show that f0 : Y → C is

well de�ned. Let y ∈ Y , and let n,m ≥ 1 and β1, ..., βn, η1, ..., ηm ∈ C be with

n∑
i=1

βixi = y =

m∑
i=1

ηixi .

Since

|
n∑
i=1

βiαi −
m∑
i=1

ηiαi| ≤ γ

∥∥∥∥∥
n∑
i=1

βixi −
m∑
i=1

ηixi

∥∥∥∥∥ = 0

we have
∑n
i=1 βiαi =

∑m
i=1 ηiαi, and so f0 is well de�ned. It is obvious that f0 in

linear, and from (0.2) it follows that |f0(y)| ≤ γ ‖y‖ for y ∈ Y . From the Hahn-

Banach theorem it now follows that there exists f ∈ X∗ with ‖f‖ ≤ γ and f(y) =

f0(y) for y ∈ Y . For every k ≥ 1 we have xk ∈ Y , hence f(xk) = f0(xk) = αk, and

the proof is complete.

Question 4: Assume there exists a signed Radon measure µ on [0, 1] with
´ 1
0
xkdµ(x) =

αk for k ≥ 1. Set γ := |µ|([0, 1]), where |µ| is the total variation measure of µ. Given

β1, ..., βn ∈ R we have

|
n∑
i=1

βiαi| = |
n∑
i=1

βi

ˆ 1

0

xk dµ(x)| = |
ˆ 1

0

n∑
i=1

βix
k dµ(x)| ≤ γ · max

x∈[0,1]
|
n∑
i=1

βix
k| .

For the other direction, assume there exists 0 < γ <∞ such that for all n ≥ 1 and

β1, ..., βn ∈ R

(0.3) |
n∑
i=1

βiαi| ≤ γ · max
x∈[0,1]

|
n∑
i=1

βix
k| .

Set X = C[0, 1], let ‖·‖ be the supremum norm on X, and for k ≥ 1 let pk ∈ X be

with pk(x) = xk for x ∈ [0, 1]. From (0.3) and question 3, which can also be carried

out when the scalar �eld is R, it follows that there exists Λ ∈ X∗ with ‖Λ‖ ≤ γ and

Λ(pk) = αk for k ≥ 1. From the Riesz representation theorem it follows that there

exists a unique signed Radon measure µ on [0, 1] with Λ(f) =
´ 1
0
f dµ for f ∈ X.

In particular for each k ≥ 1

αk = Λ(pk) =

ˆ 1

0

pk dµ =

ˆ 1

0

xk dµ(x),

which completes the proof.

Question 5, part (a): The completeness of c0, c, and l∞ was established in

exercise 2, let us show that l1 is complete. Let {xn}∞n=1 ⊂ l1 be a Cauchy sequence.



For each j,m, n ≥ 1 we have |xnj − xmj | ≤ ‖xn − xm‖1, where ‖·‖1 is the norm of

l1. It follows that {xnj }∞n=1 ⊂ C is a Cauchy sequence for each j ≥ 1, hence there

exists xj ∈ C with xnj
n→ xj . Set x = {xj}∞j=1. Let ε > 0, then there exists N ≥ 1

with ‖xn − xm‖1 ≤ ε for n,m ≥ N . Given n ≥ N it holds for all M ≥ 1 that

M∑
j=1

|xj − xnj | = lim
m

M∑
j=1

|xmj − xnj | ≤ lim sup
m

‖xn − xm‖1 ≤ ε,

and so
∑∞
j=1 |xj − xnj | ≤ ε. This shows that

∞∑
j=1

|xj | ≤ ε+ ‖xn‖1 <∞,

and so x ∈ l1. It also follows that ‖x− xn‖1 ≤ ε for n ≥ N , so xn
n→ x, and so l1

is complete.

part (b): Let ‖·‖∞ be the norm of l∞, c, and c0. Given x ∈ l1 we have for each

y ∈ c0

(0.4)

∞∑
n=1

|xnyn| ≤ ‖y‖∞ ‖x‖1 <∞,

hence we can de�ne Φx : c0 → C by Φx(y) =
∑∞
n=1 xnyn for y ∈ c0. It is obvious

that Φx is linear. From (0.4) we get ‖Φx‖ ≤ ‖x‖1 <∞, where ‖Φx‖ stands for the
operator norm of Φx. It follows that Φx ∈ (c0)∗, and so Φ de�nes a map from l1

into (c0)∗. It is easy to check that Φ is linear. Let x ∈ l1 be given, and let N ≥ 1

and y ∈ c0 be with

(0.5) yn =

 xn
|xn| , if n ≤ N and xn 6= 0

0 , else
for all n ≥ 1 .

Since ‖y‖∞ ≤ 1 it follows that

‖Φx‖ ≥ |Φx(y)| = |
∞∑
n=1

xnyn| =
N∑
n=1

|xn| .

This holds for all N ≥ 1, hence ‖Φx‖ ≥
∑∞
n=1 |xn| = ‖x‖1. From this and from

‖Φx‖ ≤ ‖x‖1 it follows that ‖Φx‖ = ‖x‖1, and so Φ is an isometry.

We shall now show that Φ is surjective. Let f ∈ (c0)∗ be given. For n ≥ 1 let

{en,k}∞k=1 = en ∈ c0 be such that en,n = 1 and en,k = 0 for k 6= n, and set

xn = f(en). Let N ≥ 1 and de�ne y ∈ c0 as in (0.5), then since ‖y‖∞ ≤ 1

‖f‖ ≥ |f(y)| = |f(

N∑
n=1

ynen)| = |
N∑
n=1

ynf(en)| =
N∑
n=1

|xn| .



