ANALYSIS 1 - SOLUTION FOR EXERCISE 2

Question 1: Let 7 be the topology of X. Assume there exist seminorms {p,}5,
which generate 7. We shall show that X is metrizable, this was done in class but

we repeat it here for completeness. For z,y € X set
71 . —
d(z,y) = max n_PlT7Y) Pn( y)’
n>1 1+ py(x—y)
then d is a metric on X. Denote by 74 the topology induced by d. Given V € 7
and z € V there exist N > 1 and 0 < € < 1 with
{yeX :pply—x)<eforalll<n<N}CV.

Given y € X with d(z,y) < 55 and 1 <n < N
pn(y — ) €
I T d :
hence p,(y — z) < ¢, and so
€
X :d — V.
{ye (z,y) < 5t C©
This shows that V € 74 and so 7 C 74. Given V € 74 and x € V there exits ¢ > 0
with
{ye X 1 d(z,y) <eCV.

Let N > % be an integer and let y € X be such that p,(y —2) <efor 1 <n < N,
then d(x,y) < €, so

{yeX :pply—x)<eforalll <n< N} CV,

and so V € 7. This shows that 7, C 7, so 7 = 74, and so X is metrizable.

Assume X is metrizable, and let d be a metric on X which induces its topology.
Since X is locally convex there exist open convex balanced subsets {V,,}52, of X
with ) )

OeVnCB(O,E) ={zreX :dz0)< ﬁ}'
Since {B(0,1)}52, is a local base for 0 in X, {V,,}52, is also a local base for 0.

For n > 1 let p,, be the Minkowski functional of V,,. Since V,, is open, convex, and

balanced, p,, is a seminorm and

(0.1) Ve={rx e X : po(x) <1}.



Given z € X \ {0} there exits n > 1 with « ¢ V,,, hence p,,(z) # 0, and so {p,}52,
is a separating family of seminorms. Let 79 be the topology generated by {p,}5>;.
From (0.1) it follows that {V},}22,; C 79, and so 7 C 79 since {V,,}22, is a local

base at 0 for (X, 7). Given n > 1 and € > 0 it follows from (0.1) that
{reX p(x)<et=¢-V, e,

hence 79 C 7, and so 79 = 7. This shows that the seminorms {p, }32 , generate T,

and completes the proof.

Question 2, part (a): Given f: X x X — R we say that f is continuous if for
every (x1,22) € X x X and € > 0 there exist neighbourhoods V; and V5 of 0 in X
with

|f(y1,y2) — f(x1,22)| < € for every y; € 1 + V] and yo € 20 + V2 .

Part (b): Let x1,75 € X and € > 0 be given. Let n > 1 be such that 27" < §,
and let y1,y2 € X be with

pi(yi — i) < i foreveryi € {1,2} and 1 <j<mn.

Since b
| @ | <l|a—b| for all a,b >0,
14+a a+b
it follows that
- €
|d(y1,2) + d(z1, 2)] Z Py = y2) = plar = 22)| + 5

<3227 (Ipln — o) — plar — )|+ Ip(ar —w2) —plan — ) + 5

- €
o2 (P(y1 = 21) +py2 —22)) + 5 <,

Jj=1
and so d: X x X — R is continuous.

Part (c): Given z,y € X we have e(z,y) = 0 if and only if p,(z — y) = 0 for all
n > 1, which holds if and only if x = y. Since e satisfies the triangle inequality
and it is symmetric, it follows that e is a metric. leen {z;}32, C X and z € X it
holds that d(x,x;) —> 0 if and only if p,(z — z;) 50 for all n > 1, which holds if
and only if e(z, z;) 7, 0. This shows that d and e induce the same topologies.

Question 3: Clearly [*° is a vector space, ¢ is a subspace of [*°, ¢y is a subspace

of ¢, and ||-|| is a norm on [*°. Let {zm}fr‘; 1 Cl®bea Cauchy sequence. For each

n,m,k > 1 we have |z/" — zf| < ||z™ —

>_1 is a Cauchy sequence

in C for each n > 1, and so there exists x, € C Wlth T 2 4,. There exits k > 1
with me - :UkH < 1 for all m > k, hence |z]| < ||xk|| +1foralln>1and m >k,



and so |z,| < ||z*|| + 1 for n > 1. This shows that {z,}32, =z € [*°. Let € > 0,
then there exits M > 1 with me —x’“H < e for m,k > M. For n > 1 we have
xm Y Ty, hence for k > M

|z, — 2F| <limsup |z, — 2| + limsup |27 — z¥| < me - ka <€,
m m

and so ||z — 2*|| < e. This shows that {z™}5°_; converges to x in [°°, hence I*° is

complete, and so it is a Banach space.

