
ANALYSIS 1 - SOLUTION FOR EXERCISE 2

Question 1: Let τ be the topology of X. Assume there exist seminorms {pn}∞n=1

which generate τ . We shall show that X is metrizable, this was done in class but

we repeat it here for completeness. For x, y ∈ X set

d(x, y) = max
n≥1

n−1 · pn(x− y)

1 + pn(x− y)
,

then d is a metric on X. Denote by τd the topology induced by d. Given V ∈ τ
and x ∈ V there exist N ≥ 1 and 0 < ε < 1 with

{y ∈ X : pn(y − x) < ε for all 1 ≤ n ≤ N} ⊂ V .

Given y ∈ X with d(x, y) < ε
2N and 1 ≤ n ≤ N

pn(y − x)

1 + pn(y − x)
≤ n · d(x, y) <

ε

2
,

hence pn(y − x) < ε, and so

{y ∈ X : d(x, y) <
ε

2N
} ⊂ V .

This shows that V ∈ τd and so τ ⊂ τd. Given V ∈ τd and x ∈ V there exits ε > 0

with

{y ∈ X : d(x, y) < ε} ⊂ V .

Let N ≥ 1
ε be an integer and let y ∈ X be such that pn(y − x) < ε for 1 ≤ n ≤ N ,

then d(x, y) < ε, so

{y ∈ X : pn(y − x) < ε for all 1 ≤ n ≤ N} ⊂ V,

and so V ∈ τ . This shows that τd ⊂ τ , so τ = τd, and so X is metrizable.

Assume X is metrizable, and let d be a metric on X which induces its topology.

Since X is locally convex there exist open convex balanced subsets {Vn}∞n=1 of X

with

0 ∈ Vn ⊂ B(0,
1

n
) := {x ∈ X : d(x, 0) <

1

n
} .

Since {B(0, 1
n )}∞n=1 is a local base for 0 in X, {Vn}∞n=1 is also a local base for 0.

For n ≥ 1 let pn be the Minkowski functional of Vn. Since Vn is open, convex, and

balanced, pn is a seminorm and

(0.1) Vn = {x ∈ X : pn(x) < 1} .
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Given x ∈ X \ {0} there exits n ≥ 1 with x /∈ Vn, hence pn(x) 6= 0, and so {pn}∞n=1

is a separating family of seminorms. Let τ0 be the topology generated by {pn}∞n=1.

From (0.1) it follows that {Vn}∞n=1 ⊂ τ0, and so τ ⊂ τ0 since {Vn}∞n=1 is a local

base at 0 for (X, τ). Given n ≥ 1 and ε > 0 it follows from (0.1) that

{x ∈ X : pn(x) < ε} = ε · Vn ∈ τ,

hence τ0 ⊂ τ , and so τ0 = τ . This shows that the seminorms {pn}∞n=1 generate τ ,

and completes the proof.

Question 2, part (a): Given f : X ×X → R we say that f is continuous if for

every (x1, x2) ∈ X ×X and ε > 0 there exist neighbourhoods V1 and V2 of 0 in X

with

|f(y1, y2)− f(x1, x2)| < ε for every y1 ∈ x1 + V1 and y2 ∈ x2 + V2 .

Part (b): Let x1, x2 ∈ X and ε > 0 be given. Let n ≥ 1 be such that 2−n < ε
2 ,

and let y1, y2 ∈ X be with

pj(yi − xi) <
ε

4
for every i ∈ {1, 2} and 1 ≤ j ≤ n .

Since

| a

1 + a
− b

a+ b
| ≤ |a− b| for all a, b ≥ 0,

it follows that

|d(y1, y2) + d(x1, x2)| ≤
n∑
j=1

2−j · |p(y1 − y2)− p(x1 − x2)|+ ε

2

≤
n∑
j=1

2−j · (|p(y1 − y2)− p(x1 − y2)|+ |p(x1 − y2)− p(x1 − x2)|) +
ε

2

n∑
j=1

2−j · (p(y1 − x1) + p(y2 − x2)) +
ε

2
< ε,

and so d : X ×X → R is continuous.