Since this holds for all N ≥ 1 we have ‖f‖ ≥
∑∞
n=1 |xn|, and so {xn}∞n=1 = x ∈ l1.

For each z ∈ c0 we have lim
N

∑N
n=1 znen = z, hence from the continuity of f

Φx(z) =

∞∑
n=1

xnzn =

∞∑
n=1

znf(en) = f(

∞∑
n=1

znen) = f(z) .

This shows that Φx = f , and so Φ is surjective. We have thus shown that Φ is an

isometry from l1 onto (c0)∗, and so these two spaces can be identi�ed.

part (c): Let y ∈ l1, then for x ∈ c

|fy(x)| ≤ |y1x∞|+
∞∑
k=2

|ykxk−1| ≤ ‖x‖∞
∞∑
k=1

|yk| = ‖x‖∞ ‖y‖1 ,

and so ‖fy‖ ≤ ‖y‖1. Let ε > 0 and let N ≥ 1 be with
∑∞
k=N+1 |yk| < ε. Let x ∈ c

be with

(0.6) xk =



yk+1

|yk+1| , if yk+1 6= 0 and k < N

0 , if yk+1 = 0 and k < N

y1
|y1| , if y1 6= 0 and k ≥ N

0 , if y1 = 0 and k ≥ N

for all k ≥ 1,

then

|fy(x)| = |y1x∞ +

∞∑
k=2

ykxk−1| ≥
N∑
k=1

|yk| −
∞∑

k=N+1

|yk| ≥ ‖y‖1 − 2ε .

This holds for all ε > 0, so |fy(x)| ≥ ‖y‖1. Since ‖x‖∞ ≤ 1 it follows that ‖fy‖ ≥
‖y‖1, so ‖fy‖ = ‖y‖1, and so the map y → fy is a linear isometry of l1 into c∗.

We shall now show this map is also onto. Let g ∈ c∗ and for each k ≥ 2 set

yk = g(ek−1). Let N ≥ 1 and let x ∈ c be as de�ned in (0.6), then since |xk| ≤ 1

for k ≥ 1

N∑
k=2

|yk| = |
N∑
k=2

ykxk−1| = |
N∑
k=2

g(ek−1)xk−1|

= |g(

N−1∑
k=1

xkek)| ≤ ‖g‖

∥∥∥∥∥
N−1∑
k=1

xkek

∥∥∥∥∥
∞

≤ ‖g‖ ,

and so
∑∞
k=2 |yk| < ∞. Set y1 = g(z) −

∑∞
k=2 yk where z ∈ c is such that zk = 1

for all k ≥ 1, then {yk}∞k=1 = y ∈ l1. Given w ∈ c the limit lim
N

∑N
k=1(wk − w∞)ek



exists in c, hence

g(w) = g(w∞z +

∞∑
k=1

(wk − w∞)ek) = w∞ · g(z) +

∞∑
k=1

(wk − w∞) · g(ek)

= w∞ · y1 +w∞

∞∑
k=2

yk +

∞∑
k=1

(wk −w∞) · yk+1 = w∞ · y1 +

∞∑
k=2

wk−1 · yk = fy(w) .

It follows that g = fy, and so the map y → fy is onto.

Question 6, part (a): c00 is not a closed subspace of c0. For each n ≥ 1 let

{xnk}∞k=1 = xn ∈ c00 be with xnk = 1
k for 1 ≤ k ≤ n and xnk = 0 for k > n. It is clear

that {xn}∞n=1 converges to { 1k}
∞
k=1 ∈ c0 \ c00, which shows that c00 is not a closed

subspace of c0.

part (b): Fix some x ∈ c00, then the map Q(x, ·) : c00 → C is clearly linear. Set

M :=
∑∞
i=1 |xi| <∞, then for y ∈ c00

|Q(x, y)| = |
∞∑
i=1

xiyi| ≤M ‖y‖∞ ,

and so the linear functional Q(x, ·) is continuous. This shows that Q is continuous

in the second argument, in a similar manner it can be shown that Q is continuous

in the �rst argument.

We shall now show that Q is not continuous as a function on c00 × c00. For every
n ≥ 1 let xn ∈ c00 be such that xnk = 1

n for 1 ≤ k ≤ n2 and xnk = 0 for k > n2.

Clearly {xn}∞n=1 ⊂ c00 converges to 0 in c00, hence {(xn, xn)}∞n=1 converges to (0, 0)

in c00 × c00. Also, for each n ≥ 1 we have Q(xn, xn) = 1. Since Q(0, 0) = 0 it

follows that Q is not continuous on c00 × c00.

Question 7: There is no need to assume completeness of the space. Let X be

a normed space and let M be a closed subspace of X. It is enough to show that

span{M,x} is a closed subspace of X for each x ∈ X \M , then by induction on

N ≥ 1 it will follow that span{M, {xk}Nk=1} is closed for any �nite set {xk}Nk=1 ⊂ X.

Let x ∈ X \M be given, and set

d = inf{‖x− y‖ : y ∈M} .

Since M is closed we have d > 0. Let {zk}∞k=1 ⊂ span{M,x} and z ∈ X be with

zk
k→ z. For k ≥ 1 there exist yk ∈ M and αk ∈ C with zk = yk + αkx. If αk 6= 0

then

‖zk‖ = ‖yk + αkx‖ = |αk|
∥∥α−1k yk + x

∥∥ ≥ d|αk|,
and so |αk| ≤ ‖zk‖

d . It follows that {αk}∞k=1 is a bounded sequence, hence there

exists α ∈ C with αk
k→ α. From this we get

lim
k
yk = lim

k
(zk − αkx) = z − αx,



so z − αx ∈M since M is closed, and so

z = (z − αx) + αx ∈ span{M,x} .

This shows that span{M,x} is closed and completes the proof.