Let {™}%°_, C ¢ be a Cauchy sequence, then there exists z € [ with ™ % x in

[>°. For each m > 1 there exits y,, € C with lim 2] = y,,,. Given m,k > 1 we have
n

‘|

[Ym — | = lim |27} — ap| < []2"™ — 2

)

50 {ym }5°_; is a Cauchy sequence, and so there exists y € C with y = lim y,,,. For
m

each m >1
limsup|y—a,| < [y—ym|+Hlimsup|y, —z)' [+limsup|ay' —z,| < [y—ym|+[z™ — 2|,
n n n
hence
limsup |y — x| < limsup (|y — Ym| + ||z —z||) =0.
n m

This shows that lim z,, = y, so « € ¢, and so ¢ is a closed subspace of [*°. This also
n

shows that c is complete, and so it is a Banach space.

Let {z}%°_, C ¢y be a Cauchy sequence, then there exists x € ¢ with 2™ % x in

[°°. For each m > 1 we have lim z]' = 0, hence
n
limsup |z,| < limsup |z, — ;| + limsup |z’ < || — ]|,
n n n
and so
limsup |z,| < limsup ||z —=z| =0.
n m

This shows that limz,, = 0, S0 € ¢y, and so ¢g is a closed subspace of ¢. This also
n
shows that cg is complete, and so it is a Banach space.

Remark. The fact that ¢ is a closed subspace of ¢ (and so a Banach space) also

follows from the following argument: Given = € ¢ set f(z) = lim z,,, then f is a
n

continuous linear functional on ¢. Now since ¢y = ker f it follows that cq is a closed

subspace of c.

Question 4: Let ,y € Y and a, 3 € C be given, and let V C X be a neighbour-
hood of 0 in X. Define f: X x X — X by

flz,w) =az+ pw for z,w e X .

Since f is continuous and f(0,0) = 0, there exists W C X a neighbourhood of 0
with f(W x W) C V. Since x,y € Y there exist 2/,y € Y with 2/ € x + W and



y €y -+ W. Since az’ + Sy’ €Y and
ar' + By €ax+ By +aW + W =ax+ By + f(Wx W) Cax+ By+V,

it follows that Y N (ax + By + V) # 0. This holds for every V which is a neigh-
bourhood of 0, hence ax + By € Y, which shows that Y is a linear subspace of
X.

Question 5, part (a): The space C(0,1) is not normable. Assume by contradic-
tion that there exists a norm ||-|| which induces the topology of C(0,1), then there
exist a compact K C (0,1) and e > 0 with

{f€C0,1) : pr(f) <et c{f€C(0,1) : [[fll <1}.

Let g € C(0,1) be such that g = 0 on K but g(x) # 0 for some z € (0,1)\ K. Since
g # 0 we have ||g|| > 0, hence lim ||ng|| = co. But ng = 0 on K for all n > 1, hence
pr(ng) <€, and so ||ng|| <1 fgr all n > 1. This contradiction shows that C(0, 1)
is not normable.

Part (b): Cy(0,1) is not a closed subspace of C(0,1), and Cy(0,1) = C(0,1). Fix
some g € C(0,1). For n > 31let f, € Cy(0,1) be with f,, =1 on [1,1—1]. Givena
compact K C (0, 1) there exists N > 3 with K C [3-,1— . Foralln > N we have
pr(9—9-fa) =0,and so g- f, = gin C(0,1). Since {g- f,}5%, C Cy(0, 1) it follows
that Cy(0,1) is dense in C(0,1), and it is not closed since C(0,1) \ Cy(0,1) # 0.

Part (c): It is clear that W is convex and balanced. Let f € Cy(0, 1), then there
exists 0 < C' < oo with |f(z)| < C for z € (0,1). Given 0 < < (C - Y 07, )71

we have

1 1 =1
Zﬁ"‘;'f(ﬁ)|gc'5’2ﬁ<l’
n=2 n=2

hence § - f € W, so f € §~1W, and so W is absorbing in C(0,1).

Assume by contradiction that 0 € int W (where int W is taken in Cy(0,1)), then
there exist a compact K C (0,1) and € > 0 with

{f€Co(0,1) : pr(f) <e} CW.