Part (c): Given x, y ∈ X we have e(x, y) = 0 if and only if pn(x − y) = 0 for all

n ≥ 1, which holds if and only if x = y. Since e satis�es the triangle inequality

and it is symmetric, it follows that e is a metric. Given {xj}∞j=1 ⊂ X and x ∈ X it

holds that d(x, xj)
j→ 0 if and only if pn(x − xj)

j→ 0 for all n ≥ 1, which holds if

and only if e(x, xj)
j→ 0. This shows that d and e induce the same topologies.

Question 3: Clearly l∞ is a vector space, c is a subspace of l∞, c0 is a subspace

of c, and ‖·‖ is a norm on l∞. Let {xm}∞m=1 ⊂ l∞ be a Cauchy sequence. For each

n,m, k ≥ 1 we have |xmn − xkn| ≤
∥∥xm − xk∥∥, hence {xmn }∞m=1 is a Cauchy sequence

in C for each n ≥ 1, and so there exists xn ∈ C with xmn
m→ xn. There exits k ≥ 1

with
∥∥xm − xk∥∥ ≤ 1 for all m ≥ k, hence |xmn | ≤

∥∥xk∥∥+ 1 for all n ≥ 1 and m ≥ k,



and so |xn| ≤
∥∥xk∥∥ + 1 for n ≥ 1. This shows that {xn}∞n=1 = x ∈ l∞. Let ε > 0,

then there exits M ≥ 1 with
∥∥xm − xk∥∥ < ε for m, k ≥ M . For n ≥ 1 we have

xmn
m→ xn, hence for k ≥M

|xn − xkn| ≤ lim sup
m

|xn − xmn |+ lim sup
m

|xmn − xkn| ≤
∥∥xm − xk∥∥ < ε,

and so
∥∥x− xk∥∥ < ε. This shows that {xm}∞m=1 converges to x in l∞, hence l∞ is

complete, and so it is a Banach space.

Let {xm}∞m=1 ⊂ c be a Cauchy sequence, then there exists x ∈ l∞ with xm
m→ x in

l∞. For each m ≥ 1 there exits ym ∈ C with lim
n
xmn = ym. Given m, k ≥ 1 we have

|ym − yk| = lim
n
|xmn − xkn| ≤

∥∥xm − xk∥∥ ,
so {ym}∞m=1 is a Cauchy sequence, and so there exists y ∈ C with y = lim

m
ym. For

each m ≥ 1

lim sup
n
|y−xn| ≤ |y−ym|+lim sup

n
|ym−xmn |+lim sup

n
|xmn −xn| ≤ |y−ym|+‖xm − x‖ ,

hence

lim sup
n
|y − xn| ≤ lim sup

m
(|y − ym|+ ‖xm − x‖) = 0 .

This shows that lim
n
xn = y, so x ∈ c, and so c is a closed subspace of l∞. This also

shows that c is complete, and so it is a Banach space.

Let {xm}∞m=1 ⊂ c0 be a Cauchy sequence, then there exists x ∈ c with xm m→ x in

l∞. For each m ≥ 1 we have lim
n
xmn = 0, hence

lim sup
n

|xn| ≤ lim sup
n
|xn − xmn |+ lim sup

n
|xmn | ≤ ‖xm − x‖ ,

and so

lim sup
n
|xn| ≤ lim sup

m
‖xm − x‖ = 0 .

This shows that lim
n
xn = 0, so x ∈ c0, and so c0 is a closed subspace of c. This also

shows that c0 is complete, and so it is a Banach space.

Remark. The fact that c0 is a closed subspace of c (and so a Banach space) also

follows from the following argument: Given x ∈ c set f(x) = lim
n
xn, then f is a

continuous linear functional on c. Now since c0 = ker f it follows that c0 is a closed

subspace of c.

Question 4: Let x, y ∈ Y and α, β ∈ C be given, and let V ⊂ X be a neighbour-

hood of 0 in X. De�ne f : X ×X → X by

f(z, w) = αz + βw for z, w ∈ X .

