
FUNDAMENTAL CONCEPTS IN ANALYSIS 1 - EXERCISE 1

Question 1: Assume by contradiction that there exists x ∈ int(U\U). Since x ∈ U
and int(U \ U) is an open neighbourhood of x, it follows that there exists y ∈ U
with y ∈ int(U \U) ⊂ U \U . This is clearly a contradiction, hence int(U \U) = ∅,
and so U \ U is nowhere dense since it is closed.

Since F \ int(F ) ⊂ F it follows that int(F \ int F ) ⊂ int F . From this and from

int(F \ int F ) ⊂ F \ int F we obtain int(F \ int F ) = ∅, and so F \ int F is nowhere

dense since it is closed.

Question 2a: Letm be the Lebesgue measure on R, let ε > 0 be given, let {qn}∞n=1

be an enumeration of Q ∩ [0, 1], and set

F ε = [0, 1] \ ∪∞n=1(qn − ε · 2−n−1, qn + ε · 2−n−1) .

Clearly F ε is closed, and it is nowhere dense since F ε ∩ Q = ∅, and so int F ε = ∅.
In addition we have

m(F ε) ≥ 1−
∞∑
n=1

m(qn − ε · 2−n−1, qn + ε · 2−n−1) = 1− ε .

Question 2b: Let F = ∪∞n=1F
1/n, then F is of the �rst category. Also m(F ) ≥

m(F 1/n) ≥ 1− 1
n for every n ≥ 1, so m(F ) = 1.

Question 3a: Set

Df = {x ∈ R : f is not continuous at x},

and for n ≥ 1 set

Ef,n = {x ∈ R : lim sup f(x)− lim inf f(x) ≥ 1

n
} .

Clearly D = ∪∞n=1Ef,n, hence it remains to show that the sets Ef,n are closed. Let

a, x ∈ R be such that lim sup f(x) < a, then there exists ε > 0 with lim sup f(y) < a

for y ∈ (x − ε, x + ε), and so lim sup f is upper semi-continuous. In the same

manner lim inf f is lower semi-continuous, and so lim sup f − lim inf f is upper

semi-continuous. This shows that the sets Ef,n are all closed.

Question 3b: Assume by contradiction that there exists f : R → R with Df =

R\Q. For each n ≥ 1 the set Ef,n is closed and Ef,n∩Q = ∅, hence Ef,n is nowhere

dense. Now since {x} is nowhere dense for x ∈ R, and since

R = Df ∪Q = (∪∞n=1Ef,n) ∪ (∪q∈Q{q}),
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it follows that R is of the �rst category. Since R is a complete metric space this

contradicts Baire's theorem, and so there is no f : R→ R with Df = R \Q.

Question 4: Assume by contradiction that there exist open sets V1, V2, ... ⊂ R
with ∩∞n=1Vn = Q. For n ≥ 1 set Fn = R\Vn, then since Fn is closed and Fn∩Q = ∅
it follows that Fn is nowhere dense. Now since

R = (R \Q) ∪Q = (∪∞n=1Fn) ∪ (∪q∈Q{q})

it follows that R is of the �rst category, which contradicts Baire's theorem. This

proves that Q is not a countable intersection of open subsets of R.

Question 5: Since intK is non-empty and contains 0, intK is absorbing. Let p

be the Minkowski functional corresponding to intK, i.e.

p(x) = inf{t ∈ (0,∞) : t−1 · x ∈ intK} for x ∈ Rn .

Since K is convex intK is also convex, hence p(x+ y) ≤ p(x) + p(y) and p(t · x) =
t · p(x) for x, y ∈ Rn and t ∈ [0,∞) (see Theorem 1.35 in [R]). Let y ∈ ∂K, then

p(y) ≥ 1 since y /∈ intK. Set W = span{y} and for α ∈ R set f0(α · y) = α · p(y),
then f0 de�nes a linear functional on W . If α < 0 then

f0(α · y) = α · p(y) < 0 ≤ p(α · y),

and if α ≥ 0 then

f0(α · y) = α · p(y) = p(α · y) .

From this and from the Hahn-Banach theorem it follows that there exists a linear

functional f : Rn → R with f(x) = f0(x) for x ∈ W and f(x) ≤ p(x) for x ∈ Rn.
Set

H = {x ∈ Rn : f(x) ≤ p(y)} and ∂H = {x ∈ Rn : f(x) = p(y)},

then H is a closed half-space and ∂H is a hyperplane. Since f(y) = f0(y) = p(y),

we have y ∈ ∂H. For x ∈ intK

f(x) ≤ p(x) ≤ 1 ≤ p(y),

so f(x) ≤ p(y) for x ∈ K since f is continuous. This shows that K ⊂ H and

completes the proof.

Question 6: The function that takes x ∈ R to {x} is continuous, hence for each
n ≥ 0 the function that takes x ∈ R to sn(x) =

∑n
j=0

{10jx}
10j is continuous. From the

Weierstrass M-test it follows that the sequence {sn}∞j=1 converges to f uniformly,

which implies that f is also continuous.

We shall now show that f is nowhere di�erentiable. Fix a ∈ I := [0, 1), then since

f is 1-periodic it su�ce to show that f is not di�erentiable at a. De�ne σ : I → I



by

σ(x) = 10 · x mod 1 for x ∈ I,

set σ1 = σ, and for each j ≥ 2 set σj = σ ◦ σj−1. There exists a sequence {an}∞n=1,

with an ∈ {0, ..., 9} for n ≥ 1, such that a =
∑∞
n=1 an · 10−n. For n ≥ 1 set

ηn =

−1 , if an = 4 or 9

1 , otherwise

and hn = 10−n · ηn, then

(0.1)
f(a+ hn)− f(a)

hn
= ηn ·

n−1∑
j=0

10n−j · ({σj(a+ hn)} − {σj(a)}) .

Note that for x ∈ [0, 1)

{x} =

x , if x ∈ [0, 12 )

1− x , if x ∈ [ 12 , 1)
,

and that from the way hn is de�ned it follows that for 0 ≤ j < n

1[0, 12 )(σ
j(a)) = 1[0, 12 )(σ

j(a+ hn)) .

From this and from (0.1) we obtain

f(a+ hn)− f(a)
hn

=

= ηn ·
n−1∑
j=0

10n−j · (1[0, 12 )(σ
j(a))− 1[ 12 ,1)(σ

j(a))) · (σj(a+ hn)− σj(a)) .

Since ∣∣10n−j · (σj(a+ hn)− σj(a))
∣∣ = 1 for 0 ≤ j < n,

it follows that f(a+hn)−f(a)
hn

is an integer which is odd if and only if n is odd. This

shows that the limit lim
n→∞

f(a+hn)−f(a)
hn

does not exist, and in particular f is not

di�erentiable at a.
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