Let m > 1 be such that = ¢ K, then there exists f € Cy(0,1) with f = 0 on K
and f(--) > m?. Since px(f) =0 < € we have f € W, which contradicts
= 1 1 1 1
(D) > = (=) > 1.
S O s f) >

n=2

This shows that 0 ¢ int W, and so W is not open in Cy(0,1) since 0 € W.



Part (d): Let p be the Minkowski functional of W, then part ¢ implies that p is
not continuous on Cy(0,1). Assume by contradiction that p is continuous, then

{f€Co(0,1) : p(f) <1}

is an open set which contains 0 and is contained in W. This shows that 0 € int W

which contradicts part ¢, and so p is not continuous.

Part (e): Let Q@ C C(0,1) be subspace of all polynomials, then @ is dense in
C(0,1). Let V. C(0,1) be open and let f € V. There exist a compact K C (0,1)
and € > 0 with

{g€C(0,1) : pr(g—f)<e}CV.
From the Weierstrass approximation theorem it follows that there exists ¢ € @ with
pr(q — f) <€, hence ¢ € V, which shows that @ is dense in C(0, 1).

Question 6, part (a): Let Ky, K>,... C  be compact sets with U; K; = Q and
K; Cint Kj4q for j > 1. The family

{Prj0 5215 laf <k}

is countable and induces the topology of C*¥(Q2), hence C*(Q) is metrizable. In
order to show that C*(Q) is a Frechet space we need to show that it is complete.
Let {f;} C C*(Q) be a Cauchy sequence. For each | > 1 and |a| < k the sequence
{0°f;} is Cauchy in C(K;), where C(K;) is endowed we the supremum norm.
Since C(K;) is complete there exits go; € C(K;) with 0°f; EN Jo, in C(K).
Given |a| < k define g, : @ = C by go = gas on Kj, clearly g, is well defined
and continuous. Set g = go, we shall show that g € C*(Q2) and 9%g = g, for every
multi-index |a] < k. Let |a] < k and 1 < i < n and set 5 = a + e;, where e; is the
1’th standard unit vector of R™. Let € 2 and € > 0 be given. Let 1 > §p > 0 be
such that B(x,d00) =: B C Q and |gs(y) — gs(z)| < e for y € B. Given 0 < § < &
there exists j > 1 with

|07 fj(x) — gy(z)] < de for v € {o, 8} and z € B.
From the mean value theorem we get

ga(x + 66{;) — ga(x) _ g[j(ﬂf)

<2+ ‘aafj(x * 5e§) —OH® )

<2e+ sup |07 f;(z +ne;) — gs(x)|
n€l0,4]

<3e+ sup |gg(z+ne;) — gs(x)| < 4e,
n€l0,d]



which shows that 0°g, = gg. Now by induction on |a| we obtain 0%g = g, for
every multi-index a with |a| < k, which also shows g € C*(2). Since 0°f; EN 0%g
in C(K;) for Il > 1 and |a| < k, we get f; EN g in C*(€2). This shows that C*(Q) is
complete, and finishes the proof.

Part (b): Let § be a multi-index with |8] < k. Since 8° : C*(Q) — C*~181(Q)
is linear it is enough to show that it is continuous at 0. Let V' c C*~181(Q) be a
neighbourhood of 0, then there exist a compact K C Q and ¢ > 0 with

{fect1PlQ) : |0°f(z)| <eforze K and |a| <k—|8]} =W CV.

Set

U={feCkQ) :10°f(x)| < efor x € K and |a| < k},
then U is a neighbourhood of 0 in C*(Q) and 9°(U) ¢ W C V. This shows that
9" is continuous at 0.
Part (c): Let K C Q be compact and « be a multi-index with |a| < k. It suffice to
show that there exists a continuous seminorm ¢ on C*(2) with px .o (T, f) < q(f)
for f € C*(). From the Leibniz formula there exist positive integers {ca5}s<a
with

o%(f-g) = Z Cap -0 Pf-0Pg forall f,g e C*(Q).

BLa
Hence for f € C*(Q) and z € K
10 (T f)(@)] = 10°(0f)(@)] < D cas - 10* Pip(a)] - 107 f ()],
Bla

and so

PE.o(Tof) < cap pra-ple) - prs(f) .
f<a

Since Y- 5, Ca,p-PK.a—p(#) DK is a continuous seminorm on C*(§2) we are done.