Since f is continuous and f(0, 0) = 0, there exists W ⊂ X a neighbourhood of 0

with f(W ×W ) ⊂ V . Since x, y ∈ Y there exist x′, y′ ∈ Y with x′ ∈ x + W and



y′ ∈ y +W . Since αx′ + βy′ ∈ Y and

αx′ + βy′ ∈ αx+ βy + αW + βW = αx+ βy + f(W ×W ) ⊂ αx+ βy + V,

it follows that Y ∩ (αx + βy + V ) 6= ∅. This holds for every V which is a neigh-

bourhood of 0, hence αx + βy ∈ Y , which shows that Y is a linear subspace of

X.

Question 5, part (a): The space C(0, 1) is not normable. Assume by contradic-

tion that there exists a norm ‖·‖ which induces the topology of C(0, 1), then there

exist a compact K ⊂ (0, 1) and ε > 0 with

{f ∈ C(0, 1) : pK(f) < ε} ⊂ {f ∈ C(0, 1) : ‖f‖ < 1} .

Let g ∈ C(0, 1) be such that g = 0 on K but g(x) 6= 0 for some x ∈ (0, 1)\K. Since

g 6= 0 we have ‖g‖ > 0, hence lim
n
‖ng‖ =∞. But ng = 0 on K for all n ≥ 1, hence

pK(ng) < ε, and so ‖ng‖ < 1 for all n ≥ 1. This contradiction shows that C(0, 1)

is not normable.

Part (b): C0(0, 1) is not a closed subspace of C(0, 1), and C0(0, 1) = C(0, 1). Fix

some g ∈ C(0, 1). For n ≥ 3 let fn ∈ C0(0, 1) be with fn = 1 on [ 1n , 1−
1
n ]. Given a

compact K ⊂ (0, 1) there exists N ≥ 3 with K ⊂ [ 1
N , 1−

1
N ]. For all n ≥ N we have

pK(g−g ·fn) = 0, and so g ·fn
n→ g in C(0, 1). Since {g ·fn}∞n=1 ⊂ C0(0, 1) it follows

that C0(0, 1) is dense in C(0, 1), and it is not closed since C(0, 1) \ C0(0, 1) 6= ∅.

Part (c): It is clear that W is convex and balanced. Let f ∈ C0(0, 1), then there

exists 0 < C < ∞ with |f(x)| ≤ C for x ∈ (0, 1). Given 0 < δ < (C ·
∑∞
n=2

1
n2 )−1

we have
∞∑
n=2

1

n2
· |δ · f(

1

n
)| ≤ C · δ ·

∞∑
n=2

1

n2
< 1,

hence δ · f ∈W , so f ∈ δ−1W , and so W is absorbing in C0(0, 1).

Assume by contradiction that 0 ∈ int W (where int W is taken in C0(0, 1)), then

there exist a compact K ⊂ (0, 1) and ε > 0 with

{f ∈ C0(0, 1) : pK(f) < ε} ⊂W .

Let m ≥ 1 be such that 1
m /∈ K, then there exists f ∈ C0(0, 1) with f = 0 on K

and f( 1
m ) ≥ m2. Since pK(f) = 0 < ε we have f ∈W , which contradicts

∞∑
n=2

1

n2
· |f(

1

n
)| ≥ 1

m2
· f(

1

m
) ≥ 1 .

This shows that 0 /∈ intW , and so W is not open in C0(0, 1) since 0 ∈W .



Part (d): Let p be the Minkowski functional of W , then part c implies that p is

not continuous on C0(0, 1). Assume by contradiction that p is continuous, then

{f ∈ C0(0, 1) : p(f) < 1}

is an open set which contains 0 and is contained in W . This shows that 0 ∈ intW

which contradicts part c, and so p is not continuous.

Part (e): Let Q ⊂ C(0, 1) be subspace of all polynomials, then Q is dense in

C(0, 1). Let V ⊂ C(0, 1) be open and let f ∈ V . There exist a compact K ⊂ (0, 1)

and ε > 0 with

{g ∈ C(0, 1) : pK(g − f) < ε} ⊂ V .

From the Weierstrass approximation theorem it follows that there exists q ∈ Q with

pK(q − f) < ε, hence q ∈ V , which shows that Q is dense in C(0, 1).

Question 6, part (a): Let K1,K2, ... ⊂ Ω be compact sets with ∪jKj = Ω and

Kj ⊂ intKj+1 for j ≥ 1. The family

{pKj ,α : j ≥ 1, |α| ≤ k}

is countable and induces the topology of Ck(Ω), hence Ck(Ω) is metrizable. In

order to show that Ck(Ω) is a Frechet space we need to show that it is complete.

Let {fj} ⊂ Ck(Ω) be a Cauchy sequence. For each l ≥ 1 and |α| ≤ k the sequence

{∂αfj} is Cauchy in C(Kl), where C(Kl) is endowed we the supremum norm.

Since C(Kl) is complete there exits gα,l ∈ C(Kl) with ∂αfj
j→ gα,l in C(Kl).

Given |α| ≤ k de�ne gα : Ω → C by gα = gα,l on Kl, clearly gα is well de�ned

and continuous. Set g = g0, we shall show that g ∈ Ck(Ω) and ∂αg = gα for every

multi-index |α| ≤ k. Let |α| < k and 1 ≤ i ≤ n and set β = α+ ei, where ei is the

i'th standard unit vector of Rn. Let x ∈ Ω and ε > 0 be given. Let 1 > δ0 > 0 be

such that B(x, δ0) =: B ⊂ Ω and |gβ(y) − gβ(x)| < ε for y ∈ B. Given 0 < δ < δ0

there exists j ≥ 1 with

|∂γfj(x)− gγ(x)| ≤ δε for γ ∈ {α, β} and x ∈ B .

From the mean value theorem we get∣∣∣∣gα(x+ δei)− gα(x)

δ
− gβ(x)

∣∣∣∣
≤ 2ε+

∣∣∣∣∂αfj(x+ δei)− ∂αfj(x)

δ
− gβ(x)

∣∣∣∣
≤ 2ε+ sup

η∈[0,δ]

∣∣∂βfj(x+ ηei)− gβ(x)
∣∣

≤ 3ε+ sup
η∈[0,δ]

|gβ(x+ ηei)− gβ(x)| < 4ε,



which shows that ∂eigα = gβ . Now by induction on |α| we obtain ∂αg = gα for

every multi-index α with |α| ≤ k, which also shows g ∈ Ck(Ω). Since ∂αfj
j→ ∂αg

in C(Kl) for l ≥ 1 and |α| ≤ k, we get fj
j→ g in Ck(Ω). This shows that Ck(Ω) is

complete, and �nishes the proof.

Part (b): Let β be a multi-index with |β| ≤ k. Since ∂β : Ck(Ω) → Ck−|β|(Ω)

is linear it is enough to show that it is continuous at 0. Let V ⊂ Ck−|β|(Ω) be a

neighbourhood of 0, then there exist a compact K ⊂ Ω and ε > 0 with

{f ∈ Ck−|β|(Ω) : |∂αf(x)| < ε for x ∈ K and |α| ≤ k − |β|} =: W ⊂ V .

Set

U = {f ∈ Ck(Ω) : |∂αf(x)| < ε for x ∈ K and |α| ≤ k},

then U is a neighbourhood of 0 in Ck(Ω) and ∂β(U) ⊂ W ⊂ V . This shows that

∂β is continuous at 0.

Part (c): Let K ⊂ Ω be compact and α be a multi-index with |α| ≤ k. It su�ce to

show that there exists a continuous seminorm q on Ck(Ω) with pK.α(Tϕf) ≤ q(f)

for f ∈ Ck(Ω). From the Leibniz formula there exist positive integers {cα,β}β≤α
with

∂α(f · g) =
∑
β≤α

cα,β · ∂α−βf · ∂βg for all f, g ∈ Ck(Ω) .

Hence for f ∈ Ck(Ω) and x ∈ K

|∂α(Tϕf)(x)| = |∂α(ϕf)(x)| ≤
∑
β≤α

cα,β · |∂α−βϕ(x)| · |∂βf(x)|,

and so

pK.α(Tϕf) ≤
∑
β≤α

cα,β · pK,α−β(ϕ) · pK,β(f) .

Since
∑
β≤α cα,β ·pK,α−β(ϕ) ·pK,β is a continuous seminorm on Ck(Ω) we are done.


